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1 Introduction

In this thesis, by exploiting cyclic cohomology theory and the Young integration, we

develop a generalisation of the de Rham homology theory for a certain class of self-

similar sets and also exhibit some examples of its application.

Fractal sets introduced by Mandelbrot [21] behave in a complicated way, and

their behaviour makes it difficult to analyse fractal sets themselves. For instance, the

Cantor sets take different values as their Hausdorff dimensions even though they are

homeomorphic to each other. The Hausdorff dimension is considered as an invariant

of fractal sets, that is stable under bi-Lipschitz transformations but not under arbitrary

homeomorphisms. Thus, it is difficult for a (co)homology theory to detect fractal

invariants such as the Hausdorff dimension and the Minkowski content.

Then, Connes introduced cyclic cohomology theory [5]. He proposed Quantised

calculus in [6] and exploits the Dixmier trace as a non-smooth analogue of the inte-

gration on manifolds. In particular, he applied it to the Cantor sets and succeeded to

recover their Minkowski contents as a certain value of the Dixmier trace; see [6] for

the details. Thus one can expect that cyclic cohomology theory is a highly capable

tool to analyse fractal sets.

On the other hand, cyclic cohomology theory is also known as a generalisation

of the de Rham homology theory. Let us briefly review cyclic cohomology theory

here. It is a generalised cohomology for an arbitrary algebra A over a ring R, and a

cyclic k-cocycle ϕ of A is an R-linear map to R from the pk ` 1q-fold tensor product

of A satisfying the following two conditions:

paq

k
ÿ

i“0

p´1qiϕpa0, ¨ ¨ ¨ ,aiai`1, ¨ ¨ ¨ ,ak`1q ` p´1qk`1ϕpak`1a0,a1, ¨ ¨ ¨ ,akq “ 0,

pbq ϕpa0,a1, ¨ ¨ ¨ ,akq “ p´1qkϕpak,a0,a1, ¨ ¨ ¨ ,ak´1q.

A typical example of cyclic cocycles is the integration along a submanifold or a
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simplicial cycle contained in an oriented smooth manifold V . More precisely, for a

given k-dimensional cycle C of V , we get the following cyclic k-cocycle:

ϕC “

ż

C
: C8pV q b ¨ ¨ ¨ bC8pV q

loooooooooooomoooooooooooon

k`1

Ñ C, ϕCp f0, f1, ¨ ¨ ¨ , fkq “

ż

C
f0d f1 . . .d fk.

Here, C8pV q denotes the algebra of smooth functions on V and d the exterior deriva-

tion. The cocycle ϕC satisfies the conditions (a) and (b) due to the Stokes theorem and

the skew derivation of the differential forms. Connes proved that the above cocycles

essentially exhaust all classes of the de Rham homology group. Namely,

Theorem 1.1. [5, Theorem 46] Let V be a compact smooth manifold and C8pV q the

algebra of smooth functions on V topologised by the Fréchet topology. Then, for each

k P Zě0, the k-th cyclic cohomology group HCkpC8pV qq is canonically isomorphic

to the direct sum

kerbk ‘ Hk´2pV ;Cq ‘ Hk´4pV ;Cq ‘ ¨ ¨ ¨ ,

where bk denotes the k-th boundary map of the de Rham homology theory and

HkpV ;Cq the k-th de Rham homology group of V . In particular, with k ą dimpV q,

it follows that:

HCkpC8pV qq – HkpV ;Cq ‘ Hk´2pV ;Cq ‘ Hk´4pV ;Cq ‘ ¨ ¨ ¨ .

The element of the direct summand Hk´2 jpV ;Cq is obtained by the cyclic cocycle

described above. In other words, given a pk ´ 2 jq-cycle C with rCs P Hk´2 jpV ;Cq,

the corresponding cyclic cohomology class in HCkpC8pV qq is given by ϕC (plus S-

stabilisation in general).

Theorem 1.1 proves that cyclic cohomology theory can be considered as a gener-

alisation of the de Rham homology theory. It also suggests a possibility to extend the
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de Rham theory even to a fractal set, where no notion of smooth functions is estab-

lished, by exploiting cyclic cohomology theory. In order to do this, one has to find

out a suitable subalgebra associated with fractal sets that replaces the role of C8pV q.

There is already an attempt due to Moriyoshi and Natsume [23] in this direction.

They exploit the algebra CLippSGq of Lipschitz functions on the Sierpinski gasket SG

to construct a cyclic 1-cocycle ϕ on CLippSGq. They also show that, when Lipschitz

functions are considered as 1-Hölder continuous functions with α “ 1, the domain

of the cyclic cocycle ϕ can be extended to a larger algebra CαpSGq, the algebra

of complex-valued α-Hölder continuous functions on SG, where α is greater than

the half of the Hausdorff dimension: α ą dimHpSGq{2. Those results suggest that

CαpSGq can be a candidate of the non-smooth analogue of C8pV q and that cyclic

cohomology theory could capture a deeper topological quantity such as the Hausdorff

dimension of the Sierpinski gasket.

In order to define the cyclic 1-cocycle ϕ , Moriyoshi and Natsume exploit the

Young integration, which played the key role to relate CαpSGq and dimHpSGq in

[23]. The Young integration on the unit interval I “ r0,1s was originally developed

in [34]. This is a bilinear function from the product Wα ˆWβ of the Wiener classes

such that α ` β ą 1 “ dimHpIq to complex numbers:

Y : Wα ˆWβ Ñ C;

see [34] for the details. In particular, the map Y is well-defined if it is restricted to

the algebra CαpIq of α-Hölder continuous functions for 2α ą 1 “ dimHpIq. We note

that CαpIq contains the algebra C8pIq of smooth functions. Moreover, the Young

integration coincides with the integration of a smooth 1-form f dg with f , g P C8pIq:

Y p f ,gq “

ż

I
f dg.
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Therefore, the Young integration is a generalisation of the integration for 1-forms

that may not come from smooth functions. The Young integration is easily extended

to a Jordan curve C composed of a finite number of unit intervals, and Y p f ,gq along

C turns out to be a cyclic 1-cocycle if 2α ą 1 “ dimHpCq:

Y : CαpCq ˆCαpCq Ñ C.

Thus one has rY s P HC1pCαpCqq and it gives rise to an element of the generalised de

Rham homology group. Motivated by those results, Moriyoshi and Natsume define a

cyclic 1-cocycle ϕ of CLippSGq by exploiting the Young integration.

In this thesis, we extend the cocycle of the Sierpinski gasket defined in [23] to a

certain class of self-similar sets by exploiting the Young integration as an analogue

of the integration on manifolds, and show that the cocycle can be applied to a variety

of examples. More detailed and precise statements are given as follows.

We first define cellular self-similar sets, the preliminary notions of which are

given in Section 3.1 below. A cellular self-similar set K|X | is a self-similar set that is

a projective limit of a sequence of certain cell complexes in R2, and the unit square

is a prototype of cellular self-similar sets. The precise definition is as follows:

Definition 1.2 (Definition 5.1). Let |X | be a 2-dimensional finite convex linear cell

complex and tFju jPS a set of similitudes Fj : |X | Ñ |X | indexed by a finite set S. We

also let |X1| “
ď

jPS

Fjp|X |q. The triple p|X |,S,tFju jPSq is called a cellular self-similar

structure if it satisfies

a) B|X | Ă B|X1|, and

b) intFip|X |q∩ intFjp|X |q “ H, for all i ‰ j P S.

Let p|X |,S,tFju jPSq be a cellular self-similar structure. Then p|X |,S,tFju jPSq

yields a sequence t|Xn|unPN of 2-dimensional cell complexes, and, by Theorem 3.2
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below, the sequence gives rise to the cellular self-similar set K|X | with respect to

p|X |,S,tFju jPSq.

Figure 1: A part of a sequence whose projective limit is the Sierpinski carpet:
|X0|, |X1|, |X2|

For every n P N, |Xn| is subdivided into a simplicial complex |X s
n| by Lemma 1

of Chapter 1 in [35]. From the resulting simplicial complex, we get a 1-cycle In

P S̃1pX s
n;Cq whose geometric incarnation is a union of all lacunas in |X s

n|; see also

Section 5.1.

Figure 2: I0, I1, I2

On the other hand, the algebra Cαp|X s
n|q of complex-valued α-Hölder continu-

ous functions defined on |X s
n| is a subspace of the function space F0p|X s

n|;Cq “ t f :

|X s
n| Ñ C u as a C-vector space. Therefore, Cαp|X s

n|q can generate a C-vector space

Cα,1p|X s
n|q with the differential and cup product of the Alexander-Spanier cochain

complex [27]. The space Cα ,1p|X s
n|q consists of f Y δg ´ g Y δ f for any f ,g P

Cαp|X s
n|q, and this is a subspace of HomCpS̃1p|X s

n|;Cq,Cq; see Section 5.2 for the

details. For f and g P CαpK|X |q we have a cochain f Y δ pgq ´ g Y δ p f q P Cα,1p|X s
n|q

for any n P N, which is denoted by ωnp f ,gq. Finally we set ϕnp f ,gq as ωnp f ,gqpInq

and call the sequence tϕnp f ,gqunPN the approximating cyclic 1-cocycle of f and g,
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the definition of which is given in Section 5.2. We remark that, when f ,g are α-

Hölder continuous functions on the unit interval I, the limit lim
nÑ8

ϕnp f ,gq turns out to

be the Young integration on I.

The first main theorem states that if 2α ą dimHpK|X |q, we can define a bilinear

map ϕ : CαpK|X |q ˆCαpK|X |q Ñ C by taking the limit of the approximating cyclic1-

cocycle tϕnp f ,gqunPN. This implies that the bilinear map ϕ may be seen as a gener-

alisation of the classical Young integration on the unit interval.

Theorem 1.3 (Theorem 5.11, Existence theorem). Let p|X |,S,tFju jPSq be a cellular

self-similar structure with |X | ‰ |X1| and K|X | the cellular self-similar set with respect

to p|X |,S,tFju jPSq. We also let CαpK|X |q be the algebra of α-Hölder continuous func-

tions on K|X |. If 2α ą dimHpK|X |q, then for any f , g P CαpK|X |q the approximating

cyclic1-cocycle tϕnp f ,gqu is a Cauchy sequence.

The map ϕ was originally defined by Moriyoshi and Natsume [23] for the algebra

CLippSGq of complex-valued Lipschitz functions on the Sierpinski gasket SG, and the

construction is based on the classical Young integration on the unit interval. They use

the simplexes In to prove the existence of the cyclic cocycle of the Sierpinski gasket.

An obstacle to extend the construction to cellular self-similar sets is that, for each

n P N, the lengths of 1-simplices belonging in |Xn| are not equal. The key technical

ingredient to overcome the difficulty is the existence of 2-dimensional simplicial

complex |Ks
n,n`1| whose boundary is a disjoint union of Bp|Xn|q and Bp|Xn`1|q. By

properties of cellular self-similar sets, we can prove that lengths of 1-simplices of

|Kn,n`1| have an upper bound which tends to 0 as n Ñ 8. This property plays a

crucial role to prove that tϕnp f ,gqunPN is a Cauchy sequence.

The proof of the above theorem immediately yields the following theorem. This

theorem proves that the bilinear map ϕ is a non-commutative representation of the

Young integration.
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Theorem 1.4 (Theorem 5.13). For any f , g P CαpK|X |q with 2α ą dimpK|X |q, we

have

ϕp f ,gq “ ´2 ¨Y p f ,gq|B|X | “ ´2 ¨ pYoung integration of f and g along B|X |q.

In particular, if |X | ‰ |X1|, for 1 and x :“ id P CαpK|X |q, we get

ϕp1,xq “ ´2 ¨Y p1,xq|B|X | “ ´2 ¨ plength of B|X |q.

After we define ϕ of the cellular self-similar set K|X |, we prove that ϕ is a cyclic

1-cocycle of CαpK|X |q and represents a nontrivial element in the first cyclic coho-

mology group HC1pCαpK|X |qq. This theorem shows that ϕ may be seen as a non-

commutative generalisation of the integration on manifolds.

Theorem 1.5 (Theorem 5.15). Under the assumption of the existence theorem :

a) The bilinear map ϕ is a cyclic 1-cocycle of CαpK|X |q.

b) The cocycle ϕ represents a non-trivial element rϕ s in HC1pCαpK|X |qq.

For the proof of the first statement, we need to use the Leibniz rule of the cup

product defined on the Alexander-Spanier cochain complex. Theorem 1.4 immedi-

ately completes the proof of the second statement since 1 b x represents an element

in the Hochschild homology group, the definition of which is given in [18].

By Theorem 1.5, we find that the cocycle ϕ has the following additional proper-

ties: ϕ can detect the Hausdorff dimensions of cellular self-similar sets and distin-

guish them by their dimensions. For instance, we get the cocycles ϕ of the Sierpinski

gasket SG and the Sierpinski carpet SC, whose thresholds of the well-definedness are

different. Namely, their thresholds are dimHpSGq “ log2 3 and dimHpSCq “ log3 8,

and since bi-Lipschitz transformations preserve the Hausdorff dimension, the cocy-

cles can also prove that SG and SC are not bi-Lipschitz homeomorphic. Moreover,

if we have a bi-Lipschitz transformation between cellular self-similar sets K|X | and
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K|X 1|, the algebra CαpK|X |q is isomorphic to CαpK|X 1|q. Therefore, we further get the

following property: the cocycle ϕ is invariant under bi-Lipschitz transformations.

These are noteworthy properties which the classical (co)homology theories could

not detect.

After the proof of the main results, we apply the results to some examples of

cellular self-similar sets and some variants of them.

Organisation of the Thesis

The content of this thesis is largely divided into two parts. Sections 2, 3 and 4 are

devoted to the recollection of key notions for this thesis, the Young integration, self-

similar sets, cyclic cohomology groups and K-theory. We begin, in Section 2, with

a quick review of the definition of the Young integration and recall the sufficient

condition for the existence of the integration. In Section 3, we explain key notions

of self-similar sets and give some examples of self-similar sets. Most of them are

in a class of cellular self-similar sets, which are introduced in Section 5. In Section

4, we recall the definition of the Hochschild cohomology, cyclic cohomology and

K-theory. After that, we also review theorems on the pairing of K-theory and cyclic

cohomology theory.

Section 5 is the main part of this thesis. First, we define cellular self-similar sets

and study some properties in Section 5.1. In Section 5.2, we define the sequences of

complex numbers for given α-Hölder continuous functions, which are key ingredi-

ents to define cyclic cocycles on the algebra of Hölder continuous functions. After

that, we prove the main theorems in Section 5.3. Last few sections are devoted to the

application of the main results to a variety of cellular self-similar sets and variants of

cellular self-similar sets.
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Conventions

We assume that algebras have unit unless otherwise stated, and the base ring of an

algebra is the field C of complex numbers. The Euclidean space Rn is endowed with

the standard Euclidean metric.

• b “ bC.

• Zě0 “ N∪ t0u.

• BX : the boundary of a topological space X .

• CαpXq : the algebra of complex-valued α-Hölder continuous functions on a

metric space X whose sum and multiplication are given by the pointwise sum

and multiplication.

• CLippXq : the algebra of complex-valued Lipschitz functions on a metric space

X whose sum and multiplication are given by the pointwise sum and multipli-

cation.
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2 Young Integration

We begin with a quick review of the Young integration basically following [34] ex-

cept the slight changes of the notation.

Let I be the unit interval ra,bs and f , g complex-valued functions defined on I.

We make a subdivision χ of I

a “ x0 ă x1 ă ¨¨ ¨ ă xn´1 ă xn “ b

and define

Fpχq “

n
ÿ

i“1

f pxiqpgpxiq ´ gpxi´1qq.

Then Fpχq can be also written as

Fpχq “
ÿ

0ăiď jďn

δ p f qpxi´1,xiq ¨ δ pgqpx j´1,x jq ` f paqpgpbq ´ gpaqq.

Here δ p f qpxi´1,xiq denotes f pxiq ´ f pxi´1q. This notation is the coboundary map

of the Alexander-Spanier cohomology theory; see Chapter 6.4 in [27]. We also let

α ,β ą 0, and denote by

Sα,β ra,bs “ Sα,β ra,b; f ,gs

the upper bound of

´

ÿ

i

|δ p f qpxi´1,xiq|
1
α

¯α´

ÿ

i

|δ pgqpxi´1,xiq|
1
β

¯β

for every subdivision of I. Following lemmas of [34], if α ` β ą 1 and ξ P ra,bs is a

division point of χ , we have

ˇ

ˇ

ˇ
Fpχq ´ f pξ qpgp1q ´ gp0qq

ˇ

ˇ

ˇ
ď p1 ` ζ pα ` β qq ¨ Sα ,β r0,1s,
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where ζ pα ` β q denotes the zeta function of α ` β .

This inequality yields a more general inequality for the sum associated to χ: for

the given subdivision χ , let a point xi´1 ď ξi ď xi for each i. Applying this inequality

for each interval rxi´1,xis and summing up, we get

ˇ

ˇ

ˇ
Fpχq ´

n
ÿ

i“1

f pξiqpgpxiq ´ gpxi´1qq

ˇ

ˇ

ˇ
ď t1 ` ζ pα ` β qu ¨

n
ÿ

i“1

Sα,β rxi´1,xi ; f ,gs.

Moreover if we have another subdivision χ 1 of I and subdivision points x j´1 ď ξ 1
j ď

x j, then

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

f pξiqpgpxiq ´ gpxi´1qq ´

m
ÿ

j“1

f pξ 1
jqpgpx1

jq ´ gpx1
j´1qq

ˇ

ˇ

ˇ

ˇ

ď t1`ζ pα `β qu¨

" n
ÿ

i“1

Sα,β rxi´1,xi ; f ,gs`

m
ÿ

j“1

Sα,β rx1
j´1,x

1
j ; f ,gs

*

.

Definition 2.1. We say that the Stieltjes integral

Y p f ,gq

exists in the Riemann sense with the value J, if there exist J P C and a function εδ ą 0

with respect to the variable δ ą 0 such that εδ Ñ 0 as δ Ñ 0, and if all the segments

rxi´1,xis of a subdivision χ have lengths less than δ , then

ˇ

ˇ

ˇ
J ´

ÿ

i

f pξiqpgpxiq ´ gpxi´1qq

ˇ

ˇ

ˇ
ă εδ .

We observe that, for the integrability in the Riemann sense, it is sufficient that the

difference of any of two sums of the formula
ÿ

i

f pξiqpgpxiq ´ gpxi´1qq of Definition

2.1, for each of which the length of rxi´1,xis is less than δ , is less than εδ . By the

inequality just before Definition 2.1, this is the case if for some α,β ą 0 such that
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α ` β ą 1 we have
n

ÿ

i“1

Sα,β rxi´1,xi ; f ,gs ă εδ .

For the existence of the integrability, we define Wαpδ q to be the set of functions such

that the value V pδ q
α p f q defined below has an upper bound:

V pδ q
α p f q “ sup

|χ|ďδ

"

´

ÿ

i

| f pxiq ´ f pxi´1q|
1
α

¯α
*

ă 8.

Here |χ | denotes the maximum length of the intervals of χ , and the supremum runs

over all subdivisions χ such that |χ | is less than or equal to δ . Finally we define the

Wiener class Wα to be the set of functions f such that V pδ q
α p f q with respect to the

variable δ has an upper bound.

Theorem 2.2 (Theorem on Stieltjes integrability). If f PWα and g PWβ where α ,β ą

0 and α `β ą 1, have no common discontinuities, their Stieltjes integral exists in the

Riemann sense.

The Wiener class Wα is closed under the pointwise sum and scalar multiplication

for 0 ă α ă 1. Therefore, if we regard the integration as a function from Wα ˆ

Wα to C, this function turns out to be a bilinear function. On the other hand, it is

clear from the definition that the set CαpIq of complex-valued α-Hölder continuous

functions defined on I is a subspace of Wα . Moreover, CαpIq is closed under the

pointwise multiplication in addition to the pointwise sum and scalar multiplication.

The integration restricted to CαpIq is referred to as the Young integration.

Remark 2.3. The Young integration is a special case of the Riemann-Stieltjes inte-

gration.
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3 Self-similar Sets and Hausdorff Dimension

In this section we briefly recall the definition of self-similar sets and the Hausdorff

dimension. This section is based on [17].

3.1 Self-similar Sets

We begin with the definition of some maps from a metric space pX ,dq to itself.

Definition 3.1. Let pX ,dq be a metric space.

a) A map F : X Ñ X is a contraction if there exists a minimum real number

0 ă r ă 1 such that dpFpxq,Fpyqq ď r ¨dpx,yq for any x, y P X . The real number

r is called the contraction ratio.

b) A contraction F : X Ñ X is a similitude if dpFpxq,Fpyqq “ r ¨ dpx,yq for any x,

y P X . We call r the similarity ratio.

For a finite set tFju jPS of contractions defined on a complete metric space, there

exists a unique compact subspace that is characterised by tFju jPS. Here is the precise

statement of the existence of self-similar sets:

Theorem 3.2. Let X be a complete metric space. We also let S be a finite set and

Fj : X Ñ X contractions indexed by S. We call the triple pX ,S,tFju jPSq an iterated

function system or IFS. Then, there exists a unique non-empty compact subset KX of

X that satisfies

KX “
ď

jPS

FjpKX q.

The compact set KX is called the self-similar set with respect to pX ,S,tFju jPSq.

Remark 3.3. In some literature the terminology self-similar set is used in a restricted

sense. For instance, Hutchinson introduces the notion of self-similar set for a finite

set of similitudes [14]. Self-similar sets defined in Theorem 3.2 are also referred

to as attractors or invariant sets; see Section 9.1 in [9]. We employ Hutchinson’s
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definition of self-similar sets in the last section to define cellular self-similar sets, the

definition of which is given in Section 5.1 below.

For later use, we include an outline of a proof of Theorem 3.2. The proof is based

on the following theorem.

Theorem 3.4 (Contraction principle). Let pX ,dq be a complete metric space and

F : X Ñ X a contraction with respect to the metric. Then there exists a unique fixed

point of F, in other words, there exists a unique solution to the equation Fpxq “ x.

Moreover if x˚ is the fixed point of F, then tFnpaquně0 converges to x˚ for all a P X

where Fn is the n-th iteration of F.

Let pX ,dq be a metric space and KpXq the set of non-empty compact subsets of

X . We define the Hausdorff metric δ on KpXq by

δ pA,Bq “ inftr ą 0 : UrpAq Ă B and UrpBq Ă Au,

where UrpAq “ tx P X : dpx,Aq ď ru.

Lemma 3.5. The pair pKpXq,δ q forms a metric space. Moreover, if X is complete,

pKpXq,δ q is also complete.

We now assume that the metric space pX ,dq is complete. Define FpAq “
ď

jPS

FjpAq

for A Ă X , and then F : KpXq Ñ KpXq is a contraction with respect to the metric δ .

Therefore, by applying Theorem 3.4 to pKpXq,δ q and F , we get the self-similar set

KX with respect to pX ,S,tFju jPSq.

3.2 Hausdorff Dimension of Self-similar Sets

In the field of fractal geometry, the dimension of fractal sets is not as well-defined as

the dimension of self-similar sets. Namely, there are several notions of dimension,

like the Box-counting dimension, the Packing dimension, and so on; see Section 3

in [9] for the details. The Hausdorff dimension is a candidate for the dimension
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and widely used to analyse fractal sets. In this subsection we define the Hausdorff

dimension, which plays a key role to define cyclic cocycles on cellular self-similar

sets, the definition of which is given in Section 5 below.

Definition 3.6. Let pX ,dq be a metric space. We also let s ą 0 and δ ą 0. For any

bounded set A Ă X , we define

H s
δ pAq “ inf

"

ÿ

iě1

diampEiq
s : A Ă

ď

iě1

Ei, diampEiq ď δ
*

.

Here the infimum runs over all the coverings tEiu of A which consist of sets, and

diampEiq denotes the diameter of Ei. Also we define

H spAq “ limsup
δÓ0

H s
δ pAq,

and we call H s the s-dimensional Hausdorff measure of pX ,dq.

Remark 3.7. The s-dimensional Hausdorff measure is a complete Borel measure.

The following lemma shows that the measure H s detects a critical point of any

given subset of X .

Lemma 3.8. For any subset E Ă X, we have

sup ts P R | H spEq “ 8u “ inf ts P R | H spEq “ 0 u.

Definition 3.9. The real number which satisfies Lemma 3.8 is called the Hausdorff

dimension of E, and it is denoted by dimHpEq.

The Hausdorff dimension satisfies the following properties, which might be ex-

pected to hold for any reasonable definition of the dimension (see also Section 3 of

[9]).

• Monotonicity : if E Ă F , then dimHpEq ď dimHpFq.
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• Countable Stability : if F1, F2, ¨ ¨ ¨ is a countable sequence of sets, then dimHp
Ť8

i“1 Fiq “

sup1ďiă8 dimHpFiq.

• Countable sets : if F is countable, then dimHpFq “ 0.

• Open sets : if F Ă Rn is open, then dimHpFq “ n.

• Smooth sets : if F is a smooth m-dimensional submanifold of Rn, then dimHpFq “

m.

In general, the dimension is one of invariants of topological spaces. However, in the

field of fractal geometry, the dimension is seen as a unique invariant of fractal sets.

Lemma 3.10. [9, Corollary 2.4] Let F Ă Rn. If f : Rn Ñ Rn is a bi-Lipschitz trans-

formation, that is, there exist 0 ă c1 ď c2 ă 8 such that

c1 |x ´ y| ď | f pxq ´ f pyq| ď c2 |x ´ y|,

then dimHp f pFqq “ dimHpFq.

The lemma states that the Hausdorff dimension is invariant under bi-Lipschitz

transformations. Moreover if we have a bi-Lipschitz transformation between metric

spaces then the algebras of complex-valued α-Hölder continuous functions defined

on the metric spaces are isomorphic.

In general, it is difficult to compute the Hausdorff dimension. Namely, the Haus-

dorff dimensions of a few self-similar sets have been computed. However, if we

have a self-similar set KX with respect to an IFS pX ,S,tFju jPSq such that contrac-

tions are similitudes and the similitudes have “small" enough intersections, then we

can compute the Hausdorff dimension of KX by the following theorem:

Theorem 3.11. [22, Theorem II] Let X be a compact subspace in Rn and tFj : Rn Ñ

Rnu jPS a finite set of similitudes indexed with a finite set S. Suppose that the self-

similar set KX with respect to the IFS pX ,S,tFju jPSq satisfies the open set condition,
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i.e., there exists a bounded non-empty open set O Ă Rn such that

ď

jPS

FjpOq Ă O and FipOq∩FjpOq “ H f or any i ‰ j P S.

Then the Hausdorff dimension dimHpKX q of the self-similar set KX is the unique real

number α such that the following relation holds

ÿ

jPS

rα
j “ 1.

Here r j denotes the similarity ratio of Fj.

Finally, we mention that the Hausdorff dimension of a self-similar set KX with

the open set condition coincides with the Box-counting dimension of KX ; see Section

9.2 of [9] for the details.

3.3 Examples of Self-similar Sets and Hausdorff Dimensions

In this subsection we give some examples of self-similar sets and their Hausdorff

dimensions. For later use, we explain contractions of each self-similar set and give

an IFS pX ,S,tFju jPSq which gives rise to the self-similar set. We also provide figures

for each self-similar set, that correspond to X , FpXqp“
ď

jPS

FjpXqq and F ˝ FpXq.

‚ unit interval

The unit interval r0,1s can be thought as a self-similar set.

The left-hand side is the underlying space X that gives rise to the self-similar set,

i.e., the unit interval r0,1s. The figure in the centre is the union of the images of
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two similitudes whose similarity ratios are 1
2 . The third one is obtained by applying

the similitudes to the second figure. The triple pr0,1s,S “ t1,2u,tFju jPSq forms an

IFS, and it satisfies the open set condition since, for an open set O “ p0,1q, we

have F1pOq ∪ F2pOq Ă O and F1pOq ∩ F2pOq “ H. Therefore, by Theorem 3.11,

the Hausdorff dimension of the resulting self-similar set r0,1s is the root α given

by 2 ¨ p1
2qα “ 1, i.e., dimHpr0,1sq “ α “ 1. It also follows immediately that the

Hausdorff dimension of I does not depend on the choices of similitudes and their

similarity ratios if the triple satisfies the open set condition. More generally, for

every n-dimensional unit cube In we have an IFS pIn,S,tFju jPSq such that it gives

rise to the self-similar set In and the Hausdorff dimension is dimHpInq “ n.

‚ Sierpinski gasket

The Sierpinski gasket SG is a well-known example of self-similar sets. Here are the

first 3 steps of a construction of the Sierpinski gasket:

The space of the left-hand side X is an equilateral triangle in R2. In the centre

we have 3 equilateral triangles, the length of whose edges are a half of the ones

of X . The similitudes F1, F2 and F3 are defined by the 3 triangles, and the similarity

ratios of Fj are 1
2 . The right-hand side is the space F ˝ FpXq. Then, we get an IFS

pX ,S “ t1,2,3u,tFju jPSq, and it gives rise to SG. Moreover, SG satisfies the open

set condition. Namely, we can choose an open set O “ intpXq, and we find that
ď

jPS

FjpOq Ă O and FipOq∩FjpOq “ H for any i ‰ j P S. Therefore, the Hausdorff

dimension of SG is the root α given by the equation
ÿ

jPS

p1
2qα “ 3 ¨ p1

2qα “ 1, i.e.,

dimHpSGq “ log2 3.
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‚ Sierpinski carpet

The Sierpinski carpet SC is defined by using a data that consists of a square X and 8

similitudes whose similarity ratios are 1
3 :

Then, we get an IFS pX ,S “ t1,2, ¨ ¨ ¨ ,8u,tFju jPSq, and SC satisfies the open set

condition. Therefore the Hausdorff dimension of SC is the root α of
ÿ

jPS

p1
3qα “

8 ¨ p1
3qα “ 1, i.e., dimHpSCq “ log3 8.

‚ Pinwheel fractal

The Pinwheel fractal PW is a self-similar set which is modelled by the pinwheel

tiling of the plane. There exist uncountably many pinwheel tilings, and therefore we

can construct a self-similar set based on each given pinwheel tiling.

The figure gives rise to one of the pinwheel fractals based on the most well-known

pinwheel tiling of R2. The pinwheel tiling was originally defined in [24]. The trian-

gle of the left-hand side consists of 3 edges whose lengths are 1, 2 and
?

5. From the

figure in the centre, we have 4 similitudes whose similarity ratios are 1?
5
. Therefore,

we get an IFS pX ,S “ t1, ¨ ¨ ¨ ,4u,tFju jPSq which gives rise to PW . Since PW satisfies

the open set condition, the Hausdorff dimension of the pinwheel fractal is given by

the root of the equation
ÿ

jPS

p 1?
5
qα “ 4 ¨ p 1?

5
qα “ 1, i.e., dimHpPW q “ log?

5 4.
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‚ More self-similar sets

The above examples are some of famous examples restricted to self-similar sets based

on tiling methods. There exist some kinds of tilings, perfect tilings, partridge tilings,

reptiles, irreptiles [10] and so on. A self-similar set induced by an IFS pX ,S,tFju jPSq

based on such a tiling satisfies the open set condition. Here are some kinds of such

self-similar sets.

The above figure gives rise to a variant of the L-shape fractal. Black and cean L-

shape spaces in the second figure are half sizes of the first figure X . The other figures

with the other colours except the white space have quarter sizes of X . Since the

resulting self-similar set satisfies the open set condition, the Hausdorff dimension of

the L-shape fractal is the root α of 2 ¨ p1
2qα ` 7 ¨ p1

4qα “ 1.

There exist some other types of tilings [3, 10, 28, 32], and one of which called

perfect tilings correspond to electrical networks [3, 32]. The following figure corre-

sponds to one of constructions of the perfect tilings of squares:

The numbers of squares represent the lengths of their edges, and the length of the

edges of the underlying space X is 112. Suppose that the second figure lacks the
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square whose length of edges is 8. Then, we have 20 similitudes whose similar-

ity ratios are given by numbers assigned to squares, and we get an IFS pX ,S “

t1,2, ¨ ¨ ¨ ,20u,tFju jPSq. The IFS satisfies the open set condition since we can choose

a required open set O as the interior of X . Therefore, the Hausdorff dimension of the

self-similar set is the root α given by the following equation:

p
50
112

qα ` p
42

112
qα ` p

37
112

qα ` p
35

112
qα ` p

33
112

qα ` p
29

112
qα ` p

27
112

qα`

p
25
112

qα ` p
24

112
qα ` p

19
112

qα ` p
18

112
qα ` p

17
112

qα ` p
16

112
qα ` p

15
112

qα`

p
11
112

qα ` p
9

112
qα ` p

7
112

qα ` p
6

112
qα ` p

4
112

qα ` p
2

112
qα “ 1.

So far, we have looked at connected self-similar sets. However, there also exist

non-connected self-similar sets:

The first row shows the first 3 iterations of a construction of the Cantor dust. The

similitudes have the similarity ratio 1
3 . The second row represents the first 3-iteration

of an IFS that consists of 4 similitudes, one of which has the similarity ratio 1
3 and

the rest have 1
2 .
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4 Cyclic Cohomology and K-theory

In this section we review cyclic cohomology theory and K-theory. This section is

based on [5] and [6] except slight changes of the notation.

4.1 Cyclic Cohomology Theory

Let A be a unital associative algebra over C. For n P Zě0 we define Cn
hpA q to

be the C-vector space of linear functions ϕ : A bn`1 Ñ C, and the n-th Hochschild

coboundary map bn : Cn
hpA q Ñ Cn`1

h pA q by

bnpϕqpa0,a1, ¨ ¨ ¨ ,an`1q “

n
ÿ

i“0

p´1qiϕpa0, ¨ ¨ ¨ ,aiai`1, ¨ ¨ ¨ ,an`1q

`p´1qn`1ϕpan`1a0,a1, ¨ ¨ ¨ ,anq.

Then the pair pC˚
h pA q,b˚q forms a cochain complex and the cohomology group

HH˚pA q is called the Hochschild cohomology group of A . We further define the

subspace Cn
λ pA q of Cn

hpA q to be a C-linear space of linear functions ϕ : A bn`1 ÑC

satisfying the cyclic condition

ϕpa0,a1, ¨ ¨ ¨ ,anq “ p´1qnϕpan,a0,a1, ¨ ¨ ¨ ,an´1q.

The space Cn
λ pA q also forms a cochain subcomplex pC˚

λ pA q,b˚q, and the cohomol-

ogy group HC˚pA q of pC˚
λ pA q,b˚q is called the cyclic cohomology group of A .

By construction of the Hochschild complex C˚
h pA q and the cyclic complex C˚

λ pA q,

the inclusion map I :C˚
λ pA q ÑC˚

h pA q gives an exact sequence of cochain complexes

0 Ñ C˚
λ pA q

I
ÝÑ C˚

h pA q Ñ C˚
h pA q{C˚

λ pA q Ñ 0.

Note that the n-th cohomology group of C˚
h pA q{C˚

λ pA q is HnpC˚
h pA q{C˚

λ pA qq –

Hn´1pC˚
λ pA qq “ HCn´1pA q; see [6] for the details. Thus we have a long exact
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sequence of the Hochschild cohomology group HH˚pA q and the cyclic cohomology

group HC˚pA q:

¨ ¨ ¨ Ñ HCnpA q
I

ÝÑ HHnpA q
B
ÝÑ HCn´1pA q

S
ÝÑ HCn`1pA q

I
ÝÑ HHn`1pA q Ñ ¨¨ ¨ .

The sequence is called the SBI-sequence of A .

The map S : HCn´1pA q Ñ HCn`1pA q, called the periodicity map, gives rise to

the periodic cohomology group HP˚pA q of A : for any m P N, we have

HP˚pA q “ colim
Zě0\Zě0

HCnpA q,

where the diagram Zě0 \Zě0 Ñ VectC is the universal functor induced from the

coproduct of the diagrams

pn1 ď n1 ` 1q ÞÑ pHC2n1pA q
S
ÝÑ HC2pn1`1qpA qq,

pn2 ď n2 ` 1q ÞÑ pHC2n2´1pA q
S
ÝÑ HC2n2`1pA qq.

Moreover, since the periodicity maps have degree 2, HP˚pA q is decomposed into

two parts. Namely, we have

HP0pA q – colim
Zě0

HC2npA q, HP1pA q – colim
Zě0

HC2n´1pA q.

So far we have defined cochain complexes for discrete algebras over C. The

cyclic bar construction still works for complete locally convex algebras over C when

the tensor product is replaced with the projective tensor product b̂π [11] and the

linear functions are assumed to be continuous. An well-known example of complete

local convex algebras over C is the algebra of smooth functions C8pV q defined on a

compact smooth manifold [5]. The cyclic cohomology group for a complete unital

locally convex algebra A is called the cyclic cohomology group of A , which we
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denote by HC˚
contpA q.

One of spectacular results of the continuous Hochschild and cyclic cohomology

groups is a result proved by Connes for the algebra of smooth functions defined on

a compact smooth manifold. The result allows us to see the Hochschild cohomol-

ogy group and the cyclic cohomology group as a generalisation of the space of de

Rham currents and the de Rham homology group respectively: we let V be a compact

smooth manifold and C8pV q the algebra of smooth functions defined on V . The al-

gebra C8pV q admits a locally convex topology and we can take the projective tensor

product b̂π to induce HH˚
contpC

8pV qq and HC˚
contpC

8pV qq of C8pV q.

Theorem 4.1. [5, Lemma 45] Let V be a compact smooth manifold, and consider

A “ C8pV q as a locally convex topological algebra, then:

1. The continuous Hochschild cohomology group HHn
contpA q is canonically iso-

morphic to the C-vector space of de Rham currents of dimension n on V .

2. Under the isomorphism in 1 the operator I ˝ B : HHn
contpA q Ñ HHn´1

cont pA q is

the de Rham boundary for currents.

Theorem 4.2. [5, Theorem 46] Let V be a compact smooth manifold, and A “

C8pV q as a locally convex algebra. Then:

1. For each n P Zě0 , HCn
contpA q is canonically isomorphic to the direct sum

kerbn ‘ Hn´2pV ;Cq ‘ Hn´4pV ;Cq ‘ ¨ ¨ ¨

where HnpV ;Cq is the n-th de Rham homology group of V and bn is the n-th de

Rham boundary map.

2. The periodic cohomology group HP0
contpA q ‘ HP1

contpA q is canonically iso-

morphic to the de Rham homology group H˚pV ;Cq.

Remark 4.3. If we take the C˚-algebra CpV q of continuous functions on V with the

sup norm instead of C8pV q, then the continuous Hochschild cohomology group of

30



CpV q is trivial in dimension ě 1 ([15]) and the SBI-sequence proves that the cyclic

cohomology group is given by HC2n
contpCpV qq “ HC0

contpCpV qq and HC2n`1
cont pCpV qq “

0 for n P Zě0.

Now we assume again that A is a discrete algebra. Then there exists a notion

of the cup product defined on HC˚pA q (cf. [5]). The cup product is induced by the

comodule structure on the cyclic homology group HC˚pA q of A and the comodule

structure is closely related to the structures defined on the homology groups of trivial

S1-spaces (see [18]). Therefore, HC˚pA q can be thought as a group endowed with a

dual of the comodule structures, and it turns out to be a graded algebra:

# : HCppA q b HCqpBq Ñ HCp`qpA bBq.

Example 4.4. Let A be a unital algebra over C and B the algebra of n ˆ n-matrices

MnpCq. We have a trace Tr as a cocycle in HC0pBq. Note that A b B – MnpA q,

and, by using the cup product, we then have a linear map

#Tr : HCppA q Ñ HCppA bBq – HCppMnpA qq.

Moreover, the map has an explicit expression: for rϕ s P HCppA q and a0,a1, ¨ ¨ ¨ ,ap P

MnpA q,

ϕ#Trpa0, ¨ ¨ ¨ ,apq “
ÿ

0ď j0,¨¨¨ , jpďn

ϕpa0
j0 j1,a

1
j1 j2, ¨ ¨ ¨ ,ap

jp j0q.

As we see in the next subsection, #Tr gives a pairing between K-theory and the cyclic

cohomology groups.

4.2 K-theory and Pairing Between K-theory and Cyclic Coho-

mology Groups

In this subsection, we briefly recall the definitions of the algebraic and topological

K-groups, and the paring between the algebraic K-groups and the cyclic cohomology
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groups.

Let A be a unital associative algebra over C. Since we have an inclusion jn,n`m :

MnpAq Ñ Mn`mpAq defined by jn,n`mpaq “ diagpa,0q, define M8pAq “ colim
N

MnpAq

along the inclusion maps. Then, M8pAq is endowed with a direct sum ‘: for a P

MnpAq and b P MmpAq, the sum ‘ is defined as follows

pa,bq ÞÑ a ‘ b “ diagpa,bq “

¨

˝

a 0

0 b

˛

‚P Mn`mpAq.

We let IdemnpAq be the idempotent elements of MnpAq. Then Idem8pAq “ colim
N

IdemnpAq

is closed under the direct sum, and Idem8pAq turns out to be a monoid under ‘.

We also write GLnpAq as the group of invertible elements in MnpAq. We regard

GLnpAq Ă GLn`1pAq by a map

g ÞÑ diagpg,1q,

and define GL8pAq “ colim
N

GLnpAq. Note that GL8pAq acts by conjugation on

M8pAq and Idem8pAq and the sum ‘ on Idem8pAq is commutative up to conju-

gation. Therefore the coinvariants of Idem8pAq by the conjugation of GL8pAq

IpAq “ pIdem8pAqGL8pAq,‘q

forms an abelian monoid. We define the algebraic K0-group K0pAq of A as the group

completion of IpAq. The example of a cyclic cocycle in Section 4.1 provides a pairing

with the K0-groups.

Theorem 4.5. [5, Proposition 14]

a) The following expression defines a bilinear pairing between K0pAq and HP0pAq :

xres, rϕ sy “ p2iπq´mpm!q´1pϕ#Trqpe, ¨ ¨ ¨ ,eq,
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where e P IdemkpAq and ϕ P Z2m
λ pAq “ kerpb2mq∩C2m

λ pAq.

b) We have xres, rϕ sy “ xres,Srϕ sy.

Remark 4.6. a) The subscripts k and m in a) of Theorem 4.5 have no links.

b) There exist other definitions of the algebraic K0-group K0pAq of A, and one of them

uses finitely generated projective modules. For an element e P MnpAq the right action

of MnpAq on An “ Aˆn induces a linear map e : An Ñ An. In addition if e P IdemnpAq,

the image eAn is a finitely generated projective module. Thus we have a monoid map

from IpAq to the isomorphism class PpAq of finitely generated projective modules

over A. Moreover, for e P IdemnpAq and f P IdemmpAq the modules eAn and f Am are

isomorphic if and only if e and f are in a same class of IpAq. Therefore the map is

an isomorphism, and PpAq has the same group completion of IpAq:

K0pAq “ GpIpAqq – GpPpAqq.

We recall again that GLnpAq is the group of invertible elements in MnpAq and

in : GLnpAq Ñ GLn`1pAq an inclusion inpaq “ diagpa,1q. Take the colimit along with

the inclusion maps, and we get GL8pAq “ colim
N

GLnpAq. We also define E8pAq by

the elementary matrix group EnpAq of n ˆ n-matrices and inclusion maps in. Note

that the commutator subgroup rGL8pAq,GL8pAqs is equal to E8pAq by Whitehead’s

lemma. The algebraic K1-group of A is defined to be

K1pAq “ GL8pAq{E8pAq “ GL8pAq{rGL8pAq,GL8pAqs.

A fundamental property of algebraic K0-theory is that the functor

K0 : pBanach algebrasq
forget
ÝÝÝÑ pdiscrete ringsq

K0
ÝÑ pabelian groupsq

is homotopy invariant in the sense of the Banach topology. On the other hand, alge-

braic K1-theory is not homotopy invariant as a functor from the category of Banach
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algebras. We now define the topological K1-theory for Banach algebras, which is

homotopy invariant: for a unital commutative Banach algebra A over C, let MnpAq be

the algebra of n ˆ n-matrices. We consider MnpAq as operators on A‘n whose norm

is given by

||pa1, ¨ ¨ ¨ ,anq|| “ ||a1|| ` ¨ ¨ ¨ ` ||an||,

and the norm on MnpAq is defined by the operator norm. The general linear group

GLnpAq of n ˆ n-matrices admits the induced topology of MnpAq, and the inclusion

map in,n`m : GLnpAq Ñ GLn`mpAq turns out to be continuous. The topological K1-

group of A is defined by

Ktop
1 pAq “ π0pGL8pAqq “ colim

N
π0pGLnpAqq.

The group structure is induced by the multiplication of GL8pAq. We note that there

exists a surjective homomorphism id˚ : K1pAδ q Ñ Ktop
1 pAq, so called comparison

map, where Aδ is the algebra obtained by forgetting the Banach topology of A. The

group π0pGL8pAqq is isomorphic to the quotient of GL8pAq by the normal subgroup

GLpAq0 of elements in GL8pAq to which there exist paths from 1 P GL8pAq. Since

GLpAq0 includes EpAq, the continuous identity map id : Aδ Ñ A yields the compari-

son map.

Theorem 4.7. [5, Proposition 15] Let A be a unital associative algebra over C. Then:

a) The following expression defines a bilinear pairing between K1pAq and HP1pAq :

xrus, rϕ sy “ p2iπq´m2´p2m`1q 1
pm ´ 1

2q ¨ ¨ ¨ 1
2

ϕ#Trpu´1 ´1,u´1,u´1 ´1, ¨ ¨ ¨ ,u´1q,

where ϕ P Z2m´1
λ pAq “ kerpb2m´1q∩C2m´1

λ pAq and u P GLkpAq.

b) We have xrus, rϕ sy “ xrus,Srϕ sy.

Remark 4.8. a) The subscripts k and m in a) of Theorem 4.7 have no links.
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b) There are similar notions of pairings which are defined between topological K-

theory and the cyclic cohomology groups. Recall that the cyclic cohomology group

HC˚
contpAq of a unital Banach algebra A is defined by using the projective tensor prod-

uct, and we always have a forgetful map from HC˚
contpAq to HC˚pAδ q. On the other

hand, there exists a fundamental fact which states a comparison between algebraic

K-theory and topological K-theory: for a unital Banach algebra A over C, there exists

a natural map KpAδ q Ñ KtoppAq of the algebraic K-theory spectrum and the topo-

logical K-theory spectrum, here Aδ is the discrete algebra attained by forgetting the

topology of A. For those spectra, we can take the stable homotopy group functors πs
0

and πs
1 and get πs

i pKpAδ qq “ KipAδ q and πs
i pKtoppAqq “ Ktop

i pAq. Moreover, the map

between the spectra gives rise to the isomorphism K0pAδ q Ñ Ktop
0 pAq and a surjective

homomorphism K1pAδ q Ñ Ktop
1 pAq; see [25, 26] for the details. Therefore, we have

a diagram that includes the parings of algebraic K-theory and topological K-theory:

HC˚
contpAq

f orget
��

// HompKtop
˚ pAq,Cq

��

// C

HC˚pAδ q // HompK˚pAδ q,Cq // C.
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5 Main Theorem

In this section we define cyclic cocycles on a certain subclass of self-similar sets and

prove the main theorems.

5.1 Cellular Self-similar Structures

First we define a kind of self-similar sets on which we define cyclic cocycles. From

now on, self-similar sets are assumed to be in R2.

Definition 5.1. Let |X | be a 2-dimensional finite convex linear cell complex and

tFju jPS a set of similitudes Fj : |X | Ñ |X | indexed by a finite set S. We also let

|X1| “
ď

jPS

Fjp|X |q. The triple p|X |,S,tFju jPSq is called a cellular self-similar structure

if it satisfies

a) B|X | Ă B|X1|, and

b) intFip|X |q∩ intFjp|X |q “ H, for all i ‰ j P S.

Since, by Theorem 3.2, we have a unique self-similar set K|X | with respect to the

cellular self-similar structure pX ,S,tFju jPSq, we call K|X | the cellular self-similar

set with respect to p|X |,S,tFju jPSq. By construction, K|X | is a compact subset of

|X | Ă R2.

Remark 5.2. a) The dimension of |X | can be extended to any n P N.

b) In [29, 30], Strichartz introduces the notion of cell to give examples of fractafold.

What Strichartz calls cell in [29, 30] differs from the notion of cellular introduced in

Definition 5.1.

Example 5.3. All the examples of IFSs given in Section 3.3, except the unit interval

and the Cantor dust, are cellular self-similar structures.

Lemma 5.4. Any cellular self-similar structure p|X |,S,tFju jPSq satisfies the open set

condition.
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Proof. The lemma follows immediately from the definition of cellular self-similar

structures. Namely, O “ intp|X |q is a required open set in R2.

Let p|X |,S,tFju jPSq be a cellular self-similar structure. For any n P N, we define

a cell complex |Xn| as follows: first, for ω “ p j1, ¨ ¨ ¨ , jnq P Sˆn, we write

Fω “ Fj1 ˝ ¨ ¨ ¨ ˝ Fjn.

We define |Xn| by the following skelton filtration:

• sk0p|Xn|q “
ď

ωPSˆn

Fωpsk0p|X |qq,

• sk1p|Xn|q “
ď

ωPSˆn

Fωpsk1p|X |qq,

• sk2p|Xn|q “
ď

ωPSˆn

Fωpsk2p|X |qq “
ď

ωPSˆn

Fωp|X |q.

A 1-cell in |Xn| is defined to be the closure of a connected component in sk1p|Xn|q ´

sk0p|Xn|q. The definition of a cellular self-similar structure yields

|Xn`1| “
ď

jPS

Fj p
ď

ωPSˆn

Fωp|X |qq “
ď

jPS

Fjp|Xn|q.

Therefore we have an inclusion map in,n`1 : |Xn`1| ãÑ |Xn| for every n P Zě0, and

then K|X | is written as the inverse limit of inclusion maps tin,n`1 : |Xn`1| ãÑ |Xn|u,

that is,

K|X | “

8
č

n“1

|Xn|.

From this point of view, we also have a canonical inclusion map in : K|X | ãÑ |Xn| for

each n P Zě0.

For n P N and a 1-cell |σ | in B|Xn|, we define En
σ to be the set of 1-cells of |Xn`1|

which are subspaces of |σ |. Then, we have

|σ | “
ď

|τ|PEn
σ

|τ |.
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Lemma 5.5. There exists M P N that satisfy the following condition: for any n P N

and a 1-cell |σ | in B|Xn| we have #En
σ ď M.

Proof. For every 1-cell |σ | in B|Xn|, there exists a unique ω P Sˆn and a unique 1-cell

|σ̃ | in Fωp|X |q such that |σ | Ă |σ̃ |. Since |Xn`1| is obtained by replacing each 2-cell

Fωp|X |q by Fωp|X1|q “ Fωp
ď

jPS

Fjp|X |qq, |σ̃ | is subdivided by at most #S 2-cells. This

completes the proof of the lemma.

Now, since every 2-cell in |Xn| is a convex linear cell complex, we can associate

an abstract simplicial complex X s
n by employing a lemma in [35]:

Lemma 5.6. [35, Lemma 1, Chapter I] A convex linear cell complex can be subdi-

vided into a simplicial complex without introducing any more vertices.

For any simplicial complex |X s
n| and p ě 0, we define SppX s

nq to be a set of pp`1q-

tuples of points of sk0pX s
nq such that all the points are contained in a simplex of X s

n ,

that is,

SppX s
nq “

!

px0, ¨ ¨ ¨ ,xpq P sk0pX s
nqˆpp`1q | there exists a p-simplex σ P X s

n s.t. xi P σ for @i
)

.

We also define face maps di : SppX s
nq Ñ Sp´1pX s

nq for 0 ď i ď p, and the pair pS˚pX s
nq,d˚q

forms a semi-simplicial set; see the definition in [8]. We note that, for p ě 1, SppX s
nq

contains a degenerate simplex px0, ¨ ¨ ¨ ,xpq, that is, a simplex px0, ¨ ¨ ¨ ,xpq P SppX s
nq

such that there exist distinct indexes i and j such that xi “ x j. Now, we define

S̃ppX s
n;Cq to be the free C-module generated by SppX s

nq and a map B̃p : S̃ppX s
n;Cq Ñ

S̃p´1pX s
n;Cq by

B̃ppx0, ¨ ¨ ¨ ,xpq “

p
ÿ

j“0

p´1q jd jpx0, ¨ ¨ ¨ ,xpq “

p
ÿ

j“0

p´1q jpx0, ¨ ¨ ¨ , x̂ j, ¨ ¨ ¨ ,xpq.

We call the resulting chain complex pS̃˚pX s
n;Cq, B̃˚q the ordered chain complex of

|X s
n| whose coefficients are in C, see also [27].
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Then we have a commutative diagram:

S̃ppX s
n;Cq

π
��

B̃p
// S̃p´1pX s

n;Cq

π
��

CppX s
n;Cq

Bp

// Cp´1pX s
n;Cq,

where CppX s
n;Cq is the p-th simplicial chain group of X s

n whose coefficients are in C,

Bp the p-th simplicial boundary map and π the quotient map.

Remark 5.7. The chain map π is a chain equivalence; see Theorem 8 in Chapter 4.3

of [27] for the details.

We now assign the counterclockwise orientation on each 2-simplex in every |X s
n|,

and choose a basis Bn “ trσ su of C2pX s
n;Cq consisting of non-degenerate 2-simplexes

σ in X s
n . We assume that each element rσ s of Bn represents the counterclockwise

orientation and define simplicial chains for every n P Zě0: let

cn “
ÿ

rσ sPBn

rσ s P C2pX s
n;Cq.

Then B2pcnq P C1pX s
n;Cq is the sum of all 1-simplices which lie on B|Xn|, and we can

choose sn P π´1pcnq so that sn has no degenerate simplexes and each summand of

B̃2psnq P S̃1pX s
n;Cq lies on B|Xn|. Now we define a boundary chain bn P S̃1pX s

n;Cq by

• bn “ B̃2psnq.

We next let εpbnq be the subset of 1-simplices in S1pX s
nq which are direct summands

of bn. Since any σ P εpbnq is non-degenerate, we can take the geometric realisation

|σ | Ă |X s
n|. We also define a subset εponq Ă εpbnq by

εponq “

!

σ P εpbnq : |σ | Ă B|X |

)

.

For each σ P εponq, we have the sign of σ in bn and denote it by sgnpσq. We now

define
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• on “
ÿ

σPεponq

sgnpσq ¨ σ P S̃1pX s
n;Cq,

• In “ bn ´ on P S̃1pX s
n;Cq.

Let εpInq “ εpbnqzεponq. We also define |εpInq| “
ď

σPεpInq

|σ | and εpInzIn´1q by

εpInzIn´1q “

!

σ P εpbnq : |σ | Ă |εpInq|z|εpIn´1q|

)

.

Finally we define a 1-chain by

• InzIn´1 “
ÿ

σPεpInzIn´1q

sgnpσq ¨ σ P S̃1pX s
n;Cq.

Example 5.8.

For each example, we give spaces that represent εpb0q, εpb1q, εpb2q, and εpI0q, εpI1q,

εpI2q. The first row corresponds to εpbiq, and the second corresponds to εpIiq. The

dots in spaces denote the vertices of 1-simplices, i.e., 0-simplices.

‚ Sierpinski gasket

Figure 3: εpb0q, εpb1q, εpb2q
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Figure 4: εpI0q, εpI1q, εpI2q

Figure 5: εpb0q, εpb1q, εpb2q

Figure 6: εpI0q, εpI1q, εpI2q

43



‚ Pinwheel fractal

Figure 7: εpb0q, εpb1q, εpb2q

Figure 8: εpI0q, εpI1q, εpI2q

Next, for every n P Zě0, we define a 2-dimensional cell complex |Kn,n`1|. For

every n P Zě0 we endow

|Xn,n`1| “ |Xn| ´ |Xn`1| p“ the closure of |Xn| ´ |Xn`1|q,

with a cell complex structure, whose structure is defined by the following skelton

filtration:

• sk0p|Xn,n`1|q “ sk0pB|Xn`1|q∩ |Xn,n`1|

• sk1p|Xn,n`1|q “ B|Xn,n`1|

• sk2p|Xn,n`1|q “ |Xn,n`1|

We also define a subspace |Kn,n`1| in R3 to be

|Kn,n`1| “ r0,1s ˆ B|Xn`1|∪ t1u ˆ |Xn,n`1|.
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We use z as the variable of the first coordinate of |Kn,n`1|. We now endow |Kn,n`1|

with a 2-dimensional cell complex structure as follows: let p1 : |Kn,n`1| Ñ |Kn,n`1||z“1

be a projection defined by p1pt,xq “ p1,xq. We define

• sk0p|Kn,n`1|q “ t0u ˆ sk0pB|Xn`1|q∪ t1u ˆ psk0pB|Xn|q∪ sk0p|Xn,n`1|qq

• sk1p|Kn,n`1|q “ t0uˆsk1pB|Xn`1|q∪t1uˆpsk1pB|Xn|q∪sk1pB|Xn,n`1|q∪ |En,n`1|q

• sk2p|Kn,n`1|q “ |Kn,n`1|.

Here,

En,n`1 “

!

px,yq | x P t1u ˆ sk0pB|Xn|q or x P t1u ˆ sk0p|Xn,n`1|q,

y P t0u ˆ sk1pB|Xn`1|q s.t. p1pxq “ y
)

,

|En,n`1| “
ď

px,yqPEn,n`1

|px,yq|.

By construction of |Kn,n`1|, we have

B|Kn,n`1| “ t0u ˆ B|Xn`1|∪ t1u ˆ B|Xn|

as a cell complex in R3. By employing Lemma 5.6 again, the cell complex |Kn,n`1| is

subdivided into a 2-dimensional simplicial complex |Ks
n,n`1|, and we may therefore

choose chains sn,n`1, s̃n,n`1 and ˜̃sn,n`1 P S̃2pKs
n,n`1;Cq so that the chains consist of

non-degenerate simplexes:

B̃2psn,n`1q “ bn ´ bn`1, B̃2ps̃n,n`1q “ In ´ In`1, B̃2p ˜̃sn,n`1q “ In`1zIn.

We define the sets εpsn,n`1q, εps̃n,n`1q and εp ˜̃sn,n`1q in a manner similar to the def-

inition of εpbnq and assume that s̃n,n`1 and ˜̃sn,n`1 are summands of sn,n`1, in other

words,

εps̃n,n`1q, εp ˜̃sn,n`1q Ă εpsn,n`1q.
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By a Jordan cycle z in In`1zIn we mean a subset z of εpIn`1zInq such that
ď

σPz
|σ |

is homomorphic to S1, and denote
ď

σPz
|σ | by |z|. We also denote by cycpIn`1zInq the

set of Jordan cycles in In`1zIn, and define z̃ “
ÿ

σPz
sgnpσq ¨ σ P S̃1pKs

n,n`1;Cq for z P

cycpIn`1zInq. Then, for every Jordan cycle z in In`1zIn, there exists a non-degenerate

2-chain ˜̃sz P S̃2pKs
n,n`1;Cq such that B̃2p ˜̃szq “ z̃.

For n “ 0, we define

|K̃0,1| “ r0,1s ˆ Bp|X | ´ |X1|q∪ t1u ˆ |X0,1|

and then |K̃0,1| is written as

|K̃0,1| “
ď

zPcycpI1zI0q

|εp ˜̃szq|

since Bp|X | ´ |X1|q “ |εpI1zI0q|. Moreover, since we have an inclusion map iω :

Bp|X | ´ |X1|q ãÑ FωpB|X1|q for every ω P Sˆn, there exists a family tĩωuωPSˆn of in-

clusion maps ĩω : |K̃0,1| ãÑ |Kn,n`1| such that

ĩω |z“0 “ iω .

Finally we fix a subdivision of |K̃0,1| and assume that a subdivision of the images of

the inclusion maps ĩω are given by the subdivision of |K̃0,1|.

5.2 Approximating cyclic1-cocycles

In this subsection, we define a sequence of complex numbers for given Hölder con-

tinuous functions, that we call an approximating cyclic1-cocycle. In order to define

the sequence, we first recall a cochain complex which gives rise to the Alexander-

Spanier cohomology theory.

Let R be a ring. We also let X be a set and X pp`1q the pp ` 1q-fold product of
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X . We define F ppX ;Rq to be the abelian group of functions from X pp`1q to R, whose

sum is given by the pointwise sum. A coboundary homomorphism δ : F ppX ;Rq Ñ

F p`1pX ;Rq is defined by

pδϕqpx0, ¨ ¨ ¨ ,xp`1q “

p`1
ÿ

j“0

p´1q jϕpx0, ¨ ¨ ¨ , x̂ j, ¨ ¨ ¨ ,xp`1q.

We also define the cup product on the complex pF˚pX ;Rq,δ q: for ϕ1 P F ppX ;Rq and

ϕ2 P FqpX ;Rq, the cup product ϕ1 Y ϕ2 P F p`qpX ;Rq is defined by

pϕ1 Y ϕ2qpx0, ¨ ¨ ¨ ,xp`qq “ ϕ1px0, ¨ ¨ ¨ ,xpqϕ2pxp, ¨ ¨ ¨ ,xp`qq.

The Leibniz rule holds for the cup product: for ϕ1 P F ppX ;Rq and ϕ2 P FqpX ;Rq,

δ pϕ1 Y ϕ2q “ δϕ1 Y ϕ2 ` p´1qpϕ1 Y δϕ2.

Remark 5.9. The cochain complex pF˚pX ;Rq,δ q does not give proper cohomology

theory because the complex includes locally zero cochains; see Chapter 6.4 of [27].

Due to locally zero cochains, if X is a nonempty set, then the p-th cohomology group

H pppF˚pX ;Rq,δ qq is R for p ě 0. However, if X is a topological space, then we can

take the quotient of pF˚pX ;Rq,δ q by locally zero cochains, and the quotient complex

yields a cohomology theory of X , that is called the Alexander-Spanier cohomology

theory. Since the cup product defined above gives rise to a cup product on the co-

homology group, the Alexander-Spanier cohomology group turns out to be a graded

algebra over R. Moreover, the cup product is compatible with the one defined on

singular cohomology theory; see Chapter 6 of [27] for the details.

Now, we define a cochain subcomplex of pF˚pX ;Rq,δ q: we assume that X is a

metric space and R the field of complex numbers C. We also let CαpXq be the space

of complex-valued α-Hölder continuous functions on X . Then, CαpXq is a subspace

of F0pX ;Cq, and for each p P Zě0 we define the subspace Cα,ppXq of F ppX ;Cq
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generated by CαpXq Ă F0pX ;Cq with the coboundary maps and the cup products.

We now apply the construction for a cellular self-similar structure p|X |,S,tFju jPSq:

let CαpK|X |q be the α-Hölder continuous functions defined on K|X |. For each n P N,

we endow sk0p|Xn|q with the induced metric of R2. Since we have an inclusion map

jn : sk0p|Xn|q ãÑ K|X | for every n P Zě0, we have a commutative diagram of cochain

complexes

F ppK|X |;Cq
j˚n // F ppsk0p|X s

n|q;Cq

Cα,ppK|X |q
?�

O

j˚n
// Cα,ppsk0p|X s

n|qq
?�

O

The cochain complex F ppsk0p|X s
n|q;Cq is seen as the set of complex-valued func-

tions FuncpSpp∆#sk0p|X s
n |qq,Cq defined on Spp∆#sk0p|X s

n |qq :“ sk0p|X s
n|qˆp`1. In a man-

ner similar to the definition of the face maps di of SppX s
nq, we define the face maps

on S˚p∆#sk0p|X s
n |qq, and then the pair pS˚p∆#sk0p|X s

n |qq,tdiuq turns out to be a semi-

simplicial set; the definition of which is given in [8]. Since the inclusion map

S˚p|X s
n|q ãÑ S˚p∆#sk0p|X s

n |qq is a map of semi-simplicial sets, we therefore get the fol-

lowing commutative diagram:

F ppK|X |;Cq
j˚n // F ppsk0p|X s

n|q;Cq
extend
linearly

// HomCpS̃pp∆#sk0p|Xn|q;Cq,Cq

restrict
��

Cα ,ppK|X |q
?�

O

j˚n
// Cα,ppsk0p|X s

n|qq
?�

O

?�

O

r
// HomCpS̃pp|X s

n|;Cq,Cq.

Now we define Cα,pp|X s
n|q “ imprq. For any f , g P CαpK|X |q and p “ 1, we have

a 1-cochain ωnp f ,gq “ p f Y δgq ´ pg Y δ f q in Cα,1p|X s
n|q for every n P N.For every

n P N, we set ϕnp f ,gq as the evaluation of ωnp f ,gq with In P S̃1p|X s
n|;Cq:

ϕnp f ,gq “ ωnp f ,gqpInq.

Definition 5.10. Let f , g P CαpK|X |q. We call the sequence tϕnp f ,gqunPN the approx-

imating cyclic1-cocycle for f and g.
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5.3 Non-trivial Cyclic 1-cocycles

We first state again the main result of this section, called existence theorem, and

prove the theorem.

Theorem 5.11 (Existence theorem). Let p|X |,S,tFju jPSq be a cellular self-similar

structure with |X | ‰ |X1| and K|X | the cellular self-similar set with respect to p|X |,S,tFju jPSq.

If 2α ą dimHpK|X |q, then the approximating cyclic1-cocycle tϕnp f ,gqunPN is a Cauchy

sequence for any f , g P CαpK|X |q.

Proof. We first endow |Kn,n`1| with a quasi-metric by dppt,xq,pt 1,x1qq “ |x ´ x1|R2 .

Let f , g P CαpK|X |q. Since we have an inclusion map jn`1 : sk0p|Xn`1|q ãÑ K|X | for

every n P Zě0, we can define a map fn : sk0p|Kn,n`1|q Ñ C by fnpt,xq “ f pxq. Then,

for any pt,xq and pt 1,x1q P sk0p|Kn,n`1|q, the map fn satisfies

dCp fnpt,xq, fnpt 1,x1qq ď c f ¨ dppt,xq,pt 1,x1qq “ c f ¨ |x ´ x1|R2.

We also let, for h, k PCαpsk0p|Kn,n`1|qq, ωnph,kq “ phYδkq´pkYδhq be a 1-cochain

in Cα,1p|Ks
n,n`1|q. Then, we have

|ϕnp f ,gq ´ ϕn`1p f ,gq| “ |ωnp fn,gnqpIn ´ In`1q|

“ |ωnp fn,gnqpB̃2ps̃n,n`1qq|

ď |ωnp fn,gnqpB̃2ps̃n,n`1qq| ` |ωnp fn,gnqpB̃2psn,n`1 ´ s̃n,n`1qq|

ď
ÿ

σPεpsn,n`1q

|ωnp fn,gnqpB̃2pσqq|

“
ÿ

σPεpsn,n`1q

|pδ fn Y δgnqpσq ´ pδgn Y δ fnqpσq|. (1)

We note that every σ P εpsn,n`1q is given by σ “ px,y,zq for some x, y, z P sk0p|Kn,n`1|q.
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Therefore, p1q may be written as

p1q “
ÿ

px,y,zqPεpsn,n`1q

|pδ fn Y δgnqpx,y,zq ´ pδgn Y δ fnqpx,y,zq|

“
ÿ

px,y,zqPεpsn,n`1q

ˇ

ˇ

ˇ
p fnpyq ´ fnpxqqpgnpzq ´ gnpyqq ´ pgnpyq ´ gnpxqqp fnpzq ´ fnpyqq

ˇ

ˇ

ˇ

ď
ÿ

px,y,zqPεpsn,n`1q

2 ¨ c f ¨ cg ¨ |y ´ x|α |z ´ y|α , (2)

where c f and cg are the Hölder constants of f and g, respectively.

We now define a map to estimate the term p2q. For any σ P εpsn,n`1qzεp ˜̃sn,n`1q

there exists a unique ω “ p j1, ¨ ¨ ¨ , jnq P Sˆn such that p1p|σ |q Ă BFωp|X |q. By this as-

signment, we can define a map ρ : εpsn,n`1qzεp ˜̃sn,n`1q Ñ Sˆn, and let S̃ˆn be impρq.

We note that, by Lemma 5.3, there exists M P N such that #ρ´1pωq ă M for any

ω P S̃ˆn. Moreover, since p1p|σ |q Ă BFωp|X |q we have an inequality

diamp|σ |q “ diampp1p|σ |qq ď r j1 ¨ ¨ ¨ ¨ ¨ r jn ¨ dK|X|
“ diampFωp|X |qq,

where p j1, ¨ ¨ ¨ , jnq “ ω P S̃ˆn, r j are the similarity ratios of Fj and dK|X|
“ diampK|X |q

is the diameter of K|X |.

On the other hand, we let L “ #cycpI1zI0q be the number of Jordan cycles in I1zI0.

At the pn`1q-step, for every ω P Sˆn, there exist L Jordan cycles in Fωp
ď

jPS

Fjp|X |qq “

Fωp|X1|q. We recall that, for every Jordan cycle z in In`1zIn, there is a 2-chain ˜̃sz P

S̃2pKs
n,n`1q such that εp ˜̃szq Ă εp ˜̃sn,n`1q and B̃2p ˜̃szq “ z̃; see also Section 5.1. Therefore,

˜̃sn,n`1 is decomposed into

˜̃sn,n`1 “
ÿ

ωPSˆn

ÿ

1ďiďL

˜̃sω,zi.

We also recall from Section 5.1 that, for every ω P Sˆn, we have an inclusion map
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ĩω : |K̃s
0,1| ãÑ |Kn,n`1| and

impĩωq “
ď

zPcycpIn`1zInq s.t. |z|ĂFω p|X1|q

|εp ˜̃szq|.

Therefore, since the subdivision of the images impĩωq are induced by the fixed sub-

division of |Ks
0,1|, we may define

M “ sup
zPcycpIn`1zInq

t#εp ˜̃szqu “ sup
zPcycpI1zI0q

t#εp ˜̃szqu.

From these arguments, p2q is now decomposed into two parts:

p2q “
ÿ

px,y,zqPεpsn,n`1qzεp ˜̃sn,n`1q

2 ¨ c f ¨ cg ¨ |y ´ x|α |z ´ y|α

`
ÿ

px,y,zqPεp ˜̃sn,n`1q

2 ¨ c f ¨ cg ¨ |y ´ x|α |z ´ y|α

ď
ÿ

p j1,¨¨¨ , jnqPS̃ˆn

2 ¨ c f ¨ cg ¨ #ρ´1pωq ¨ pr2α
j1 ¨ ¨ ¨ r2α

jn ¨ d2α
K|X|

q

`
ÿ

p j1,¨¨¨ , jnqPSˆn

ÿ

1ďiďL

2 ¨ c f ¨ cg ¨ #εp ˜̃sziq ¨ pr2α
j1 ¨ ¨ ¨ r2α

jn ¨ d2α
K|X|

q

ď
ÿ

p j1,¨¨¨ , jnqPSˆn

2 ¨ c f ¨ cg ¨ M ¨ pr2α
j1 ¨ ¨ ¨ r2α

jn ¨ d2α
K|X|

q

`
ÿ

p j1,¨¨¨ , jnqPSˆn

2 ¨ c f ¨ cg ¨ L ¨ M ¨ pr2α
j1 ¨ ¨ ¨ r2α

jn ¨ d2α
K|X|

q

“ 2 ¨ c f ¨ cg ¨ d2α
K|X|

¨ pM ` L ¨ Mq ¨ p
ÿ

jPS

r2α
j qn.

We denote 2 ¨ c f ¨ cg ¨ d2α
K|X|

¨ pM ` L ¨ Mq by K, and then we have

|ϕn`kp f ,gq ´ ϕnp f ,gq| ď
ÿ

1ďiďk

|ϕn`ip f ,gq ´ ϕn`i´1p f ,gq|

ď
ÿ

1ďiďk

K ¨ p
ÿ

jPS

r2α
j qn`i´1

“ K ¨ p
ÿ

jPS

r2α
j qn ¨

ÿ

1ďiďk

p
ÿ

jPS

r2α
j qi´1. (3)
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Since 2α ą dimHpK|X |q and dimHpK|X |q is computed by the formula in Theorem 3.11,

the term p
ÿ

jPS

r2α
j q is less than 1. Therefore the term

ÿ

1ďiďk

p
ÿ

jPS

r2α
j qi´1 also converges

to a finite value as k tends to 8. Hence, we have

p3q ď K¨

!

8
ÿ

i“1

`

ÿ

jPS

r2α
j

˘i´1
)

¨p
ÿ

jPS

r2α
j qn,

and the right hand side converges to 0 as n tends to 8. This completes the proof of

Theorem 5.11.

From now on, we assume that 2α ą dimHpK|X |q, and define a bilinear map

ϕ : CαpK|X |q ˆCαpK|X |q Ñ C, ϕp f ,gq “ lim
nÑ8

ϕnp f ,gq.

Lemma 5.12. The map ϕ is independent of the choice of In.

Proof. In order to check the mentioned property of the bilinear map ϕ : CαpK|X |q ˆ

CαpK|X |q Ñ C, we have to show that the approximating cyclic1-cocycle converges to

the same value regardless of the choice of In which represents the given orientation.

Let In, I1
n P π´1prInsq such that |εpInq| “ |εpI1

nq| and ϕ 1
np f ,gq “ p f Y δgqpI1

nq ´ pg Y

δ f qpI1
nq. Then there exists a 2-dimensional simplicial complex Jn such that |Jn| “

|εpInq| ˆ r0,1s, and we choose ŝn P S̃2pJn;Cq such that B̃2pŝnq “ In ´ I1
n. We endow

|Jn| with a quasi-metric similar to the one on |Kn,n`1|, and then we have

|ϕnp f ,gq ´ ϕ 1
np f ,gq| “ |δωnp fn,gnqpŝnq|

ď 2
ÿ

px,y,zqPεpŝnq

c f ¨ cg ¨ |y ´ x|α ¨ |z ´ y|α

ď 2
ÿ

px,yqPεpInq

2 ¨ c f ¨ cg ¨ |y ´ x|2α

ď 2
ÿ

p j1,¨¨¨ , jnqPS̃ˆn

2 ¨ c f ¨ cg ¨ d2α
K|X|

¨ r2α
j1 ¨ ¨ ¨ ¨ ¨ r2α

jn

ď 4 ¨ c f ¨ cg ¨ d2α
K|X|

¨ p
ÿ

jPS

r2α
j qn.
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This completes the proof of Lemma 5.12.

Based on the proof of the existence theorem, we can prove the following theorem.

Theorem 5.13. For any f , g P CαpK|X |q with 2α ą dimpK|X |q, we have

ϕp f ,gq “ ´2 ¨Y p f ,gq|B|X | “ ´2 ¨ pYoung integral along B|X |q.

In particular, if |X | ‰ |X1|, for 1 and x :“ id P CαpK|X |q, we get

ϕp1,xq “ ´2 ¨Y p1,xq|B|X | “ ´2 ¨ plength of B|X |q.

Proof. By the construction of the approximating cyclic1-cocycle of f , g P CαpK|X |q,

we have

ϕnp f ,gq “ ωnp f ,gqpInq “ ´ωnp f ,gqponq ` ωnp f ,gqpbnq.

The proof of Theorem 5.11 yields directly that the sequence tωnp f ,gqpbnqunPZě0

converges to 0 if 2α ą dimHpK|X |q. Since tωnp f ,gqponqunPZě0 provides the Young

integration along B|X | which is the finite union of closed segments, we get the men-

tioned equalities.

Remark 5.14. There exists the dual notion of the Hochschild cohomology group

HH˚pAq and cyclic cohomology group HC˚pAq of a unital commutative algebra A,

known as the Hochschild homology group HH˚pAq and the cyclic homology group

HC˚pAq of A respectively [18]. There is also a well-known fact, known as the

Hochschild-Kostant-Rosenberg theorem, that the group HH˚pAq is canonically iso-

morphic to the de Rham cochain complex Ω˚pAq of A if the given algebra A is smooth

in the sense of algebraic geometry [13]. Moreover, when we focus on HH1pAq the

assumption that the algebra A is smooth is not required. Under the isomorphism of

HH1pAq and Ω1pAq, the Hochschild 1-cycle 1 b x corresponds to dx P Ω1pAq. How-

ever, we do not know the case when ϕp1 b xq gives the proper volume of K|X |.
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Theorem 5.15. Under the assumption of Theorem 5.11:

a) The bilinear map ϕ is a cyclic 1-cocycle of CαpK|X |q.

b) The cocycle ϕ represents a non-trivial element rϕ s in HC1pCαpK|X |qq.

Proof. We have a linear map ϕ : CαpK|X |q bCαpK|X |q Ñ C. It follows immediately

that the cocycle ϕ satisfies the cyclic condition since ϕnp f ,gq satisfies the cyclic

condition for any n P Zě0. Accordingly, it remains to show that ϕ is a Hochschild

1-cocycle. For f , g, h P CαpK|X |q, we may write bϕp f ,g,hq as

bϕp f ,g,hq “ ϕp f g,hq ´ ϕp f ,ghq ` ϕph f ,gq

“ lim
nÑ8

ϕnp f g,hq ´ lim
nÑ8

ϕnp f ,ghq ` lim
nÑ8

ϕnph f ,gq

“ lim
nÑ8

´

ϕnp f g,hq ´ ϕnp f ,ghq ` ϕnph f ,gq

¯

“ lim
nÑ8

bϕnp f ,g,hq.

Therefore, to prove bϕp f ,g,hq “ 0 is equivalent to prove lim
nÑ8

bϕnp f ,g,hq “ 0. Using

δ pη Y τq “ δη Y τ ` p´1qdegpηqη Y δτ , we have

ϕnp f g,hq “

´

f g Y δh ´ h Y δ p f gq

¯

pInq

“

´

p f Y g Y δhq ´ ph Y δ f Y gq ´ ph Y f Y δgq

¯

pInq.

Similarly,

ϕnp f ,ghq “

´

p f Y δg Y hq ` p f Y g Y δhq ´ pg Y h Y δ f q

¯

pInq,

ϕnph f ,gq “

´

ph Y f Y δgq ´ pg Y δh Y f q ´ pg Y h Y δ f q

¯

pInq.

Therefore,

bϕnp f ,g,hq “ ´

´

ph Y δ f Y gq ` p f Y δg Y hq ` pg Y δh Y f q

¯

pInq. (4)
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Since

´ph Y δ f Y gqpInq “

´

pδh Y f Y gq ` ph Y f Y δgq ´ pδ ph f gqq

¯

pInq

“

´

pδh Y f Y gq ` ph Y f Y δgq

¯

pInq,

we have

p4q “

´

pδh Y f Y gq ` ph Y f Y δgq ´ p f Y δg Y hq ´ pg Y δh Y f q

¯

pInq

“
ÿ

px,yqPεpInq

˘

´

pδh Y f Y gq ` ph Y f Y δgq ´ p f Y δg Y hq ´ pg Y δh Y f q

¯

px,yq

“
ÿ

px,yqPεpInq

˘phpyq ´ hpxqqpgpyq ´ gpxqqp f pyq ´ f pxqq.

Hence

|bϕnp f ,g,hq| ď
ÿ

px,yqPεpInq

|hpyq ´ hpxq| ¨ |gpyq ´ gpxq| ¨ | f pyq ´ f pxq|

“
ÿ

px,yqPεpInq

c f ¨ cg ¨ ch ¨ |x ´ y|3α

ď c f ¨ cg ¨ ch ¨ d3α
K|X|

¨ M
ÿ

p j1,¨¨¨ , jnqPSˆn

r3α
j1 ¨ ¨ ¨ ¨ ¨ r3α

jn

“ c f ¨ cg ¨ ch ¨ d3α
K|X|

¨ M ¨ p
ÿ

jPS

r3α
j qn

Ñ 0, as n Ñ 8.

This completes the proof of (a).

We now prove (b). We note that we have the pairing

HH1pCαpK|X |qq ˆ HH1pCαpK|X |qq Ñ C.

As seen in Theorem 5.13, we know that ϕp1 b xq ‰ 0, and this completes the proof

of (b).

55



We recall from Section 3.2 that for cellular self-similar structures p|X |,S,tFju jPSq

and p|X
1
|,S

1
,tF

1

j u jPS1 q, if there exists a bi-Lipschitz function between the cellular

self-similar sets K|X | and K
|X 1

|
, the algebras of α-Hölder continuous functions on

K|X | and K
|X 1

|
are isomorphic and their Hausdorff dimensions coincide. Therefore,

under this assumption, the cyclic cohomology groups of the algebras of α-Hölder

continuous functions on K|X | and K
|X 1

|
are isomorphic and the thresholds for the

well-definedness of the cocycles are same.

Remark 5.16. a) The cocycles stated in the above theorem may be extended to certain

variants of cellular self-similar sets. In particular, Strichartz introduces the notion of

fractafolds [29, 30], and the cocycle ϕ showed in Theorem 5.15 may be extended on

some fractafolds. We look at cocycles on variants of cellular self-similar sets in the

last subsection.

b) The algebra CαpXqof α-Hölder continuous functions on a compact metric space

admits a Banach topology, and CαpXq turns out to be a Banach algebra. However,

we do not know whether or not the cocycle ϕ is continuous in the sense of a map

between Banach algebras.

5.4 Examples

In this subsection we examine the cyclic cocycle on some cellular self-similar sets.

The spaces on which the cocycles are examined are basically the examples given in

Section 3.3.

‚ unit square

As we mentioned in Section 3.3, the unit square I2 “ r0,1s ˆ r0,1s is a cellular self-

similar set. Namely, by regarding I2 as a union of 9 squares whose size are 1
3 of I2,

we have a cellular self-similar structure that consists of 9-similitudes. However, for

every n P N the inner simplicial 1-chain In is 0 because |X | “ |X1|. Therefore, the

cyclic cocycle ϕ defined on CαpI2qb2 turns out to be a trivial map. This is the case

where a cellular self-similar structure does not satisfy the assumption |X | ‰ |X1|.
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‚ Sierpinski gasket

The theorems in the Section 5.3 may be applied to the Sierpinski gasket SG, and the

cyclic 1-cocycle ϕ on CαpSGq is well-defined for 2α ą dimHpSGq “ log2 3. More-

over, the cocycle is non-trivial since |X | ‰ |X1|. This cocycle was originally given in

[23].

‚ Sierpinski carpet

The cyclic 1-cocycle is well-defined if 2α ą dimHpSCq “ log3 8, and the cocycle is

non-trivial since |X | ‰ |X1|. We recall that bi-Lipschitz transformation preserve the

Hausdorff dimension. Therefore, the cocycles of SG and SC prove that there exists

no bi-Lipschitz transformations between SG and SC. Similar argument also works

for the other examples described below.

‚ pinwheel fractal

Pinwheel fractal PF may also be seen as a cellular self-similar set. The self-similar

structure consists of 4 similitudes whose ratios are 1?
5
; see Section 3.3 for the details.

The cyclic cocycle is well-defined if 2α ą dimHpPFq “ log?
5 4 and non-trivial in

HC1.

‚ L-shape fractal

L-shape fractal set LSF in Section 3.3 is the limit set of a cellular self-similar struc-

ture that consists of 9 similitudes, two of which have similarity ratios 1
2 and the rest

of which have ratios 1
4 . Therefore dimHpLSFq “ log 1

2

2
?

2´1
7 by Theorem 3.11, and

the cocycle is well-defined on CαpLSFq if 2α ą log 1
2

2
?

2´1
7 .

‚ self-similar set based on perfect tiling

We employ the self-similar structure based on the perfect tiling of the square in Sec-

tion 3.3. The Hausdorff dimension of the cellular self-similar set dimHpPT q is the

root of the equation in Section 3.3. Then we have the non-trivial cyclic 1-cocycle

on the self-similar set. Actually, there exist choices of cellular self-similar structures

so that the resulting self-similar sets have different Hausdorff dimensions. For each
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choice there exists a cellular self-similar set on which the non-trivial cyclic 1-cocycle

is defined.

‚ Cantor dust

Unfortunately, the theorem cannot be applied to the Cantor dust CD since CD is not

a cellular self-similar set. However, a cyclic cocycle on the Cantor set is defined in

[23], and the cocycle can detect the upper Minkowski content.

‚ Infinite isolated Sierpinski gaskets

The final example in Section 3.3, that we denote by ISG, gives a cellular self-similar

structure. Therefore, the cyclic 1-cocycle may be defined on the space, and the cocy-

cle is non-trivial when 2α ą dimHpISGq. From now until the end of this subsection,

we discuss the structure of HC0pCLippISGqq.

By the self-similar structure of ISG, π0pISGq “
à

pPN
Z, each of whose summands

corresponds to a connected component Yp of ISG. Therefore ISG may be written as

ISG “
ğ

pPN
Yp.

Then we have the canonical inclusion map

inp : Yp Ñ
ğ

pPN
Yp “ ISG

for any p P N. We now fix a base point yp P Yp for each p P N, and define a cyclic 0-

cocycle ψp of CLippYpq by taking the evaluation of yp for any f P CLippYpq. Therefore,

the canonical inclusion map inp induces the map of cyclic cohomology groups:

pinpq˚ : HC0pCLippYpqq Ñ HC0pClippISGqq.

We now let P be a finite subset of N and assume that ΨP “
ř

pPP αppinpq˚prψpsq “
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0. We also define cp P CLippISGq by

cppyq “

$

’

’

&

’

’

%

1, y P Yp

0, otherwise.

Then, for any p̃ P P, we have a pairing of the Hochschild homology group and the

Hochschild cohomology group of CLippISGq:

0 “ xΨP, cp̃y “
ÿ

pPP

αppinpq˚prψpsqpc p̃q “ α p̃,

and which means that the set tpinpq˚prψpsqupPP is a linearly independent set. Since

this argument also works for any finite set P of N, we can conclude that tpinpq˚prψpsqupPN

forms a linearly independent set of HC0pCLippISGqq, and therefore HC0pCLippISGqq

contains
À

pPNC as a C-vector space.

5.5 Further Work

Strichartz proposed the notion of fractafolds [29, 30], and on which he examines frac-

tal versions of the classical theories, for example, Hodge-de Rham theory, spectral

theory, homotopy theory. In particular, the Laplacian on some kinds of self-similar

sets has been extensively studied, and it is applied to various fields [2, 17, 29, 30].

Here, we give some examples of finite unions of cellular self-similar sets.

The first example is the wedge sum of a Sierpinski gasket and a Sierpinski carpet

with base points at their corners. However, the space is neither a cellular self-similar
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set nor a fractafold. However, the theorem may be applied to this space. Namely, the

space is seen as the projective limit of the following spaces:

The figure is obtained by taking the wedge sum of the sequences which give rise

to the Sierpinski gasket and the Sierpinski carpet. Similarly, we have sequences of

boundary chains b0, b1, b2 and inner chains I0, I1, I2 respectively:

We therefore have an approximating cyclic1-cocycle, and it can be written by the

element-wise sum of approximating cyclic1-cocycles of SG and SC. In order that

approximating cyclic1-cocycle is a Cauchy sequence, it is enough that the Hölder

index α satisfies 2α ą dimHpSCq.

From this point of view, SG can be seen as a union of 3 Sierpinski gaskets, and

therefore SG may be seen as a fractafold with boundary, see [29, 30] for the details.

As defined in Section 5.4, we have a cyclic cocycle on SG.

Finally, we define a cyclic cocycle of the algebra of Lipschitz functions defined

on a fractafold based on the Sierpinski gasket:
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The space is a union of four copies of the Sierpinski gasket in R3 obtained by gluing

the points at corners of a copy with each corner of the other Sierpinski gaskets. This

space is one of examples of what Strichartz calls fractafolds without boundaries,

and we denote it by FSG. The space FSG can be seen as the projective limit of a

sequence of the spaces that is obtained by gluing copies of the sequence which gives

rise to SG:

We therefore get, by applying the theorem to each Sierpinski gasket, a cyclic 1-

cocycle on CαpFSGq when 2α ą log2 3.

Remark 5.17. Strichartz introduces the Hodge-de Rham theory for fractal graphs [1].

In [1], Laplacian on some fractal sets are defined by exploiting the Alexander-Spanier

cochain complexes. However, we do not know whether or not there exist any relation

between the cyclic 1-cocycle ϕ defined in the present thesis and the Laplacian of [1].
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