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Introduction

Let R be a Riemann surface. The Teichmüller space T (R) of R
is a space which describes all quasiconformal deformations of R. The
Teichmüller distance, denoted by dT (R), is defined on T (R) by using the
maximal dilatations of quasiconformal mappings. Then (T (R), dT (R))
becomes a complete metric space, and the Teichmüller modular group
Mod(R) acts on T (R) isometrically. By the so-called Bers embedding,
T (R) admits a finite or infinite dimensional complex structure on which
Mod(R) acts biholomorphically. If R is of finite type, that is, R is ob-
tained from a compact Riemann surface by removing at most a finite
number of points, then T (R) is a finite dimensional complex manifold.
Further, Mod(R) acts on T (R) properly discontinuously. On the other
hand, if R is not of finite type, then T (R) becomes an infinite dimen-
sional, non separable, Banach analytic manifold, and Mod(R) does not
act on T (R) properly discontinuously in general. We say that such
Riemann surfaces are of infinite type. For example, see [11,15,19].

Two Riemann surfaces are said to be quasiconformally equivalent
to each other if there exists a quasiconformal mapping between them.
For Riemann surfaces of finite type, quasiconformal equivalences are
completely characterized by the genus and the number of punctures.
On the other hand, in the case of infinite type Riemann surfaces, the
situation is quite complicated. For example, C \ Z and C \ (Z+ iZ)
are homeomorphic to each other, however, there are no quasiconfor-
mal mappings between them. This fact follows from the invariance of
porosity under quasiconformal mappings, see Väisälä [25] and Chapter
3. We will see that C \ {±en}∞n=0 and C \ {en}∞n=0 are quasiconforamlly
equivalent, nevertheless C\Z and C\N are not quasiconformally equiv-
alent, see Remark 2.3.5. Moreover, we can prove that any two of C\Z,
C \ (Z + iZ), C \ N and C \ {en}∞n=0 cannot be mapped to each other
by quasiconformal mappings. Since T (R) describes all quasiconformal
deformations, it is important to determine Riemann surfaces that are
quasiconformally equivalent to given R.
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iv INTRODUCTION

In this thesis, we try to find all Riemann surfaces that are quasicon-
formally equivalent to C\Z. If a Riemann surface R is quasiconformally
equivalent to C\Z, then R is biholomorphically equivalent to C\A for
some closed discrete subsets A ⊂ C. This is a direct consequence of the
classical uniformization theorem and the removable isolated singularity
theorem for quasiconformal mappings, see [14] or [24]. We will give
some criteria for the complements of closed discrete subsets A ⊂ C to
be quasiconformally equivalent to C \ Z.

This thesis is organized by three chapters. Chapter 1 is a pre-
liminary for later chapters. We will give some definitions and basic
properties. Here, we explain Chapter 2 and Chapter 3 respectively.

Chapter 2. Let C be the Cantor ternary set;

C = [0, 1] \
∞∪

m=1

3m−1−1∪
k=0

(
3k + 1

3m
,
3k + 2

3m

)
.

In [17, Theorem 3, 1999], MacManus completely characterized subsets
of C whose compliments are quasiconformally equivalent to C \ C by
some geometric conditions. As the first step in his proof, he gave
a geometric characterization of subsets of R whose compliments are
quasiconformally equivalent to C\C . In Chapter 2, we first characterize
subsets of R whose complements are quasiconformally equivalent to
C \ Z.

Theorem A. For a subset A ⊂ R, the following conditions are
quantitatively equivalent;

1. There exists an η-quasisymmetric bijection f : Z → A.

2. A can be written as a monotone increasing sequence A =
{an}n∈Z with an → ±∞ as n → ±∞, and there exists a con-
stant M ≥ 1 such that the following inequality holds for all
n ∈ Z and k ∈ N;

1

M
≤ an+k − an

an − an−k

≤ M.

3. There exists a K-quasiconformal mapping F : C → C, such
that F (Z) = A.

Further, if A satisfies the second condition, then there exists a K =
K(M)-quasiconformal mapping F : C → C such that F (n) = an for
all n ∈ Z.

It immediately follows from the equivalence (2) ⇔ (3) that C \ Z and
C \ N are not quasiconformally equivalent.
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Next, we have the following result concerning the study of Mod(C\
Z) which consists of all homotopy classes of quasiconformal self-homeomorphisms
of C \ Z:

Theorem B. For a bijection f : Z → Z, the following conditions
are quantitatively equivalent;

1. f is η-quasisymmetric.

2. f satisfies the λ-three point condition.

3. f is M-biLipschitz.

4. f admits an M-biLipschitz extension F : C → C.
5. f admits a K-quasiconformal extension F : C → C.

As a corollary of these theorems, we immediately obtain the following:

Theorem C. Every η-quasisymmetric embedding f : Z → R ad-
mits a K = K(η)-quasiconformal extension F : C → C where K(η) is
a constant depending only on η.

This result means that the integer set Z is an example of unbounded
discrete subset for which the one dimensional Väisälä problem, stated
below, can be solved affirmatively.

Question (The Väisälä 8th problem [23, 1995] ). Let X ⊂ Rn.
Can η-quasisymmetric mapping f : X → Rn be extended to a K-
quasiconformal mapping F : R2n → R2n, where K ≥ 1 is a constant
depending only on η and n?

The Väisälä problem has been studied mainly in the case that
X ⊂ Rn is connected or bounded, see [2,5,6,22,26]. In [20, Theorem
6.21, 1999], Trotsenko–Väisälä proved that; if X ⊂ Rn is not relatively
connected, then there is a quasisymmetric embedding f : X → Rn

which admits no quasiconformal extensions F : H → H to any Hilbert
spaces H. Therefore, the Väisälä problem cannot be solved affirma-
tively for general subsets even if n = 1.

This chapter is based on the papers [9, Section 3] and [10].

Chapter 3. Let [f ], [g] ∈ T (R), where [f ] denotes the Teichmüller
equivalence class of the quasiconformal mapping f : R → f(R) from
R to another Riemann surface f(R). Then the Teichmüller distance
between [f ] and [g] is defined by

dT (R)([f ], [g]) =
1

2
inf logK(h),
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where the infimum is taken over all quasiconformal mappings h : f(R) →
g(R) which are homotopic to g ◦ f−1 relative to the ideal boundary of
f(R), and K(h) denotes the maximal dilatation of h.

Let p : S → R be a covering. Then every quasiconformal deforma-
tion of R lifts to a quasiconformal deformation of S. Thus the covering
mapping p : S → R naturally induces the embedding p∗ : T (R) →
T (S). By the definitions, the mapping p∗ is 1-Lipschitz, that is,

dT (S)(p
∗[f ], p∗[g]) ≤ dT (R)([f ], [g])

for all [f ], [g] ∈ T (R). Suppose R is of finite type and is hyperbolic, that
is, R is covered by the unit disk D. Then, in [18, Corollary 1.2, 1989],
McMullen showed that for any covering p : S → R, the induced map-
ping p∗ is either a contraction (dT (S)(p

∗∗, p∗∗) < dT (R)(∗, ∗)), or a global
isometry (dT (S)(p

∗∗, p∗∗) = dT (R)(∗, ∗)). Furthermore, he characterized
coverings which induce global isometries. This result completely solved
the Kra conjecture [13, 1981]: For any universal covering p : D → R of
a hyperbolic Riemann surface R of finite type, the induced embedding
p∗ : T (R) → T (D) is a contraction. Notice that the Teichmüller space
T (D) of the unit disk contains all Teichmüller spaces of hyperbolic
Riemann surfaces. Therefore T (D) is called the universal Techmüller
space.

Let Rn = (C \ Z)/⟨z + n⟩ for n ∈ Z, and let pn : R → Rn be the
projection. Then Rn is an (n + 2)-punctured Riemann sphere. Since
the covering transformation group Deck(pn) = ⟨z+n⟩, every quasicon-
formal deformation f : Rn → f(Rn) lifts to a periodic quasiconformal
deformation of C \ Z with period n. In Chapter 3, we discuss periodic
quasiconformal deformations of C \ Z. First, we prove the following:

Theorem D. Let A ⊂ C be a closed discrete subset which has the
following form;

A = Z+ {an}kn=1

where k ≤ ∞ and each an ∈ C satisfies Re(an) ∈ [0, 1). Then, C \A is
quasiconformally equivalent to C \ Z if and only if k < ∞.

By the McMullen theorem, it turns out that p∗n : T (Rn) → T (C \
Z) is globally isometric. Further, any two points of T (Rn) can be
joined by a geodesic. Thus Tn = p∗n(T (Rn)) is a geodesically convex
subspace of T (C \ Z). Note that Tn is a subspace which describes
periodic quasiconformal deformations of C \ Z with period n.

Let T∞ be the set of all [f ] ∈ T (C \ Z) such that f(C \ Z) has a
biholomorphic automorphism of infinite order. Then the Teichmüller
modular group Mod(C \ Z) does not act properly discontinuously on
T∞ ⊂ T (C \ Z), since the stabilizer StabMod(C\Z)([f ]) is isomorphic to
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the group Aut(f(C \Z)) of biholomorphic automorphisms of f(C \Z),
see [7, Lemma 2]. Theorem D implies that if [f ] ∈ T∞ then there is a
periodic quasiconformal deformation g : C \ Z → g(C \ Z) such that
g(C \ Z) is biholomorphically equivalent to f(C \ Z). Therfore, as a
corollary of Theorem D, we have the next theorem:

Theorem E. T0 =
∪∞

n=1 Tn is separable and geodesically convex.
Further, the following equality holds;

T∞ =
∪

[f ]∈Mod(C\Z)

[f ]∗(T0).

Here, [f ]∗ : T (C \Z) → T (C \Z), [g] 7→ [g ◦ f−1] denotes the action of
[f ] ∈ Mod(C \ Z) on T (C \ Z). Further, we can show the following:

Theorem F. Let [f ] ∈ Mod(C \ Z). If [f ]∗(T0) ∩ T0 ̸= ∅, then
[f ]∗(T0) = T0.

Therefore, the subset T∞ contained in the limit set of Mod(C\Z) is the
disjoint union of isometric copies of the separable geodesically convex
subspace T0, which describes all periodic quasiconformal deformations
of C \Z. For general results on the limit sets for infinite type Riemann
surfaces, see Fujikawa [8].

This chapter is based on the paper [9, Section 4].

Acknowledgements

First of all, I would like to express the deepest appreciation to Prof.
Takeo Ohsawa for his support and guidance. I have great respect for
his sincere and strict attitude toward the mathematics.

I also would like to express my gratitude to Prof. Tomoki Kawahira.
The essential idea of the proof of Theorem D was given by him.

I would like to thank JSPS for their financial support. Last but not
least, I am deeply grateful to my parents and friends for their warm
support and cooperation.





CHAPTER 1

Some classes of mappings

In this chapter, we introduce some classes of mappings and give
relations between each pair of these classes, as a preliminary to later
chapters. We only consider mappings from a planar subset into the
plane. However, we remark that all of these classes are generalized to
any metric spaces, see [12] and [24].

1.1. Quasiconformal mappings

Let Ω ⊂ C be a domain, and f : Ω → C be a homeomorphism into
C. For z ∈ Ω and r > 0 such that S(z, r) = {w ∈ C | |z−w| = r} ⊂ Ω,
we set

L(z, f, r) = max
w∈S(z,r)

|f(z)− f(w)|,

ℓ(z, f, r) = min
w∈S(z,r)

|f(z)− f(w)|.

Then the circular dilatation Hf (z) ∈ [1,∞] of f at z is defined by

Hf (z) = lim sup
r→0

L(z, f, r)

ℓ(z, f, r)
.

Let K ≥ 1. Then f is said to be K-quasiconformal if Hf (z) < ∞
for all points z ∈ Ω and satisfies Hf (z) ≤ K almost everywhere in
Ω. For a quasiconformal mapping f : Ω → C, the quantity K(f) =
ess.supΩHf (z) is called the maximal dilatation of f .

Suppose f is differentiable at z. Its derivative df maps infinitesi-
mal circle to (non degenerate or degenerate) infinitesimal ellipse. Then
Hf (z) coincides with the ratio of long axis and short axis of ellipse. In
particular, if Hf (z) = 1, then df maps infinitesimal circle to infinitesi-
mal circle. Therefore, smooth orientation preserving 1-quasiconformal
mappings are conformal. More generally, this fact is true even if the
mapping is not smooth, that is, for an orientation preserving homeo-
morphism f , f is 1-quasiconformal if and only if f is conformal.

1



2 1. SOME CLASSES OF MAPPINGS

1.2. Quasisymmetric mappings

Let η : [0,∞) → [0,∞) be a homeomorphism and X ⊂ C be a
subset. Then an injection f : X → C is said to be η-quasisymmetric if
the following inequality holds for any three points x, y, z ∈ X (x ̸= z);∣∣∣∣f(x)− f(y)

f(x)− f(z)

∣∣∣∣ ≤ η

(∣∣∣∣x− y

x− z

∣∣∣∣) .(QS)

If x ̸= y, replacing y and z, the following lower estimate also holds;

∣∣∣∣f(x)− f(y)

f(x)− f(z)

∣∣∣∣ ≥ η

(∣∣∣∣x− y

x− z

∣∣∣∣−1
)−1

.

Therefore, if η(t) = t, then η-quasisymmetric mapping f satisfies∣∣∣∣f(x)− f(y)

f(x)− f(z)

∣∣∣∣ = ∣∣∣∣x− y

x− z

∣∣∣∣ ,
for any distinct points x, y, z ∈ X. This implies that f is the restriction
of an Affine transformation of C or its complex conjugation.

Notice that if X contains at least two elements and there exists at
least one η-quasisymmetric mapping, applying (QS) to y = z, it turns
out that η must satisfy η(1) ≥ 1.

1.3. Egg-yolk principle

For a homeomorphism between planar domains, the quasiconfor-
mality and the quasisymmetry are closely related by the so-called egg-
yolk principle as follows, see [12, Theorem11.14]:

Let Ω,Ω′ ⊂ C be domains, and let f : Ω → Ω′ be a homeomorphism.
Then f is K-quasiconformal if and only if there exists an η such that f
is η-quasisymmetric on D(z, dist(z, ∂Ω)/2) for all z ∈ Ω. Here D(z, r)
denotes the open disk with radius r > 0 centered at z. Further, in this
statement, K and η are related quantitatively.

Therefore, every η-quasisymmetric mapping defined on a domain is
aK = K(η)-quasiconformal mapping. Conversely, everyK-quasiconformal
mapping is locally η = ηK-quasisymmetric. In particular, for a self-
homeomorphism of C, the quasiconformality and the quasisymmetry
are quantitatively equivalent.
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1.4. biLipschitz mappings

Let X ⊂ C be a subset and M ≥ 1. Then a mapping f : X → C is
said to be M -biLipschitz if

1

M
|x− y| ≤ |f(x)− f(y)| ≤ M |x− y|

for any x, y ∈ X. Clearly, biLipschitz mappings are homeomorphisms
into C, and 1-biLipschitz mappings are isometries.

If f : X → C is M -biLipschitz, then∣∣∣∣f(x)− f(y)

f(x)− f(z)

∣∣∣∣ ≤ M2

∣∣∣∣x− y

x− z

∣∣∣∣
for all x, y, z ∈ X (x ̸= z). Thus every M -biLipschitz mappping is
η(t) = M2t-quasisymmetric. Furthermore, if X is a domain, then it
immediately follows from the definition of quasiconformality that f is
M2-quasiconformal.

The biLipschitz extendability of biLipschitz mapping has been stud-
ied by many authors, and many detailed results were obtained so far
compared with the case of quasisymmteric or quasiconformal map-
pings. For example, Alestalo–Väisälä [3, Theorem 5.5] showed that
every M -biLipschitz mapping f from X ⊂ Rk into Rn (n ≥ k) admits
a
√
7M2-biLipschitz extension F : Rn+k → Rn+k. In particular, every

M -biLipschitz embedding f : X → R (X ⊂ R) can be extended to a√
7M2-biLipschitz self-homeomorphism of C (this fact will be used in

a later section). Moreover, in the case of X ⊂ R, more detailed re-
sult was obtained by MacManus [16, Theorem 1]; if X ⊂ R, then any
M -biLipschitz mapping f : X → C admits a M ′-biLipschitz extension
F : C → C, where M ′ is a constant depending only on M . The same
statements cannot hold for quasisymmetric mappings since there is a
subset X ⊂ R and a quasisymmetric mapping f : X → R which can-
not be extended to quasisymmetric self-homeomorphism of any Hilbert
space, see Introduction, [20, Theorem 6.21] or [12, p.89].





CHAPTER 2

Extendability of quasisymmetric embedding of Z

2.1. M-condition and λ-three point condition

Let M ≥ 1 and f : R → R be a homeomorphism. We say that f
satisfies the M -condition if the following inequality holds for any x ∈ R
and t > 0;

1

M
≤
∣∣∣∣f(x+ t)− f(x)

f(x)− f(x− t)

∣∣∣∣ ≤ M.

The M -condition was introduced by Beurling–Ahlfors in [5] as the qua-
sisymmetry on the real line, and later, the M -condition was general-
ized to the quasisymmetry defined in Chapter 1. In fact, for a self-
homeomorphism of R, the η-quasisymmetry and the M -condition are
quantitatively equivalent, see [21]. Further, it was shown in [5] that for
a self-homeomorphism f of R, f can be extended to aK-quasiconformal
self-homeomorphism of C if and only if f satisfies the M -condition.
Further K and M are quantitatively related to each other, see also [1].

The aim of this chapter is to show that every quasisymmetric em-
bedding from Z to R admits a quasiconformal extension to C.

Every self-homeomorphism of R is monotone. However, quasisym-
metric embeddings from Z to R need not to be monotone. This is
one of the difficulty compared with the above Beurling–Ahlfors theo-
rem. Here, we introduce the λ-three point condition which will play a
“non-monotone” part of a quasisymmetric embedding from Z to R, see
Remark 2.5.1:

Definition 2.1.1. Let A ⊂ R be a subset and let λ ≥ 1. Then we
say that an injection f : A → R satisfies the λ-three point condition if
the following inequality holds for any x, y, z ∈ A with x < y ≤ z;∣∣∣∣f(x)− f(y)

f(x)− f(z)

∣∣∣∣ ≤ λ.

Note that the three point condition does not depend on the distances
of x, y, z ∈ A. In particular, if f : A → R satisfies the λ-three point
condition, and if h : A → R is strictly monotone increasing, then
f ◦ h−1 : h(A) → R also satisfies the λ-three point condition.

5



6 2. EXTENDABILITY OF QUASISYMMETRIC EMBEDDING OF Z

Remark 2.1.2. Let A ⊂ R and f : A → R be an η-quasisymmetric
mapping. Then for any points x, y, z ∈ A with x < y ≤ z, we have∣∣∣∣f(x)− f(y)

f(x)− f(z)

∣∣∣∣ ≤ η

(∣∣∣∣x− y

x− z

∣∣∣∣) < η(1).

Thus, every η-quasisymmetric mapping satisfies the η(1)-three point
condition.

2.2. Lemma

The following lemma will play an important role in later sections.

Lemma 2.2.1. Let A = {an}n∈Z ⊂ R be a strictly monotone in-
creasing sequence. If a bijection g : E → Z satisfies the µ-three point
condition (µ ≥ 1), then for any n ∈ Z and k ∈ N, the following in-
equality holds;

k

2µ
< |g(an)− g(an+k)| < 2µk.

Proof. We first prove the following estimation;

Claim 1. |g(an)− g(an+1)| < 2µ for any n ∈ Z.

Proof. Since µ ≥ 1, it suffices to consider the case where |g(an)−
g(an+1)| ≥ 2. Then we may assume g(an+1) > g(an) since the same
argument mentioned below can be applied to the case where g(an) >
g(an+1).

Letting m ≤ n satisfy

g(am) = max {g(aj) | j ≤ n and g(an) ≤ g(aj) < g(an+1)}

and ℓ ∈ Z satisfy g(aℓ) = g(am)+1 ( then ℓ ≥ n+1 by the construction),
we can construct m, ℓ ∈ Z which satisfy the following conditions, see
Figure 1;

1. m ≤ n and n+ 1 ≤ ℓ,

2. g(an) ≤ g(am) < g(aℓ) = g(am) + 1 ≤ g(an+1).

First, suppose g(am) − g(an) ≥ (g(an+1)− g(an)) /2 ≥ 1. By the
three point condition,

µ ≥
∣∣∣∣g(am)− g(an)

g(am)− g(aℓ)

∣∣∣∣
= g(am)− g(an) ≥

g(an+1)− g(an)

2
.

Thus we have g(an+1)− g(an) < 2µ.
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Figure 1 : a part of the orbit of the sequence
(
g(aj)

)
j∈Z.

Next, suppose g(am)−g(an) < (g(an+1)− g(an)) /2. Then g(an+1)−
g(am) > (g(an+1) − g(an))/2. Similarly we have g(an+1) − g(an) <
2µ. □

Claim 2. Lemma 2.2.1 holds.

Proof. (Upper bound) By the triangle inequality, it immediately
follows from Claim 1 that |g(an)− g(an+k)| < 2µk.

(Lower bound) Since the open interval(
g(an)−

k

2
, g(an) +

k

2

)
contains at most k − 1 integers except g(an), there exists an integer
m ∈ Z (n < m ≤ n+ k) such that

|g(an)− g(am)| ≥
k

2
.

By the three point condition, we obtain

µ ≥
∣∣∣∣ g(an)− g(am)

g(an)− g(an+k)

∣∣∣∣ ≥ k

2|g(an)− g(an+k)|
,

that is, |g(an)− g(an+k)| > k/2µ. □

2.3. Images of Z under global quasiconformal mappings

In this section, we characterize subsets A ⊂ R whose compliments
are quasiconformally equivalent to C \Z. First we prove the following:

Proposition 2.3.1. Let A = {an}n∈Z ⊂ R be a strictly monotone
increasing sequence with an → ±∞ as n → ±∞. If there exists a
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constant M ≥ 1 such that the following inequality holds for all n ∈ Z
and k ∈ N,

1

M
≤ an+k − an

an − an−k

≤ M,

then there exists a K = K(M)-quasiconformal mapping F : C → C
such that F (n) = an for all n ∈ Z.

Proof. Set ϕ(x) := (an+1 − an)(x − n) + an for x ∈ [n, n + 1).
Then ϕ defines an orientation preserving self-homeomorphism of R with
ϕ(n) = an. Further we can show that ϕ satisfies C(M)-condition, where
C(M) = M4 + M3 + M2 + M . Therefore we obtain a K = K(M)-
quasicnoformal extension F : C → C of ϕ by the Beurling–Ahlfors
extension theorem.

Let x = n + t1, t = m + t2 (n ∈ Z, m ∈ Z≥0, t1, t2 ∈ [0, 1)). To
prove that ϕ satisfies C(M)-condition, we have to show the following
inequality,

1

C(M)
≤ I :=

ϕ(x+ t)− ϕ(x)

ϕ(x)− ϕ(x− t)
≤ C(M).

We divide the calculations into the following four cases.

1. t1 + t2 ∈ [0, 1) and t1 − t2 ∈ (−1, 0).

2. t1 + t2 ∈ [0, 1) and t1 − t2 ∈ [0, 1).

3. t1 + t2 ∈ [1, 2) and t1 − t2 ∈ (−1, 0).

4. t1 + t2 ∈ [1, 2) and t1 − t2 ∈ [0, 1).

However we only check the first case here as the calculations are al-
most the same and easy. To simplify the calculation, we use the next
inequality.

Lemma 2.3.2. Under the above assumptions, the following inequal-
ities hold.

(I) For n,m ∈ Z (n < m), and k ∈ Z≥0,

am+k − an
am − an

≤ Mk +Mk−1 + · · ·+M + 1,

am − an−k

am − an
≤ Mk +Mk−1 + · · ·+M + 1.

(II) For p, q ∈ R and k ∈ Z, if k − 1 ≤ p ≤ k ≤ q ≤ k + 1, then

1

M
(ak+1 − ak)(q − p) ≤ ϕ(q)− ϕ(p) ≤ M(ak+1 − ak)(q − p).

The inequality (II) also holds for (ak − ak−1) instead of (ak+1 − ak).
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Proof.

(I)
am+k − an
am − an

≤ am+k − am−1

am − am−1

=
k∑

j=0

am+j − am+j−1

am − am−1

≤ Mk +Mk−1 + · · ·+M + 1.

The second inequality also follows from the same calculation.

(II) ϕ(q)− ϕ(p) = (ak+1 − ak)(q − k) + ak − (ak − ak−1)(p− k + 1)− ak−1

= (ak+1 − ak)(q − k) + (ak − ak−1)(k − p) · · · (∗)

(∗) ≤ (ak+1 − ak)(q − k) +M(ak+1 − ak)(k − p)

= M(ak+1 − ak)(q − p) + (1−M)(ak+1 − ak)(q − k) ≤ M(ak+1 − ak)(q − p)

(∗) ≤ M(ak − ak−1)(q − k) + (ak − ak−1)(k − p)

= M(ak − ak−1)(q − p) + (1−M)(ak − ak−1)(q − k) ≤ M(ak − ak−1)(q − p)

We can prove the lower bounds in the same way. □

Continuation of Proof of Proposition 2.3.1. Suppose t1+t2 ∈ [0, 1)
and t1 − t2 ∈ (−1, 0).

(Upper bound). First if m ̸= 0, since ϕ is monotone increasing,

I ≤ ϕ(n+m+ 1)− ϕ(n)

ϕ(n)− ϕ(n−m)

=
an+m+1 − an
an − an−m

≤ M
an+m+1 − an
an+m − an

≤ M(M + 1) < C(M).

Next if m = 0, since n− 1 ≤ n+ t1 + t2 ≤ n ≤ n+ t1 ≤ n+ 1,

I ≤ (an+1 − an)(t1 + t2)− (an+1 − an)t1
1
M
(an+1 − an)t2

= M < C(M).

(Lower bound). First if m ̸= 0, 1, by the monotonicity of ϕ

I >
ϕ(n+m+ 1)− ϕ(n)

ϕ(n)− ϕ(n−m)

≥ 1

M

an+m − an+1

an+m+3 − an+1

≥ 1

M(M3 +M2 +M + 1)
=

1

C(M)
.
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Next if m = 0, for the same reason as in the case of upper bound,

I ≥ (an+1 − an)(t1 + t2)− (an+1 − an)t1
M(an+1 − an)t2

=
1

M
>

1

C(M)
.

Finally if m = 1, since n ≤ n + t1 ≤ n + 1 ≤ n + t1 + 1 ≤ n + 2 we

have ϕ(x+ t)−ϕ(x) ≥ ϕ(x+1)−ϕ(x) ≥ 1

M
(an+1 − an). On the other

hand, ϕ(x)− ϕ(x− t) ≤ ϕ(n + 1)− ϕ(n− 2) = an+1 − an−2. Thus we
have

I ≥ 1

M

an+1 − an
an+1 − an−2

≥ 1

M(M2 +M + 1)
≥ 1

C(M)
.

□
Next, we show that if f : Z → R is quasisymmetric, then A = f(Z)

satisfies the assumption in Proposition 2.3.1.

Remark 2.3.3. Quasisymmetric mappings take Cauchy sequences
to Cauchy sequences. Therefore, if A ⊂ R is an image of a quasisym-
metric mapping f : Z → R, then A must be closed and discrete in
R.

Lemma 2.3.4. Let f : Z → R be an η-quasisymmetric mapping,
and let A := f(Z). Then supA = ∞ and inf A = −∞.

Proof. To obtain a contradiction, we assume inf A > −∞. Since
A is closed and discrete, we have supA = ∞. Thus A can be written as
a monotone increasing sequence A = {an}n∈N with an → ∞ as n → ∞.

Let g := f−1 : A → Z. By translation, we may assume g(a1) = 0.
Further, note that g is η′-quasisymmetric where η′(t) = 1/η−1(1/t), see
[21, Theorem 2.2]. Let µ := η′(1) and consider the set

S :=

{
k ∈ N

∣∣∣∣ g(ak) = max
j=1,2,··· ,k

g(aj) ≥ µ

}
.

Since g : A → Z is bijective, S consists of infinitely many elements.
We number S = {kj}j∈N in ascending order. Then the sequence
{g(akj)}j∈N ⊂ Z is monotone increasing. On the other hand, there
exist infinitely many n ∈ N with g(an) < 0. Thus we can find j, ℓ ∈ N
such that kj < ℓ < kj+1 and g(aℓ) < 0. Moreover since g(an) ≤ g(akj)
for all n = 1, 2, . . . , kj+1 − 1, if g(am) = g(akj) + 1 then m ≥ kj+1.
Consequently we confirmed that there exists k ∈ S and exist ℓ,m ∈ N
such that

• k < ℓ < m,
• g(aℓ) < 0 and g(am) = g(ak) + 1, see Figure 2.
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Figure 2

Therefore, we have a contradiction;

µ > η′
(∣∣∣∣ ak − aℓ

ak − am

∣∣∣∣) ≥
∣∣∣∣ g(ak)− g(aℓ)

g(ak)− g(am)

∣∣∣∣
= g(ak)− g(aℓ) > g(ak) ≥ µ.

□
Remark 2.3.5. Preceding Lemma 2.3.4 extremely depends on the

particularity of Z. For example, Lemma 2.3.4 no longer holds for X =
{±en}∞n=0. In fact, there exists a quasisymmetric mapping which maps
X to Y = {en/2}∞n=0: Define f1, f2 : C → C by f1(re

iθ) = rei(θ+2π log r),
f2(x+ iy) = x+ iy (x ≥ 0), and f2(x+ iy) = x/

√
e+ iy (x < 0). Then

f = f2 ◦ f1 : C → C is quasiconformal and maps Y to X. Thus f−1|X
is a quasisymmetric mapping whose image is Y .

Lemma 2.3.6. Let A = {an}n∈Z ⊂ R be a monotone increasing
sequence with an → ±∞ as n → ±∞. If g : A → Z is an η′-
quasisymmetric bijection, then there exists a constant L ≥ 1 depending
only on µ := η′(1) which satisfies the following inequality for all n ∈ Z
and k ∈ N;

1

L
<

∣∣∣∣g(an+k)− g(an)

g(an)− g(an−k)

∣∣∣∣ < L.

Proof. Since g satisfies the η′(1)-three point condition, by Lemma
2.2.1 we have

1

4µ2
<

∣∣∣∣g(an+k)− g(an)

g(an)− g(an−k)

∣∣∣∣ < 4µ2,

where µ = η′(1). □
Theorem A. For a subset A ⊂ R, the following conditions are

quantitatively equivalent;
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1. There exists an η-quasisymmetric bijection f : Z → A.

2. A can be written as a monotone increasing sequence A =
{an}n∈Z with an → ±∞ as n → ±∞, and there exists a con-
stant M ≥ 1 such that the following inequality holds for all
n ∈ Z and k ∈ N;

1

M
≤ an+k − an

an − an−k

≤ M.

3. There exists a K-quasiconformal mapping F : C → C, such
that F (Z) = A.

Further, if A satisfies the second condition, then there exists a K =
K(M)-quasiconformal mapping F : C → C such that F (n) = an for
all n ∈ Z.

Proof. First, (2) ⇒ (3) and the last statement follow from Propo-
sition 2.3.4. Next, since global K-quasiconformal mappings are quan-
titatively η-quasisymmetric, see Chapter 1, (3) ⇒ (1) follows. Thus it
suffices to show (1) ⇒ (2).

Let us assume that there exists an η-quasisymmetric bijection f :
Z → A. By Lemma 2.3.4, A can be written as a monotone increasing
sequence A = {an}n∈Z with an → ±∞ as n → ±∞ (recall that A must
be closed and discrete in R). Let g := f−1. Then g is η′-quasisymmetric
where η′(t) = 1/η−1(1/t). By Lemma 2.3.6, there exists a constant
L ≥ 1 depending only on η′(1) = 1/η−1(1) which satisfies the following
inequality for any n ∈ Z and k ∈ N;

1

L
<

∣∣∣∣g(an+k)− g(an)

g(an)− g(an−k)

∣∣∣∣ < L.

Therefore we obtain∣∣∣∣an+k − an
an − an−k

∣∣∣∣ ≤ η

(∣∣∣∣g(an+k)− g(an)

g(an)− g(an−k)

∣∣∣∣) < η(L).

and ∣∣∣∣an+k − an
an − an−k

∣∣∣∣ ≥ η

(∣∣∣∣g(an+k)− g(an)

g(an)− g(an−k)

∣∣∣∣−1
)−1

>
1

η(L)
.

□

2.4. Quasisymmetric automorphism of Z

From Lemma 2.2.1, the next theorem immediately follows:

Theorem B. For a bijection f : Z → Z, the following conditions
are quantitatively equivalent;
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1. f is η-quasisymmetric.

2. f satisfies the λ-three point condition.

3. f is M-biLipschitz.

4. f admits an M-biLipschitz extension F : C → C.
5. f admits a K-quasiconformal extension F : C → C.

Proof. First, (1) ⇒ (2) is clear, see Section 2.1.

Next, we suppose f satisfies the λ-three point condition. By apply-
ing Lemma 2.2.1 to f and A = Z (that is, an = n), we have

k

2λ
< |f(n+ k)− f(n)| < 2λk,

for all n ∈ Z and k ∈ N. Thus we obtain (2) ⇒ (3).

(3) ⇒ (4) is follows from Alestalo–Väisälä [3, Theorem 5.5].

Generally,M -biLipschitz mappings areM2-quasiconformal, see Chap-
ter 1. Thus we have (4) ⇒ (5).

Finally, (5) ⇒ (1) is also clear, sinceK-quasiconformal self-homeomorphisms
of C are η-quasisymmetric with an η depending only on K (thus the
restrictions to Z are also η-quasisymmetric with the same η).

□
Remark 2.4.1. An analogous theorem holds for the set E = {en}n∈Z,

see Appendix 2.6. Also in this case, for a bijection of E, biLipschitzness
and quasisymmetry are equivalent, however, this equivalence cannot be
quantitative.

2.5. The Väisälä problem

Now, we can prove that the integer set Z is an example of closed
discrete subset for which the one dimensional Väisälä problem can be
solved affirmatively, that is:

Theorem C. Every η-quasisymmetric embedding f : Z → R ad-

mits a K = K(η)-quasiconformal extension f̃ : C → C where K(η) is
a constant depending only on η.

Proof. Let f : Z → R be an η-quasisymmetric embedding, and
let A := f(Z). Then, by Theorem A, there exists a K ′-quasiconformal
mapping F : C → C such that F (Z) = A, where K ′ depends only
on η. Since compositions of quasisymmetric mappings are also qua-
sisymmetric, F−1 ◦ f : Z → Z becomes an η′-quasisymmetric automor-
phism where η′ depends only on η. By Theorem B, F−1 ◦ f admits
a K ′′-quasiconformal extension G : C → C, where K ′′ depends only
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on η. Therefore, we obtain a K = K ′K ′′-quasiconformal extension

f̃ = F ◦G : C → C of f . The proof is completed. □
Remark 2.5.1. Applying the last statement of Theorem A to the

preceding proof, it turns out that every quasisymmetric embedding f :
Z → R admits the decomposition f = F ◦ G where F : Z → f(Z) is
strictly monotone increasing and G : Z → Z satisfies the three point
condition.

2.6. Appendix: Quasisymmetric automorphisms of {en}n∈Z
Let E = {en}n∈Z. We first prove the following.

Proposition 2.6.1. If a bijection f : E → E satisfies λ-three point
condition (λ ≥ 1), f(1) = 1, and f(en) → 0 as n → −∞, then f is

Mλ-biLipschitz, where Mλ =
e2

e− 1
λ(λ+ 1)2.

Proof. Let g := log ◦f ◦ exp, that is, f(en) = eg(n) for all n ∈ Z. Then,
by the assumptions, g(0) = 0 and g(n) → −∞ as n → −∞. Let
Cλ = log(λ+ 1).

Claim 1. g(k)− g(ℓ) ≤ Cλ if k < ℓ.

Proof. Since Cλ > 0, it suffices to consider the case where g(k) >
g(ℓ) and k < ℓ. Since g(n) → −∞ as n → −∞, there exists an integer
j < k such that g(j) < g(ℓ). Thus, by the three point condition,

λ ≥
∣∣∣∣eg(j) − eg(k)

eg(j) − eg(ℓ)

∣∣∣∣ = eg(k)−g(ℓ) − e−(g(ℓ)−g(j))

1− e−(g(ℓ)−g(j))
.

Since 0 < e−(g(ℓ)−g(j)) < 1, we have λ ≥ eg(k)−g(ℓ) − 1. Therefore
g(k)− g(ℓ) ≤ log(λ+ 1) = Cλ. □

Claim 2. −(2Cλ + 1) ≤ g(n)− n ≤ 2Cλ + 1 for all n ∈ Z.

Proof. Let n > 0. By Claim 1 and g(0) = 0, we have g(m) ≥ −Cλ

for all m > 0. Thus there exists an integer j (0 ≤ j < n) such that
g(j) ≥ −Cλ + n− 1. Using Claim 1 again, we have

Cλ ≥ g(j)− g(n) ≥ −Cλ + n− 1− g(n).

Thus g(n) − n ≥ −(2Cλ + 1). Further, to obtain a contradiction, we
suppose g(n)− n > 2Cλ + 1. Note that g(n) > 0. Let

G = {1, 2, · · · , g(n)− 1, g(n)},
H = {g(1), g(2), · · · , g(n− 1), g(n)},
I = {g(n+ 1), g(n+ 2), g(n+ 3), · · · }.
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By Claim 1, g(n)−Cλ ≤ g(m) for any m > n. This implies #(G∩I) ≤
Cλ. Since g : Z → Z is bijective, we have

# (G \ (H ∪ I)) = #G−#(G ∩H)−#(G ∩ I)

≥ g(n)− n− Cλ > Cλ + 1.

Thus there exists an integer j < 0 such that g(j) > Cλ + 1. By Claim
1, we have a contradiction;

Cλ ≥ g(j)− g(0) > Cλ + 1.

Therefore g(n)− n ≤ 2Cλ + 1.
The same argument can be applied to n < 0. We have the claim.

□
Claim 3. Proposition 2.6.1 holds.

Proof. Let n,m ∈ Z (n > m) and let

A =

∣∣∣∣f(en)− f(em)

en − em

∣∣∣∣ = eg(n)−n

∣∣∣∣1− eg(m)−g(n)

1− em−n

∣∣∣∣ .
First, suppose g(n) > g(m). Since 0 < eg(m)−g(n), em−n ≤ e−1 and

by Claim 2, we have

A ≤ e2Cλ+1 1

1− e−1
=

e2

e− 1
(λ+ 1)2,

A ≥ e−(2Cλ+1)

(
1− 1

e

)
=

(
e2

e− 1
(λ+ 1)2

)−1

.

Next, we suppose g(n) < g(m). Note that, 1 ≤ g(m) − g(n) ≤ Cλ

by Claim 1. Similarly we have

A ≤ e2Cλ+1 e
Cλ − 1

1− e−1
=

e2

e− 1
λ(λ+ 1)2,

A ≥ e−(2Cλ+1)(e− 1) =

(
e

e− 1
(λ+ 1)2

)−1

.

Since λ ≥ 1, we have 1/Mλ ≤ A ≤ Mλ. □
Corollary 2.6.2. For a bijection f : E → E, f is quasisymmetric

if and only if f is biLipschitz.

Proof. Generally,M -biLipschitz mappings are η(t) = M2t-quasisymmetric.
Thus “if” part follows.

Suppose f is η-quasisymmetric, and let F (z) = f(z)/f(1). Then F
is also η-quasisymmetric with the same η. Since quasisymmetric map-
pings take a Cauchy sequence to a Cauchy sequence, we have F (en) → 0
as n → −∞. Further F (1) = 1 and F satisfies the λ := η(1)-three point
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condition, see Remark 2.1.2. Thus, by Proposition 2.6.1, F is Mλ-
biLipschitz. Therefore f(z) = f(1)F (z) is max{f(1)Mλ,Mλ/f(1)}-
biLipschitz. □

Remark 2.6.3. Contrary to Theorem B, the equivalence in Corol-
lary 2.6.2 cannot be quantitative: Let fn : E → E, z 7→ enz for n ∈ N.
Then fn is η(t) = t-quasisymmetric for any n ∈ N. However fn is
en-biLipschitz, and this biLipschitz constant is sharp.

Finally, we analogously obtain the following theorem.

Theorem 2.6.4. For a bijection f : E = {en}n∈Z → E, the follow-
ing conditions are quantitatively equivalent;

1. f is η-quasisymmetric.

2. f satisfies the λ-three point condition, and f(en) → 0 as n →
−∞.

3. f admits a K-quasiconformal extension F : C → C.

Proof. (1) ⇒ (2) follows for the same reason as in the preceding
proof.

Suppose f satisfies the λ-three point condition and f(en) → 0 as
n → −∞. Then g(z) = f(z)/f(1) also satisfies the λ-three point
condition and g(en) → 0 as n → −∞. Since g(1) = 1, applying
Proposition 2.6.1, it turns out that g is Mλ-biLipschitz. For the same
reason as in the proof of Theorem B, g admits a K-quasiconformal
extension G : C → C where K is a constant depending only on λ. We
obtain a K-quasiconformal extension F (z) = f(1)G(z) (z ∈ C) of f .

(3) ⇒ (1) also follows for the same reason as in the proof of Theorem
B. □

Remark 2.6.5. In condition (2), f(en) → 0 as n → −∞ is nec-
essary. More precisely, the λ-three point condition does not imply this
property. In fact, f : E → E, en 7→ e−n satisfies the 1-three point
condition, but f(en) → ∞ as n → −∞.



CHAPTER 3

Periodic quasiconformal deformations

3.1. Periodic quasiconformal deformations of C \ Z

Let R be a Riemann surface, and let Aut(R) be the group of all
biholomorphic automorphisms of R. For h ∈ Aut(R), the order of h,
denoted by ord(h), is the minimum positive integer k such that the

k-times iteration hk =

k︷ ︸︸ ︷
h ◦ · · · ◦ h = idR. Further, if there are no such

integers, we define ord(h) = ∞.
Let us consider the Riemann surface C \ Z. By the removable iso-

lated singularity theorem, we have Aut(C\Z) = ⟨−z⟩⋉⟨z+1⟩, ord(−z) =
2 and ord(z + 1) = ∞. Let Rn = (C \ Z)/⟨z + n⟩ and pn : C \ Z → Rn

be the projection. Notice that Rn is an (n + 2)-punctured Riemann
sphere, that is, Rn is of finite type.

Figure 3

Let f : Rn → f(Rn) be an orientation preserving quasiconformal
mapping from Rn to another Riemann surface f(Rn). By the re-
movable singularity theorem and the uniformization theorem, we may

assume f(Rn) = Ĉ \ N , f(0) = 0 and f(∞) = ∞, where Ĉ de-

notes the Riemann sphere and N ⊂ Ĉ satisfies #N = n + 2 and
0,∞ ∈ N . Let q̂ : C → C \ {0}, z 7→ e2πiz and let A = q̂−1(N). Then,

17
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q = q̂|C\A : C \ A → C \N is a covering with the covering transforma-
tion group Deck(q) = ⟨z+1⟩. Further, composing z 7→ −z if necessary,
the mapping f : Rn → C \ N lifts to an orientation preserving quasi-
conformal mapping F : C \ Z → C \ A such that F (z + n) = F (z) + 1
for all z ∈ C \ Z, that is, F is a periodic quasiconformal deformation
of C \ Z with period n.

Remark 3.1.1. We can easily see that the above A = q̂−1(N) has
the form; A = Z+ {aj}nj=1 where each aj ∈ C satisfies Re(aj) ∈ [0, 1).

In this chapter, we investigate these periodic deformations of C\Z.

3.2. Preliminaries

3.2.1. Porous sets. A subset A ⊂ C is said to be c-porous in
C for c ≥ 1 if any closed disk D(z′, r) with radius r > 0 centered at
z′ ∈ C contains z such that D(z, r/c) ⊂ C \ A. It can be easily seen
that;

• Z+ iZ is not porous in C.
• Any subset of R is 1-porous in C, particularly, Z is 1-porous
in C.

• A1 = Z+ i {2n | n = 0, 1, 2, · · · } is 8-porous.

Väisälä pointed out that the porosity in C is preserved by quasicon-
formal self-homeomorphisms of C in [25]. Thus it immediately follows
that C \ (Z + iZ) is not quasiconformally equivalent to C \ Z. How-
ever, in this way, we cannot decide whether C \A1 is quasiconformally
equivalent to C \ Z or not. By Theorem D proved in the next section,
it will be turns out that C \ A1 is not quasiconformally equivalent to
C \ Z.

3.2.2. Quasiconformal mappings and Extremal distances.
Let D ⊂ C be a domain. For given continua C1, C2 ⊂ D,

δD(C1, C2) = mod(FD(C1, C2))

is called the extremal distance between C1 and C2 in D, where mod
denotes the modulus of a curve family and FD(C1, C2) denotes the
family of all rectifiable curves which join C1 and C2 inD. The definition
of the modulus of a curve family is given by

mod(F ) := inf
ρ

∫
C
ρ(x+ iy)2dxdy.

where the infimum is taken over all non-negative Borel functions ρ :

C → [0,∞] with

∫
γ

ρ|dz| ≥ 1 for all rectifiable γ ∈ F . We remark
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that the modulus of a curve family coincides with the reciprocal of the
extremal length introduced by Beurling–Ahlfors [4].

It is well known that a homeomorphism f : D → C into C becomes
a K-quasiconformal mapping for a constant K ≥ 1 if and only if f
satisfies the following inequality for any curve families F in D, see
[14, Chapter IV];

1

K
mod(F ) ≤ mod(f(F )) ≤ Kmod(F ).

The next useful lower bound for extremal distances was given by
Vuorinen in [27, Lemma 4.7]; For each pair of disjoint continua C1, C2 ⊂
C, it holds that

δC (C1, C2) ≥
2

π
log

(
1 +

mini=1,2 diam(Ci)

dist(C1, C2)

)
.

3.3. Punctured planes with automorphisms of infinite order

Let A ⊂ C be a closed discrete subset. Suppose Aut(C\A) contains
an automorphism h of infinite order. By the removable singularity
theorem, h is the restriction of an Affine transformation of C. Since
h(A) = A and A is closed and discrete in C, h is conjugate to the
parallel translation z+1. Therefore, we may assume A has the following
form;

A = Z+ {an}kn=1

where k ≤ ∞ and each an ∈ C satisfies Re(an) ∈ [0, 1).
Conversely, if A has this form, then Aut(C\A) contains the parallel

translation z + 1.

Theorem D. Let A ⊂ C be a closed discrete subset which has the
following form;

A = Z+ {an}kn=1

where k ≤ ∞ and each an ∈ C satisfies Re(an) ∈ [0, 1). Then, C \A is
quasiconformally equivalent to C \ Z if and only if k < ∞.

Proof. (Necessity). To obtain a contradiction, assume k = ∞.
Let f : C → C be aK-quasiconformal homeomorphism with f(Z) = A,
and by composing an Affine transformation, we may assume 0 ∈ A, and
sup {Iman | n ∈ N} = ∞.

Under the above assumptions, we prove the following lemma:

Lemma 3.3.1. sup
m∈Z

|Imf(m)− Imf(m+ 1)| = ∞.
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Proof. The subset A is c-porous for some c ≥ 1 since Z is porous
and f is quasiconformal. For any r > 1, we let x = i

{
(
√
2c+ 1)r + 1

}
.

Then by porousity ofA, there exist z ∈ D(x,
√
2cr) such thatD(z,

√
2r) ⊂

C\A. Then the square domain {w = u+iv | |u−Rez| < r, |v−Imz| <
r} does not intersect with A.

Figure 4

The followings are easily confirmed:

• A∩{w | Imz − r < Imw < Imz + r} = ∅, since z+1 ∈ Aut(C\
A).

• A ∩ {w | Imw ≥ Imz + r} ̸= ∅, since sup {Ima | a ∈ A} = ∞.
• A ∩ {w | Imz − r ≥ Imw} ≠ ∅, since 0 ∈ A and Imz − r ≥ 1.

Therefore considering the image of real line under f , we have an
integer m ∈ Z such that |Imf(m)− Imf(m+ 1)| ≥ 2r. □

Continuation of Proof of Theorem D. By Lemma 3.3.1, there exists
m ∈ Z such that

ℓ := |Imf(m)− Imf(m+ 1)| > exp

(
Kπ2

log 2

)
.

Let

C ′
1 := {f(m) + t | t ∈ [0, 1]} , C1 := f−1(C ′

1)

C ′
2 := {f(m+ 1) + t | t ∈ [0, 1]} , C2 := f−1(C ′

2).

Then we have,

1. by quasiconformality of f

δC (C1, C2) ≤ KδC (C ′
1, C

′
2) ,
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2. since C ′
1 and C ′

2 are separeted by the annulus {w | 1 < |w −
f(m)| < ℓ}

δC (C ′
1, C

′
2) ≤

2π

log ℓ
<

2

Kπ
log 2,

3. from Vuorinen’s theorem,

δC (C1, C2) ≥
2

π
log

(
1 +

mini=1,2 diam(Ci)

dist(C1, C2)

)
≥ 2

π
log

(
1 + min

i=1,2
diamCi

)
.

Figure 5

Combining the above inequalities, we obtain

min
i=1,2

diamCi < 1.

On the other hand, since each endpoints of Ci are in the integer set,
diamCi ≥ 1 (i = 1, 2). This is a contradiction.

(Sufficiency). Since (C \ Z) /⟨z+k⟩ and (C \ A) /⟨z+1⟩ are (k+2)-
punctured Riemann spheres, there exists a quasiconformal homeomor-
phism between them which fixes 0 and ∞. Then it can be lifted to a
quasiconfromal homeomorphism between C \ Z and C \ A. □

3.4. Teichmüller space of C \ Z and periodic deformations

3.4.1. General definitions. We fix a Riemann surface R. Two
orientation preserving quasiconformal deformations f and g of R are
said to be Teichmüller equivalent to each other if there is a biholomor-
phic homeomorphism h : f(R) → g(R) such that g ◦ f−1 is homotopic
to h relative to the ideal boundary ∂f(R), see Nag [19]. The Te-
ichmüller space T (R) is the set of all Teichmüller equivalence classes
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[f ] of all orientation preserving quasiconformal deformations f of R.
Further, let Mod(R) be the group of all homotopy classes relative to
∂R of all orientation preserving quasiconformal self-homeomorphisms
of R. The group Mod(R) is called the Teichmüller modular group of R,
and Mod(R) acts on T (R) by [f ]∗ · [g] = [g ◦ f−1] where [f ] ∈ Mod(R)
and [g] ∈ T (R). Recall that this action is biholomorphic and isometric
with respect to the Teichmüller distance dT (R), see Introduction.

3.4.2. The space of periodic deformations of C\Z. By con-
sidering the liftings, the projection pn : C\Z → Rn induces the embed-
ding p∗n : T (Rn) → T (C \ Z). We remark that the induced embedding
is independent of the choice of liftings.

Let Tn = p∗n(T (Rn)) ⊂ T (C \ Z). By the arguments of Section
3.1, the subspace Tn describes periodic quasiconformal deformations
of C \ Z with period n. More precisely, every [f ] ∈ Tn contains a
quasiconformal deformation F : C \ Z → C \ A such that A has the
form A = Z + {aj}nj=1 (Re(aj) ∈ [0, 1)), and F (z + n) = F (z) + 1 for
all z ∈ C \ Z, see Remark 3.1.1. We call such a deformation as F , a
regular representative of [f ]. By the McMullen theorem [18, Corollary
1.2], Tn is a geodesically convex subspace of T (C \ Z) with respect to
dT (C\Z).

Remark 3.4.1. Regular representatives cannot be uniquely deter-
mined at all, since any quasiconformal deformations of Rn lift to regular
representatives.

Let T0 =
∪∞

n=1 Tn. By definition, T0 is the space which describes
all periodic quasiconformal deformations of C \ Z.

Lemma 3.4.2. T0 is geodesically convex and separable.

Proof. Let n,m ∈ N. If m divides by n, then there is a covering
pn,m : Rm → Rn such that pn = pn,m ◦ pm. Thus we have Tn ⊂ Tm. Let
cn =

∏n
k=1 k. Then we have an increasing sequence Tc1 ⊂ Tc2 ⊂ Tc3 ⊂

· · · of subspaces of T (C \ Z). Clearly, it follows that;

T0 =
∞∪
n=1

Tcn .

Since any two points [f ], [g] ∈ T0 are contained in some Tcn , and since
Tcn is geodesically convex, there is a geodesic of T (C \ Z) which joins
[f ] and [g] in Tcn ⊂ T0. Thus T0 is geodesically convex. Further, each
Tcn are finite dimensional, in particular, separable. Therefore T0 is also
separable. □



3.4. TEICHMÜLLER SPACE OF C \ Z AND PERIODIC DEFORMATIONS 23

3.4.3. Periodic deformations and limit set of Mod(C \ Z).
Let T∞ be the set of all [f ] ∈ T (C\Z) such that Aut(f(C\Z)) contains
an automorphism of infinite order. Since the stabilizer StabMod(C\Z)([f ])
is isomorphic to Aut(f(C \ Z)) for any [f ] ∈ T (C \ Z), see [7, Lemma
2], if [f ] ∈ T∞ then #StabMod(C\Z)([f ]) = ∞. Namely, Mod(C\Z) does
not act properly discontinuously on T∞ ⊂ T (C \ Z). As a corollary of
Theorem D, we have the following:

Theorem E. T0 =
∪∞

n=1 Tn is separable and geodesically convex.
Further, the following equality holds;

T∞ =
∪

[f ]∈Mod(C\Z)

[f ]∗(T0).

Proof. The first statement follows from Lemma 3.4.2. Thus we
prove the above equality. By the definition of T0, clearly

∪
[f ]∈Mod(C\Z)[f ]∗(T0) ⊂

T∞. Conversely, let [g] ∈ T∞. Then we may assume g(C \ Z) = C \ A,
where A = Z + {an}kn=0, k < ∞ and Re(an) ∈ [0, 1) by Theorem
D, see also Section 3.3. Then by the proof of the sufficiency part
of Theorem D, there is a periodic deformation [h] ∈ T0 such that
h(C \Z) = C \A = g(C \Z). Let f = g−1 ◦ h. Then [f ] ∈ Mod(C \Z)
and

[f ]∗ · [h] = [h ◦ f−1] = [g].

Thus, we have the converse inclusion. □

Theorem F. Let [f ] ∈ Mod(C \ Z). If [f ]∗(T0) ∩ T0 ̸= ∅, then
[f ]∗(T0) = T0.

Proof. Let [g], [h] ∈ T0 such that [f ]∗ · [g] = [h]. We may assume
that g and h are regular representatives of [g] and [h] respectively.
Namely,

g : C \ Z → C \ A (A = Z+ {aj}nj=1, Re(aj) ∈ [0, 1)),

h : C \ Z → C \B (B = Z+ {bj}mj=1, Re(bj) ∈ [0, 1)),

with g(z + n) = g(z) + 1, h(z +m) = h(z) + 1 for all z ∈ C \ Z.
Since [f ]∗ · [g] = [g ◦f−1] = [h], there is a biholomorphic homeomor-

phism ϕ : C\A → C\B which is homotopic to h◦(g◦f−1) = h◦f ◦g−1.
Let F = h−1 ◦ ϕ ◦ g : C \ Z → C \ Z. Then F is homotopic to f , that
is, [F ] = [f ] in Mod(C \ Z). By the removable singularity theorem, ϕ
extends to a biholomorphic automorphism of C such that ϕ(A) = B.
Thus ϕ(z) = az + b for some a, b ∈ C (a ̸= 0). Further, we can see
a = ±n/m by elementary arguments. If a = −n/m, replacing g by
j ◦ g : C \ Z → C \ j(A), and ϕ by ϕ ◦ j : C \ j(A) → C \ B where
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j(z) = −z, we may assume a = n/m (remark that [g] = [j ◦ g]). Let
N = nm. Then we have,

F (z +N) = h−1 ◦ ϕ(g(z) +m)

= h−1
( n

m
g(z) + n+ b

)
= h−1

( n

m
g(z) + b

)
+ nm = F (z) +N.

Take [G] ∈ T0, and assume G is a regular representative so that
G(z+t) = G(z)+1 where t is a positive integer. Then for any z ∈ C\Z,

G ◦ F−1(z +Nt) = G(F−1(z) +Nt)

= G ◦ F−1(z) +N.

Thus G ◦ F−1 induces the quasiconformal deformation of RNt = (C \
Z)/⟨z +Nt⟩, that is, [f ]∗ · [G] = [F ]∗ · [G] = [G ◦ F−1] ∈ T0. We have
[f ]∗(T0) ⊂ T0.

Applying the same arguments to [f−1]∗, we have the converse in-
clusion T0 ⊂ [f ]∗(T0). □

3.5. Appendix: Another example: C∗ \ {en}n∈Z
Let E = {en}n∈Z and let us consider the Riemann surface C∗ \ E

where C∗ = C\{0}. We can easily show that Aut(C∗\E) = ⟨1/z⟩⋉⟨ez⟩.
Let Sn = (C∗ \ E)/⟨enz⟩ for n ∈ N, and let qn : C∗ \ E → Sn be the
projection. Notice that Sn is an n-punctured torus.

Figure 6

For the same reason as in the arguments for C \ Z, for every qua-
siconformal deformation of C∗ \ E, there is a closed discrete subset
A ⊂ C∗ such that f(C∗ \ E) is biholomorphic to C∗ \ A. In this case,
the following theorem which corresponds to Theorem D holds. This



3.5. APPENDIX: ANOTHER EXAMPLE: C∗ \ {en}n∈Z 25

can be proved far more easily than the case of C \ Z, because of the
relative compactness of the fundamental domain of ⟨enz⟩.

Theorem 3.5.1. Let A ⊂ C∗ be a closed discrete infinite subset.
If Aut(C∗ \ A) contains an automorphism of infinite order, then the
followings hold:

1. C∗ \ A is quasiconformally equivalent to C∗ \ E.

2. For any h ∈ Aut(C∗ \A) with ord(h) = ∞, the quotient space
(C∗ \ A) /⟨h⟩ is a finitely often punctured torus.

Proof. Let h ∈ Aut(C∗ \ A) such that ord(h) = ∞. By the
removable singularity theorem, h extends to a biholomorphic automor-
phism of C∗ such that h(A) = A. Thus h(z) = λz or h(z) = λ/z for
some λ ∈ C∗. Since ord(h) = ∞, the latter case cannot occur and
λ is not a root of unity. If |λ| = 1, then for any a ∈ A, the orbit
⟨h⟩(a) = {hk(a) | k ∈ Z} ⊂ A has an accumulation point in C∗. This
contradicts that A is closed and discrete in C∗. If |λ| < 1, then the
inverse of h is λ−1z. Thus, we may assume h(z) = λz with |λ| > 1.
Since the fundamental domain D = {z ∈ C∗ | 1 < |z| < |λ|} of ⟨h⟩
is relatively compact in C∗, D ∩ A contains at most a finite number
of points (and contains at least one point). Thus ((C∗ \ A) /⟨h⟩ is a
finitely often punctured torus.

Further, we assume that (C∗ \ A) /⟨h⟩ is an n-punctured torus.
Since (C∗ \ E) /⟨enz⟩ is also an n-punctured torus, there exists a quasi-
conformal mapping f : (C∗ \ E) /⟨enz⟩ → (C∗ \ A) /⟨h⟩, and f lifts to
a quasiconformal mapping between C∗ \ E and C∗ \ A. Thus we have
the claim. □

Similarly, we set Tn(C∗\E) = q∗n(T (Sn)), T0(C∗\E) =
∪∞

n=1 Tn(C∗\
E), and set T∞(C∗ \ E) be the set of all [f ] ∈ T (C∗ \ E) such that
Aut(f(C∗ \ E)) contains an automorphism of infinite order. Then,
every Tn(C∗ \ E) is geodesically convex by the McMullen theorem.
Thus, we have analogous theorems as follows;

Theorem 3.5.2. T0(C∗ \ E) is separable and geodesically convex.
Further, the following equality holds;

T∞(C∗ \ E) =
∪

[f ]∈Mod(C∗\E)

[f ]∗(T0(C∗ \ E)).

Theorem 3.5.3. Let [f ] ∈ Mod(C∗ \ E). If [f ]∗(T0(C∗ \ E)) ∩
T0(C∗ \ E) ̸= ∅, then [f ]∗(T0(C∗ \ E)) = T0(C∗ \ E).
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3.6. Appendix: Natural question

By the above observations, a natural question arises; Can analogous
arguments be applied to Riemann surfaces which have the following
properties?

1. It has an automorphism of infinite order.

2. For any automorphism of infinite order, the quotient space by
the action of its cyclic group is of finite type.

For example, the Riemann surfaceR0 defined by w2 = z

∞∏
n=1

(
1− z2

n2

)
has the above properties.

Figure 7
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[3] P. Alestalo and J. Väisälä, Uniform domains of higher order. III, Ann. Acad.
Sci. Fenn. Math. 22 (1997), no. 2, 445–464. MR1469802

[4] A. Beurling and L. V. Ahlfors, Conformal invariants and function-theoretic
null-sets, Acta Math. 83 (1950), 101–129. MR0036841 (12,171c)

[5] , The boundary correspondence under quasiconformal mappings, Acta
Math. 96 (1956), 125–142. MR0086869 (19,258c)

[6] L. Carleson, The extension problem for quasiconformal mappings, Contribu-
tions to analysis (a collection of papers dedicated to Lipman Bers), 1974,
pp. 39–47. MR0377046

[7] A. L. Epstein, Effectiveness of Teichmüller modular groups, In the tradition
of Ahlfors and Bers (Stony Brook, NY, 1998), 2000, pp. 69–74. MR1759670

[8] E. Fujikawa, Limit sets and regions of discontinuity of Teichmüller modu-
lar groups, Proc. Amer. Math. Soc. 132 (2004), no. 1, 117–126 (electronic).
MR2021254 (2004h:30057)

[9] H. Fujino, The existence of quasiconformal homeomorphism between planes
with countable marked points, Kodai Math. J. 38 (2015), no. 3, 732–746.
MR3417531

[10] , Quasisymmetric embedding of the integer set and its quasiconformal
extension, 2016. arXiv:1605.08855 [math.MG].

[11] F. P. Gardiner and N. Lakic, Quasiconformal Teichmüller theory, Mathemat-
ical Surveys and Monographs, vol. 76, American Mathematical Society, Prov-
idence, RI, 2000. MR1730906 (2001d:32016)

[12] J. Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-
Verlag, New York, 2001. MR1800917

[13] I. Kra, Canonical mappings between Teichmüller spaces, Bull. Amer. Math.
Soc. (N.S.) 4 (1981), no. 2, 143–179. MR598682 (82b:32036)

[14] O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, Second,
Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by
K. W. Lucas, Die Grundlehren der mathematischen Wissenschaften, Band 126.
MR0344463 (49 #9202)

[15] O. Lehto, Univalent functions and Teichmüller spaces, Graduate Texts in
Mathematics, vol. 109, Springer-Verlag, New York, 1987. MR867407

27



28 REFERENCES

[16] P. MacManus, Bi-Lipschitz extensions in the plane, J. Anal. Math. 66 (1995),
85–115. MR1370347 (97b:30028)

[17] , Catching sets with quasicircles, Rev. Mat. Iberoamericana 15 (1999),
no. 2, 267–277. MR1715408 (2000h:30031)
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