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1 Introduction

In this thesis, by exploiting cyclic cohomology theory and the Young integration, we
develop a generalisation of the de Rham homology theory for a certain class of self-

similar sets and also exhibit some examples of its application.

Fractal sets introduced by Mandelbrot [21] behave in a complicated way, and
their behaviour makes it difficult to analyse fractal sets themselves. For instance, the
Cantor sets take different values as their Hausdorff dimensions even though they are
homeomorphic to each other. The Hausdorff dimension is considered as an invariant
of fractal sets, that is stable under bi-Lipschitz transformations but not under arbitrary
homeomorphisms. Thus, it is difficult for a (co)homology theory to detect fractal
invariants such as the Hausdorff dimension and the Minkowski content.

Then, Connes introduced cyclic cohomology theory [5]. He proposed Quantised
calculus in [6] and exploits the Dixmier trace as a non-smooth analogue of the inte-
gration on manifolds. In particular, he applied it to the Cantor sets and succeeded to
recover their Minkowski contents as a certain value of the Dixmier trace; see [6] for
the details. Thus one can expect that cyclic cohomology theory is a highly capable
tool to analyse fractal sets.

On the other hand, cyclic cohomology theory is also known as a generalisation
of the de Rham homology theory. Let us briefly review cyclic cohomology theory
here. It is a generalised cohomology for an arbitrary algebra A over a ring R, and a
cyclic k-cocycle ¢ of A is an R-linear map to R from the (k + 1)-fold tensor product

of A satisfying the following two conditions:

k
(@)  >(=1)9(ao, - aiaisr, - a1) + (1) (@100, a1, ar) =0,
i=0

(b) ¢(a07a17“‘ 7ak) = <_1)k¢(ak7a07a17"' 7ak—1)'

A typical example of cyclic cocycles is the integration along a submanifold or a



simplicial cycle contained in an oriented smooth manifold V. More precisely, for a

given k-dimensional cycle C of V, we get the following cyclic k-cocycle:

¢c=f CE (V)@ @CH(V) - C, ¢c(fo,f1,“',fk)ZLfodfl---dfk-

L. 7/

"

k+1

Here, C* (V) denotes the algebra of smooth functions on V and d the exterior deriva-
tion. The cocycle ¢¢ satisfies the conditions (a) and (b) due to the Stokes theorem and
the skew derivation of the differential forms. Connes proved that the above cocycles

essentially exhaust all classes of the de Rham homology group. Namely,

Theorem 1.1. [5, Theorem 46] LetV be a compact smooth manifold and C* (V) the
algebra of smooth functions on 'V topologised by the Fréchet topology. Then, for each
k € Z=o, the k-th cyclic cohomology group HC*(C*(V)) is canonically isomorphic

to the direct sum

kerby @ Hy_»(V;C) @ Hy_4(V;C) @ ---,

where by denotes the k-th boundary map of the de Rham homology theory and
Hi(V;C) the k-th de Rham homology group of V. In particular, with k > dim(V),

it follows that:

HCHC® (V) ~ Hi(V;C)® Hy_»(V;C) @ Hy_4(V;C) @ ---.

The element of the direct summand Hy_,;(V;C) is obtained by the cyclic cocycle
described above. In other words, given a (k—2j)-cycle C with [C] € Hr_»;(V;C),
the corresponding cyclic cohomology class in HCK(C®(V)) is given by ¢c (plus S-

stabilisation in general).

Theorem 1.1 proves that cyclic cohomology theory can be considered as a gener-

alisation of the de Rham homology theory. It also suggests a possibility to extend the



de Rham theory even to a fractal set, where no notion of smooth functions is estab-
lished, by exploiting cyclic cohomology theory. In order to do this, one has to find

out a suitable subalgebra associated with fractal sets that replaces the role of C* (V).

There is already an attempt due to Moriyoshi and Natsume [23] in this direction.
They exploit the algebra CL7(SG) of Lipschitz functions on the Sierpinski gasket SG
to construct a cyclic 1-cocycle ¢ on CLP(SG). They also show that, when Lipschitz
functions are considered as 1-Holder continuous functions with & = 1, the domain
of the cyclic cocycle ¢ can be extended to a larger algebra C*(SG), the algebra
of complex-valued o-Holder continuous functions on SG, where « is greater than
the half of the Hausdorff dimension: & > dimg(SG)/2. Those results suggest that
C%(SG) can be a candidate of the non-smooth analogue of C*(V) and that cyclic
cohomology theory could capture a deeper topological quantity such as the Hausdorff
dimension of the Sierpinski gasket.

In order to define the cyclic 1-cocycle ¢, Moriyoshi and Natsume exploit the
Young integration, which played the key role to relate C*(SG) and dimg(SG) in
[23]. The Young integration on the unit interval I = [0, 1] was originally developed
in [34]. This is a bilinear function from the product Wy x Wj of the Wiener classes

such that o + 8 > 1 = dimg (/) to complex numbers:
Y :Wo xWg —C;

see [34] for the details. In particular, the map Y is well-defined if it is restricted to
the algebra C*(I) of a-Holder continuous functions for 2a > 1 = dimg (1). We note
that C%(I) contains the algebra C*°(I) of smooth functions. Moreover, the Young

integration coincides with the integration of a smooth 1-form fdg with f, g€ C*(I):

V(f.g) = | fds



Therefore, the Young integration is a generalisation of the integration for 1-forms
that may not come from smooth functions. The Young integration is easily extended
to a Jordan curve C composed of a finite number of unit intervals, and Y (f, g) along

C turns out to be a cyclic 1-cocycle if 2a > 1 = dimpy (C):
Y :C*(C)xC*(C) — C.

Thus one has [Y] € HC'(C%(C)) and it gives rise to an element of the generalised de
Rham homology group. Motivated by those results, Moriyoshi and Natsume define a

cyclic 1-cocycle ¢ of CEP(SG) by exploiting the Young integration.

In this thesis, we extend the cocycle of the Sierpinski gasket defined in [23] to a
certain class of self-similar sets by exploiting the Young integration as an analogue
of the integration on manifolds, and show that the cocycle can be applied to a variety
of examples. More detailed and precise statements are given as follows.

We first define cellular self-similar sets, the preliminary notions of which are
given in Section 3.1 below. A cellular self-similar set K|x| is a self-similar set that is
a projective limit of a sequence of certain cell complexes in R?, and the unit square

is a prototype of cellular self-similar sets. The precise definition is as follows:

Definition 1.2 (Definition 5.1). Let |X| be a 2-dimensional finite convex linear cell
complex and {F}} jes a set of similitudes F; : |X| — |X| indexed by a finite set S. We
also let |X;| = UFj(|X|). The triple (|X|,S,{F;}jes) is called a cellular self-similar

Jjes
structure if it satisfies

a) 8|X‘ C 8|X1

, and
b) intF(|X|) NintF;(|X|) = &, foralli # je S.

Let (|X|,S,{F;}jes) be a cellular self-similar structure. Then (|X|,S,{F;}jes)

yields a sequence {|X),|},en of 2-dimensional cell complexes, and, by Theorem 3.2



below, the sequence gives rise to the cellular self-similar set K|y with respect to

(|X’757 {Fj}j€S>'

Figure 1: A part of a sequence whose projective limit is the Sierpinski carpet:
[Xol, X1, X2

For every n € N, |X,| is subdivided into a simplicial complex |X;| by Lemma 1

of Chapter 1 in [35]. From the resulting simplicial complex, we get a 1-cycle I,

e §1(X3$;C) whose geometric incarnation is a union of all lacunas in |X?|; see also
Section 5.1.
onanu
auanu
Figure 2: Iy, I, b

On the other hand, the algebra C*(|X;|) of complex-valued a-Holder continu-
ous functions defined on |X?| is a subspace of the function space FO(|X3|;C) = {f:
|X$| — C } as a C-vector space. Therefore, C*(|X?|) can generate a C-vector space
C*!(|X3]) with the differential and cup product of the Alexander-Spanier cochain
complex [27]. The space C*!(|X$|) consists of f U 8g—gu &f for any f,g e
C%(|X3]), and this is a subspace of Hom¢ (S (|X:|;C),C); see Section 5.2 for the
details. For f and g € C*(Kx|) we have a cochain f U 6(g) —gu d(f) € C*1(1x3))
for any n € N, which is denoted by ®,(f,g). Finally we set ¢,(f,g) as @,(f,g)(I»)

and call the sequence {@,(f,g)}nen the approximating cyclic 1-cocycle of f and g,



the definition of which is given in Section 5.2. We remark that, when f,g are o-
Holder continuous functions on the unit interval 7, the limit nll)nc}o on(f,g) turns out to
be the Young integration on /.

The first main theorem states that if 20t > dimp (K|x|), we can define a bilinear
map ¢ : C%(K|y|) x C*(K|x|) — C by taking the limit of the approximating cyclicl-
cocycle {¢,(f,g)}nen- This implies that the bilinear map ¢ may be seen as a gener-

alisation of the classical Young integration on the unit interval.

Theorem 1.3 (Theorem 5.11, Existence theorem). Let (|X|,S,{F;} jes) be a cellular
self-similar structure with |X| # |X| and K x| the cellular self-similar set with respect
to (IX|,S,{Fj} jes). We also let C* (K x|) be the algebra of a-Hélder continuous func-
tions on K|y If 2a¢ > dimpy (K |x)), then for any f, g € C*(K|x|) the approximating

cyclicl-cocycle {¢,(f,g)} is a Cauchy sequence.

The map ¢ was originally defined by Moriyoshi and Natsume [23] for the algebra
CLP (SG) of complex-valued Lipschitz functions on the Sierpinski gasket SG, and the
construction is based on the classical Young integration on the unit interval. They use
the simplexes I, to prove the existence of the cyclic cocycle of the Sierpinski gasket.
An obstacle to extend the construction to cellular self-similar sets is that, for each
n € N, the lengths of 1-simplices belonging in |X,,| are not equal. The key technical
ingredient to overcome the difficulty is the existence of 2-dimensional simplicial
complex |K .| whose boundary is a disjoint union of J(|X,|) and 0(|X,+1[). By
properties of cellular self-similar sets, we can prove that lengths of 1-simplices of
|Ky n+1| have an upper bound which tends to 0 as n — co. This property plays a
crucial role to prove that {¢),(f,g)}nen is a Cauchy sequence.

The proof of the above theorem immediately yields the following theorem. This
theorem proves that the bilinear map ¢ is a non-commutative representation of the

Young integration.



Theorem 1.4 (Theorem 5.13). For any f, g € C*(K|x|) with 200 > dim(Kx|), we

have
¢(f,g) =—2-Y(f,g)lo)x) = —2- (Young integration of f and g along J|X]).
In particular, if |X| # | X1, for 1 and x := id € C*(K|x|), we get
¢(1,x) = =2-Y(1,x)|5x) = —2- (length of J|X]).

After we define ¢ of the cellular self-similar set K|x|, we prove that ¢ is a cyclic
1-cocycle of C* (K| X|) and represents a nontrivial element in the first cyclic coho-
mology group HC'(C% (K|x|))- This theorem shows that ¢ may be seen as a non-

commutative generalisation of the integration on manifolds.

Theorem 1.5 (Theorem 5.15). Under the assumption of the existence theorem :
a) The bilinear map ¢ is a cyclic 1-cocycle of C*(Kx).
b) The cocycle ¢ represents a non-trivial element [¢] in HC' (C*(Kx)))-

For the proof of the first statement, we need to use the Leibniz rule of the cup
product defined on the Alexander-Spanier cochain complex. Theorem 1.4 immedi-
ately completes the proof of the second statement since 1 ® x represents an element
in the Hochschild homology group, the definition of which is given in [18].

By Theorem 1.5, we find that the cocycle ¢ has the following additional proper-
ties: ¢ can detect the Hausdorff dimensions of cellular self-similar sets and distin-
guish them by their dimensions. For instance, we get the cocycles ¢ of the Sierpinski
gasket SG and the Sierpinski carpet SC, whose thresholds of the well-definedness are
different. Namely, their thresholds are dimy (SG) = log, 3 and dimg (SC) = log; 8,
and since bi-Lipschitz transformations preserve the Hausdorff dimension, the cocy-
cles can also prove that SG and SC are not bi-Lipschitz homeomorphic. Moreover,

if we have a bi-Lipschitz transformation between cellular self-similar sets Ky and
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K x|, the algebra C%(K|y) is isomorphic to C*(K|x|). Therefore, we further get the
following property: the cocycle ¢ is invariant under bi-Lipschitz transformations.
These are noteworthy properties which the classical (co)homology theories could
not detect.

After the proof of the main results, we apply the results to some examples of

cellular self-similar sets and some variants of them.

Organisation of the Thesis

The content of this thesis is largely divided into two parts. Sections 2, 3 and 4 are
devoted to the recollection of key notions for this thesis, the Young integration, self-
similar sets, cyclic cohomology groups and K-theory. We begin, in Section 2, with
a quick review of the definition of the Young integration and recall the sufficient
condition for the existence of the integration. In Section 3, we explain key notions
of self-similar sets and give some examples of self-similar sets. Most of them are
in a class of cellular self-similar sets, which are introduced in Section 5. In Section
4, we recall the definition of the Hochschild cohomology, cyclic cohomology and
K-theory. After that, we also review theorems on the pairing of K-theory and cyclic
cohomology theory.

Section 5 is the main part of this thesis. First, we define cellular self-similar sets
and study some properties in Section 5.1. In Section 5.2, we define the sequences of
complex numbers for given a-Holder continuous functions, which are key ingredi-
ents to define cyclic cocycles on the algebra of Holder continuous functions. After
that, we prove the main theorems in Section 5.3. Last few sections are devoted to the
application of the main results to a variety of cellular self-similar sets and variants of

cellular self-similar sets.



Conventions

We assume that algebras have unit unless otherwise stated, and the base ring of an
algebra is the field C of complex numbers. The Euclidean space R” is endowed with

the standard Euclidean metric.
e ®=QRc.
o Z=o=NU{0}.
e 0X : the boundary of a topological space X.

e C%X) : the algebra of complex-valued a-Holder continuous functions on a
metric space X whose sum and multiplication are given by the pointwise sum

and multiplication.

e CLP(X) : the algebra of complex-valued Lipschitz functions on a metric space
X whose sum and multiplication are given by the pointwise sum and multipli-

cation.
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2. Young Integration



2  Young Integration

We begin with a quick review of the Young integration basically following [34] ex-
cept the slight changes of the notation.
Let I be the unit interval [a,b| and f, g complex-valued functions defined on [.

We make a subdivision )y of 1
Aa=x)<x1 < - <Xp_1<x,=0b

and define
n
Z —g(xi—1)).

Then F()) can be also written as

Y S(N@i-1x) - 8(8)(xjm1,x)) + f(a)(g(b) —g(a)).

O<i<j<n

Here 6(f)(x;—1,x;) denotes f(x;) — f(x;—1). This notation is the coboundary map
of the Alexander-Spanier cohomology theory; see Chapter 6.4 in [27]. We also let
o, B > 0, and denote by

SOC,B [(l,b] = SO(,B [avb;fng]

the upper bound of

(Z‘S(f)(xi_hx, é) <Z‘5 (i1, )ﬁ

for every subdivision of /. Following lemmas of [34],if @ + B > 1 and § € [a,b] is a

division point of ), we have
F(x)—f(&)(g(1)—g(0)| < (1+&(a+pB)) Sapl0,1],

14



where { (o + ) denotes the zeta function of o + f3.
This inequality yields a more general inequality for the sum associated to x: for
the given subdivision J, let a point x;_; < & < x; for each i. Applying this inequality

for each interval [x;_1,x;] and summing up, we get
PO = £(E) (g) —gli)| < {1+ Lo+ )} S Sl nis fgl.
i=1 i=1

Moreover if we have another subdivision ' of I and subdivision points x;_j < & J’ <

xj, then

&) s() — i)~ 5 FE g<x;-1>>‘

i=1 j=1

{1+C (X+ﬁ } {Zsa,ﬁ Xi— I;xlaf7 ] Zsa,ﬁ[x;'lvx;';fag]}'
j=1

i=1

Definition 2.1. We say that the Stieltjes integral

Y(f,8)

exists in the Riemann sense with the value J, if there exist J € C and a function £5 > 0
with respect to the variable § > 0 such that €5 — 0 as § — 0, and if all the segments

[xi—1,x;] of a subdivision ) have lengths less than &, then

= D& 8) i) < &5

We observe that, for the integrability in the Riemann sense, it is sufficient that the
difference of any of two sums of the formula Z f(&)(g(x;) — g(xi—1)) of Definition
2.1, for each of which the length of [x;_1,x;] is less than 8, is less than €5. By the

inequality just before Definition 2.1, this is the case if for some o, 8 > 0 such that

15



o+ > 1 we have

n

Zsaﬁ[xi—l,xi ; f.8] < €s.
i=1

For the existence of the integrability, we define W () to be the set of functions such

that the value Vo(f) (f) defined below has an upper bound:

Ve (f) = sup {(Z £x) —f(xn>|é)°‘} <o,

lx|<é i

Here |x| denotes the maximum length of the intervals of ¥, and the supremum runs
over all subdivisions y such that | x| is less than or equal to 8. Finally we define the
Wiener class Wy, to be the set of functions f such that Vo(ca)( f) with respect to the

variable 6 has an upper bound.

Theorem 2.2 (Theorem on Stieltjes integrability). If f € Wy and g € Wg where o, >
0 and oo+ B > 1, have no common discontinuities, their Stieltjes integral exists in the

Riemann sense.

The Wiener class Wy, is closed under the pointwise sum and scalar multiplication
for 0 < @ < 1. Therefore, if we regard the integration as a function from Wy x
Wy to C, this function turns out to be a bilinear function. On the other hand, it is
clear from the definition that the set C*(I) of complex-valued a-Holder continuous
functions defined on [ is a subspace of Wy. Moreover, C*(I) is closed under the
pointwise multiplication in addition to the pointwise sum and scalar multiplication.

The integration restricted to C*([) is referred to as the Young integration.

Remark 2.3. The Young integration is a special case of the Riemann-Stieltjes inte-

gration.
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3 Self-similar Sets and Hausdorff Dimension

In this section we briefly recall the definition of self-similar sets and the Hausdorff

dimension. This section is based on [17].

3.1 Self-similar Sets

We begin with the definition of some maps from a metric space (X, d) to itself.
Definition 3.1. Let (X,d) be a metric space.

a) Amap F : X — X is a contraction if there exists a minimum real number
0 <r<1suchthatd(F(x),F(y)) <r-d(x,y) for any x, y € X. The real number

r 1s called the contraction ratio.

b) A contraction F : X — X is a similitude if d(F (x),F(y)) = r-d(x,y) for any x,

y e X. We call r the similarity ratio.

For a finite set {F;} jcs of contractions defined on a complete metric space, there
exists a unique compact subspace that is characterised by {F}} jes. Here is the precise

statement of the existence of self-similar sets:

Theorem 3.2. Let X be a complete metric space. We also let S be a finite set and
F; : X — X contractions indexed by S. We call the triple (X,S,{F;} jes) an iterated
function system or IFS. Then, there exists a unique non-empty compact subset Kx of

X that satisfies

Kx = | JFj(Kx).
jes

The compact set Ky is called the self-similar set with respect to (X,S,{F;} jes).
Remark 3.3. In some literature the terminology self-similar set is used in a restricted
sense. For instance, Hutchinson introduces the notion of self-similar set for a finite

set of similitudes [14]. Self-similar sets defined in Theorem 3.2 are also referred

to as attractors or invariant sets; see Section 9.1 in [9]. We employ Hutchinson’s

18



definition of self-similar sets in the last section to define cellular self-similar sets, the

definition of which is given in Section 5.1 below.

For later use, we include an outline of a proof of Theorem 3.2. The proof is based

on the following theorem.

Theorem 3.4 (Contraction principle). Let (X,d) be a complete metric space and
F : X — X a contraction with respect to the metric. Then there exists a unique fixed
point of F, in other words, there exists a unique solution to the equation F(x) = x.
Moreover if x is the fixed point of F, then {F"(a)},>0 converges to x, for all ae X

where F" is the n-th iteration of F.

Let (X,d) be a metric space and K(X) the set of non-empty compact subsets of

X. We define the Hausdorff metric 6 on K(X) by
O0(A,B) =inf{r>0:U,(A) c Band U,(B) c A},

where U,(A) = {xe X : d(x,A) <r}.

Lemma 3.5. The pair (K(X),8) forms a metric space. Moreover, if X is complete,

(K(X),0) is also complete.

We now assume that the metric space (X, d) is complete. Define F(A) = UF i(A)

jes
for Ac X, and then F : K(X) — K(X) is a contraction with respect to the metric §.
Therefore, by applying Theorem 3.4 to (K(X),8) and F, we get the self-similar set

Ky with respect to (X, S, {F}} jes).

3.2 Hausdorff Dimension of Self-similar Sets

In the field of fractal geometry, the dimension of fractal sets is not as well-defined as
the dimension of self-similar sets. Namely, there are several notions of dimension,
like the Box-counting dimension, the Packing dimension, and so on; see Section 3

in [9] for the details. The Hausdorff dimension is a candidate for the dimension

19



and widely used to analyse fractal sets. In this subsection we define the Hausdorff
dimension, which plays a key role to define cyclic cocycles on cellular self-similar

sets, the definition of which is given in Section 5 below.

Definition 3.6. Let (X,d) be a metric space. We also let s > 0 and 6 > 0. For any

bounded set A — X, we define

HE(A) = inf{Z diam(E;)* : A< | JE;, diam(E;) < 5}.

i>1 i>1
Here the infimum runs over all the coverings {E;} of A which consist of sets, and

diam(E;) denotes the diameter of E;. Also we define

J°(A) = limsup 5 (A),
510

and we call J7* the s-dimensional Hausdorff measure of (X,d).

Remark 3.7. The s-dimensional Hausdorff measure is a complete Borel measure.

The following lemma shows that the measure .7#° detects a critical point of any

given subset of X.

Lemma 3.8. For any subset E — X, we have
sup {se R | H*(E) =00} =inf{seR | #*(E)=0}.
Definition 3.9. The real number which satisfies Lemma 3.8 is called the Hausdorff

dimension of E, and it is denoted by dimgy (E).

The Hausdorff dimension satisfies the following properties, which might be ex-

pected to hold for any reasonable definition of the dimension (see also Section 3 of

[9D.
e Monotonicity : if E c F, then dimg (E) < dimg (F).

20



Countable Stability : if F, F», - - - is a countable sequence of sets, then dimH(U?il F)=

SUP | <jcoo dimp (F).
Countable sets : if F is countable, then dimg (F) = 0.
Open sets : if F < R" is open, then dimg (F) = n.

Smooth sets : if F is a smooth m-dimensional submanifold of R”, then dimy (F) =

m.

In general, the dimension is one of invariants of topological spaces. However, in the

field of fractal geometry, the dimension is seen as a unique invariant of fractal sets.

Lemma 3.10. [9, Corollary 2.4] Let F < R". If f : R" — R" is a bi-Lipschitz trans-

formation, that is, there exist 0 < ¢ < ¢y < o0 such that

cipe=yl <[f(x) = fO)l < calx =],

then dimg (f(F)) = dimg (F).

The lemma states that the Hausdorff dimension is invariant under bi-Lipschitz

transformations. Moreover if we have a bi-Lipschitz transformation between metric
spaces then the algebras of complex-valued a-Ho6lder continuous functions defined

on the metric spaces are isomorphic.

In general, it is difficult to compute the Hausdorff dimension. Namely, the Haus-

dorff dimensions of a few self-similar sets have been computed. However, if we
have a self-similar set Kx with respect to an IFS (X,S,{F;} jes) such that contrac-
tions are similitudes and the similitudes have “small" enough intersections, then we

can compute the Hausdorff dimension of Kx by the following theorem:

Theorem 3.11. [22, Theorem II] Let X be a compact subspace in R" and {F; : R" —
R"} jes a finite set of similitudes indexed with a finite set S. Suppose that the self-

similar set Kx with respect to the IFS (X ,S,{F;} jes) satisfies the open set condition,

21



i.e., there exists a bounded non-empty open set O < R" such that

UFj(O) c O and F(O)NF;(0)= & foranyi# jeS.
jes
Then the Hausdorff dimension dimy (Kx ) of the self-similar set Kx is the unique real

number o such that the following relation holds

Zr}x =1.

JjeSs
Here rj denotes the similarity ratio of F.

Finally, we mention that the Hausdorff dimension of a self-similar set Kx with
the open set condition coincides with the Box-counting dimension of Kx; see Section

9.2 of [9] for the details.

3.3 Examples of Self-similar Sets and Hausdorff Dimensions

In this subsection we give some examples of self-similar sets and their Hausdorff
dimensions. For later use, we explain contractions of each self-similar set and give
an IFS (X, S, {F;} jes) which gives rise to the self-similar set. We also provide figures
for each self-similar set, that correspond to X, F(X)(= UF i(X)) and F o F(X).

e unit interval =

The unit interval [0, 1] can be thought as a self-similar set.

The left-hand side is the underlying space X that gives rise to the self-similar set,

i.e., the unit interval [0,1]. The figure in the centre is the union of the images of
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two similitudes whose similarity ratios are % The third one is obtained by applying
the similitudes to the second figure. The triple ([0,1],5 = {1,2},{F;} jes) forms an
IFS, and it satisfies the open set condition since, for an open set O = (0,1), we
have F1(O)UF,(0) c O and F1(0O) N F>(0) = . Therefore, by Theorem 3.11,
the Hausdorff dimension of the resulting self-similar set [0, 1] is the root o given
by 2-(3)% = 1, ie., dimy([0,1]) = o = 1. It also follows immediately that the
Hausdorff dimension of I does not depend on the choices of similitudes and their
similarity ratios if the triple satisfies the open set condition. More generally, for
every n-dimensional unit cube /" we have an IFS (I",S,{F} jes) such that it gives
rise to the self-similar set /" and the Hausdorff dimension is dimg (1") = n.
o Sierpinski gasket
The Sierpinski gasket SG is a well-known example of self-similar sets. Here are the

first 3 steps of a construction of the Sierpinski gasket:

The space of the left-hand side X is an equilateral triangle in R2. In the centre
we have 3 equilateral triangles, the length of whose edges are a half of the ones
of X. The similitudes Fj, F> and F3 are defined by the 3 triangles, and the similarity
ratios of F; are % The right-hand side is the space F o F(X). Then, we get an IFS
(X,S ={1,2,3},{F}} jes), and it gives rise to SG. Moreover, SG satisfies the open
set condition. Namely, we can choose an open set O = int(X), and we find that

UFj(O) c O and F;(0O)NF;(0) = & for any i # j € S. Therefore, the Hausdorff

jes

dimension of SG is the root ¢ given by the equation Z(%)“ =3-($)* =1, ie.,
Jjes

dimy (SG) = log, 3.
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e Sierpinski carpet

The Sierpinski carpet SC is defined by using a data that consists of a square X and 8

similitudes whose similarity ratios are %:

Then, we get an IFS (X,S = {1,2,---,8},{F}}jes), and SC satisfies the open set

condition. Therefore the Hausdorff dimension of SC is the root o of 2(%)“ =
jes
8- (3)% = L, ie., dimy(SC) = log; 8.
e Pinwheel fractal
The Pinwheel fractal PW is a self-similar set which is modelled by the pinwheel

tiling of the plane. There exist uncountably many pinwheel tilings, and therefore we

can construct a self-similar set based on each given pinwheel tiling.

G A AN

The figure gives rise to one of the pinwheel fractals based on the most well-known

pinwheel tiling of R2. The pinwheel tiling was originally defined in [24]. The trian-
gle of the left-hand side consists of 3 edges whose lengths are 1, 2 and /5. From the
figure in the centre, we have 4 similitudes whose similarity ratios are \/Lg Therefore,
we getan IFS (X, S = {1,---,4},{F;} jes) which gives rise to PW. Since PW satisfies
the open set condition, the Hausdorff dimension of the pinwheel fractal is given by

the root of the equation Z(\%)a =4. (\%)“ = L, ie., dimy(PW) = log 4.
jes
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e More self-similar sets
The above examples are some of famous examples restricted to self-similar sets based
on tiling methods. There exist some kinds of tilings, perfect tilings, partridge tilings,
reptiles, irreptiles [10] and so on. A self-similar set induced by an IFS (X, S, {F;} jcs)
based on such a tiling satisfies the open set condition. Here are some kinds of such

self-similar sets.

The above figure gives rise to a variant of the L-shape fractal. Black and cean L-
shape spaces in the second figure are half sizes of the first figure X. The other figures
with the other colours except the white space have quarter sizes of X. Since the
resulting self-similar set satisfies the open set condition, the Hausdorff dimension of
the L-shape fractal is the root ot of 2+ ()% +7-(§)% = L.

There exist some other types of tilings [3, 10, 28, 32], and one of which called
perfect tilings correspond to electrical networks [3, 32]. The following figure corre-

sponds to one of constructions of the perfect tilings of squares:

- o 42

The numbers of squares represent the lengths of their edges, and the length of the

edges of the underlying space X is 112. Suppose that the second figure lacks the
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square whose length of edges is 8. Then, we have 20 similitudes whose similar-
ity ratios are given by numbers assigned to squares, and we get an IFS (X,S =
{1,2,---,20},{F;} jes). The IFS satisfies the open set condition since we can choose
a required open set O as the interior of X. Therefore, the Hausdorff dimension of the

self-similar set is the root o given by the following equation:

50 42 37 35 33 29 27

(112)a+(112)a+<112)a+<112>a+(112)a+(112)a+(112)a+

25 . 24, 19, 18, 17. 16, 15
) PO R R R ) (g

11, 9 & T \a 6 o 4 4 2 4
N I - _ _ = =1
(112) +(112> +<112> +(112) +(112) +(112)

(

)%+
So far, we have looked at connected self-similar sets. However, there also exist
H N B N

A L 4

The first row shows the first 3 iterations of a construction of the Cantor dust. The

non-connected self-similar sets:

similitudes have the similarity ratio % The second row represents the first 3-iteration
of an IFS that consists of 4 similitudes, one of which has the similarity ratio % and

the rest have %
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4 Cyclic Cohomology and K-theory

In this section we review cyclic cohomology theory and K-theory. This section is

based on [5] and [6] except slight changes of the notation.

4.1 Cyclic Cohomology Theory

Let ./ be a unital associative algebra over C. For n € Z>o we define C}/(%/) to
be the C-vector space of linear functions ¢ : &Z®"*! — C, and the n-th Hochschild
coboundary map b" : C}} (<) — CZH (<) by

n

bn((p)(a()?al?'” 7an+1) = Z(_l)i‘i)(aO»“' yAidj4 1, 7an+1)
i=0

(=" (any1a0,a1,- an).

Then the pair (Cj(</),b*) forms a cochain complex and the cohomology group
HH*(4/) is called the Hochschild cohomology group of </. We further define the
subspace C} («) of C}!(« ) to be a C-linear space of linear functions ¢ : &/®"*! — C

satisfying the cyclic condition

¢(a07a17'” 7ai’l) = (_1)n¢(an7a07a17"' 7an—1)-

The space C} (<7) also forms a cochain subcomplex (Cj (<),b*), and the cohomol-
ogy group HC*(.2/) of (C; (),b") is called the cyclic cohomology group of <7 .
By construction of the Hochschild complex Cj; (.27) and the cyclic complex Cj (<),

the inclusion map / : Cj (&) — Cj; (<7 ) gives an exact sequence of cochain complexes

0—Ci ()L Ci(t) — Ci () [C () — 0.

Note that the n-th cohomology group of Cj; (</)/C; (/) is H"(Cj; (/) /C3 (<))

lIe

H" ' (C;(/)) = HC"!(«); see [6] for the details. Thus we have a long exact
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sequence of the Hochschild cohomology group HH* (.2/') and the cyclic cohomology
group HC* (<7 ):

> HCW) L HH (o) B HC"(o2) S HO" (o) L HH' (o) — -

The sequence is called the SBI-sequence of <7 .
The map S : HC" (/) — HC""!(.o7), called the periodicity map, gives rise to
the periodic cohomology group HP* (/') of <7 for any m € N, we have

HP*(o/) = colim HC"(),

L0 Z=0

where the diagram Z->y u Z>¢ — Vectc is the universal functor induced from the

coproduct of the diagrams
(m1 <nj+1) > (HC™ (/) S HCPm+D (g7)),

(o <ma+ 1) > (HC¥ 1 (o7) S HCP2 Y (o7)).

Moreover, since the periodicity maps have degree 2, HP*(.<7) is decomposed into

two parts. Namely, we have

HP (/) = colimHC?(«7), HP'(a7) = colimHC?" ! (o).

>0 Zxo

So far we have defined cochain complexes for discrete algebras over C. The
cyclic bar construction still works for complete locally convex algebras over C when
the tensor product is replaced with the projective tensor product @y [11] and the
linear functions are assumed to be continuous. An well-known example of complete
local convex algebras over C is the algebra of smooth functions C* (V) defined on a
compact smooth manifold [5]. The cyclic cohomology group for a complete unital

locally convex algebra <7 is called the cyclic cohomology group of <7, which we
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denote by HC},

().

One of spectacular results of the continuous Hochschild and cyclic cohomology
groups is a result proved by Connes for the algebra of smooth functions defined on
a compact smooth manifold. The result allows us to see the Hochschild cohomol-
ogy group and the cyclic cohomology group as a generalisation of the space of de
Rham currents and the de Rham homology group respectively: we let V be a compact
smooth manifold and C* (V) the algebra of smooth functions defined on V. The al-

gebra C* (V) admits a locally convex topology and we can take the projective tensor
product ®; to induce HH,.(C*(V)) and HCZ,,,(C*(V)) of C*(V).
Theorem 4.1. [5, Lemma 45] Let V be a compact smooth manifold, and consider

o/ = C*®(V) as a locally convex topological algebra, then:

1. The continuous Hochschild cohomology group HH (/) is canonically iso-

cont

morphic to the C-vector space of de Rham currents of dimension n on V.
2. Under the isomorphism in 1 the operator 1oB : HH". (<) — HH" }(<7) is

the de Rham boundary for currents.

Theorem 4.2. [5, Theorem 46] Let V be a compact smooth manifold, and <f =

C*(V) as a locally convex algebra. Then:

1. Foreachne Z=y, HC!,,, (<) is canonically isomorphic to the direct sum
kerbn @® Hn—Z(V;C) ) Hn—4(V;C) ® -

where H,(V;C) is the n-th de Rham homology group of V and by, is the n-th de

Rham boundary map.

2. The periodic cohomology group HPS,  (o/)®HP), () is canonically iso-

cont

morphic to the de Rham homology group H,(V;C).

Remark 4.3. If we take the C*-algebra C(V') of continuous functions on V with the

sup norm instead of C*(V), then the continuous Hochschild cohomology group of
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C(V) is trivial in dimension > 1 ([15]) and the SBI-sequence proves that the cyclic
cohomology group is given by HC2 (C(V)) = HCY (C(V)) and HCZL (C(V)) =
0 for n e Z>y.

Now we assume again that <7 is a discrete algebra. Then there exists a notion
of the cup product defined on HC* (<) (cf. [5]). The cup product is induced by the
comodule structure on the cyclic homology group HC, (<) of .7 and the comodule
structure is closely related to the structures defined on the homology groups of trivial
S'-spaces (see [18]). Therefore, HC*(.<7) can be thought as a group endowed with a

dual of the comodule structures, and it turns out to be a graded algebra:

#: HCP(of\@HCY(B) — HCP™(of @ B).

Example 4.4. Let .o/ be a unital algebra over C and 4 the algebra of n x n-matrices
M, (C). We have a trace Tr as a cocycle in HC?(%). Note that & @ B =~ M, (<),

and, by using the cup product, we then have a linear map

#Tr: HCP (o) — HCP (o @ B) ~ HCP (M, (7).

Moreover, the map has an explicit expression: for [¢] € HCP(<7) and a°,a’

M, (),

7...’ap€

0 0 1
O#Tr(a”,--- ,a’) = 2 ¢(ajoj1’aj1j2’”' ’a?pjo)'

OS]O* 7jP<n
As we see in the next subsection, # Tr gives a pairing between K-theory and the cyclic

cohomology groups.

4.2 K-theory and Pairing Between K-theory and Cyclic Coho-

mology Groups

In this subsection, we briefly recall the definitions of the algebraic and topological

K-groups, and the paring between the algebraic K-groups and the cyclic cohomology
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groups.

Let A be a unital associative algebra over C. Since we have an inclusion j, 4 :
My, (A) — My 41m(A) defined by jy n4-m(a) = diag(a,0), define M, (A) = coll\]imMn(A)
along the inclusion maps. Then, M (A) is endowed with a direct sum @: for a €

M, (A) and b € M,,(A), the sum @ is defined as follows

a 0
(a,b) — a®b = diag(a,b) = € Myim(A).
0 b

We let Idem,, (A) be the idempotent elements of M, (A). Then Idem, (A) = coll\]im Idem,(A)
is closed under the direct sum, and Idem,,(A) turns out to be a monoid under &.

We also write GL,(A) as the group of invertible elements in M, (A). We regard
GLy(A) = GLy+1(A) by a map

g — diag(g, 1),

and define GLy(A) = coll\%mGLn(A). Note that GL,,(A) acts by conjugation on
My (A) and Idemy,(A) and the sum @ on Idemy,(A) is commutative up to conju-

gation. Therefore the coinvariants of Idem,(A) by the conjugation of GL(A)
1(A) = (Idemos (A) gL (4), D)

forms an abelian monoid. We define the algebraic Ky-group Ky(A) of A as the group
completion of /(A). The example of a cyclic cocycle in Section 4.1 provides a pairing

with the Ky-groups.
Theorem 4.5. [5, Proposition 14]
a) The following expression defines a bilinear pairing between Ko(A) and HP®(A) :
([e],[9]> = (2im)~"(m)) "' (¢#Tr)(e,--- ,e),
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where e € Idemy(A) and ¢ € Z/zlm (A) = ker(b®™) ﬂC/.ZLm (A).

b) We have ([e],[9]) = ([e], S[9])-

Remark 4.6. a) The subscripts k and m in a) of Theorem 4.5 have no links.

b) There exist other definitions of the algebraic Ky-group Ko(A) of A, and one of them
uses finitely generated projective modules. For an element e € M,,(A) the right action
of M,(A) on A" = A*" induces a linear map e : A” — A". In addition if e € Idem, (A),
the image eA" is a finitely generated projective module. Thus we have a monoid map
from I(A) to the isomorphism class P(A) of finitely generated projective modules
over A. Moreover, for e € Idem,,(A) and f € Idem,,(A) the modules eA” and fA™ are
isomorphic if and only if e and f are in a same class of /(A). Therefore the map is

an isomorphism, and P(A) has the same group completion of 7(A):

We recall again that GL,(A) is the group of invertible elements in M,(A) and
in: GL,(A) — GL,+1(A) an inclusion i, (a) = diag(a, 1). Take the colimit along with
the inclusion maps, and we get GL,(A) = coll\]im GL,(A). We also define E,(A) by
the elementary matrix group E,(A) of n x n-matrices and inclusion maps i,. Note
that the commutator subgroup [GL,(A),GL(A)] is equal to E, (A) by Whitehead’s

lemma. The algebraic K;-group of A is defined to be
Ki(A) = GLy(A)/Ex(A) = GLy(A)/[GLx(A), GLo(A)].

A fundamental property of algebraic Kp-theory is that the functor

Ky : (Banach algebras) forget, (discrete rings) 5, (abelian groups)

is homotopy invariant in the sense of the Banach topology. On the other hand, alge-

braic Kj-theory is not homotopy invariant as a functor from the category of Banach
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algebras. We now define the fopological K;-theory for Banach algebras, which is
homotopy invariant: for a unital commutative Banach algebra A over C, let M,,(A) be
the algebra of n x n-matrices. We consider M,,(A) as operators on AY" whose norm
is given by

(a1, an)ll = llar ]| + -~ +[lanl],
and the norm on M,(A) is defined by the operator norm. The general linear group
GL,(A) of n x n-matrices admits the induced topology of M, (A), and the inclusion

map inp+m : GLy(A) = GLy 4, (A) turns out to be continuous. The fopological K-

group of A is defined by
K{"P(A) = my(GL(A)) = colim 7o (GL,(A)).

The group structure is induced by the multiplication of GL,,(A). We note that there
exists a surjective homomorphism ids : K1(A%) — K[°(A), so called comparison
map, where A is the algebra obtained by forgetting the Banach topology of A. The
group 7(GLy,(A)) is isomorphic to the quotient of GL,(A) by the normal subgroup
GL(A)p of elements in GL,,(A) to which there exist paths from 1 € GL,(A). Since
GL(A)o includes E(A), the continuous identity map id : A% — A yields the compari-

son map.
Theorem 4.7. [5, Proposition 15] Let A be a unital associative algebra over C. Then:

a) The following expression defines a bilinear pairing between K (A) and HP' (A) :

Qul, [0y = (2im) 2@+ o T — L L — 1 u—1),

(m—1y...1
where ¢ € Zim_l (A) = ker(p*"1) ﬂCﬁm_] (A) and u € GLi(A).

b) We have ([u],[¢]) = [u],S[9]).

Remark 4.8. a) The subscripts k and m in a) of Theorem 4.7 have no links.
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b) There are similar notions of pairings which are defined between topological K-
theory and the cyclic cohomology groups. Recall that the cyclic cohomology group

HC

cont

(A) of a unital Banach algebra A is defined by using the projective tensor prod-

uct, and we always have a forgetful map from HC?,.(A) to HC*(A®). On the other

cont
hand, there exists a fundamental fact which states a comparison between algebraic
K-theory and topological K-theory: for a unital Banach algebra A over C, there exists
a natural map K(A%) — KP(A) of the algebraic K-theory spectrum and the topo-
logical K-theory spectrum, here A9 is the discrete algebra attained by forgetting the
topology of A. For those spectra, we can take the stable homotopy group functors 75
and 7§ and get 7} (K(A%)) = K;(A%) and 7} (K'P(A)) = K;°” (A). Moreover, the map
between the spectra gives rise to the isomorphism Ko (A%) — Ky (A) and a surjective

homomorphism K;(A%) — K}°P(A); see [25, 26] for the details. Therefore, we have

a diagram that includes the parings of algebraic K-theory and topological K-theory:

HC* (A) — Hom(K?(A),C) —— C

forgetl J

HC*(A%) —— Hom(K,(A%),C) —— C.
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5 Main Theorem

In this section we define cyclic cocycles on a certain subclass of self-similar sets and

prove the main theorems.

5.1 Cellular Self-similar Structures

First we define a kind of self-similar sets on which we define cyclic cocycles. From

now on, self-similar sets are assumed to be in R2.

Definition 5.1. Let |X| be a 2-dimensional finite convex linear cell complex and
{Fj}jes a set of similitudes F; : |X| — |X| indexed by a finite set S. We also let
1X1| = UFj(\X|). The triple (|1X|,S,{F;} jes) is called a cellular self-similar structure

Jjes
if it satisfies

a) 0|X| < d|Xy|, and
b) intF(|X|)NintF;(|X|) = &, forall i # je S.

Since, by Theorem 3.2, we have a unique self-similar set K|x| with respect to the
cellular self-similar structure (X,S,{Fj}jes), we call K|y the cellular self-similar
set with respect to (|X|,S,{Fj}jes). By construction, K|x| is a compact subset of
1X| < R2,

Remark 5.2. a) The dimension of |X| can be extended to any n € N.

b) In [29, 30], Strichartz introduces the notion of cell to give examples of fractafold.

What Strichartz calls cell in [29, 30] differs from the notion of cellular introduced in

Definition 5.1.

Example 5.3. All the examples of IFSs given in Section 3.3, except the unit interval

and the Cantor dust, are cellular self-similar structures.

Lemma 5.4. Any cellular self-similar structure (|X|,S,{F;} jes) satisfies the open set

condition.
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Proof. The lemma follows immediately from the definition of cellular self-similar

structures. Namely, O = int(|X|) is a required open set in R?. O

Let (1X|,S,{Fj} jes) be a cellular self-similar structure. For any n € N, we define

a cell complex |X,| as follows: first, for @ = (ji, -, jn) € S*", we write
Fo=Fjo---oFj,.

We define |X),| by the following skelton filtration:

o sko(|Xu|) = U Fo(sko(X])),

weS*n

o ski(IXa) = | Folski(X]),
weS*n

o ska(IX) = (] Folska(IX]) = | FollX])-
weS*" weSxn

A 1-cell in |X,| is defined to be the closure of a connected component in sk; (|X,,|) —

sko(|Xy|). The definition of a cellular self-similar structure yields

‘Xl’l+1‘ = UFj( U Fw(|XD) = UFJ'(‘XnD'
JjES weS*" JES
Therefore we have an inclusion map iy p41 @ |Xy41| < |X,| for every n € Z>, and
then K|x| is written as the inverse limit of inclusion maps {inn+1 : [Xut1| = [Xal},

that is,
o0
K =[] 1%,
n=1

From this point of view, we also have a canonical inclusion map i, : Kjx| — | X, | for
each n e Z~y.
For n e N and a 1-cell |o| in 0|X,|, we define E} to be the set of 1-cells of | X, |

which are subspaces of |G|. Then, we have

o= | Il

=
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Lemma 5.5. There exists M € N that satisfy the following condition: for any n e N

and a 1-cell |6| in 0|X,| we have #E. < M.

Proof. For every 1-cell |o| in 0|X,|, there exists a unique @ € S*" and a unique 1-cell
|G| in Fy(|X|) such that |o|  |G]|. Since |X, 1| is obtained by replacing each 2-cell

Fo(|X]) by Fo(IX1]) = Fo UF (1X1)
jes
completes the proof of the lemma. O]

0| 1s subdivided by at most #S 2-cells. This

Now, since every 2-cell in |X,| is a convex linear cell complex, we can associate

an abstract simplicial complex X by employing a lemma in [35]:

Lemma 5.6. [35, Lemma 1, Chapter I] A convex linear cell complex can be subdi-

vided into a simplicial complex without introducing any more vertices.

For any simplicial complex |X;;| and p > 0, we define S, (X)) tobe asetof (p+1)-
tuples of points of sko(X;}) such that all the points are contained in a simplex of X,

that is,
Sp(Xy) = {(xo, -, xp) €sko(X)) ™ (P+1) | there exists a p-simplex 6 € X s.1. x; € o for Vi }

We also define face maps d; : S,,(X;)) — S,—1(X;;) for 0 <i < p, and the pair (S, (X;),dx)
forms a semi-simplicial set; see the definition in [8]. We note that, for p > 1, §), (X5
contains a degenerate simplex (xo,---,Xp), that is, a simplex (xo,---,x,) € S,(X;)
such that there exist distinct indexes i and j such that x; = x;. Now, we define
S,(X$;C) to be the free C-module generated by S,(X3) and a map 0, : S,(XS;C) —
Sp-1(X;;C) by

14 14
ap X0, * :Z _1 X(), y X 2 X(), ",Ajf"axp)'
=0 =0

We call the resulting chain complex (S.(X?;C),0) the ordered chain complex of

|X:?| whose coefficients are in C, see also [27].
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Then we have a commutative diagram:

~ O
Sp(X:C) *’USP,I(Xé;(C)

nl Jn

Cp(X3:C) — Cpm (X3:C),

where C,,(X;); C) is the p-th simplicial chain group of X, whose coefficients are in C,
0p the p-th simplicial boundary map and 7 the quotient map.
Remark 5.7. The chain map 7 is a chain equivalence; see Theorem 8 in Chapter 4.3
of [27] for the details.

We now assign the counterclockwise orientation on each 2-simplex in every |X3|,
and choose a basis B, = {[c]} of C2(X}; C) consisting of non-degenerate 2-simplexes
o in X;. We assume that each element [G] of B, represents the counterclockwise

orientation and define simplicial chains for every n € Z>: let

=Y. [0]eC(X;:C).
[cleBy

Then 0;(c,) € C1(X;C) is the sum of all 1-simplices which lie on 0|X,|, and we can
choose s, € 7! (cn) so that s, has no degenerate simplexes and each summand of

02(sn) € S1(X?;C) lies on 0|X,|. Now we define a boundary chain b, € §1(X3;C) by
[ ] bn - EZ(Sn).

We next let €(b,,) be the subset of 1-simplices in S (X;}) which are direct summands
of b,. Since any o € €(b,) is non-degenerate, we can take the geometric realisation

|o| < |X;;|. We also define a subset €(0,) < €(by,) by
dmﬂ={6€8@ﬁ:|6h:ﬂXQ.

For each ¢ € €(0,), we have the sign of ¢ in b, and denote it by sgn(c). We now

define
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® 0, = Z sgn(o) o e S (X5;C),

oee(oy)

e I,=b,—o0,€85(X:C).

Let £(1,) = €(bn)\&(0n). We also define |e(1,)| = U |o| and €(,\I,,—1) by

oee(ly)

e(\h1) = {ocelby) : o] = TelINel 1] |-

Finally we define a 1-chain by
o [\, | = Z sgn(o)-o €51 (X5 C).
cee(l\ 1)
Example 5.8.
For each example, we give spaces that represent €(b), €(by), €(b2), and €(ly), €(I;),
€(I). The first row corresponds to £(b;), and the second corresponds to £(/;). The

dots in spaces denote the vertices of 1-simplices, i.e., O-simplices.

e Sierpinski gasket

Figure 3: €(by), €(by), €(b?)
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Figure 4: €(ly), €(I), €(I»)
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L ] -———=8 .
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Figure 5: €(by), €(b1), €(by)

Figure 6: €(lp), €(1I), €(I»)
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e Pinwheel fractal

. . ..
o« . e e
L l o Te N
Y H"’“‘?= . L "o —e -—.

Figure 8: €(Ip), (1), €(I»)

Next, for every n € Z=(, we define a 2-dimensional cell complex |K, ,1|. For

every n € Z=q we endow
(X n+1| = |Xn| — [Xn41] (= the closure of |X,| — |X;41]),

with a cell complex structure, whose structure is defined by the following skelton

filtration:
o sko(|Xuns1]) = 5ko(0Xnr1]) OV [ X1
o ski(|Xnnr1]) = O Xnnr1
o sko(|Xnnr1l) = [Xnns1l

We also define a subspace |Kj, 1] in R? to be

‘Kn,n+1| = [0, 1] x 0| Xpy 1| U{1} x ’Xn,n+1’-
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We use z as the variable of the first coordinate of |Kj, ,41|. We now endow |Kj, 1]
with a 2-dimensional cell complex structure as follows: let py : |Ky, pt1]| = [Knnt1]|7=1

be a projection defined by p;(z,x) = (1,x). We define
o sko([Knn+1]) = {0} x sko(0|Xnt1]) U {1} x (sko(0Xn|) U sko(|Xnn+1]))
o ski([Knnt1]) = {0} > ski (01X 11 [) UL} x (s (0]Xa]) Usky (01X n 11 [) U En 11 ])
o sky(|Knn+1]) = [Knns1]

Here,
Eppny1 = {(x,y) | x € {1} x sko(0|Xy|) or x € {1} x sko(|Xn7n+1|),

y € {0} x sky (X1 ) 5.1 pr(x) = v}
|En,n+1| = U |()C,y)|-
(xay)EEn,nJrl

By construction of |K, ,+1|, we have
K 1] = {0} x 0[Xpi1 | U{1} x 0| X,|

as a cell complex in R3. By employing Lemma 5.6 again, the cell complex |Ky nt1] 1s

subdivided into a 2-dimensional simplicial complex |K? .|, and we may therefore

n+1

choose chains sy 41, Sypn+1 and §, 41 € So(KS

nn +1:C) so that the chains consist of

non-degenerate simplexes:

O2(Snp+1) = ba—bui1, 2(Suns1) =hi—Iis1, 2(Suns1) = Lis1\ln.

We define the sets €(spn+1), €(Snnr1) and €(Sp,+1) in a manner similar to the def-
inition of €(b,) and assume that §), ,41 and s:n7n+1 are summands of s, ,11, in other
words,

e(fn,n+1)a 8(§n,n+1) - 8(Sn,n+1)-
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By a Jordan cycle z in I, \I, we mean a subset z of €(I,,1\I,) such that U lo|

o€z

is homomorphic to S!, and denote U |o| by |z]. We also denote by cyc(l,+1\l,) the
o€z
set of Jordan cycles in I, 1\l,, and define 7 = 2 sgn(o)- o€ Si(K; . :C) for z €

o€z
cyc(l,+1\I,). Then, for every Jordan cycle z in I, 1 \I,;, there exists a non-degenerate

2-chain §, € $(K? ., 3 C) such that 0, (§;) = Z.

For n = 0, we define
Ko, = [0,1] x o(|X| = X1 ) U {1} x [ Xo,1|
and then |Kj ;| is written as

Ko

= U &

zecye(I1\lp)

since O(|X|— |X1]) = |e(I1\lp)|- Moreover, since we have an inclusion map i :
O(|X| — |X1]) = Fu(d)X1]) for every @ € S*", there exists a family {ig } gegxn Of in-

clusion maps ig : |Ko 1| < |Kyn+1| such that

;w‘zzo == iw.

Finally we fix a subdivision of |Kp | and assume that a subdivision of the images of

the inclusion maps i, are given by the subdivision of |Kj 1.

5.2 Approximating cyclicl-cocycles

In this subsection, we define a sequence of complex numbers for given Holder con-
tinuous functions, that we call an approximating cyclicl-cocycle. In order to define
the sequence, we first recall a cochain complex which gives rise to the Alexander-
Spanier cohomology theory.

Let R be a ring. We also let X be a set and X(P+1) the (p + 1)-fold product of
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X. We define F”(X;R) to be the abelian group of functions from X (+1) to R, whose
sum is given by the pointwise sum. A coboundary homomorphism 8 : F”(X;R) —
FPH1(X;R) is defined by

p+1

(89) (0, xXpr1) = D, (1) (%0, - 157+ Xpt).
j=0
We also define the cup product on the complex (F*(X;R),0): for ¢; € F”(X;R) and

¢, € F1(X;R), the cup product ¢; U ¢ € FPT4(X;R) is defined by

((Pl U¢2)(x07"' 7xp+q) = ¢1 (X(),--- ’xp)¢2(xp7"' 7xP+61)'

The Leibniz rule holds for the cup product: for ¢; € F”(X;R) and ¢, € F4(X;R),

5(prudn) =001 udr+(—1)Pd1 U S0

Remark 5.9. The cochain complex (F*(X;R),0) does not give proper cohomology
theory because the complex includes locally zero cochains; see Chapter 6.4 of [27].
Due to locally zero cochains, if X is a nonempty set, then the p-th cohomology group
HP((F*(X;R),d)) is R for p > 0. However, if X is a topological space, then we can
take the quotient of (F*(X;R), ) by locally zero cochains, and the quotient complex
yields a cohomology theory of X, that is called the Alexander-Spanier cohomology
theory. Since the cup product defined above gives rise to a cup product on the co-
homology group, the Alexander-Spanier cohomology group turns out to be a graded
algebra over R. Moreover, the cup product is compatible with the one defined on

singular cohomology theory; see Chapter 6 of [27] for the details.

Now, we define a cochain subcomplex of (F*(X;R),5): we assume that X is a
metric space and R the field of complex numbers C. We also let C*(X) be the space
of complex-valued ¢-Holder continuous functions on X. Then, C%(X) is a subspace

of FO(X;C), and for each p € Z~o we define the subspace C*”(X) of FP(X;C)
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generated by C%(X) < F°(X;C) with the coboundary maps and the cup products.

We now apply the construction for a cellular self-similar structure (|X|, S, {F;} jes):
let C* (K| X|) be the o-Holder continuous functions defined on Kx|. For eachn e N,
we endow sko(|X;|) with the induced metric of R2. Since we have an inclusion map
Jn : sko(|Xu|) — K|x| for every n € Z0, we have a commutative diagram of cochain
complexes

FP(KpysC) —" FP(sko(1X3]);C)

CHP(Kx|) — C*P (sko(IX3]))

The cochain complex FP(sko(|X3|);C) is seen as the set of complex-valued func-
tions Func(S,(A**(X:)) C) defined on S, (A#*o(1Xal)) := sko(|X$[)*P*+!. In a man-
ner similar to the definition of the face maps d; of S, (X)), we define the face maps
on S, (A#*%(Xi)) and then the pair (S, (A*%(XiD) {4;}) turns out to be a semi-
simplicial set; the definition of which is given in [8]. Since the inclusion map
S« (|X3]) < S, (A**0(X:])) is a map of semi-simplicial sets, we therefore get the fol-

lowing commutative diagram:

in d &
FP(Kix:C) —2 FP (sko(1X;1):C) 219 Home, (S, (A% €), €)
lrestrict

CHP(Kpx|) — C*P (sko(1X3])) —— Homg (S,(|X;:C), C).

Now we define C**(|X;|) = im(r). For any f, g € C*(K|x|) and p = 1, we have
a 1-cochain @, (f,g) = (fu dg) — (gu &f) in C*!(|X}|) for every n € N.For every
neN, we set ¢,(f,g) as the evaluation of @,(f,g) with I, € §;(|X3|;C):

¢n(f,g> = wn(fvg)UH)

Definition 5.10. Let f, g € C*(K|x|). We call the sequence {@,(f,g)}nen the approx-

imating cyclicl-cocycle for f and g.
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5.3 Non-trivial Cyclic 1-cocycles

We first state again the main result of this section, called existence theorem, and

prove the theorem.

Theorem 5.11 (Existence theorem). Let (|X|,S,{F;} jcs) be a cellular self-similar
structure with |X | # |X\| and K|x the cellular self-similar set with respect to (|X|,S,{F}} jes).
If20 > dimy (K|x|), then the approximating cyclicl-cocycle {$u(f,8)}nen is a Cauchy

sequence for any f, g € C*(K|y).

Proof. We first endow |K,, 41| with a quasi-metric by d((z,x),(t',x')) = |x — x| e.
Let f, g € C%(K|x|). Since we have an inclusion map jy1 : sko(|Xu+1]) < K|x| for
every n € Z=o, we can define a map f;, : sko(|Ky n+1]|) — C by f,.(¢,x) = f(x). Then,

for any (¢,x) and (t',x") € sko(|Ky n+1]), the map f, satisfies

de(fult,x), fu(t' X)) < cp-d((t,x), (X)) = cp- |x — X |ga.

We also let, for i, k€ C*(sko(|Knnt1])), @n(h,k) = (hw 8k)— (ku Oh) be a 1-cochain

in C*!(|K3 ,1]). Then, we have

|¢n(f7g)_¢n+l(fag)| = ‘wn(fnagn)(ln_InJrl)‘
= |wn(fnagn)(32(§n,n+l))|

< |wn<fn;gn)<32(§n,n+l))| + ‘wn(fn7gn)(52(sn7n+l _5n7n+l))|
< 2 ’wn(fnagn)(52(6)>‘
Geg(sn,nJrl)
=Y (6hube)0)-(Beudh)ell M
Ges(sn,nJrl)

We note that every o € €(sp, ,+1) is given by ¢ = (x,y,z) for some x, y, z € sko(|Kpn+1|)-
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Therefore, (1) may be written as

1) = D (8088 (x,32) = (8gn w8 f)(x,3.2)|

(xvyvz)es(sn.nJrl )

= >, ‘(fn(y) — fn(x))(8n(2) = 8n(¥)) = (8n(¥) = 8n (%)) (fu(2) = fu())

('xvyvz)es(sn.nJrl )

D 2y =%z —y%

(va’Z)GE(Snﬂ-rl )

N

where ¢y and ¢, are the Holder constants of f and g, respectively.

We now define a map to estimate the term (2). For any 0 € (s n+1)\&(Snn+1)
there exists a unique @ = (jy,-- -, j,) € S*" such that p|(|c|) < 0F,(|X|). By this as-
signment, we can define amap p : €(sy 4+1)\E(Snnt1) — S, and let $" be im(p).
We note that, by Lemma 5.3, there exists M € N such that #p~!(®) < M for any

® € $*". Moreover, since p;(|o|) = 0F,(|X|) we have an inequality
diam(|o|) = diam(pi(|o])) < rjy -7, - dxyy = diam(Fo(|X])),

where (j1,- -, ja) = @ € §", r; are the similarity ratios of F; and diy = diam (K |y )
is the diameter of K.

On the other hand, we let L = #cyc(; \Ip) be the number of Jordan cycles in I;\Iy.
Atthe (n+ 1)-step, for every @ € $*", there exist L Jordan cycles in F“’(U Fi(|X])) =
Fy(|X1]). We recall that, for every Jordan cycle z in 1,41\, there is zjieé—chain 5. e

§2 ( K

3 ws1) such that £(5;) < &(§,n+1) and 0(5;) = Z; see also Section 5.1. Therefore,

Spn+1 is decomposed into

S~n,n+1 = Z Z 560721"

wesS*n1<i<L

We also recall from Section 5.1 that, for every @ € $*", we have an inclusion map
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im(i,) = U le(5,)]-
zecyc(Ipt 1\ s-t. |z|cFe(1X])

Therefore, since the subdivision of the images im(ig) are induced by the fixed sub-

division of |Kj ,|, we may define

M = sup {#e(5)} = sup {#e(5)}.
zecyc(lyq1\In) zecye(li\lo)

From these arguments, (2) is now decomposed into two parts:

2) = D 2-crocgly—x|z—y["
(xvyvz)eg(sn,n-‘rl)\6(§ll,n+l)
Y Zeepcgly—x|% -y
(xayaz)ee(fn,n-kl)
< Z 2~Cf~cg-#p_1(a))-(r?a ""’?,?'dl%gﬂ)
(jl7'“7jn)es~><n
= 2 2 2
+ Z Z 2-cpocy-#e(sy) - (ri - rjf‘-dK&l)
(jla"' 7jn)es><n lglgl’
< Z 2.cf.c M(r’zarzadza)
= 8 Ji Jn YK
(.jl7"'7jn)€S><n
A7 2 2 2
+ Z 2'Cf'cg'L‘M~(rjla---rjf"ngq)
(j17~-~,j,l)eS><”

2-cf-cg.d,2<§|-(M+L.M).(Zr§“)".

Jjes

We denote 2- ¢ ¢, -dlz(“’)‘q (M +L-M) by K, and then we have

Ourk(f:8) = Ou(fs2)] < D) [9n4i(f18) = usic1 (f12)]

1<i<k

< Z K- (Z r?(x)n—i—i—l

I<i<k  jeS

— K-(Zr?“)”- Z (Zﬁ“)"*l. 3)

jes 1<i<k jeS
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Since 2a > dimy (K x|) and dimy (K x| ) is computed by the formula in Theorem 3.11,

the term (Z rjz-“) is less than 1. Therefore the term 2 (Z rf“)"*l also converges

jes 1<i<k jeS
to a finite value as k tends to c0. Hence, we have

(3) < K.{i(zrfa)f—l}.(zria)",

i=1 jes jes

and the right hand side converges to 0 as n tends to co. This completes the proof of

Theorem 5.11. [

From now on, we assume that 2o > dimy (K‘ x| ), and define a bilinear map

¢ :C*(Kx)) x C*(Kix)) = C, 9(f,¢) = lim ¢(f,g).

Lemma 5.12. The map ¢ is independent of the choice of I,.

Proof. In order to check the mentioned property of the bilinear map ¢ : C* (K| X|) X
C%(K|x|) — C, we have to show that the approximating cyclicl-cocycle converges to
the same value regardless of the choice of I, which represents the given orientation.
Let In, I € © ' ([1,]) such that |&(L,)| = |e(Z;)| and @;(f,8) = (f v 8g)(L;) — (g
O f)(I},). Then there exists a 2-dimensional simplicial complex J,, such that |J,,| =
le(1,)| x [0,1], and we choose §, € S>(J,,;C) such that 5(§,) = I, — I'. We endow

|J,| with a quasi-metric similar to the one on |Kj, 1|, and then we have

|0n(f.8) — $u(f.8)] |60 (S, 8n)($n)]

< 20 cpcgly—x*lz—y®

(x,y,2)€€($h)

< 2 Z 2-cpocg ly—x**

(X,y)eg(ln)
20 2a 20
< 2 Z chcgdK‘X‘rj ..... rjn
(jlf"ajn)esxn
200 200\n
< 4~cf~cg-dK‘X‘ ~(er )"

Jjes
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This completes the proof of Lemma 5.12. [
Based on the proof of the existence theorem, we can prove the following theorem.

Theorem 5.13. For any f, g € C%(K|x|) with 2a > dim(K(x/), we have

0(f.8) = ~2-Y(f.8)ljx| = ~2- (Young integral along d[X]).

In particular, if |X| # |X)

,for 1 and x :=id € C*(K|x)), we get

¢(1,x) = =2-Y(1,x)|5x| = —2-(length of J|X]).

Proof. By the construction of the approximating cyclicl-cocycle of f, g € C*(K|x)),

we have

On(f,8) = On(f,8)(In) = —@a(f,8)(0n) + @ (f,8)(Dn)-

The proof of Theorem 5.11 yields directly that the sequence {@,(f,g)(bn)}nez-,
converges to 0 if 2a > dimp (K|y|). Since {@y(f,8)(0n)}nez-, provides the Young
integration along J|X| which is the finite union of closed segments, we get the men-

tioned equalities. ]

Remark 5.14. There exists the dual notion of the Hochschild cohomology group
HH*(A) and cyclic cohomology group HC*(A) of a unital commutative algebra A,
known as the Hochschild homology group HH,(A) and the cyclic homology group
HC,(A) of A respectively [18]. There is also a well-known fact, known as the
Hochschild-Kostant-Rosenberg theorem, that the group HH,(A) is canonically iso-
morphic to the de Rham cochain complex Q*(A) of A if the given algebra A is smooth
in the sense of algebraic geometry [13]. Moreover, when we focus on HH|(A) the
assumption that the algebra A is smooth is not required. Under the isomorphism of
HH,(A) and Q' (A), the Hochschild 1-cycle 1 ®x corresponds to dx € Q! (A). How-

ever, we do not know the case when ¢ (1 ®x) gives the proper volume of Kix|-
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Theorem 5.15. Under the assumption of Theorem 5.11:
a) The bilinear map ¢ is a cyclic 1-cocycle of C*(Kx).
b) The cocycle ¢ represents a non-trivial element [¢)] in HC' (C*(Kx)))-

Proof. We have a linear map ¢ : C%(K|x|) ® C*(K|x|) — C. It follows immediately
that the cocycle ¢ satisfies the cyclic condition since @,(f,g) satisfies the cyclic
condition for any n € Z>o. Accordingly, it remains to show that ¢ is a Hochschild

l-cocycle. For f, g, he C*(K|x|), we may write b (f,g,h) as

bo(f.g:h) = ¢(fg,h)—0(f gh)+¢(hf,g)
— lim gu(fg. 1) — lim 9u(f.gh) + lim 9u(hf )
— 1im (9u(fg. )~ 9u(f.8h) + 0a(hf.2))

= lim b@a(f,8,h).
n—00

Therefore, to prove bo(f,g,h) = 0is equivalent to prove lim b@,(f,g,h) =0. Using
n—oo
S(nurt)=8nut+(—1)%eMny §t, we have

on(feh) = (feudh—nud(fe))()
= ((Fugudn —(hu8fug)—(ho fudg)) ).

Similarly,
ou(frgh) = ((fUdgUh)+(fugudh)—(guhush))(h).

ounf,g) = ((hofUdg)—(gudhuf)—(guhudf))(h).

Therefore,
boufgh) = —((hUSfUg)+(fudgum)+(gudhuf))l). &)
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Since

~(hosfog)h) = ((Bhufug)+(hufude)—(8(hfe)) )
= (Brofug)+(hufUse)) ).

we have

(4) = ((Bhofog)+(hofuse)—(fudguh)—(gudhuf))(h)
= Y H(@rusugthurusy —(fusgun) —(gushu ) ()

(xy)ee(ln)

Hence

bou(frg ) < DL h) —h(x)]1g(y) — )] [f() — f(x)]
(x.y)ee(ln)
= Z Cr-Co-Cp-lx—y
(x.y)€e(ln)
cf-cg-ch'd,iqu-M 2 r%a.....r;fc
(jl?'“vjﬂ)esxn

3 3
= Cf'cg'ch'dl(&‘ ‘M‘(Z”ja)n
jes

‘306

N

— 0, asn— 0.

This completes the proof of (a).

We now prove (b). We note that we have the pairing
HH,(C*(K|x|)) x HH'(C*(K|x|)) — C.
As seen in Theorem 5.13, we know that ¢ (1 ®x) # 0, and this completes the proof

of (b). Ol
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We recall from Section 3.2 that for cellular self-similar structures (|X|,S,{F;} jcs)

and (|X'|,S' {F ]/} if there exists a bi-Lipschitz function between the cellular

jeS/ )’

self-similar sets K|y and K the algebras of ¢-Holder continuous functions on

/’
X

K|x| and K|, are isomorphic and their Hausdorff dimensions coincide. Therefore,

x']
under this assumption, the cyclic cohomology groups of the algebras of a-Holder

continuous functions on Ky and K| are isomorphic and the thresholds for the

X'l
well-definedness of the cocycles are same.

Remark 5.16. a) The cocycles stated in the above theorem may be extended to certain
variants of cellular self-similar sets. In particular, Strichartz introduces the notion of
fractafolds [29, 30], and the cocycle ¢ showed in Theorem 5.15 may be extended on
some fractafolds. We look at cocycles on variants of cellular self-similar sets in the
last subsection.

b) The algebra C%(X)of o-Holder continuous functions on a compact metric space
admits a Banach topology, and C*(X) turns out to be a Banach algebra. However,
we do not know whether or not the cocycle ¢ is continuous in the sense of a map

between Banach algebras.

5.4 Examples

In this subsection we examine the cyclic cocycle on some cellular self-similar sets.
The spaces on which the cocycles are examined are basically the examples given in
Section 3.3.
e unit square

As we mentioned in Section 3.3, the unit square 1> = [0, 1] x [0,1] is a cellular self-
similar set. Namely, by regarding /> as a union of 9 squares whose size are % of I?,
we have a cellular self-similar structure that consists of 9-similitudes. However, for
every n € N the inner simplicial 1-chain I, is 0 because |X| = |X;|. Therefore, the
cyclic cocycle ¢ defined on C*(1?)®? turns out to be a trivial map. This is the case

where a cellular self-similar structure does not satisfy the assumption |X| # |X;|.
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o Sierpinski gasket
The theorems in the Section 5.3 may be applied to the Sierpinski gasket SG, and the
cyclic 1-cocycle ¢ on C*(SG) is well-defined for 2a > dimy (SG) = log, 3. More-
over, the cocycle is non-trivial since |X| # |X;|. This cocycle was originally given in

[23].

e Sierpinski carpet
The cyclic 1-cocycle is well-defined if 2a > dimg (SC) = logs 8, and the cocycle is
non-trivial since |X| # |X;|. We recall that bi-Lipschitz transformation preserve the
Hausdorff dimension. Therefore, the cocycles of SG and SC prove that there exists
no bi-Lipschitz transformations between SG and SC. Similar argument also works
for the other examples described below.

¢ pinwheel fractal
Pinwheel fractal PF may also be seen as a cellular self-similar set. The self-similar

structure consists of 4 similitudes whose ratios are see Section 3.3 for the details.

1.
\/ga
The cyclic cocycle is well-defined if 2a > dimy (PF) = log /54 and non-trivial in
HC'.

e L-shape fractal
L-shape fractal set LSF in Section 3.3 is the limit set of a cellular self-similar struc-

ture that consists of 9 similitudes, two of which have similarity ratios % and the rest

of which have ratios }1. Therefore dimy (LSF) = log ! @ by Theorem 3.11, and

the cocycle is well-defined on C*(LSF) if 2¢¢ > log 1 2@_] :
o self-similar set based on perfect tiling

We employ the self-similar structure based on the perfect tiling of the square in Sec-

tion 3.3. The Hausdorff dimension of the cellular self-similar set dimy (PT) is the

root of the equation in Section 3.3. Then we have the non-trivial cyclic 1-cocycle

on the self-similar set. Actually, there exist choices of cellular self-similar structures

so that the resulting self-similar sets have different Hausdorff dimensions. For each
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choice there exists a cellular self-similar set on which the non-trivial cyclic 1-cocycle
is defined.

e Cantor dust
Unfortunately, the theorem cannot be applied to the Cantor dust CD since CD is not
a cellular self-similar set. However, a cyclic cocycle on the Cantor set is defined in

[23], and the cocycle can detect the upper Minkowski content.

o Infinite isolated Sierpinski gaskets
The final example in Section 3.3, that we denote by ISG, gives a cellular self-similar
structure. Therefore, the cyclic 1-cocycle may be defined on the space, and the cocy-
cle is non-trivial when 2 > dimg (ISG). From now until the end of this subsection,
we discuss the structure of HCO(CHP (ISG)).

By the self-similar structure of ISG, my(ISG) = @ 7, each of whose summands

peN
corresponds to a connected component Y, of ISG. Therefore ISG may be written as

ISG = | |Y,.
peN

Then we have the canonical inclusion map

iny: Y, — | |Y, =1SG
peN

for any p € N. We now fix a base point y, € ¥}, for each p € N, and define a cyclic 0-
cocycle y, of C'P(Y),) by taking the evaluation of y), for any f € C¥'P(Y,). Therefore,

the canonical inclusion map in, induces the map of cyclic cohomology groups:
(inp)« : HCO(CHP(Y,)) — HCO(C''P(ISG)).

We now let P be a finite subset of N and assume that Wp = > . p & (in) « ([ ]) =
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0. We also define c, € CL'P(ISG) by

I, yey,
Cp(y) =
0, otherwise.

Then, for any p € P, we have a pairing of the Hochschild homology group and the
Hochschild cohomology group of C7(ISG):

0={Pp, cpy =Y, &liny)«([Wp])(cp) = 0tp,
peP
and which means that the set {(in,).([W,])}yep is a linearly independent set. Since
this argument also works for any finite set P of N, we can conclude that {(in,)«([Wp])} pen
forms a linearly independent set of HCY(CLP(ISG)), and therefore HC?(CLP (1SG))

contains (P .y C as a C-vector space.

5.5 Further Work

Strichartz proposed the notion of fractafolds [29, 30], and on which he examines frac-
tal versions of the classical theories, for example, Hodge-de Rham theory, spectral
theory, homotopy theory. In particular, the Laplacian on some kinds of self-similar
sets has been extensively studied, and it is applied to various fields [2, 17, 29, 30].

Here, we give some examples of finite unions of cellular self-similar sets.

The first example is the wedge sum of a Sierpinski gasket and a Sierpinski carpet

with base points at their corners. However, the space is neither a cellular self-similar
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set nor a fractafold. However, the theorem may be applied to this space. Namely, the

space is seen as the projective limit of the following spaces:

The figure is obtained by taking the wedge sum of the sequences which give rise
to the Sierpinski gasket and the Sierpinski carpet. Similarly, we have sequences of

boundary chains bg, by, by and inner chains Iy, I, I respectively:

We therefore have an approximating cyclicl-cocycle, and it can be written by the
element-wise sum of approximating cyclicl-cocycles of SG and SC. In order that
approximating cyclicl-cocycle is a Cauchy sequence, it is enough that the Holder
index o satisfies 2c¢ > dimg (SC).

From this point of view, SG can be seen as a union of 3 Sierpinski gaskets, and
therefore SG may be seen as a fractafold with boundary, see [29, 30] for the details.
As defined in Section 5.4, we have a cyclic cocycle on SG.

Finally, we define a cyclic cocycle of the algebra of Lipschitz functions defined

on a fractafold based on the Sierpinski gasket:
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The space is a union of four copies of the Sierpinski gasket in R? obtained by gluing
the points at corners of a copy with each corner of the other Sierpinski gaskets. This
space is one of examples of what Strichartz calls fractafolds without boundaries,
and we denote it by F'SG. The space F'SG can be seen as the projective limit of a
sequence of the spaces that is obtained by gluing copies of the sequence which gives

rise to SG:

We therefore get, by applying the theorem to each Sierpinski gasket, a cyclic 1-

cocycle on C*(FSG) when 2¢ > log, 3.

Remark 5.17. Strichartz introduces the Hodge-de Rham theory for fractal graphs [1].
In [1], Laplacian on some fractal sets are defined by exploiting the Alexander-Spanier
cochain complexes. However, we do not know whether or not there exist any relation

between the cyclic 1-cocycle ¢ defined in the present thesis and the Laplacian of [1].
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