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Chapter 1

Introduction

1.1 Background

It is well known that every solid belongs to crystals, amorphous alloys, or
quasicrystals. The atomic arrangement is periodic in crystals and aperi-
odic in amorphous alloys. By contrast, quasicrystals have quasiperiodic
structure (see section 1.2.1). Reflecting this long-range ordered nature, qua-
sicrystals show sharp Bragg reflection patterns like crystals. In contrast to
conventional crystals, however, they have rotational symmetries forbidden to
conventional crystals (for example, 5-, 8-, 10-fold symmetries). These inter-
esting features of the geometric structure have fascinated many researchers,
including physicists. So far, the electronic states unique to the quasicrystals
have not been revealed yet. For example, it is not known if there is an exotic
magnetic structure unique to quasicrystals. Theoretically, it was suggested
that a “critical state” is formed due to the quasiperiodicity. However, this
has not been proved experimentally. Recently, a new type of the quasicrys-
tal, the Au-Al-Yb quasicrystal [1], was found in which the thermodynamic
properties such as the magnetic susceptibility and the specific heat diverge
as T → 0, with the unusual critical indices [2]. Interestingly, these indices
are found to be similar to those of heavy fermion crystals YbRh2Si2 and
β-YbAlB4 [3,4]. These findings allow us to expect that there is new physics
in the interdisciplinary region between heavy fermions and quasicrystals.

In this thesis, we study the pressure effect on the quantum criticality of
the novel Au-Al-Yb quasicrystal and its approximant crystal. Chapter 1 is
devoted to introduction. In Chapter 2, we investigate the magnetic suscep-
tibility of the Au-Al-Yb quasicrystal under hydrostatic pressure and show
that the magnetic susceptibility diverges toward zero temperature under
pressure, with the same critical index as the ambient pressure. This means
that the quantum criticality survives under pressure in the quasicrystal and
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the quantum criticality of the quasicrystal is robust against the application
of hydrostatic pressure. This behavior is remarkably different from that
of the conventional crystals. To reveal if this behavior is unique to the
quasicrystal, we investigate the magnetic susceptibility of the approximant
under hydrostatic pressure in Chapter 3. We show that the magnetic suscep-
tibility strongly increases with pressure and diverges at the critical pressure
Pc ∼ 2 GPa. This means that there is a quantum critical point at Pc. At
P > Pc, we find that the spin-glass-like short-range ordered state emerges
below the freezing temperature Tg ∼ 100 mK. We note that this does not
mean that Pc corresponds to a magnetic quantum critical point. In Chapter
4, we compare the Au-Al-Yb quasicrystal with the approximant, and discuss
the origin of the quantum criticality of them. The difference between the
quasicrystal and approximant is the presence/absence of the quasiperiodic-
ity. Therefore, the difference observed in the pressure effect can be ascribed
to the difference in the presence/absence of the quasiperiodicity. For the fur-
ther study of the origin of the quantum criticality, we examine the so-called
T/H scaling. We find that the quasicrystal and the approximant satisfy the
T/H scaling similar to CeCu6−xAux and β-YbAlB4. From this finding, we
suggest that the mechanism of the novel quantum criticality is the same as
that in these heavy fermion crystals. Finally, we give a brief summary in
Chapter 5.

1.2 Quasicrystals

Quasicrystals are defined as follows:
(i) Fourier transformation of the atomic arrangement consists of set of delta
functions.
(ii) The number of the basis vector is more than the dimension of the space.
(iii) Quasicrystals show forbidden rotational symmetries to conventional
crystals.
The point (i) means that the quasicrystals show the sharp diffraction peaks
in reciprocal space and hence have the long-range ordered structure. There-
fore, the quasicrystals are completely different from amorphous materials.
Usually, the diffraction peaks of 3 dimensional crystals are indexed using
three basis vectors. For the quasicrystals, the more than 3 basis vectors
are needed. This gives the second definition. As shown below, this is di-
rectly deduced from the quasiperiodicity. The point (iii) suggests that the
quasicrystals have rotational symmetries (for example, 5-, 8-, 10-fold sym-
metries) forbidden to conventional crystals.

There are quasicrystals classified as 2 dimensional and 3 dimensional
quasicrystals. The 2 dimensional quasicrystals have two quasiperiodic axes
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and one periodic axis: the planes which have quasiperiodic arrangement
of atoms stack periodically for the direction of the periodic axis. The 3
dimensional quasicrystals show the quasiperiodicity for all the directions.
These are icosahedral quasicrystals. The icosahedral quasicrystals have the
symmetry of the icosahedron. Their structures consist of the atomic groups
called clusters (see Fig. 1.1). The clusters are composed of the concentric
arrangement of multiple shells. The quasicrystals have distinct multiple
shells, which are known as Mackay-, Bergman-, and Tsai-type cluster (see
Figs. 1.2-1.4). The cluster of the Au-Al-Yb quasicrystal, which is studied
in this thesis, belongs to the Tsai-type [1]. We note that the approximant
possesses the same local structure as the quasicrystal.

Figure 1.1: Illustration of polyhedrons which have the icosahedral symmetry. (a)
Dodecahedron. (b) Icosahedron. (c) Icosidodecahedron. (d) Rhombic
triacontahedron. (e) Truncated icosahedron.

Figure 1.2: Illustration of Mackay-type cluster. The first shell is an icosahedron
(a), the second shell is an icosidodecahedron (b), and the third shell
is an icosahedron (c).
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Figure 1.3: Illustration of Bergman-type cluster. The first shell is an icosahe-
dron (a), the second shell is a dodecahedron (b), the third shell is an
icosahedron (c), and the fourth shell is a truncated icosahedron (d).

Figure 1.4: Illustration of Tsai-type cluster. The first shell is a dodecahedron
(a), the second shell is an icosahedron (b), and the third shell is an
icosidodecahedron (c).

1.2.1 Structural properties

Quasiperiodicity

First, we consider the quasiperiodicity. Quasiperiodicity is a kind of order,
other than periodicity. One of such examples is the Fibonacci sequence,
which is defined as follows:

A0 = 0, (1.1)

A1 = 1, (1.2)

AN = AN−1 +AN−2 (N ≥ 2). (1.3)

This gives the following Fibonacci sequence:

{0, 1, 1, 2, 3, 5, 8, 13, · · ·}

The sequence may look to be random but is formed from the rules mentioned
above (Eqs. 1.1∼3). This is the quasiperiodicity. It is interesting to note
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that AN/AN+1 becomes equal to the golden ratio τ in the limit of N → ∞.

Here, τ is an irrational number, 1+
√
5

2 .
The Fibonacci sequence can be also related to the sequence of the word,

S and L, defined as follows:

A0 = S, (1.4)

A1 = L, (1.5)

AN = AN−1 +AN−2 (N ≥ 2). (1.6)

This is expressed as follows,

N = 0 : S,

N = 1 : L,

N = 2 : LS,

N = 3 : LSL,

N = 4 : LSLLS,

N = 5 : LSLLSLSL,

· · · · ·
· · · · ·
· · · · ·

Note that the number ratio of S to L becomes equal to τ in the limit of
N → ∞.

One dimensional quasiperiodic lattice

A projection method is one of the good methods which can describe quasiperi-
odic structures [5,6]. Specifically, the 3 dimensional quasiperiodic structure
is obtained by projection from the 6 dimensional periodic structure. This
means that the 3 dimensional quasiperiodic structure needs 6 basis vectors.
Since the projection from the 6 dimensional periodic structure is very com-
plex, we consider the 1 dimensional quasiperiodic lattice, which is obtained
from the 2 dimensional periodic lattice.

First, let us consider the square lattice in the plane of X1 and X2 (see
Fig. 1.5). The position vector r⃗ of the square lattice is defined as follows by
using integers n1, n2 and the unit vectors E⃗1, E⃗2:

r⃗ = a2D

(
n1E⃗1 + n2E⃗2

)
. (1.7)

Here, a2D is the lattice constant of the square lattice. Next, let us separate
the 2 dimension space into two orthogonal subspaces, X∥ (“physical space”)
and X⊥ (“complementary space”), by rotating the original set of the axes
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Figure 1.5: Construction of the periodic square lattice. X1 and X2 denote the
square lattice. X∥ and X⊥ denote the physical space and the comple-

mentary space, respectively. E⃗1 and E⃗2 are the basis vectors of the 2
dimensional periodic lattice, respectively.

by some angle θ such that tanθ = 1/τ (where τ = 1+
√
5

2 is the golden ratio).
The 1 dimensional quasiperiodic lattice is obtained by projecting the 2 di-
mensional periodic lattice on X∥. If all the lattice points are projected on
X∥, X∥ is dense with the projected points and the 1 dimensional quasiperi-
odic lattice is not obtained. To limit projection, we define the confined
region, which is called “window”. We define the “window length” as indi-
cated in Fig. 1.6. Here, we set the slope α of the window such that α = θ.
Thus obtained 1 dimensional quasiperiodic lattice consists of two kinds of
length, S (short) and L (long). The position vector r⃗∥ of this 1 dimensional
quasiperiodic lattice is expressed as follows:

r⃗∥ = a2D

(
n1E⃗1∥ + n2E⃗2∥

)
. (1.8)

Here, E⃗1∥ and E⃗2∥ are the vectors obtained by projection from E⃗1 and E⃗2,
corresponding to L and S, respectively. These vectors are the basis vectors
of the 1 dimensional quasiperiodic lattice. Therefore, we need two basis
vectors to express the 1 dimensional quasiperiodic lattice. Note that the
number ratio of S to L is τ , again.

In the Fibonacci sequence, we define the ratio AN/AN−1 of the adjacent
numbers as follows:

1/1, 2/1, 3/2, 5/3, 8/5, · · ·AN/AN−1, · · · (1.9)
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Figure 1.6: Construction of the 1 dimensional quasiperiodic arrangement from
the 2 dimensional periodic square lattice. E⃗1∥ and E⃗2∥ are the basis
vector of the 1 dimensional quasiperiodic lattice, respectively.

Each ratio corresponds to the approximant crystal: 1/1 approximant, 2/1
approximant, and so on. In the limit of N → ∞, this ratio equals τ . This
periodic structure in the approximant crystal is also obtained by projection
method. To show this, we set the angle α such that tanα = 1/1 for the
1/1 approximant (see Fig. 1.7). This choice of α corresponds to the “pha-
son strain”. Thus obtained periodic lattice shows periodic arrangement of
SLSLSL・・・. This explains why the approximant is called “1/1 approxi-
mant”: the unit cell consists of SL, and the number ratio of L to S is 1/1.

When we set the window such that tanα = 1/2, another periodic lattice
is obtained from the projection method (see Fig. 1.8). The unit cell of this
lattice consists of LSL, and the number ratio of L to S is 2/1. Therefore,
this periodic structure is called 2/1 approximant crystal.

The degree of the approximation is reflected in the lattice constant. For
example, the lattice constant a1/1 of the 1/1 approximant is described as
follows:

a1/1 = 1|L|+ 1|S|, (1.10)

|L| = cos θ ×
√
2a2D, (1.11)

|S| = sin θ ×
√
2a2D. (1.12)

Here, θ is the angle between X1 and X∥. |L| is the length of the longer

portion L, and |S| is the length of the shorter portion S. The factor
√
2
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Figure 1.7: Construction of the periodic arrangement of 1/1 approximant crystal
from the 2 dimensional periodic square lattice.
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Figure 1.8: Construction of the periodic arrangement of 2/1 approximant crystal
from the 2 dimensional periodic square lattice.

is needed to correct the length of the basis vector multiplied 1/
√
2 for the
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projection. Since tanθ = 1/τ , cosθ and sinθ are given as follows:

cos θ =
1√

1 + tan2 θ
=

τ√
1 + τ2

=
τ√
2 + τ

, (1.13)

sin θ =
tan θ√

1 + tan2 θ
=

1√
1 + τ2

=
1√
2 + τ

. (1.14)

By substituting Eqs. 1.13 and 1.14 into Eq. 1.10, Eq. 1.10 is described as
follows:

a1/1 = 1× τ√
2 + τ

√
2a2D + 1× 1√

2 + τ

√
2a2D. (1.15)

For the AN/AN−1 approximant crystal, the lattice constant aAN/AN−1
is

given by

aAN/AN−1
= AN × τ√

2 + τ

√
2a2D +AN−1 ×

1√
2 + τ

√
2a2D. (1.16)

Thus, the lattice constant increases as the degree of the approximation comes
better, i.e., N → ∞, meaning that the lattice constant of the quasicrystal
is infinite.

1.3 Heavy fermions

The electrons in metals may be classified into itinerant electrons and local-
ized electrons. The itinerant electrons can jump onto the neighboring atoms.
The wavefunction of the itinerant electrons expands over the crystal lattice.
On the other hand, the localized electrons can not jump onto the neighboring
atoms and remain on the same atom, and their wavefunctions are localized.
Basically, 4f electrons in rare earth elements are localized electrons. In
heavy fermions such as Ce- and Yb-based materials, however, 4f electrons
can slightly move onto the neighboring atoms. When two electrons meet
on the same 4f orbital, there appears a large Coulomb repulsion between
them. As a result, f electrons become difficult to move in the crystal, which
gives the electrons the heavy mass. This is the reason why these electrons
are called heavy electrons (heavy fermions). While a localized electron with
spin of s = 1/2 has the entropy of S = kBln2 per electron, an itinerant elec-
tron system has the entropy of S = γT . Here, kB is the Boltzmann constant
and γ is the electronic specific heat coefficient, which is proportional to the
effective mass m∗ of the electron. In the case of conventional metals such as
Cu, m∗ is of the same order as the free electron. For the system consisting
of a mole of electrons, the entropy γT at room temperature is smaller than
the localized spin entropy, Rln2. Here, R is the gas constant. This feature is
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schematically illustrated in Fig. 1.9: the itinerant-electron entropy denoted
by the dotted line is smaller than the localized-electron entropy denoted by
the broken line.

2lnk

NS /

Localized spin2lnBk Localized spin

Heavy fermion

Tγ

T

Itinerant electron

KT

Tγ

Figure 1.9: Temperature dependence of the entropy S. N is numbers of spins.

In the case of heavy fermion systems, the 4f electron behaves like an
itinerant electron in the low temperature region and like a localized electron
in the high temperature region. The crossover temperature between the
itinerant and localized characters is called Kondo temperature TK, which is
a few Kelvin for the conventional heavy fermion systems. As a result, the
entropy shows a large slope as shown in Fig. 1.9. This large slope means
that γ and hence m∗ is much enhanced, and such the enhanced specific heat
C is often observed experimentally. C and S are related by the following
equation,

S =

∫
C

T
dT. (1.17)

Figure 1.10 shows the temperature dependence of C/T of the heavy fermion
materials. As the temperature is decreased, C/T increases and saturates at
a huge value. This behavior at T << TK means that the heavy fermions
become the Fermi liquid. Note that the Fermi liquid behavior is described
as follows: C/T ∼ constant, χ ∼ constant, ρ ∝ T 2. Here, χ and ρ are
the magnetic susceptibility and the electrical resistivity, respectively. Some
of the heavy fermion systems (for example, CeCu6 [7]) remain to be Fermi
liquid down to zero temperature. Some of them (for example, CeB6 [8])
undergo a magnetically ordered state and/or a superconducting state. The
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difference of the ground state occurs as a result of the competition between
the RKKY interaction and the Kondo effect, i.e., the exchange interaction
between the itinerant electrons and the localized spins.

TC /

Itinerant electron

Kondo-Yosida
singlet

T
KT

Localized electron

Figure 1.10: Temperature dependence of the specific heat divided by temperature
C/T . At T >> TK, the itinerant electrons are scattered by the
localized spin. While at T << TK, the itinerant electrons are by
the localized electrons, forming the ground state called the Kondo-
Yosida singlet state.

1.3.1 Quantum critical phenomena

There are a number of materials which undergo a ferromagnetically or an
antiferromagnetically ordered state at low temperature. We denote the tran-
sition temperature as Tm. When the magnetic materials are pressurized, Tm
may decrease with increasing pressure. In such case, the transition tem-
perature Tm can be zero, where the quantum phase transition occurs (see
Fig. 1.11). If the transition is of the second order type, the transition point
is called the quantum critical point (QCP). On the other hand, if the pres-
sure is increased at T = 0, then this magnetic material undergoes a phase
transition from the magnetic state to the paramagnetic state at the QCP.

In the quantum critical region as schematically shown by the purple
shaded region in Fig. 1.11, unusual physical properties are observed. Here,
“unusual” means that the temperature dependence is different from that of
the Fermi liquid. This non-Fermi liquid is often understood by the so-called
SCR theory [9]. Recently, some materials in which the physical properties
are not described by the SCR theory have been observed. In this thesis, we
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Magnetic
ordered state Fermi liquid

Figure 1.11: Schematic P -T phase diagram. Tm and Pc are the magnetic transi-
tion temperature and the critical pressure, respectively.

show that the Au-Al-Yb quasicrystal and the approximant are an example
of such the novel materials.

1.4 Au-Al-Yb quasicrystal and approximant

1.4.1 Structure model

The geometric structure of the Au-Al-Yb quasicrystal and the approximant
can be understood using the structure model of the Cd-R approximant (R =
rare-earth element) [10,11]. The icosahedrons are arranged quasiperiodically
with a fivefold diffraction symmetry in the quasicrystal (Fig. 1.12 (a)), while
in the 1/1 approximant, they are arranged periodically to form a body-
centered cubic (bcc) structure (space group: Im3̄) (Fig. 1.12 (b)). This bcc
structure of the icosahedrons may be more clearly seen in Fig. 1.12 (b) ;
each icosahedron has edge lengths of 5.45 and 5.49 Å, and the interatomic
distance between the neighboring icosahedrons is 5.33 and 5.69 Å [1]. These
distances are so large that there is no direct overlap between the 4f electron
wavefunctions derived from the Yb ions. Figure 1.13 shows a structure model
of the Au-Al-Yb 1/1 approximant determined by the Rietveld method. The
square frame indicates the unit cell with a size of the lattice parameter
a = 14.500 Å. The Tsai-type cluster consists of concentric arrangement
of triple shells (see Fig. 1.4); at the center of the first shell, there is a
polyhedron labeled M7 (see Fig. 1.13 (a)). Here, the green sphere denotes
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Figure 1.12: Geometric structure of the Tsai-type quasicrystal and its approxi-
mant crystal [1,2]. (a) Aperiodic array of icosahedrons (denoted by
blue polyhedron) in the quasicrystal. Rose-pink and gray spheres
denote Yb ions located on the vertices of an icosahedron and in an
acute rhombohedron (see Fig. 1.14 (b)), respectively. (b) Network
of Yb ions in the Au-Al-Yb 1/1 approximant. This constructs the
body-centered cubic structure. The number denotes the length in
the unit of Å.

the site alternatively occupied by Au and Al. This polyhedron consists of
four atoms in total (abbreviated as 4 Au/Al atoms in this thesis) and is
represented by a complicated polyhedron reflecting an average of variously
oriented tetrahedrons. Figure 1.13 (b) shows the first and second shells, in
which one may find a pentagon beneath the rose-pink sphere (representing
Yb) consisting of three green spheres (M2) and two yellow spheres (M4).
Note that the rose-pink sphere site is occupied by Yb, and the yellow one is
preferably occupied by Au. Figure 1.13 (c) shows the second and third shells,
in which one may find another pentagon (consisting of four yellow spheres
(M1) and one green sphere (M6)) around Yb. As seen in Fig. 1.13 (d), five
yellow spheres (M1 and M3) form a pentagon around the blue sphere (M5);
here, the blue sphere indicates the site almost occupied by Al.

The three pentagons together with the blue (M5) and green (M7) spheres
are arranged as shown in Fig. 1.14 (a). This figure may best visualize the
local environment of the Yb ion. In this structure model of the approximant,
the Yb ion site is uniquely determined and referred to as the A-site hereafter.
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Figure 1.13: Structure model of Tsai-type cluster in Au-Al-Yb 1/1 approxi-
mant [12]. Rose-pink: Yb, blue: Al, yellow: Au, green: Au/Al.
The square frame of each panel indicates the unit cell size of the lat-
tice parameter a = 14.500 Å. (a) Local structure at the center of the
cluster. The tetrahedron is oriented in a disordered fashion, and the
average of the various orientations leads to the complicated polyhe-
dron structure. (b) First and second shells of the cluster. (c) Second
and third shells of the cluster. (d) Triacontahedron decorated by Au
and Al atoms.

By analogy with Cd-R quasicrystals [11], on the other hand, there are two
Yb sites in the Au-Al-Yb quasicrystal: one is the A-site and the other is a
specific site (referred to as the B-site hereafter) embedded in the so-called
acute rhombohedron (see Fig. 1.14 (b)). Each acute rhombohedron includes
two B-sites with a distance of about 3.4 Å, which is too large to give rise
to a direct overlap between the 4f wavefunctions. Note that the population
ratio of the A- and B-sites is approximately 7 : 3.

According to a nuclear magnetic resonance measurement for the Au-Al-
Yb quasicrystal and the approximant (see below), nuclear magnetization
recoveries after saturation pulses were fit using a theoretical function with a
single component of T1 (T1 is a nuclear spin-lattice relaxation time) for both
the quasicrystal and the approximant. This suggests that the electronic
state is rather homogeneous even in the quasicrystal.

1.4.2 Physical properties

Dc magnetization

Figure 1.15 shows the temperature dependence of the inverse magnetic sus-
ceptibility of the Au-Al-Yb quasicrystal and the approximant. Above 100
K, both the quasicrystal and the approximant show the Curie-Weiss like
feature. The effective moments of the quasicrystal and the approximant
are 3.91µB and 3.96µB, respectively. These values are smaller than that of
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Figure 1.14: Geometric arrangement of Yb ions in the quasicrystal and the ap-
proximant [12]. (a) Coodination polyhedron of Yb. (b) Acute rhom-
bohedron in the Cd-Yb quasicrystal, in which green spheres indicate
Cd. This type of Yb site is missing in 1/1 approximants.

the free Yb3+ ion, 4.54µB, and larger than that of the free Yb2+ ion, 0.
This suggests that the Yb-ion of the quasicrystal and the approximant is in
between Yb3+ and Yb2+.
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Figure 1.15: Temperature dependence of the inverse magnetic susceptibility of
the Au-Al-Yb quasicrystal and approximant [2].
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X-ray absorption near-edge structure experiments and photo emis-
sion spectroscopy

Figure 1.16 shows the normalized X-ray absorption near-edge structure
(XANES) spectra of the Au-Al-Yb quasicrystal (a) and the approximant (b),
where the absorption edge spectrum obviously exhibits a double peak [13].
The lower energy peak around 8.939 keV corresponds to the divalent com-
ponent, while the higher one around 8.946 keV corresponds to the trivalent
one. These results indicate that an intermediate valence state is realized
in the Au-Al-Yb quasicrystal and the approximant. Figure 1.17 shows the

Figure 1.16: Normalized Yb L3 XANES spectra of Au-Al-Yb quasicrystal (a)
and approximant (b) at room temperature (open circles) [13]. Each
spectrum is fitted by the sum (solid red line) of divalent (dotted line)
and trivalent (dashed line) components.

photoemission spectra of the Au-Al-Yb quasicrystal, the approximant, and
YbAl3, which is a typical valence fluctuation system [14]. In YbAl3, the two
sharp peaks observed between EF and 2 eV are derived from the Yb2+. The
other sharp peaks observed between 5 and 12 eV are derived from the Yb3+.
It is important to note that the Yb2+ peak crosses EF. This means that the
valence fluctuates in time and space. For the Au-Al-Yb quasicrystal and the
approximant, both of the peaks from the Yb2+ and the Yb3+ are observed.
Note again that the Yb2+ peak crosses EF. Therefore, the Yb ions of the
quasicrystal and the approximant are found to fluctuate between Yb3+ and
Yb2+.
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Figure 1.17: Photoemission spectra of the Au-Al-Yb quasicrystal, the approxi-
mant, and YbAl3 at 28 K [14].

Specific heat

Figure 1.18 shows the temperature dependence of the magnetic part (CM/T )
of the specific heat coefficient of the Au-Al-Yb quasicrystal (a) and the
approximant (b). Here, CM was obtained by subtracting the nuclear and
phonon contributions from the measured specific heat. For the quasicrystal,
logarithmic divergence at zero field is observed in the temperature depen-
dence, CM/T ∝ −lnT . By applying magnetic fields, the divergence is sup-
pressed, but the saturated value is still very large; CM/T ∼ 200 mJ/K2mol
at H = 50 kOe. By contrast, the approximant shows no divergence. Again,
the saturated value is very large, ∼ 700 mJ/K2mol, compared with conven-
tional crystals. The application of magnetic fields suppresses the increase in
CM/T .

Ac magnetic susceptibility

Figures 1.19 (a) and (b) show the temperature dependence of the magnetic
susceptibility of the Au-Al-Yb quasicrystal and the approximant, respec-
tively. The magnetic susceptibility of the quasicrystal at H = 0 shows a di-
vergent behavior as T → 0. The inverse magnetic susceptibility shows good
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Figure 1.18: Temperature dependence of the magnetic specific heat CM/T of the
quasicrystal (a) and approximant (b) under magnetic field [2].

linearity as a function of T 0.51 (see Fig. 1.19 (c)). Note that the straight
line goes through the origin. This confirms that the magnetic susceptibility
diverges toward zero temperature. This quantum criticality is characterized
by a critical index n ≃ 0.51. In contrast, although the magnetic susceptibil-
ity of the approximant at H = 0 increases with decreasing temperature, the
magnetic susceptibility does not diverge, as evidenced from the presence of
the constant term in the equation of χ−1 ∝ Tn+ constant (n ∼ 0.5).

Nuclear magnetization recoveries after saturation pulses

Figure 1.20 shows the recovery of the nuclear magnetization after a satura-
tion pulse in the Au-Al-Yb quasicrystal. Nuclear magnetization recoveries
after saturation pulses, which were taken from the 1/T1T measurements,
were fit by the theoretical function with a single component of T1 in the
whole temperature range measured. This suggests that the electronic state
in the Au-Al-Yb quasicrystal is homogeneous as mentioned above.

Figure 1.21 shows the nuclear spin-lattice relaxation rate divided by
temperature, 1/T1T , deduced from 27Al nuclear magnetic resonance (NMR)
measurements on the quasicrystal. Whereas the uniform susceptibility χ(T )
probes magnetic fluctuations at q⃗ = 0 (where q⃗ is the wave vector of an
applied magnetic field), 1/T1T observes the q⃗-averaged fluctuations. The
scaling observed here, 1/T1T ∝ χ, together with a negative Weiss temper-
ature suggest that χ(q) is independent of |q⃗|, meaning that the magnetic
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Figure 1.20: The recovery of the nuclear magnetization after a saturation pulse of
the Au-Al-Yb quasicrystal [2]. The data are well fit by a theoretical
curve with a single component T1 denoted by the solid line.

fluctuation associated with the quantum criticality possesses a local nature
in the real space.
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Figure 1.21: Temperature dependence of the nuclear spin-lattice relaxation rate
divided by temperature 1/T1T of 27Al NMR (left axis) and the uni-
form magnetic susceptibility χ (right axis) [2].

Electrical resistivity

Figure 1.22 (a) shows the temperature dependence of the electrical resis-
tivity of the Au-Al-Yb quasicrystal and the approximant. The residual
resistivity is 199 and 161 µΩcm for the quasicrystal and the approximant,
respectively. Figures 1.22 (b) and (c) show the temperature dependent part
∆ρ = ρ(T )− ρ(0) as a function of T and T 2 below 25 K, respectively. The
quasicrystal shows the non-Fermi liquid behavior ∆ρ ∝ T , while the ap-
proximant indicates the Fermi liquid feature ∆ρ ∝ T 2 as in a conventional
metal.

Origin of the unconventional quantum criticality of the Au-Al-Yb
quasicrystal

As shown previous sections, the uniform susceptibility χ of the quasicrystal
shows the power law divergence with the critical index -0.51 (see table 1.1).
The nuclear spin-lattice relaxation rate divided by temperature 1/T1T is
proportional to χ. The specific heat divided by temperature C/T shows
the logarithmic divergence. The low-temperature resistivity ∆ρ = ρ(T ) −
ρ(0) is proportional to T . Theoretically, the local criticality model [15] and
the Kondo disorder model [16] can not explain these results. In contrast,
the critical valence fluctuation model [17] may explain these experimental
results. This is discussed later in this thesis.
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Figure 1.22: (a) Temperature dependence of the electrical resistivity of the Au-
Al-Yb quasicrystal and the approximant [2]. (b) and (c) show the
temperature dependent part ∆ρ = ρ(T ) − ρ(0) as a function of T
and T 2, respectively.

Pressure effect on the quantum criticality of the Au-Al-Yb qua-
sicrystal and its approximant

As mentioned above, the quaiscrystal is located at the QCP, while the ap-
proximant is away from the QCP. In heavy fermion crystals, the application
of external pressure changes the distance from the QCP (see Fig. 1.23). For
the present systems (i.e., the Au-Al-Yb quasicrystral and its approximant),
the pressure effect is not reported yet. To reveal this is one of the purposes
in this thesis.

1.5 Purposes of this thesis

As mentioned above, the Au-Al-Yb quasicrystal and the approximant show
the different physical properties at low temperatures (see section 1.4.2). We
expect that this difference is related to the quasiperiodicity in the quasicrys-
tal. One of the purposes of this thesis is to reveal the physical properties
unique to the quasicrystal by studying the pressure effect on the Au-Al-Yb
quasicrystal and the approximant. The second purpose is to reveal the origin
of the quantum criticality of the Au-Al-Yb quasicrystal.
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Au-Al-Yb β-YbAlB4 YbRh2Si2 Valence Local Kondo disorder

Quasicrystal Criticality Criticality Griffiths phase

1/χ T 0.51 T 0.5 T 0.6 T 0.5−0.7 Tα

(α<1)
+const. T λ−1

(0<λ<1)

1/T1T ∝ χ - T−0.5 ∝ χ T−1 -

C/T -lnT -lnT -lnT -lnT - ∝ χ

∆ρ T T 1.5

(low−T )
→ T T T - -T

Table 1.1: Exponents of some Yb-based materials together with those predicted
by theories. 1/χ, 1/T1T , C/T are the inverse of the uniform magnetic
susceptibility, the nuclear spin-lattice relaxation rate divided by tem-
perature, and the specific heat divided by temperature, respectively.
∆ρ (= ρ(T )− ρ(0)) is the low-temperature resistivity.

T

mT

P
QCP

Figure 1.23: Schematic P -T phase diagram. The red point indicates the QCP.
Tm indicates the magnetic transition temperature.
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Chapter 2

Pressure Effect on Quantum
Criticality of the Au-Al-Yb
Quasicrystal

2.1 Introduction

As shown in the previous chapter, the quasicrystal shows the unconven-
tional quantum criticality at ambient pressure, i.e., without tuning. In this
chapter, we investigate the pressure effect on the quantum criticality of the
quasicrystal. In contrast to heavy fermions, in which the quantum criticality
is tuned by external parameters such as pressure, we find that the quantum
critical behavior of the quasicrystal is robust against the application of hy-
drostatic pressure.

2.2 Experimental Method

A quasicrystal with the nominal composition, Au49Al34Yb17, was prepared
by arc-melting the starting materials of 4N (99.99% pure)-Au, 5N-Al, and
3N-Yb. The ac magnetic susceptibility was measured by conventional mu-
tual inductance method. Figure 2.1 shows the schematic illustration of the
ac magnetic susceptibility measurement under pressure. A modulation field
with a frequency of 100.3 Hz and an amplitude of 0.1 Oe was superimposed
on a dc magnetic field supplied by a superconducting magnet. For the cali-
bration of the ac magnetic susceptibility, we measured the dc magnetization
using MPMS (Quantum Design) at pressures up to 1 GPa, above which
we extrapolated the dc magnetization data. The electrical resistivity was
measured by a conventional dc 4-probe method in a temperature range of
2 K and room temperature. Hydrostatic pressure was generated using a
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Au-Al-Yb

QuasicrystalCW

plug

Figure 2.1: Schematic illustration of the ac magnetic susceptibility measurement
under pressure. CW and CCW denote the coil wound clockwise and
counter clockwise, respectively.

BeCu piston cylinder cell and a NiCrAl-BeCu piston cylinder cell for mea-
surement of dc magnetization and ac susceptibility, respectively. We used
Daphne oil 7373 as a pressure-transmitting medium. The pressure at low
temperature was determined from the superconducting transition temper-
ature of indium [18] that was put into the pressure cell together with the
sample.

2.3 Results and Discussion

2.3.1 Dc magnetization of the Au-Al-Yb quasicrystal under
hydrostatic pressure

Figure 2.2 shows the magnetization curves of the Au-Al-Yb quasicrystal at T
= 2 K under pressure. The magnetizationM at a fixed fieldH monotonically
increases with pressure. M shows good linearity as a function of H up to
3 kOe. This means that M/H equals χ(= dM/dH), which helps us to
calibrate the ac magnetic susceptibility (see below). Figure 2.3 shows the
pressure dependence ofM/H of the quasicrystal at 2 K.M/H monotonically
increases with pressure. To calibrate the ac magnetic susceptibility, M/H
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Figure 2.2: (a) Magnetic field dependence of the magnetization of the Au-Al-Yb
quasicrystal under pressure. (b) Magnetization below 5 kOe. The
dashed line is a guide to the eyes.

was fitted to the following equation,

M

H
= a+ bPn. (2.1)

As shown in Fig. 2.3, we obtain the following values: a = 0.0519 ± 0.0002,
b = 0.0336 ± 0.0003, and n = 1.25 ± 0.03.
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Figure 2.3: Pressure dependence of the magnetic susceptibility of the quasicrystal
at 2 K. The blue curve denotes the result of fitting.
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2.3.2 Calibration method of ac magnetic susceptibility under
pressure

We need to calibrate the ac magnetic susceptibility under pressure. To do
so for the ambient pressure measurement, we measured the dc magnetiza-
tion in the same temperature interval as the ac susceptibility. However, this
method is not applicable to the high pressure experiments, because it was
difficult to measure the temperature dependence of the dc magnetization
under pressure exceeding about 1.5 GPa. To avoid this difficulty, we mea-
sured the superconducting transition of indium to determine the sensitivity
of the pick up coil used here, assuming that the jump in the superconduct-
ing diamagnetism of indium does not depend on pressure, with 4πχ = -1
emu/cm3 (see Fig. 2.4). Then, using the result of Fig. 2.3, we determined
the zero of ac magnetic susceptibility.
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Figure 2.4: Temperature dependence of the magnetic susceptibility at 0.77 GPa.
The vertical axis is given in an arbitrary unit (a) and in a calibrated
unit (b).

2.3.3 Magnetic susceptibility of the Au-Al-Yb quasicrystal
under hydrostatic pressure

Figure 2.5 shows the temperature dependence of the magnetic susceptibil-
ity of the Au-Al-Yb quasicrystal at dc magnetic fields and at hydrostatic
pressures. The low-temperature susceptibility for H = 0 increases with
pressure, whereas the application of the dc magnetic field suppresses this
increase. Figure 2.6 shows the inverse magnetic susceptibility 1/χ of the
quasicrystal as a function of T 0.51 at H = 0 under pressure. The 1/χ vs
T 0.51 curve shows the good linearity between 80 ≤ T ≤ 800 mK, indicating
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figure of P = 0.77 GPa.

that the divergent behavior survives under pressure, with the novel critical
exponent unchanged.
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at H = 0 under pressure ranging from ambient pressure to 2.88 GPa.
The straight lines are linear extrapolations to T = 0.
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2.3.4 Electrical resistivity of the Au-Al-Yb quasicrsytal un-
der hydrostatic pressure

Figure 2.7 shows the temperature dependence of the electrical resistivity
under hydrostatic pressure. External pressure increases the magnitude of
the electrical resistivity. Up to the highest pressure measured in the present
study, no experimental evidence for a phase transition was found.
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Figure 2.7: Temperature dependence of the electrical resistivity of the Au-Al-Yb
quasicrystal in a temperature range of 2 ≤ T ≤ 300 K at pressure P
= 0.08, 0.20, 0.39, 0.66, 0.99, and 1.23 GPa.

2.3.5 Origin of the robustness of the pressure effect

Let us discuss a possible origin of the robustness of the unconventional quan-
tum criticality of the Au-Al-Yb quasicrystal. The robustness may be related
to the quasiperiodicity because it was not observed in the approximant crys-
tal as mentioned in the next chapter. However, another possibility (for ex-
ample, chemical disorder, cluster structure, etc.) remains to be a possible
origin. This will be discussed in the next chapter.

2.4 Summary

We measured the magnetic susceptibility of the Au-Al-Yb quasicyrstal un-
der hydrostatic pressure. The magnetic susceptibility at low temperature
increases with pressure with no indication of the magnetic ordering. We
have found that the quantum criticality of the quasicrystal is robust against
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the application of the pressure up to 2.88 GPa (the highest pressure of the
present measurement).
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Chapter 3

Pressure-Driven Quantum
Criticality in the Au-Al-Yb
Approximant

3.1 Introduction

In the previous chapter, the unconventional quantum criticality of the qua-
sicrystal was found to be robust against the application of the hydrostatic
pressure. In this chapter, we study the magnetic properties of the Au-Al-Yb
approximant under hydrostatic pressure. We find that the magnetic suscep-
tibility of the approximant strongly increases with pressure and diverges
toward T → 0 at Pc ∼ 2 GPa. This means that there is a quantum critical
point (QCP) at Pc. At high pressures exceeding Pc, the approximant un-
dergoes a spin-glass like short-range ordering at Tg ∼ 100 mK. These results
indicate that the pressure effect on the approximant remarkably differs from
that of the quasicrystal. This leads us to suggest that the robustness of
the quantum criticality in the quasicrystal against hydrostatic pressure is
related to the presence of the quasiperiodicity.

3.2 Experimental Method

The 1/1 approximant crystal with the nominal composition, Au49Al36Yb15,
was prepared by arc-melting the starting materials of 4N (99.99% pure)-Au,
5N-Al, and 3N-Yb, and subsequently annealing the obtained alloy ingot in
an evacuated quartz ampoule at 750 ℃ for 116 h. The electrical resistivity
was measured by the same method as done for the quasicrystal. The ac
magnetic susceptibility was measured by the same method as done for the
quasicrystal (see section 2.2). Figure 3.1 shows the schematic illustration
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of the ac magnetic susceptibility measurement under pressure. To calibrate
the sensitivity of the pick up coil carefully, we put the indium on the same
side as the Au-Al-Yb approximant and measured the dc magnetization M
using MPMS (Quantum Design) at pressures of up to 1.2 GPa, above which
we extrapolated the dc magnetization data. A modulation field (with the
frequency in the range of 10.03 to 3003 Hz and the amplitude of 0.1 Oe)
for the ac susceptibility measurement was superimposed on a dc magnetic
field H supplied by a superconducting magnet. We used the same piston
cylinder cell and the pressure-transmitting medium as for the quasicrystal
measurement. The pressure at low temperature was also determined in the
same way as for the quasicrystal.

Pick up coil

Teflon cell

In
CCW

Au-Al-Yb

ApproximantCW

plug

Figure 3.1: Schematic illustration of the ac magnetic susceptibility measurement
under pressure. CW and CCW denote the coil wound clockwise and
counter clockwise, respectively.

3.3 Results and Discussion

3.3.1 Electrical resistivity of the Au-Al-Yb approximant un-
der hydrostatic pressure

Figure 3.2 shows the temperature dependence of the electrical resistivity
under hydrostatic pressure. Similar to the quasicrystal, external pressure
increases the magnitude of the electrical resistivity. At the highest pressure
(2.43 GPa), we note that there is a bend-like anomaly. This origin remain
to be clarified in the future.

34



240

220

200

180

160

140

r
 (µ

Ω
cm

)

300250200150100500

T (K)

Au-Al-Yb
Approximant

increasing
pressure

Figure 3.2: Temperature dependence of the electrical resistivity of the Au-Al-Yb
approximant in a temperature range of 2 ≤ T ≤ 300 K at pressure P
= 0, 0.26, 0.42, 0.61, 0.89, 0.96, 1.20, 1.51, 1.80, 2.15, and 2.43 GPa.
The arrow denotes a bend-like “anomaly”.

3.3.2 Dc magnetization under pressure

Figure 3.3 shows the magnetic field dependence of the magnetization M of
the Au-Al-Yb approximant under pressure. M is linear in H up to about 3
kOe, and tends to saturate at higher fields. Figure 3.4 shows the pressure
dependence ofM/H of the approximant at 2 K. At a fixed field,M increases
with pressure. By fitting the M/H data to Eq. 2.1, we obtain the following
values: a = 0.0365 ± 0.0008, b = 0.056 ± 0.001, and n = 0.94 ± 0.04.

3.3.3 Magnetic susceptibility of the Au-Al-Yb approximant
under hydrostatic pressure

We calibrate the ac susceptibility in a similar way to the previously men-
tioned method, see section 2.3. Figure 3.5 shows the temperature depen-
dence of the ac magnetic susceptibility of the Au-Al-Yb approximant under
dc magnetic field H and hydrostatic pressure P . The low-temperature sus-
ceptibility for H = 0 strongly increases with pressure, whereas the applica-
tion of the dc field suppresses this increase. At P = 2.39 and 2.79 GPa, a
peak structure is formed at Tg ≃ 100 mK for H = 0. We discuss a possible
origin of this peak structure below.

On the basis of the results as shown above (see section 1.4.2), we as-
sume the following modified Curie–Weiss relation for H = 0 except in a
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Figure 3.3: (a) Magnetic field dependence of the magnetization of the Au-Al-Yb
approximant under pressure. (b) Magnetization curves below 5 kOe.
The dashed lines are guides to the eyes.

temperature region near Tg;

χ(T )−1 = T γ/C + χ(0)−1. (3.1)

Here, γ is the critical exponent. The traditional Curie–Weiss plot where
1/χ is a straight line as a function of T is replaced by a plot where 1/χ is a
straight line as a function of T γ with the slope 1/C (where C is the Curie
constant) and the vertical-axis intercept χ(0)−1. This straight-line feature is
confirmed in Fig. 3.6(a) over a temperature range between about 85 mK (the
base temperature of the experiment) and about 800 mK. Assuming the ex-
ponent γ as a free parameter, we obtain γ = 0.50 ± 0.05 at ambient pressure
and γ = 0.50 ± 0.01 at P = 1.96 GPa. This means that the exponent γ does
not depend on pressure within the experimental accuracy. In contrast, the
intercept χ(0)−1 (that measures the distance from QCP) approaches zero
with increasing pressure toward about 2.0 GPa. This observation is more
clearly seen in Fig. 3.6(b): 1/χ(0) steeply decreases with increasing pressure
and vanishes at around 2 GPa, suggesting the emergence of the QCP there.
On the other hand, 1/χ(0) of the quasicrystal is independent of pressure
with keeping 1/χ(0) ∼ 0. As a result, the approximant shows qualitatively
different response from the quasicrydtal with respect to the application of
hydrostatic pressure.
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denoted in the figure of P = 2.79 GPa.

3.3.4 Nature of the magnetic ordered phase above 2 GPa:
an antiferromagnetically long-range ordered phase or
a spin glass like short-range ordered phase

As shown in the previous section, the magnetic susceptibility of the approx-
imant shows an anomaly at around 100 mK at pressures of 2.39 and 2.79
GPa (see Fig. 3.5). The anomaly is naturally ascribed to the onset of either
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perature to evaluate 1/χ(0). (b) Pressure dependence of 1/χ(0) at H
= 0 of the approximant and the quasicrystal.

an antiferromagnetically long-range order or a spin glass like short-range
order. To elucidate the long-range or short-range ordered state, it is useful
to measure the nonlinear susceptibility χ2 defined as follows,

χac(H) =
dM

dH
= χ0 + χ2H

2 + · · ·. (3.2)

Here, χac, M , χ0, and χ2 are the ac susceptibility, the magnetization, the
linear susceptibility, and the nonlinear susceptibility, respectively. Figure 3.7
schematically shows the temperature dependence of χ2 around an antiferro-
magntic ordering temperature TN (a) and a spin-glass freezing temperature
Tg (b) [19]. In the case of the antiferromagnetic order, -χ2 shows no diver-
gence and a sign change at TN. In the case of the spin-glass transition, on
the other hand, -χ2 diverges at both sides of Tg. In this thesis, χ2 was
evaluated as the initial slope of the χac vs H

2 curve (see Fig. 3.8), assuming
that χac is proportional to H2 up to 300 Oe, i.e., assuming the following
equation,

χ2(T ) =
χac(T,H)− χac(T, 0)

H2
. (3.3)

Thus obtained results are plotted in Fig. 3.9. Note that -χ2 forms a posi-
tive peak around Tg at which the linear susceptibility peaks. This strongly
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suggests that the ordering is of short-range ordered nature.

Figure 3.10 shows the temperature dependence of the ac magnetic sus-
ceptibility measured at several frequencies of the modulation field. We
clearly observe a peak at low temperature as indicated by the arrow al-
though it is not obvious at f = 3003 Hz. The peak slightly but definitely
shifts to higher temperatures as the frequency f increases. This result was
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fitted to the following equation (Vogel-Fulcher law),

f = f0exp

[
− W

kB(Tg − T0)

]
. (3.4)

Here, f0,W , and kB are the characteristic frequency, the activation energy,
and the Boltzmann constant, respectively. T0 is called ‘ideal glass’ temper-
ature although its physical meaning is unclear. From the results shown in
Fig. 3.11, we obtain the following values: f0 = 1013 Hz, W/kB =760 ± 100
mK, and T0 = 68 ± 4 mK. This finding of the Vogel-Fulcher law gives a
supporting evidence for the interpretation of the glass-transition at Tg.
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Figure 3.11: Variation of the freezing temperature Tg with 1/ln(f0/f), with f0 =
1013 Hz. The dashed line is a guide to the eyes.

3.3.5 Origin of the quantum criticality of the Au-Al-Yb ap-
proximant

Let us discuss again a possible origin of the quantum criticality. As presented
above, the uniform susceptibility shows the power-law divergence with the
critical index γ ≃ 0.5 at P = Pc. This divergence cannot be understood
from the conventional magnetic QCP because the high-pressure magnetic
state is not ferromagnetic but spin-glass like. Instead, the divergence with
the above critical index can be explained by the critical valence fluctuation
model proposed by Watanabe and Miyake [17]. It may be important to note
here that the valence fluctuation between Yb2+ and Yb3+ was observed in
the approximant by X-ray absorption experiments [13] and photoemission
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experiments [14] (see section 1.3). Therefore, the critical valence model is
likely to be a most probable model.

3.3.6 P -T phase diagram of the Au-Al-Yb approximant
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Figure 3.12: Pressure dependence of the freezing temperature Tg. The lowest
temperature of the present measurement is 80 mK.

Let us discuss the P -T phase diagram of the Au-Al-Yb approximant. In
the previous section, we show that the QCP is located at Pc. At P > Pc, the
approximant undergoes a spin-glass-like short-range ordering at about 100
mK. Figure 3.12 shows the pressure dependence of the freezing temperature
Tg. Unfortunately, we could not determine the critical pressure where Tg
comes down to zero because Tg is very low. It remains unclear if there
is a QCP of the glass transition. Here, it should be noted that this QCP
(if present) is distinguished from the aforementioned QCP presumably due
to the critical valence fluctuation. From these results, we suggest some
possible P -T phase diagrams (see Figs. 3.13 (a)-(d)). In 3.13 (a), there are
two QCPs, one is the QCP of the magnetic origin and the other is the QCP
of the critical valence fluctuation. The two characteristic lines (the valence
crossover line T ∗

V and the magnetic transition Tg) are crossing each other.
In Fig. 3.13 (b), these two QCPs coincide with each other. In Fig. 3.13 (c),
there are two QCPs again as in Fig. 3.13 (a), but the T ∗

V and Tg lines do not
cross. In Fig. 3.13 (d), the valence fluctuation and the magnetic fluctuation
suppress each other, resulting in the onset of the first order transition. It
remains open which phase diagram is realized here. We need further study
to resolve this problem.
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Figure 3.13: (a) - (d) Schematic P -T phase diagrams of the Au-Al-Yb approx-
imant. T ∗

V , Tg, Pc, and SG indicate a hypothetical characteristic
temperature that is related to valence crossover, a freezing tempera-
ture, a critical pressure at which the magnetic susceptibility diverges,
and a spin-glass-like short-range ordered state, respectively. A blue
open circle and red closed circle indicate the QCP of the spin glass
transition and critical valence fluctuation, respectively.

3.3.7 Chemical pressure effect on the Au-Al-Yb approxi-
mant: valence change driven by constituent element
substitution

The metal alloys Au44Ga41Yb15 and Ag47Ga38Yb15 are members of the 1/1
approximant to the Tsai-type quasicrystal [20]. Figure 3.14 shows the tem-
perature dependence of the magnetic susceptibilities of the Au-Al-Yb, Au-
Ga-Yb, and Ag-Ga-Yb approximants. We note that the magnetism disap-
pears by substituting Ga for Al. This result suggests that the substitution of
Ga for Al corresponds to the negative chemical pressure and the Au-Al-Yb
system is located near the border of the divalent and trivalent states of the
Yb ion.
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3.4 Summary

We measured the magnetic susceptibility of the Au-Al-Yb arpproximant
under hydrostatic pressure. The low-temperature susceptibility increases
with pressure and diverges toward zero temperature at Pc ≃ 2 GPa. This
means the presence of the QCP at Pc. At pressures above Pc, the spin-
glass like short-range ordered state emerges at a low temperature (Tg ∼
100 mK). The pressure effect observed here resembles that of the heavy
fermion crystals, but it is completely different from that of the quasicrystal.
The difference between the quasicrystal and the approximant seems to be
naturally ascribed to the presence/absence of the quasiperiodicity.
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Chapter 4

Discussion

4.1 Introduction

As presented in the previous chapters, the unconventional quantum critical-
ity of the quasicrystal is robust against the application of the hydrostatic
pressure, whereas the approximant shows the pressure-driven quantum crit-
icality as in the conventional heavy fermion crystals. In this chapter, we
discuss the origin of the difference in the pressure effect between the qua-
sicrystal and the approximant. Indeed, the most probable origin is the
presence/absence of the quasiperiodicity. We also discuss the origin of the
unusual quantum criticality, although the possibility of the critical valence
fluctuation was already suggested in the preceding chapters. To confirm one
direction, we discuss the so-called T/H scaling.

4.2 Origin of the difference in the pressure effect
between the Au-Al-Yb quasicrystal and the
approximant

Let us discuss the origin of the difference in the pressure effect between
the Au-Al-Yb quasicrystal and approximant. As mentioned in the previous
chapters, the quasicrystal shows the unconventional quantum criticality with
the unusual critical indices and does the robustness against the application
of pressure, which results in the P -T phase diagram as schematically shown
in Fig. 4.1 (a). On the other hand, the approximant shows the pressure-
driven quantum criticality (see Fig. 4.1 (b)), which is characterized by the
same critical index as for the qausicrystal. If we look at the local geometric
structure, the quasicrystal and the approximant have the similar structure.
Therefore, the chemical disorder contained in the cluster is not the origin of
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Figure 4.1: Schematic P − T phase diagrams of the Au-Al-Yb quasicrystal (a)
and the approximant (b). The thick line in (a) indicates “a collection
of QCPs”, which may be called the quantum critical line. The closed
circle in (b) indicates the QCP. T ∗

V is a hypothetical characteristic
temperature that is related to valence crossover. Tg and SG indicate
a freezing temperature and a spin-glass like short-range ordered state,
respectively.

the difference. On the other hand, if we look at the overall structure, the
atomic arrangement (i.e., the quasiperiodicity/periodicity) is different be-
tween them. Therefore, it is reasonable to ascribe difference in the pressure
effect to the quasiperiodicity/periodicity.

4.3 T/H scaling of the Au-Al-Yb quasicrystal and
the approximant

Let us discuss the scaling relation in the Au-Al-Yb qausicrystal and the ap-
proximant. The scaling is a strong method to determine the critical exponent
and to study the origin of QCP. First, we examine the scaling properties of
the ac susceptibility χac =

dM
dH . Let us start from the following uniform and

static susceptibility that was deduced from the generalized susceptibility
proposed for CeCu6−xAux by Schröder et al., [21]

χ−1(H,T ) =
1

C

[
1

kαB

(
(kBT )

2 + (gµBH)2
)α/2

+ θα
]

=
1

C
η

(
H

T

)
Tα +

1

C
θα, (4.1)

where kB, g, µB, and θ are the Boltzmann constant, the effective g-factor,
the Bohr magneton, and the Weiss temperature, respectively. η is a scaling
function of the ratio H/T only and equal to 1 for H/T = 0. The power index
α was found to be 0.75 for CeCu6−xAux. For the Au-Al-Yb quasicrystal
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and the approximant, we obtain α = 0.55 ∼ 0.6 and 0.5, respectively, by
comparing Eq. 4.1 with the phenomenologically determined Eq. 3.1. (Note
that η = 1 for H = 0 as mentioned above.) At the QCP where χ(0)−1 =
θα/C = 0, we have the scaling relation

χTα = Cη−1, at QCP. (4.2)

We plot χTα of the quasicrystal and the approximant as functions of H/T in
Figs. 4.2 and 4.3, respectively. In Fig. 4.2, we find that all the data fall on a
single curve, meaning that the scaling relation Eq. 4.2 holds at all pressures
in the quasicrystal. On the other hand, in Fig. 4.3, we find that only the
data of P = 1.96 GPa close to Pc collapse on a single curve. As a result, we
note again that the quantum criticality of the quasicrystal survives under
pressure.

Defining X as

X−1 = χ−1 − θα

C
, (4.3)

we obtain the similar scaling relation

XTα = Cη−1. (4.4)

Equation 4.4 also holds because the data even at P ̸= Pc fall on a single
curve, as seen in Fig. 4.4. Taking into account the fact that C depends
on pressure (see Fig. 3.6(a)), we plot XT 0.5/C in Fig. 4.5(c); although the
ambient pressure data scatter owing to their small susceptibility, all pressure
data taken here fall on a single curve, which manifests that XT 0.5/C is a
function of H/T only.

Equation (4.4) is confirmed more quantitatively. According to the asymp-
totic form of the scaling function η−1,

η−1

(
H

T

)
∼


1− 1

4

(
gµBH
kBT

)2
, for T ≫ H,(

gµBH
kBT

)−1/2
, for T ≪ H.

(4.5)

The data shown in Fig. 4.5 saturate at unity in the non-Fermi liquid limit
(H/T ≪ 1), while in the opposite limit of Fermi liquid (H/T ≫ 1), they
decrease linearly with increasing H/T . This indicates that the magnetic
field drives the system to the Fermi liquid regime.

Next, we discuss that the unusual exponent α = 0.5 obtained above can
be deduced from the following low-temperature free energy, which was pro-
posed for the analysis of the quantum criticality of β-YbAlB4 by Matsumoto
et al., [22]

F = − 1

(kBT̃ )1/2

[
(gµBH)2 + (kBT )

2
]3/4

, (4.6)
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Figure 4.2: H/T scaling of the Au-Al-Yb quasicrystal. The scaling behavior was
observed at all P . This indicates that the quantum criticality survives
under pressure.

where T̃ is a characteristic temperature. By differentiating F with respect
to H, we obtain the ac susceptibility χ = dM/dH and the dc susceptibility

48



9
0.1

2

3

χT
 0

.5
(e

m
u 

K
0.

5 /m
ol

-Y
b)

0.1 1 10

H/T (kOe/K)

 
2.79 GPa

 0.3 kOe
 1.0
 3.0

7

8

9
0.1

2

χT
 0

.5
(e

m
u 

K
0.

5 /m
ol

-Y
b)

 
1.96 GPa

 0.3 kOe
 1.0
 3.0

5

6

7

8
9

0.1

χT
 0

.5
(e

m
u 

K
0.

5 /m
ol

-Y
b)

0.1 1 10

H/T (kOe/K)

 
1.43 GPa

 0.3 kOe
 1.0
 3.0

8

9
0.1

2

χT
 0

.5
(e

m
u 

K
0.

5 /m
ol

-Y
b)

 
2.39 GPa

 0.3 kOe
 1.0
 3.0

10
-2

2

3

4

5

6

χT
0.

5  (
em

u 
K

0.
5 /m

ol
-Y

b)

0.1 MPa
 0.3 kOe
 1.0
 3.0

3

4

5

6

7
8
9

0.1

χT
0.

5  (
em

u 
K

0.
5 /m

ol
-Y

b)

0.65 GPa
 0.3 kOe
 1.0
 3.0

  Au-Al-Yb
Approximant

Figure 4.3: H/T scaling of the Au-Al-Yb approximant. The scaling behavior
observed at P = 1.96 GPa (≃ Pc) becomes less evident as P moves
away from Pc.

M/H (where M is a magnetization) as

χ(T,H)T 1/2 = ψ

(
H

T

)
, for H ≥ 0, (4.7)

M

H
H1/2 = φ

(
T

H

)
, for H > 0, (4.8)
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where ψ and φ are scaling functions, and ψ = 3
2
(gµB)

2

kBT̃ 1/2 for H = 0. Equation

(4.7) is equivalent to Eq. (4.2) when Cη−1 = ψ, and a comparison of Eq. (4.7)
with Eq. (4.1) yields α = 0.5.

Then, we test the scaling relation Eq. (4.8) for the dc magnetization using
data taken at high temperatures (2 K ≲ T ≲ room temperature) and high
dc fields (H ≲ 70 kOe) (see Figs. 4.6 (a) and (b)). (We used the ambient-
pressure data instead of the high-pressure one because the high-pressure
magnetization contains a non-negligible contribution from the pressure cell
and it was difficult to accurately separate the sample magnetization from
the total magnetization.) In both of the qauscrystal and the approximant,
for T/H > 10 (i.e., T > 10 K for H = 1 kOe), we find a deviation from the
expected behavior (denoted by the thin line) from the asymptotic form

φ

(
T

H

)
∼ 3(gµB)

3/2

2
(
kBT̃

)1/2

(
kBT

gµBH

)−1/2

, for T ≫ H. (4.9)

This may be ascribed to the crystal field effect because the 4f electrons are
localized at high temperatures as evidenced by the conventional Curie–Weiss
behavior in χ(T ) [2, 12]. It is now clear that the T/H scaling holds (except
in the very high temperature region) in the quasicrystal and the approxi-
mant, like in CeCu6−xAux and β-YbAlB4. In all four systems, therefore,
the critical field Hc of the quantum phase transition is zero because a finite
Hc would require that the argument of the scaling functions is the ratio
T/|H − Hc| [22], and further that these systems may have the same ori-
gin for the unusual non-Fermi liquid behavior. This may lead to a similar
H-T phase diagram for those systems, in contrast to the P -T phase dia-
gram that strongly depends on the system as demonstrated in Fig. 4.1; for
CeCu5.8Au0.2 and β-YbAlB4, see Refs. [23] and [24], respectively.

4.4 Origin of the unusual quantum criticality

Let us discuss the origin of the quantum criticality of the Au-Al-Yb approx-
imant and the quasicrystal. First, we consider the approximant. There are
two possible origins of the quantum criticality in the approximant. One is
due to the QCP of the glass transition. However, this possibility is presum-
ably excluded because the uniform susceptibility will not diverge at Tg = 0.
The second possibility is due to the critical valence fluctuation. The diver-
gence of the uniform susceptibility with the critical index γ ≃ 0.5 can be
explained by the critical valence fluctuation model proposed by Watanabe
and Miyake [17]. We note that the valence fluctuation between Yb2+ and
Yb3+ was observed in the approximant by X-ray absorption experiments [13]
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and photoemission experiments [14] (see section 1.4.2). From these results,
we consider that this possibility seems most probable. Next, we consider
the quasicrystal. Since we have detected no magnetic ordering in contrast
to the approximant, the magnetic origin is unambiguously excluded. Then,
the second possibility remains to be a possible origin. As a result, for both
the quasicrystal and the approximant, the critical valence fluctuation is most
likely to be the origin of the unusual low-temperature properties.

4.5 Summary

The P -T phase diagram is very different between the quasicrystal and the
approximant. However, the critical behavior and theH/T scaling of the qua-
sicrystal are very similar to those of the approximant at P = Pc. Further-
more, the similar criticality and the scaling are applicable to CeCu6−xAux
and β-YbAlB4. This suggests that all these systems have the common origin
of the unusual low-temperature properties.
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Figure 4.4: H/T scaling of the Au-Al-Yb approximant. The vertical axis denotes
(a) χT 0.5 and (b) XT 0.5. (a) The scaling behavior observed at P
= 1.96 GPa (≃ Pc) becomes less evident as P moves away from Pc.
(b) The critical component X satisfies the scaling relation even for
P ̸= Pc.
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Figure 4.6: T/H scaling of dc susceptibility, (M/H)H0.5, of the Au-Al-Yb qua-
sicrystal (a) and the approximant (b), in a temperature interval be-
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a temperature-sweep experiment, and circles and squares indicate a
dc-field-sweep experiment at T = 2 and 4 K, respectively.
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Chapter 5

Summary

The Au-Al-Yb quasicrystal shows the unconventional quantum criticality
without tuning. The magnetic susceptibility and the specific heat diverges
as T → 0, with unusual critical indices. By comparing the critical behavior
of the magnetic susceptibility and the specific heat with the critical valence
fluctuation theory and by remembering that there is no ferromagnetic phase
nearby, we conclude that the most probable origin of the criticality is the
critical valence fluctuation. Actually, the valence fluctuation between Yb2+

and Yb3+ in the quasicrystal was observed by X-ray absorption and photoe-
mission experiments. Since the critical index of the quasicrystal is similar to
that of the approximant, the same model seems applicable to the approxi-
mant. As a result, the critical valence fluctuation seems responsible for both
the quasicrystal and the approximant.

In order to investigate the pressure effect on the quantum criticality of
the Au-Al-Yb quasicrystal, we measured the magnetic susceptibility of the
quasicrystal under hydrostatic pressure. We found that the magnetic suscep-
tibility diverges under pressure, with the same critical index as the ambient
pressure. This means that the quantum criticality of the quasicrystal is
robust against the application of hydrostatic pressure. This leads to very
unusual P -T phase diagram, in remarkably contrasted to the diagram of the
heavy fermion crystals. We further studied the magnetic properties of the
Au-Al-Yb approximant under hydrostatic pressure to make a comparison
with those of the quasicrystal. We found that the magnetic susceptibility
of the approximant diverges toward T → 0 at Pc ∼ 2 GPa. This means
that there is a quantum critical point at Pc. At P > Pc, the spin-glass-
like short-rage ordered state emerges below Tg ∼ 100 mK. These results
clearly indicate that the pressure effect on the approximant is essentially
different from that of the quasicrystal. Remembering that the difference
in the geometric structure between the quasicrystal and the approximant
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is the presence/absence of the quasiperiodicity, the origin of the difference
in the pressure effect is reasonably ascribed to the difference in the pres-
ence/absence of the quasiperiodicity. As aresult, the P -T phase diagram is
unique to the quasicrystal.

Finally, we study the T/H scaling. We found that the quasicrystal and
the approximant satisfy the T/H scaling similar to CeCu6−xAux and β-
YbAlB4. This means that there is no critical field Hc for these materials,
and further suggest that these three systems may have the same origin for
the unusual non-Fermi liquid behavior.
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and H. v. Löhneysen: Physica B 312-313, 458 (2002).

[24] T. Tomita, K. Kuga, Y. Uwatoko, P. Coleman, and S. Nakatsuji: Sci-
ence 349, 506 (2015).

58



Published Work

• Journal articles

[1] K. Deguchi, S. Matsukawa, N. K. Sato, T. Hattori, K. Ishida, H. Takakura,
and T. Ishimasa:
“Quantum critical state in a magnetic quasicrystal”
Nat. Mater. 11, 1013 (2012).

[2] S. Matsukawa, K. Tanaka, M. Nakayama, K. Deguchi, K. Imura, H. Takakura,
S. Kashimoto, T. Ishimasa, and N. K. Sato:
“Valence Change Driven by Constituent Element Substitution in the
Mixed-Valence Quasicrystal and Approximant Au-Al-Yb”
J. Phys. Soc. Jpn. 83, 034705 (2014).

[3] K. Deguchi, M. Nakayama, S. Matsukawa, K. Imura, K. Tanaka, T. Ishi-
masa, and N. K. Sato:
“Crystal Structure of Superconducting 1/1 Cubic Au-Ge-Yb Approx-
imant with Tsai-Type Cluster”
J. Phys. Soc. Jpn. 84, 015002 (2015).

[4] K. Deguchi, M. Nakayama, S. Matsukawa, K. Imura, K. Tanaka, T. Ishi-
masa, and N. K. Sato:
“Superconductivity of Au-Ge-Yb Approximatns with Tsai-Type Clus-
ters”
J. Phys. Soc. Jpn. 84, 023705 (2015).

[5] M. Nakayama, K. Tanaka, S. Matsukawa, K. Deguchi, K. Imura, T. Ishi-
masa, and N. K. Sato:
J. Phys. Soc. Jpn. 84, 024721 (2015).

[6] S. Matsukawa, K. Deguchi, K. Imura, T. Ishimasa, and N. K. Sato:
“Pressure-Driven Quantum Criticality and T/H Scaling in the Icosa-
hedral Au-Al-Yb Approximant”
J. Phys. Soc. Jpn. 85, 063706 (2016).

• Proceedings

[1] S. Matsukawa, K. Tanaka, M. Nakayama, S. Kunikata, K. Deguchi,
K. Imura, T. Ishimasa, and N. K. Sato:
“Transport Properties of the Au-Al-Yb Quasicrystal and Approximant
under Hydrostatic Pressure”
Acta Physica Polonica A 126, 527 (2014).
Proceedings of the 12th International Conference on Quasicrystals.

59



[2] K. Tanaka, Y. Tanaka, T. Ishimasa, M. Nakayama, S. Matsukawa,
K. Deguchi, and N. K. Sato:
“Tsai-Type Quasicrystal and Its Approximant in Au-Al-Tm Alloys”
Acta Physica Polonica A 126, 603 (2014).
Proceedings of the 12th International Conference on Quasicrystals.

[3] S. Matsukawa, K. Deguchi, K. Imura, T. Ishimasa, and N. K. Sato:
“Magnetic Properties of the Au-Al-Yb Approximant under Hydro-
static Pressure”
Proceedings of the 13th International Conference on Quasicrystals (in
press).

Presentation at International Conference
[1] S. Matsukawa, K. Tanaka, M. Nakayama, S. Kunikata, K. Deguchi,

K. Imura, T. Ishimasa, and N. K. Sato:
“Transport Properties of the Au-Al-Yb Quasicrystal and Approximant
under Hydrostatic Pressure”
The 12th International Conference on Quasicrystals, Krakow, Poland,
September 2013.

[2] S. Matsukawa, M. Nakayama, T. Yamashita, K. Nobe, K. Kamiya,
K. Deguchi, K. Imura, T. Ishimasa, and N. K. Sato:
“High pressure effect on low-temperature properties of the approxi-
mant crystal to magnetic Au-Al-Yb qyasucrystal”
20th International Conference on MAGNETISM, Barcelona, Spain,
July 2015.

[3] S. Matsuakwa, K. Deguchi, K. Imura, T. Ishimasa, and N. K. Sato:
“Magnetic Properties of the Au-Al-Yb Approximant under Hydro-
static Pressure”
The 13th International Conference on Quasicrystals, Kathmandu, Nepal,
September 2016.

60



Acknowledgments

I would like to express my great appreciation to many people helping this
study. I first would like to appreciate Prof. Dr. Noriaki K. Sato for his great
advice and support. He gave me the many opportunities for my growing
up. I have learned many things about the present study from his great
guidance and useful advice. I would like to thank Dr. Kazuhiko Deguchi
for fruitful discussions on the experimental results and analyses. I would
like to acknowledge Dr. Keiichiro Imura for fruitful advice and teaching of
experimental techniques. I would like to appreciate Prof. Dr. Tsutomu
Ishimasa for his great advice on the quasicrystal’s structure. I would like
to thank Mr. Yukinori Tanaka, Mr. Shin Yamamoto, and Mr. Katsumasa
Tanaka for support of the experiments. I would like to thank Dr. Shinji
Watanabe and Prof. Dr. Kazumasa Miyake for valuable discussions. I wish
to express my gratitude to all the members in the laboratory of Magnetism
for providing the good environments for my research. I would like to thank
the staffs of Low Temperature Laboratory for providing the liquid helium
and nitrogen. I would like to acknowledge the financial support provided
by Program for Leading Graduate Schools “Integrative Graduate Education
and Research in Green Natural Sciences”, MEXT, Japan.

Finally, I would like to thank my family for helping me in many ways.

61


