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Replica-exchange molecular dynamics (REMD) has demonstrated its efficiency by combining trajectories of a wide
range of temperatures. As an extension of the method, the author formalizes the mass-manipulating replica-exchange
molecular dynamics (MMREMD) method that allows for arbitrary mass scaling with respect to temperature and in-
dividual particles. The formalism enables the versatile application of mass-scaling approaches to the REMD method.
The key change introduced in the novel formalism is the generalized rules for the velocity and momentum scaling after
accepted replica-exchange attempts. As an application of this general formalism, the refinement of the viscosity-REMD
(V-REMD) method [Nguyen, The Journal of Chemical Physics 132, 144109 (2010)] is presented. Numerical results are
provided using a pilot system, demonstrating easier and more optimized applicability of the new version of V-REMD as
well as the importance of adherence to the generalized velocity scaling rules. With the new formalism, more sound and
efficient simulations will be performed.

1. Introduction
Molecular dynamics (MD) and Monte Carlo (MC) methods

are indispensable for the study of biological systems. Never-
theless, insufficient sampling often leads to great difficulties in
terms of the accuracy of these simulations. To conquer these
difficulties, the generalized-ensemble algorithms have been
developed and applied to these systems (for reviews, see, e.g.,
Refs. 1–4). The methods widely used include the multicanon-
ical algorithm (MUCA),5, 6) simulated tempering,7, 8) and the
replica-exchange method (REM).9, 10) Closely related to the
MUCA are the Wang–Landau method,11, 12) statistical tem-
perature methods,13–15) and metadynamics.16) Metadynamics
can also be considered as one of the promising approaches
collectively termed mean-force dynamics (see Ref. 17 and
references therein). Also closely related to the REM is the
method in Ref. 18, which is later detailed in Ref. 19. The
replica-exchange molecular dynamics (REMD) method20) is
the MD version of REM. The REMD method is widely used
in biological systems including lipid membranes.21) There
are attempts of multi-dimensional generalization (see, e.g.,
Refs. 22–27) including the NPT ensemble3, 28–31) and the com-
bination of the Tsallis statistics32) with the REM (see, e.g.,
Ref. 33). Besides, there are promising studies to further en-
hance this approach (see, e.g., Refs. 34 and 35 for different
replica-exchange schemes, Refs. 36–38 for multiscale simu-
lations, and Refs. 39–41 for replica-exchange with solute tem-
pering and flexible tempering).

As the REMD method deals with the velocity or momen-
tum in addition to the coordinate, special care is necessary
for these variables. In particular, Sugita and Okamoto20) sug-
gested that the momentum and velocity should be scaled after
accepted replica-exchange attempts. Recently, the author and
a coworker have suggested that the scaling of velocity can
be substituted by the scaling of mass in proportion to tem-
perature,42) as this scaling leads to velocity distributions in-
dependent of temperature. This method is referred to as the
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mass-scaling REMD (MSREMD) method, and the invariant
velocity distributions enhance the stability of MD simulations
at high temperatures, thereby allowing for longer time steps.
We later suggested that a more general formalism is possi-
ble, which was called the mass-manipulating REMD (MM-
REMD) method therein.43) The method enables the full com-
bination of the mass scaling approaches44–55) with the REMD
method, both of which have demonstrated their great util-
ity. Accordingly, MSREMD can be considered as a preceding
special case of MMREMD. A similar approach was demon-
strated to be applicable to simulated tempering.56) In this pa-
per, on the basis of the general MMREMD approach, we give
a significant refinement over the viscosity-REMD (V-REMD)
method,51) which was reported to enhance the sampling effi-
ciency.

This article is organized as follows. In Sect. 2, we shall
examine the MMREMD method. After a review of the origi-
nal V-REMD method, a new version of the V-REMD method
is proposed on the basis of the novel formalism. Section 3
is devoted to Results and Discussion. We compare the nu-
merical results between the original V-REMD method and
the new version. We establish that the generalized veloc-
ity scaling rule introduced by the new formalism is crucial
for the correct sampling, especially when frequent replica-
exchange attempts are performed to ensure sampling effi-
ciency as per Refs. 57–59. Thereby, the new formalism equips
the V-REMD method to achieve more enhanced performance.
Conclusions are given in Sect. 4.

2. Model and Methods
2.1 General formalism of mass scaling in REMD

The MMREMD method is the generalized version of the
REMD method.9, 20) For further details about the REM and
REMD, readers are referred to, e.g., Refs. 9, 20, 60–62. We
now describe the MMREMD method, whereby the REMD
simulation can be performed with the arbitrary mass scaling
with respect to temperatures and particles. Such mass scaling
must be of great utility for application to biological systems,
which have various masses from hydrogen to carbon, phos-
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phorus, and sulfur. This formalism would allow, for example,
for changing active fluctuations according to respective tem-
peratures.

We suppose a system consisting of N particles, whose coor-
dinate and momentum vectors are defined by q = {q1, . . . , qN}

and p = {p1, . . . , pN}, respectively. The velocity vector is
given by q̇ = {q̇1, . . . , q̇N}, where the dot represents the time
derivative. Because the Hamiltonian is not necessarily identi-
cal among the temperatures,22) we set the mass of kth particle
at T` to mk,` = αk,`mk, where αk,` is the scaling factor of each
mass. Thus the system at T` is described by H` = K`(q̇)+E(q),

where the kinetic energy is given by K` =
∑N

k=1
αk,`mk q̇2

k,i(`)

2 , and
E stands for the potential energy. The Nrep copies of the sys-
tem (replicas) are simultaneously simulated at each tempera-
ture with the weight factor,

fNVT(q, q̇) ∝ exp[−K`(q̇)/kBT`] exp[−E(q)/kBT`], (1)

at T`. The replica exchange can be attempted with the transi-
tion probability given by the standard Metropolis criterion,

min[1, exp(∆β∆E)], (2)

where ∆β = 1/(kBT`) − 1/(kBTm) and ∆E = Eiold(`) − Eiold(m),
with the generalized velocity scaling rules given by

q̇[inew(`)]′
k =

√
T`
Tm

√
αk,m

αk,`
q̇[inew(`)]

k =

√
T`
Tm

√
αk,m

αk,`
q̇[iold(m)]

k ,

(3)

q̇[inew(m)]′
k =

√
Tm

T`

√
αk,`

αk,m
q̇[inew(m)]

k =

√
Tm

T`

√
αk,`

αk,m
q̇[iold(`)]

k .

(4)

Note that the superscripts of iold(`) and inew(`) represent
the replica index coupling to T` before and after a replica-
exchange attempt, respectively. It might be noteworthy that
the momentum must obey the following different rules:

p[inew(`)]′
k =

√
T`
Tm

√
αk,`

αk,m
p[inew(`)]

k =

√
T`
Tm

√
αk,`

αk,m
p[iold(m)]

k ,

(5)

p[inew(m)]′
k =

√
Tm

T`

√
αk,m

αk,`
p[inew(m)]

k =

√
Tm

T`

√
αk,m

αk,`
p[iold(`)]

k .

(6)

These scaling rules may be derived by imposing the cance-
lation of contributions from momenta or velocities to the de-
tailed balance conditions. The derivation for a special case
was detailed elsewhere.43)

As MMREMD is the general formalism, the MSREMD
method can be derived as a special case where αk,` is set in
proportion to T`, which yields the simplest velocity scaling
rule:

q̇[inew(`)]′
k = q̇[inew(`)]

k = q̇[iold(m)]
k , (7)

q̇[inew(m)]′
k = q̇[inew(m)]

k = q̇[iold(`)]
k . (8)

Furthermore, it is apparent that the conventional velocity scal-
ing rules for the original REMD method,

q̇[inew(`)]′
k =

√
T`
Tm

q̇[inew(`)]
k =

√
T`
Tm

q̇[iold(m)]
k , (9)

q̇[inew(m)]′
k =

√
Tm

T`
q̇[inew(m)]

k =

√
Tm

T`
q̇[iold(`)]

k , (10)

may be deduced as a special case for which αk,` = 1.
The above formalism is sufficient for the Langevin63)

and Andersen64) thermostats. Nevertheless, when the Nosé–
Hoover thermostat65, 66) is employed for the canonical simu-
lation, an additional treatment is necessary owing to an ex-
tra term of the Nosé–Hoover thermostat. The treatment is de-
tailed in Refs. 62 and 42.

To summarize, the MMREMD simulations can be per-
formed as follows: (1) prepare Nrep replicas with mass mk

multiplied by an arbitrary factor of αk,` at T`; (2) perform the
Nrep independent canonical MD simulations at each temper-
ature; (3) exchange the replicas according to the probability
given by Eq. (2) with the generalized rules given by Eqs. (3)
and (4) [for momentum, Eqs. (5) and (6)]; (4) repeat steps
(2)–(3) until the simulation ends.

2.2 Review and refinement of V-REMD
Reviewing the V-REMD method,51) we now give its im-

provement based on the general formalism. Similarly to the
original REMD method, the V-REMD method involves Nrep
noninteracting replicas simulated at Nrep different tempera-
tures. The V-REMD method manipulates the solvent viscosity
by scaling masses depending on temperature. The change in
the mass of water by the factor α changes the viscosity of
the factor

√
α.51, 67, 68) The reduced solvent viscosity provides

faster kinetics and thus expedites the MD simulations.49, 69–77)

In Ref. 51, the original mass values were used at one tem-
perature to study biologically relevant properties, whereas the
reduced mass values (0.2 times as large as the original values,
i.e., αk,` = 0.2) were used with respect to the atoms of water
molecules at the other temperatures. The conventional mo-
mentum scaling rules20) were employed [for the correspond-
ing velocity scaling rules, see Eqs. (9) and (10)]. Nevertheless,
in order to satisfy the detailed balance condition, we should
adhere to Eqs. (3)–(6), which are used in the new version of
the V-REMD method. Hereafter, we refer to the original ver-
sion as V-REMD-1 (or ‘V-1’ for short in figure legends) and
to the refined version with Eqs. (3)–(6) as V-REMD-2 (or ‘V-
2’).

2.3 Models
We employed a Lennard-Jones (LJ) fluid as a useful pilot

system. The potential energy is given by

E =
∑
i< j

Vi j, (11)

Vi j = 4ε

( σri j

)12

−

(
σ

ri j

)6 , (12)

where ε and σ represent the value of the potential minimum
and the diameter of particles, respectively, and ri j the distance
between the ith and jth particles. In what follows, we use re-
duced units; we set σ = 1, ε = 1, and kB = 1.

2.4 Numerical details for Nosé–Hoover thermostats
As for the Nosé–Hoover dynamics, an in-house program

was used with the time-reversible integrator78) using the
Suzuki-Trotter decomposition corresponding to Integrator
1 in Ref. 79. For a pseudorandom number generator, the
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Mersenne twister80) was employed.
We performed the original51) (V-REMD-1) and refined (V-

REMD-2) versions of the V-REMD simulations. In accor-
dance with Ref. 51 the particle mass was set to unity at the
lowest temperature T1 (αk,1 = 1), and at other temperatures
the mass was set to 0.2 (αk,` = 0.2 for ` , 1). Although this is
a special case of V-REMD where there is no solute in the sys-
tem, it must be sufficient for the validation and evaluation of
the new approach, as the change in the algorithm between the
two versions is limited to the treatment of solvent molecules.

The mass of the thermostat was set in proportion to temper-
atures. Those at the lowest temperature T1 were set to Q0 =1,
10, and 1000. These values are fine, but the value of 0.1 was
unreasonable even for the conventional canonical simulations.
In general, very small values for Q do not guarantee the equi-
librium due to the isolated mode of a heat bath.81) With g be-
ing the degree of freedom, the typical oscillation period with

the thermostat is given by τNH ∼ 2π
√

Q
2gkBT ,81) correspond-

ing to τNH ∼ 0.16, 0.51, and 5.1 for Q0 = 1, 10, and 1000,
respectively.

The replica exchange was attempted every single MD step
(Nex = 1) as regards V-REMD-2 simulations. These fre-
quent attempts are based on Refs. 57–59 for the optimally en-
hanced efficiency.82) In regard to the V-REMD-1, the replica
exchange was attempted every Nex = 5, 100, and 1000 MD
steps. Even though the frequent replica-exchange attempts
are encouraged,57–59) it was not feasible for the V-REMD-1
method to use Nex = 1 owing to numerical divergence.

The time step of 0.005 was employed and each simulation
lasted for 4 × 105 steps, corresponding to 2000 unit time. The
number of replicas was eight (Nrep = 8) and the reference
temperatures were 1.000, 1.104, 1.219, 1.346, 1.486, 1.641,
1.812, and 2.000. These temperatures are referred to as T1
to T8. The replica-exchange acceptance ratios ranged from
13 to 19 % in all V-REMD-2 simulations, in agreement with
those of the REMD simulations.42) Five hundred identical LJ
particles were placed (N = 500) in a cube of sides 8.55 in
the reduced unit length, corresponding to a number density
of ρ = 0.800. In these thermal conditions, the LJ fluid is
in the liquid phase.83) The periodic boundary condition was
employed. After the MD step of nNex (n = 1, 2, 3 . . . ), the
replica-exchange attempts were made in turn. The LJ forces
were just truncated at 3 (rc = 3) in the reduced unit; ac-
cordingly, the LJ potential was shifted upward by |Vi j(rc)| for
ri j < rc.

2.5 Numerical details for Langevin dynamics
In order to further investigate the utility of the present for-

malism, the Langevin thermostat was examined with almost
the same conditions. The characteristic parameter of the ther-
mostat is not the mass but the friction coefficient γ and the
inverse gives the time constant. The integrator implemented
on the basis of Ref. 84 reads

q̇← e−γ∆tq̇ +

√
kBT
m

√
(1 − e−γ∆t)(1 + e−γ∆t)R, (13)

q̇← q̇ +
f
m

∆t
2
, (14)

q← q + q̇∆t, (15)
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Fig. 1. (Color online) Radial distribution functions g(r) at T1 are plotted
for V-REMD-1 with (a) Nex = 5 and (b) Nex = 100 together with one ob-
tained with V-REMD-2 with Q0 = 1 and Nex = 1 (gray thick line). The black
thin, red dashed, and blue dotted lines mark V-REMD-1 with Q0 = 1, 10, and
1000, respectively.

q̇← q̇ +
f
m

∆t
2
, (16)

where f stands for the force and R is a random number drawn
from the normalized Gaussian distribution. This integrator al-
lows for arbitrary values for γ in contrast to some Langevin
dynamics integrators demanding γ∆t � 1. For γ → ∞, all
the velocities are drawn from the Maxwell-Boltzmann distri-
bution every single update described in Eq. (13). Thus, any
artifact in velocity can be removed every single MD step.
Nevertheless, very large γ values are not optimal for the effi-
ciency of simulations. For example, Ref. 76 reports the mean
first passage time of transitions with γ from 0.5 to 50 ps−1,
showing that the smaller γ is better within the range regard-
ing the alanine dipeptide simulation. In fact, both the very
small and very large γ values were shown to be inefficient.84)

Here, the values of γ were set to 1, 10, and 100, with the cou-
pling times corresponding to 1, 0.1, and 0.01, respectively.
The γ values of 100 does not satisfy γ∆t � 1. The replica-
exchange attempts were performed at an interval of Nex = 1
and 100 MD steps in the V-REMD-1 simulations. As regards
the V-REMD-2 simulations, the interval was set to Nex = 1.
The Gaussian random number was generated by the Box–
Muller method85) with uniform pseudo-random numbers ob-
tained with the Mersenne twister.80)

3. Results and Discussion
With frequent replica-exchange attempts, a large discrep-

ancy in the radial distribution function between the V-REMD-
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Fig. 2. The difference in the radial distribution function g(r) between the present simulations and the previous REMD simulation,42) defined by
∫
|g(r) −

gREMD(r)| dr, is plotted. Each panel contains 8 points corresponding to T1 to T8 from left to right. Panels (a), (b), and (c) show V-REMD-1 with Nex = 5 with
Q0 = 1, 10, and 1000, respectively. Similarly, panels (d), (e), and (f) show V-REMD-1 with Nex = 100 with Q0 = 1, 10, and 1000, and panels (g), (h), and (i)
show V-REMD-1 with Nex = 1000 with Q0 = 1, 10, and 1000, respectively. Panels (j), (k), and (l) show V-REMD-2 with Nex = 1 with Q0 = 1, 10, and 1000,
respectively. The values of parameters are also given in the panel.
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Fig. 3. Plotted is the difference between the theoretical curve and results of simulations, as measured by dp ≡
∫
|psimulation(v)−pB(v)| dv. Each panel contains

8 points corresponding to T1 to T8 from left to right. Panels (a) to (i) are obtained with the V-REMD-1 method, and panels (j) to (l) with V-REMD-2. Panels
(a), (b), and (c) show V-REMD-1 with Nex = 5 with Q0 = 1, 10, and 1000, respectively. Similarly, panels (d), (e), and (f) show V-REMD-1 with Nex = 100
with Q0 = 1, 10, and 1000, and panels (g), (h), and (i) show V-REMD-1 with Nex = 1000 with Q0 = 1, 10, and 1000, respectively. Panels (j), (k), and (l)
show V-REMD-2 with Nex = 1 with Q0 = 1, 10, and 1000, respectively. The values of parameters are also given in the panel, in which V-1 and V-2 stand for
V-REMD-1 and V-REMD-2, respectively.

1 and V-REMD-2 simulations was observed [Figure 1(a)], in
the application with the Nosé–Hoover thermostat. In particu-
lar, the radial distribution function g(r) of the V-REMD-1 with
Q0 = 1 and Nex = 5 exhibits unsual peaks (at r ' 1.7 and 2.3),
thus losing even qualitative agreement. Even for Nex = 100
[see Fig. 1(b)], some discrepancy persists. The deviation from
a straight REMD simulation42) at each temperature is shown
in Fig. 2, as measured by

drdf =

∫ rc(=3)

0
|g(r) − gREMD(r)| dr. (17)

Whereas the V-REMD-2 simulations agree with the conven-
tional REMD simulation, the V-REMD-1 simulations exhibit
apparent disagreements, except for Nex = 1000 with Q0 = 1
or 10. As the disagreements are profound particularly at the
two lowest temperatures, where the wrong scaling rules are

employed, they should be thought of as an artifact and be as-
cribed to the inappropriate velocity scaling in V-REMD-1. As
such artifacts in the solvent structures should spoil the cor-
rect solvation of biomolecules, the appropriate velocity scal-
ing rules are crucial to performing reliable V-REMD simula-
tions.

In the probability density of velocity, an apparent
discrepancy from the Boltzmann distribution pB(v) =

1
√

2πT/m
exp

[
−mv2

2T

]
was observed in the V-REMD-1 simula-

tions, whereas the V-REMD-2 simulations were free from
such a deviation. This discrepancy was illusrated in Fig. 3,
evaluated using

dp ≡

∫
|psimulation(v) − pB(v)| dv (18)

at each temperature for all simulations. Even though the de-
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Fig. 4. Average kinetic energy 〈K`〉 is plotted. The theoretical averages 3
2 NkBT are indicated on the right vertical axis. Each panel contains 8 points

corresponding to T1 to T8 from left to right. Bars show the error estimated with the jackknife method61, 86, 87) . Panels (a), (b), and (c) show V-REMD-1 with
Nex = 5 with Q0 = 1, 10, and 1000, respectively. Similarly, panels (d), (e), and (f) show V-REMD-1 with Nex = 100 with Q0 = 1, 10, and 1000, and panels
(g), (h), and (i) show V-REMD-1 with Nex = 1000 with Q0 = 1, 10, and 1000, respectively. Panels (j), (k), and (l) show V-REMD-2 with Nex = 1 with Q0 = 1,
10, and 1000, respectively.
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Fig. 5. Average potential energy 〈E〉 is plotted. Each panel contains 8 points corresponding to T1 to T8 from left to right. Bars show the error estimated with
the jackknife method.61, 86, 87) Panels (a), (b), and (c) show V-REMD-1 with Nex = 5 with Q0 = 1, 10, and 1000, respectively. Similarly, panels (d), (e), and
(f) show V-REMD-1 with Nex = 100 with Q0 = 1, 10, and 1000, and panels (g), (h), and (i) show V-REMD-1 with Nex = 1000 with Q0 = 1, 10, and 1000,
respectively. Panels (j), (k), and (l) show V-REMD-2 with Nex = 1 with Q0 = 1, 10, and 1000, respectively. The values of parameters are also given in the
panel.

viation is softened by less frequent exchange attempts, it may
persist throughout the acceptable parameters of Q0. The dis-
crepancy is more notable especially at the two lowest temper-
atures with more frequent exchange attempts in V-REMD-1
simulations. On the other hand, the V-REMD-2 simulations
are fine with the very frequent exchange attempt over a wide
range of values for Q0.

Figure 4 shows the average kinetic energy 〈K`〉 =〈∑N
k=1

αk,`mk q̇2
k,i(`)

2

〉
. In accordance with the observation on dp,

the temperature is not correctly controlled in most of the V-
REMD-1 simulations, as indicated by the shift of the average
kinetic energy. Whereas the less frequent replica-exchange
attempts make the shift less profound, the V-REMD-2 sim-
ulations work perfectly with the frequent exchange attempts
ensuring the enhanced efficiency according to Refs. 57–59.
The errors were obtained by the jackknife method61, 86, 87) with
twenty bins. Accordingly, a marked discrepancy was observed

in the average potential energy between most of the V-REMD-
1 simulations especially at the two lowest temperatures (see
Fig. 5), suggesting the unreliability of the conventional ver-
sion. In contrast, the agreement is found between V-REMD-
2 simulations, indicating the soundness of this new version.
These results clearly demonstrate the importance of the adher-
ence to the correct scaling rule in accordance with the mass
scaling.

Even though the artifacts mentioned above are minor in
the V-REMD-1 simulation with the particular parameter val-
ues of Q0 = 1 and Nex = 1000, this is not the case for
heat capacity, as illustrated in Fig. 6. The heat capacity at
T` was obtained through the fluctuation of the total energy,
C =

(〈
H2
`

〉
− 〈H`〉

2
)
/T 2

` . The errors were obtained using the
jackknife method61, 86, 87) with twenty bins. The deviation in
heat capacity suggests that the correct energetics between so-
lute and solvent, which should be of importance for the cor-
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Fig. 6. Heat capacity C is plotted. Each panel contains 8 points corresponding to T1 to T8 from left to right. Bars show the error estimated with the jackknife
method61, 86, 87) . Panels (a), (b), and (c) show V-REMD-1 with Nex = 5 with Q0 = 1, 10, and 1000, respectively. Similarly, panels (d), (e), and (f) show
V-REMD-1 with Nex = 100 with Q0 = 1, 10, and 1000, and panels (g), (h), and (i) show V-REMD-1 with Nex = 1000 with Q0 = 1, 10, and 1000, respectively.
Panels (j), (k), and (l) show V-REMD-2 with Nex = 1 with Q0 = 1, 10, and 1000, respectively.
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Fig. 7. Average kinetic energy 〈K`〉 obtained with the Langevin thermostat is plotted. Not exceeding the size of marks, error bars estimated with the jackknife
method61, 86, 87) are invisible. Panels (a), (b), and (c) show V-REMD-1 with Nex = 1 with γ = 1, 10, and 100, respectively. Similarly, panels (d), (e), and (f)
show V-REMD-1 with Nex = 100 with γ = 1, 10, and 100, and panels (g), (h), and (i) show V-REMD-2 with Nex = 1 with γ = 1, 10, and 100, respectively.

rect enhanced sampling, can be destroyed by the inappropriate
algorithm. Furthermore, this result implies that the distortion
introduced to some physical quantities by the inappropriate
velocity scaling may persist in a wide range of setups. On the
other hand, the V-REMD-2 method does not introduce any
artifact even with the frequent replica-exchange attempts re-
quired for optimal performance,57–59) establishing the indis-
pensability of the new formalism.

As an artifact of V-REMD-1 with Nex = 5, large potential
energy gaps were introduced between T2 and T3 (Figure 5),
which hinder the replica exchanges. As few exchanges are ac-
cepted, the thermodynamic averages were more or less cor-
rect above T3. The persistent artifact in heat capacity found
for Q0 = 1000 and Nex = 5 up to the highest temperature
arose from the slow convergence of the artifact introduced at
the early stage of the simulation. With regard to the condi-
tion of Q0 = 1000 with Nex = 100, the acceptance ratio be-
tween T2 and T3 was as high as 37 %, presumably owing to
the large energy fluctuation reflected on the large error bars.

Thus, the artifact generated by the inappropriate velocity scal-
ing between T1 and T2 was recurrently introduced to the upper
temperatures.

In the application with Langevin dynamics, the universal-
ity of the above discussion was examined. Figures 7 and 8
show the average kinetic and potential energy functions, re-
spectively. With the small γ and the small Nex, the apparent
discrepancy was found, similarly to the Nosé–Hoover case.
Moreover, heat capacity was affected by the wrong velocity
scaling of V-REMD-1 in a wide range of parameters (Fig-
ure 9). In fact, no significant deviation was found even in the
heat capacity for the large γ of 20000 with Nex = 1, although
the errors tended to be larger than those of the V-REMD-2
simulations with γ = 1, 10, and 100. However, this must not
be the case if the integrator is rearranged so that Eq. (13) is
performed after Eq. (16) (but before the replica-exchange at-
tempts). On the other hand, the V-REMD-2 method demon-
strates its rigorousness permitting the frequent exchange and
small friction coefficient.
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Fig. 8. Average potential energy 〈E〉 obtained with the Langevin thermostat is plotted. Each panel contains 8 points corresponding to T1 to T8 from left to
right. Not exceeding the size of marks, error bars estimated with the jackknife method61, 86, 87) are invisible. Panels (a), (b), and (c) show V-REMD-1 with
Nex = 1 with γ = 1, 10, and 100, respectively. Similarly, panels (d), (e), and (f) show V-REMD-1 with Nex = 100 with γ = 1, 10, and 100, and panels (g), (h),
and (i) show V-REMD-2 with Nex = 1 with γ = 1, 10, and 100, respectively. The values of parameters are also given in the panel.
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Fig. 9. Heat capacity C obtained with the Langevin thermostat is plotted. Each panel contains 8 points corresponding to T1 to T8 from left to right. Not
exceeding the size of marks, error bars estimated with the jackknife method61, 86, 87) are almost invisible. Panels (a), (b), and (c) show V-REMD-1 with Nex = 1
with γ = 1, 10, and 100, respectively. Similarly, panels (d), (e), and (f) show V-REMD-1 with Nex = 100 with γ = 1, 10, and 100, respectively, and panels (g),
(h), and (i) show V-REMD-2 with Nex = 1 with γ = 1, 10, and 100, respectively.

It is noticeable that the deviation behavior is different be-
tween the two thermostats. For example, the lowered ki-
netic energy at T2 found in the application with the Nosé–
Hoover thermostat (see Fig. 4) is hardly observed with the
Langevin dynamics (see Fig. 7). The difference should be at-
tributed to the difference in the dynamics related to the ther-
mostats. In particular, on the way to thermalization, the Nosé–
Hoover thermostat involves fluctuations in temperature, while
the Langevin dynamics exhibits exponential decay.88) It may
be noteworthy that, as long as V-REMD-2 is employed, no
profound artifacts were found regardless of the thermostats
used even with the very frequent replica-exchange attempts.
Therefore, any thermostats generating the canonical distribu-
tions should be applicable to REMD with frequent replica-
exchange attempts. Nevertheless, some particular cautions
are necessary depending on the thermostat. For example, the
Nosé–Hoover thermostat should request well-thermalized ini-
tial conditions because of the slow and fluctuating equilibra-
tion.

We demonstrate that the results of V-REMD-1 simulations
can be notably erroneous owing to the incorrect velocity scal-
ing rules that do not take mass scaling into account. Whereas
the artifacts are attributable to the incorrect algorithm; they
can be milder when Q0 is smaller and Nex is larger. For a
larger value of Nex, the artifacts are introduced less frequently.
Presumably, the faster relaxation of the thermostat owing to a
smaller Q0 eases the artifacts introduced by the incorrect ve-
locity scaling. Correspondingly, the larger values of γ and the
larger values of Nex ease the artifact in the V-REMD-1 sim-
ulation with the Langevin thermostat, while the V-REMD-2
method can employ small values of γ and Nex. The (mod-
erately) small γ and small Nex are important for efficiency.
Therefore the current formalism is indispensable for various
implementations of V-REMD involving different thermostats.

Optimistically, with a much shorter relaxation time of the
thermostat than the replica-exchange attempt interval, practi-
cally acceptable results may be obtained even with V-REMD-
1. Note that in Ref. 51, the replica exchange was attempted at
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an interval of 1.5 ps (750 MD steps) and that the Berendsen
thermostat89) was used with the coupling time of 0.1 ps, seem-
ingly satisfying the above considerations. Generally, the em-
ployment of the Berendsen thermostat with REMD is risky59)

as the distribution is not a canonical one90) for finite values
for the coupling time of a heat bath, despite the assumption of
the canonical distribution in the replica-exchange algorithm.
Only for the mathematically achievable limit where the cou-
pling time tends to zero, the canonical distribution of con-
figuration can be obtained.91) Nevertheless, as far as Ref. 92
claims, if the interval of replica-exchange attempts is much
larger than the coupling time, an artifact93) introduced owing
to the employment of the Berendsen thermostat to REMD is
not profound. Therefore the artifact of the Berendsen thermo-
stat may not be significant in Ref. 51. It is possible that the
V-REMD method has demonstrated its efficiency with a sub-
optimal yet fortunate combination of parameters, with which
artifacts are slim. Nevertheless, the large values of Q0 with the
Nosé–Hoover thermostat are acceptable for the correct canon-
ical simulations, and small numbers for Nex are actually rec-
ommended for the optimal REMD simulations.57–59) In addi-
tion, the moderately small friction coefficient is advocated for
the optimal sampling via Langevin dynamics. In fact, some
Langevin dynamics integrators assume a small value of γ.
Therefore the general formalism is crucial for easier and more
optimized applicability of the promising V-REMD method.

4. Conclusions
We formalized the general mass scaling approach to the

REMD method, which is particularly referred to as the MM-
REMD method. With the general formalism, arbitrary mass
scaling can be combined with the REMD simulations, which
will be of great utility in applications to biological systems.
As both the mass scaling and REMD have shown their great
utility, the combination must be promising. One preceding
special case was the MSREMD method, in which all the
masses were scaled in proportion to temperature to stabi-
lize the simulations.42) In this work, as a new concrete ap-
plication of the general formalism, we reviewed the V-REMD
method,51) which utilizes light solvent molecules at high tem-
peratures, thereby decreasing viscosity to enhance the sam-
pling efficiency. We proposed the refined version of the V-
REMD method, which is referred to as V-REMD-2 above,
via the general formalism. We applied the original and refined
versions of V-REMD to a pilot system of the Lennard-Jones
fluid to validate and evaluate the novel formalism. We demon-
strated that the new velocity scaling rules obtained with the
novel formalism are crucial for the accurate Boltzmann sam-
pling, especially when frequent replica-exchange attempts are
made as per Refs. 57–59. The radial distribution functions
are distorted by the incorrect scaling. Thus this wrong sol-
vent structure would in turn harm the correctness of solute
structures. Heat capacity deviates owing to the improper scal-
ing over a wide range of parameters, which would distort the
energetics between solute and solvent in future advanced ap-
plications. On the other hand, the new version of V-REMD
(V-REMD-2) is free from such artifacts. By eliminating the
necessity of a particular parameter setting and less frequent
replica-exchange attempts that are not optimal,57–59) the novel
formalism makes the V-REMD method more sound and of
better availability. In conclusion, we formalized the mass-

scaling approach in REMD and established the importance
of correct velocity scaling rules, whereby more rigorous and
efficient simulations will be performed.
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81) S. Nosé, Prog. Theor. Phys. Supp. 103, 1 (1991).
82) This may not be the case when the phase transitions are involved.94)

83) H. Okumura and F. Yonezawa, J. Chem. Phys. 113, 9162 (2000).
84) G. Bussi and M. Parrinello, Phys. Rev. E 75, 056707 (2007).
85) G. E. P. Box and M. E. Muller, Ann. Math. Stat. 29, 610 (1958).
86) B. Efron, The Jackknife, the Bootstrap, and Other Resampling Plans

(Society for Industrial and Applied Mathmatics [SIAM], Philadelphia,
1982).

87) H. Flyvbjerg and H. G. Petersen, J. Chem. Phys. 91, 461 (1989).
88) D. A. McQuarrie, Statistical Mechanics (University Science Books,

Sausalito, California, 2000).
89) H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola,

and J. R. Haak, J. Chem. Phys. 81, 3684 (1984).
90) T. Morishita, J. Chem. Phys. 113, 2976 (2000).
91) P. H. Hünenberger, Adv. Polym. Sci. 173, 105 (2005).
92) Z. Lin and W. F. van Gunsteren, J. Chem. Phys. 143, 034110 (2015).

93) E. Rosta, N.-V. Buchete, and G. Hummer, J. Chem Theory Comput. 5,
1393 (2009).

94) E. Bittner, A. Nußbaumer, and W. Janke, Phys. Rev. Lett. 101, 130603
(2008).

9


