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Abstract

There has been rapid growth in computers’ understanding of the real world through
images and videos. One of the most important aspects of real-world information
is human actions. To support and communicate with humans, computers must
understand their actions. In addition, a huge number of videos exist in the world;
to manage so much data, automatic understanding of these videos by computers is
required. Finally, understanding actions is especially important because the main
subjects of most videos are humans.

Our goal is to develop an automated approach to understanding actions in videos.
In this study, we focus on action detection in videos; action detection finds where,
when, and what actions occur within videos. Target actions in this study, such as
kicking a ball and running, are constructed by primitive elements such as lifting a
leg and swinging an arm.

We focus on Hough-based action detection methods. Hough-based methods
extract local spatiotemporal features from an entire video, then cast votes for action
class labels, positions and scales. Here, an action position is usually defined as a
spatiotemporal center position. Voting scores are calculated by accumulating the
votes at each position based on all local features for each related action class. The
local maxima of the accumulated voting scores indicate candidate detected actions.
These methods manage the actions that have scores over a threshold as detected ac-
tions. Hough-based methods can detect actions robustly with partial observations;
the votes based on observed local features are not affected by unobserved local fea-
tures, because the voting process for each local feature is performed independently.
When actions are spatially occluded by other objects and humans, only partial ob-
servations are available. Robustness is also useful to early action detection, which
can use only early observations of actions.

Various factors, such as occlusion, human orientation variety, motion similarity,
temporal variations, and actionmanners variety, make accurate action detection from
videos difficult. To detect actions accurately, detection methods should be robust to
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these factors. Hough-based methods are already robust to occlusions. In this study,
we propose methods that increase robustness to four additional factors: human
orientation variety, motion similarity, temporal variations, and action manners
variety. This thesis is organized with the following chapters.

Chapter 1 presents background, problems, and purpose of this thesis. Contribu-
tions of this study are also provided in this chapter.

Chapter 2 reviews related work; we provide an overview of feature representation
methods for action recognition and detection and describe related approaches to
action detection.

Chapter 3 describes the basic Hough-based action detection algorithm and the
implementation of our baseline method.

Chapter 4 presents a Hough-based method that uses multiview videos to pro-
vide additional robustness to variety in human orientations. The appearances of
actions change relative to a person’s orientation to cameras. Multiview videos
are synchronous videos captured from multiple cameras. Capturing actions with
multiview videos gives observations from various viewpoints. These observations
include different relative orientations of human subjects to the cameras. Therefore,
these observations reduce the differences in relative orientation between training and
test data and contribute the robustness to human orientation variety. Our proposed
method casts independent votes in each view. Here, we assume that human feet touch
the ground plane when they start an action. We then integrate votes in global co-
ordinates based on assumptions using homographic transformations. The proposed
method uses multiview information effectively and detects actions robustly.

Chapter 5 describes a novel Hough-based action detection method to overcome
the problem of motion similarity. Discriminating between similar local motions
that exist in different action classes is difficult; in such cases, conventional Hough-
based methods often cast votes for false action classes. The false votes do not
occur randomly such that they depend on relevant action classes. We introduce vote
distributions, which are distributions of the voting scores for each action class. We
assume that the distribution of false votes includes important information necessary
for improving action detection. These distributions are used to build a model that
represents the characteristics of Hough voting, including false votes. This method
estimates likelihood using this model and reduces the influence of false votes, which
leads to robustness to motion similarities across action classes.

Chapter 6 presents a method for achieving robustness to temporal variations that
can exist in the same action class. Conventional Hough-based methods perform
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poorly for actions with temporal variations because such variations change the tem-
poral relation between local feature positions and action positions. Some votes may
be scattered in the temporal dimension because of such variations. We propose
a method for concentrating scattered votes through time warping. The proposed
method estimates the offsets between scattered and concentrated voting positions
based on conventional Hough votes. The offsets warp the scattered votes to con-
centrate them, providing a method for robustness even in the presence of temporal
variations.

Chapter 7 describes a method that focuses on the number of local features.
Various factors, such as occlusions, human orientation variety, temporal variations,
and actionmanners variety, change not only the feature descriptors of actions but also
the number of local features. Conventional Hough-based methods perform poorly
with variations in the number of local features extracted from actions. Changes in
voting scores that depend on the number of local features produce difficulties in
determining a voting score detection threshold. Our proposed method improves two
parts of the Hough-based method. The first is the extraction of local features; the
proposed method reduces the method’s dependency on the number of local features
based on spatial scales. It adjusts the number of local features for each spatial scale
using a sampling method. The second part is detection thresholding. The proposed
method determines appropriate thresholds for voting scores based on the number
of local features by learning the relation between the number of local features and
voting scores. These changes reduce the influence of the number of local features
(i.e. improving robustness in different aspects from previous chapters).

Finally, Chapter 8 concludes this thesis and presents directions for future work.
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Chapter 1

Introduction

1.1 Backgrounds

There has been rapid growth in computers’ understanding of the real world via
images and videos. Recently, computers have begun to outperform humans in object
recognition in images [He et al., 2015]. Computers that use cameras for visual input
could support human activities and communicatewith humans naturally. In addition,
a vast number of images and videos exist in the world. To manage this quantity of
data, automatic understanding of these images and videos by computers is required.

One important type of real-world information in is human actions. To support
and communicate with humans, computers must understand their actions. For exam-
ple, understanding actions in surveillance cameras can lead to automatic surveillance
systems in which computers contribute to safety by finding suspicious people, au-
tomatic monitoring of elderly people can help with care activities, and intelligent
devices could be controlled by humans without touch. Robots collaborate with
humans by understanding their actions. Understanding actions is also important
for video descriptions, because the main subjects of most videos are humans. De-
scriptions increase the ease of searching for specific actions in videos and video
summaries.

Actions have a hierarchical structure. The definition of this structure has been
defined differently by many researchers [Nagel, 1988, Bobick, 1997, Moeslund
et al., 2006, Aggarwal and Ryoo, 2011]. This thesis adopts the hierarchical structure
of [Moeslund et al., 2006] as shown in Figure 1.1. This structure is constructed
from three elements: action primitives, actions, and activities. Action primitives
are the atomic components of human body movements. Actions are constructed
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Lift a leg

Kick a ball

Play soccerActivity

Action

Action Primitive

H

L
Action Hierarchy Example

Figure 1.1: Action hierarchy.

Kick

Hug

Dive

Point

Push

Figure 1.2: Examples of action detection. In this figure, examples are shown only in
spatial dimensions, whereas actual action detection is performed in spatiotemporal
dimensions. Parts of the images in this figure are contained in the IXMAS [Weinland
et al., 2006a], UCRVideoweb Activities [Denina et al., 2011], UT-Interaction [Ryoo
and Aggarwal, 2010], and UCF-Sports [Soomro and Zamir, 2014] datasets.

by multiple action primitives. Activities represent general categories and have
semantics, whereas actions represent specific movements. Figure 1.1 shows an
example of an action hierarchy in soccer. An action primitives could be lift a leg,
swing an arm, etc. Actions are sequences of primitives, such as kick a ball and run.
Activities is the highest-level representation and, in this case, corresponds to play
soccer. In this study, we focus on actions which are the key element in the action
hierarchy.

Typical tasks that focus on actions are action recognition and detection. Action
recognition methods classify actions throughout an entire video. These methods
assume that the video is already somehow segmented so that it only contains one
action. Action detection methods search for all instances of targeted actions in a
scene. Besides classifying actions, these methods localize actions spatiotemporally.
Most applications deal with videos that contain multiple action instances and need
to detect each instance. Herein, we focus on action detection, of which Figure 1.2
shows some examples.

Most action recognition and detection methods represent actions with feature
vectors. The feature vectors often describe both the appearance and motions of

2



1.2. GENERAL PROBLEMS IN ACTION DETECTION

actions. State-of-the-art methods represent actions using features that are hand-
crafted [Wang et al., 2015a], with deep learning [Simonyan and Zisserman, 2014],
or a hybrid of the two techniques [de Souza et al., 2016]. These methods perform
machine learning using these feature vectors to recognize and detect actions.

1.2 General Problems in Action Detection

There are a variety of factors that make accurate action detection from videos
difficult. In this section, we introduce important factors of them.
Human orientation variety: The appearance of actions changes depending on the
orientation of the person performing them relative to the camera. Both the left
and right images in Figure 1.3 (a) represent the action Punch, but the appearances
of the action are different significantly. Such changes degrade action detection
performance.
Motion similarity: If similar local motions exist across different action classes,
discriminating between such motions is difficult. The left and right images in Figure
1.3 (b) are Sit Down and Pick Up, respectively. They belong to different action
classes, but include similar stooping motions. Such similar motions cause false
classification.
Temporal variations: Temporal variation exists within an action class. That is,
the same action can be performed at a variety of speeds. Both the top and bottom
image sequences in Figure 1.3 (c) are Kick. Comparing these actions, the temporal
positions in which a foot is raised are the same, but they differ for lowered feet. Such
variations change the temporal structure of actions and confuse detection methods.
Action manners variety: Actions can be performed in a variety of manners even
if they are in the same class. Both the left and right images in Figure 1.3 (d) are
Punch, but the left Punch is straight whereas the right Punch is performed from the
side. Such variety leads to large intraclass variations.
Occlusion: If human regions are occluded by other humans or objects, we cannot
observe complete action sequences. Figure 1.3 (e) shows an example of an occluded
action. The arms and lower bodies in the image cannot be observed. In such
situations, detection methods must work only using the partial observations.
Background clutter: The motions of humans and other moving objects in the
background of images functions as noise. The image in Figure 1.3 (f) contains the
motions of pedestrians that are not performing any target actions. Such motions
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(b) Motion Similarity(a) Human Orientation Variety

Punch Punch Sit Down Pick Up

(c) Temporal Variations t

Kick

Kick

(e) Occlusion(d) Action Manners Variety

Punch Punch

(f) Background Clutter (g) Global Camera Motions

Outside the Scope of this Study

Figure 1.3: Various factors that make action detection difficult.
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1.3. CONTRIBUTIONS

have a negative influence on accurate action detection.
Global camera motions: Movement of the camera also creates noise. Figure 1.3
(g) shows global motions resulting from camera movement. The green lines in the
figure indicate the flow of motions; homogeneous flows exist throughout the and
affect the apparent motion of target actions.

These variations are caused by humans and camera configurations. To detect
actions accurately, detection methods should be robust to these factors.

1.3 Contributions

In this study, we focus on a Hough-transform-based approach [Mikolajczyk and
Uemura, 2008, Yao et al., 2010, Yu et al., 2011a, Yu et al., 2012, Vijay Kumar and
Patras, 2013], which is a typical approach for action detection. An overview of the
Hough-based approach is shown in Figure 1.4. The Hough-based approach extracts
local spatiotemporal features from an entire video, then casts votes for action classes,
spatiotemporal positions, and scales based on extracted local features. The voting
scores are calculated by accumulating the votes at each position based on all local
features for each related action class. The local maxima of accumulated voting
scores indicate actions (i.e. class labels, spatial bounding boxes, and time intervals).

An advantage of the Hough-based approach is its robustness to detecting actions
when presented with partial observations. When actions are spatially occluded by
other objects and humans, only partial observations are available. This robustness
is also useful for early action detection. The votes based on observed local features
are unaffected by unobserved local features, because the voting process of each
local feature is performed independently. Another advantage of these methods is
their computational efficiency. Because the voting process classifies actions and
estimates positions simultaneously, the Hough-based approach does not require an
exhaustive search of the spatiotemporal video space. We focus on Hough-based
action detection because of these advantages.

In this study, we aim to improve the robustness of action detection to various
impeding factors. Hough-based methods are already robust to occlusions. How-
ever, conventional Hough-based methods are not robust to the other factors we have
discussed. We propose methods that provide robustness to four of the other factors:
human orientation variety, motion similarity, temporal variation, and action man-
ners variety. By combining these methods, we can achieve robust action detection
in a wider variety of environments.
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Motion SimilarityHuman Orientation Variety Action Manners VarietyTemporal Variations

Real World

Input Output

Video Local Features Detection ResultsVoting Space

Chapter 4 Chapter 7

Chapter 6Chapter 5

Figure 1.4: Flow of the Hough-based approach and the relation between the various
factors and the structure of this thesis.

First, we propose a Hough-based method that uses multiview videos to increase
robustness to human orientation variety. Multiview videos are synchronous videos
captured from multiple cameras. Capturing actions with multiview video gives
observations from several viewpoints that include different relative orientations of
the subject to the cameras. Therefore, these observations reduce the differences in
relative orientation between training and test data and contribute the robustness to
human orientation variety. To usemultiviewvideos inHough-based action detection,
we propose integrating Hough votes by homographic transformation. Our proposed
method casts independent votes for each view. Here, we assume that human feet
touch the ground plane when they start an action. We then integrate the votes in
global coordinates using homographic transformations based on this assumption.
The proposed method uses multiview information effectively and detects actions
robustly.

Next, we propose a novel Hough-based method to overcome the problem of
motion similarity. Conventional Hough-based methods often cast votes for false
action classes when similar motions exist across classes. The false votes do not
occur randomly, such that they depend on relevant action classes. We introduce vote
distributions, which are distributions of the voting scores for each action class. We
assume that the distribution of false votes includes important information necessary
to improving action detection. These distributions are used to build a model that
represents the characteristics of Hough voting and includes false votes. This method
estimates likelihood and reduces the influence of false votes using the model. This
reduction leads to robustness to motion similarity.
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1.4. STRUCTURE OF THIS THESIS

We also propose a method to achieve robustness to temporal variation. Conven-
tional Hough-based methods perform poorly for actions with temporal variations
because such variations change the temporal relation between the local feature po-
sitions and action positions. Some votes may be temporally scattered because of
such variations. We propose a method for concentrating scattered votes through
time warping. The proposed method estimates the offsets between the scattered and
concentrated voting positions based on the conventional Hough votes. The offsets
warp the scattered votes to concentrate them and provide robustness to temporal
variations.

Finally, different from the three methods above, we propose a method that
focuses on the number of local features. Various factors, such as human orientation
variety, temporal variations, and action manners variety, change not only the feature
descriptors of actions but also the number of local features extracted from them.
Conventional Hough-based methods perform poorly when variable numbers of local
features are extracted from actions. Changes in voting scores caused by changes
in the number of local features result in difficulties in determining a detection
threshold using the voting scores. Our proposed method improves two parts of the
Hough-based method: local feature extraction and detection thresholding. First,
the proposed method reduces the dependency on the number of local features using
spatial scales. It adjusts the number of local features for each spatial scale using a
sampling method. Second, the proposed method determines appropriate thresholds
for voting scores based on the number of local features by learning the relation
between the number of local features and voting scores. These two changes reduce
the influence of the number of local features, which is affected by various factors.
Reducing the influence improves robustness to human orientation variety, temporal
variations, and action manners variety in different aspects from the three methods
above.

1.4 Structure of this Thesis

The structure of this thesis is as follows. Chapter 2 reviews related work. Chapter
3 describes the basic Hough-based action detection algorithm. Chapter 4 presents
the method that uses multi-view videos to improve robustness to human orientation
variety. In Chapter 5, we propose a Hough-based method to overcome the problem
of motion similarity. Chapter 6 introduces the time-warping of Hough votes to
make the method robust to temporal variations. Chapter 7 describes a method that
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considers the number of local features to increase robustness to various factors.
Chapter 8 concludes this thesis and presents future directions for this work. Figure
1.4 shows the relation between the thesis structure and the factors discussed.
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Chapter 2

Related Work for Action Detection

In this chapter, we review various work in action detection and recognition. Table
2.1 summarizes the approaches taken in related studies. Our proposed methods use
local feature representation and detect actions using a Hough-based approach. The
characteristics of each approach are discussed in the following sections.

We also discuss some work in object recognition and detection, which have
motivated many methods of action recognition and detection.

2.1 Feature Representation

First, we review feature representations of actions. Actions should be represented
as feature vectors for recognition and detection. Various methods for representing
actions have been proposed, and they can be divided into two approaches: local and
global feature representations. In the following sections, we review both approaches.
In Sections 2.1.1 and 2.1.2, we review both approaches, then discuss both approaches
in Section 2.1.3.

2.1.1 Local Feature Representation

Local feature representation describes an action using a set of local features. The
Hough-based approach, which are the focus of this work, use this representation.

Local feature representation consists of two parts: local feature detection and
local feature description. First, the representation detects local features, which are
small regions in videos. It then describes each local feature to represent the region.

9



CHAPTER 2. RELATED WORK FOR ACTION DETECTION

Feature Representation

Local Global

De
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Ap
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ch

Hough

Ours, 
[Mikolajczyk and Uemura, 2008],
[Gall et al., 2011],
[Yu et al., 2011a], [Yu et al., 2012],
[Vijay Kumar and Patras, 2012],
[Vijay Kumar and Patras, 2013]

Sliding
Window

[Yuan et al., 2011],
[Yu et al., 2011b]

[Cao et al., 2010], 
[Derpanis et al., 2010],
[Tian et al., 2013], 
[Ke et al., 2007], 
[Siva and Xiang, 2010],
[Oneata et al., 2014b]

Action
Proposals

[Oneataetal.,2014a],
[Jain et al., 2014],
[Gemert et al., 2015], 
[Yu and Yuan, 2015], 
[Weinzaepfeletal.,2015],
[Gkioxari and Malik, 2015]

Action
Recognition
(for pre-
segmented
sequences)

[Laptev, 2005]

[Schüldt et al., 2004],
[Dollar et al., 2005],
[Wang et al., 2009],
[Wang et al., 2015a], 
[Jain et al., 2013],
[Ji et al., 2013],
[Karpathy et al., 2014], 
[Simonyan and Zisserman, 2014],
[Feichtenhofer et al., 2016], 
[Wang et al., 2015b]

Table 2.1: Related Work.
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Local Feature Detection

First, we introduce local feature detection methods, divided into two approaches:
sparse and dense detectors. Sparse detectors find characteristic points in videos
to represent actions using only a few local features. Popular sparse detectors are
the spacetime interest point (STIP) [Laptev, 2005] and cuboid [Dollar et al., 2005]
detectors. The STIP detector is an extension of theHarris corner detector [Harris and
Stephens, 1988] from a 2D spatial domain to a 3D spatiotemporal domain. STIPs
detect corner points in 3D spatiotemporal space. Cuboid detectors find feature points
using spatial Gaussian and temporal Gabor filters.

In contrast with sparse detectors, dense detectors contribute to better action
representation. In some studies, simple dense sampling of local features in videos
has achieved higher action recognition accuracy than sparse detectors, and denser
sampling leads to better accuracy [Wang et al., 2009, Gall et al., 2011]. The most
popular dense detector method is called dense trajectories (DTs) [Wang et al., 2013].
DTs not only sample local features densely, but also track them using dense optical
flows. DTs define regions around the trajectories based on optical flow as those of
local features. The trajectory-aligned regions achieve higher recognition accuracy
than simple densely sampled regions. Furthermore, Wang et al. improved DTs by
removing global camera motion, which enables descriptors to focus on essential
human motions [Wang et al., 2015a].

A disadvantage of dense detectors is their high computational cost in the feature
description step because the number of local features is large. Shi et al. tried to ac-
celerate such detectors by random sampling of local features [Shi et al., 2013]. They
showed that random sampling accelerates action recognition with slight sacrifices
to accuracy.

In this study, we use STIPs as a local feature detection method because of their
performance and availability. We also use DTs to discuss the results of both sparse
and dense detectors in Chapter 7. The original implementations of both STIPs1 and
DTs2 are available online.

Local Feature Description

Next, we review description methods for local features. Two types of description are
often used: appearance and motion. To represent actions, knowing which parts of

1https://www.di.ens.fr/~laptev/download.html#stip
2https://lear.inrialpes.fr/people/wang/dense_trajectories
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the human body move and in which directions is important. Appearance and motion
represents these two aspects, respectively.

Various descriptors for appearance exist. Low-level descriptors use image inten-
sity and its derivatives in the x and y dimensions [Schüldt et al., 2004, Dollar et al.,
2005, Gall et al., 2011]. The computational cost of these descriptors is small, but the
accuracy obtained from their use is relatively low compared with richer descriptors.
Object recognition and detection often use gradient-based descriptors, such as his-
tograms of oriented gradients (HOG) [Dalal and Triggs, 2005] and scale-invariant
feature transform (SIFT) [Lowe, 2004]. Motivated by this method, Laptev et al.
used HOG as an appearance descriptor for action recognition [Laptev et al., 2008].

Intensity derivatives in the temporal dimension and optical flow are mainly used
as motion descriptors. Like appearance, the derivative in the temporal dimension is
used as a low-level motion descriptor [Schüldt et al., 2004, Dollar et al., 2005, Gall
et al., 2011]. Various optical-flow-based descriptors are used to represent motion:
Gall et al. used the absolute values of optical flows in the x- and y-directions
[Gall et al., 2011], Laptev et al. used histograms of optical flow (HOF) [Laptev
et al., 2008], and Wang et al. used trajectory of optical flow and motion boundary
histograms (MBH) that represent optical flow gradients [Wang et al., 2013]. Wang
et al. showed that MBH are more robust to camera motion than HOF.

Some descriptors can represent appearance and motion simultaneously. These
descriptors calculate 3D gradients in spacetime. Everingham et al. proposed
HOG3D, which is a spatiotemporal extension of spatial HOG [Everingham et al.,
2008]. Similarly, Scovanner et al. extended SIFT from a 2D spatial domain to a 3D
spatiotemporal domain in a method called 3D SIFT [Scovanner et al., 2007].

In this study, we use the original implementation of STIPs and DTs, as described
in the previous section. The implementations includes both local feature detection
and description steps. The implementation of STIPs use HOG and HOF descriptors.
The implementation of DTs use trajectory, HOG, HOF, and MBH descriptors. We
also used the implementations for the local feature description.

2.1.2 Global Feature Representation

Global feature representation describes an action using a feature vector. Whereas
the Hough-based approach uses the local feature representation (i.e. used in this
study), other detection approaches, such as the sliding window and action proposals,
often use this global feature representation. We present a discussion of the local and
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global feature representation in Section 2.1.3.
In this section, we review the two popular types ofmethods for these descriptions:

local feature encoding and convolutional neural network (CNN)-based features.

Local Feature Encoding

One of the most popular global feature representations is local feature encoding,
which converts local feature representation to a global feature representation. A
typical encoding method is the bag of visual words (BOVW), which was inspired by
natural language processing and has been proposed for image recognition [Csurka
et al., 2004]. A BOVW generates a codebook by clustering local features extracted
from many images or videos. K-means and Gaussian mixture models are often
used for clustering. Then, global representations are calculated by encoding local
features into the nearest code words. Many studies have shown that the BOVW
representation is also effective for action recognition [Schüldt et al., 2004, Wang
et al., 2009, Wang et al., 2015a].

The BOVW representation has some extensions, such as the vector of locally
aggregated descriptors (VLAD) [Jégou et al., 2012] and the Fisher vector [Sánchez
et al., 2013], that consider the distribution of local features in the feature space to
improve recognition. VLAD uses the mean information of the distribution of the
local features assigned to each code word. Jain et al. demonstrated the effectiveness
of VLAD in action recognition [Jain et al., 2013]. The Fisher vector uses covariance
information as well as means; when using improved dense trajectories (HOG, HOF,
and MBH descriptors), the Fisher vector has achieved state-of-the-art performance
in action recognition [Wang et al., 2015a].

CNN-based Features

CNNs achieve state-of-the-art performance for various computer vision tasks. CNNs
learn feature representations using deep convolution layers. Deep learned features
by CNNs perform better than hand-crafted features in many tasks. Specifically, the
success of CNN-based features for object recognition [He et al., 2015, He et al.,
2016] and detection [Girshick et al., 2016, Liu et al., 2016] has motivated the use of
CNN-based features for action recognition and detection.

Two approaches exist for handling temporal information in CNNs for action.
One approach uses only video and fuses information from multiple frames. The
other approach first calculates optical flows from the video, and then uses both the
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video and optical flows as a two-stream input.
First, we review methods using the first approach. Ji et al. proposed a 3D

spatiotemporal convolution to capture temporal information [Ji et al., 2013]. The
convolution filters in the temporal dimension fuse information from multiple frames
to capture temporal information. Karpathy et al. explore multiple approaches for
fusing information from multiple frames in a CNN [Karpathy et al., 2014]. Their
proposed slow fusion, which progressively connects convolutional layers from each
frame, achieves better performance than early or late fusion methods.

The second approach uses optical flow as explicit motion information. Simonyan
and Zisserman proposed a two-stream CNN that uses image and optical flow se-
quences as separate input [Simonyan and Zisserman, 2014]. They showed that fusion
of the two streams results in higher recognition accuracy compared with separate
networks. Feichtenhofer et al. explored fusion methods for two-stream networks,
finding that a convolutional fusion method at the convolutional layers of the two
streams achieves the best performance [Feichtenhofer et al., 2016].

CNN-based features have achieved state-of-the-art performance in recent studies.
However, the performance difference for action recognition and detection between
CNN-based and hand-crafted features is not significant compared with the same
differences in object recognition and detection. Combining CNN-based and hand-
crafted features performs better than either feature type alone [Wang et al., 2015b,
Feichtenhofer et al., 2016].

2.1.3 Discussion

Local feature representation describes an action using a set of local features, whereas
global feature representation describes an action using a feature vector. Here, we
discuss the advantages of each representation.

A local feature representation contributes to the robustness of detection to par-
tial observations. Observed local features are not affected by unobserved local
features because local feature processes are performed independently. Therefore,
local feature representations provide robustness to occlusions and enable early action
detection. A disadvantage of local feature representations is their inferior discrimi-
nation ability. Even if actions from different classes differ when observing their full
sequences, some local parts are often similar. Discriminating between such local
parts represented by local features is difficult.

In contrast with local feature representation, global feature representation can
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describe an entire action sequence. These descriptions include complex information
such as the co-occurrence of multiple parts. Therefore, global feature representation
is more robust to motion similarity.

In this study, we focus on local feature representation because of its robustness
to occlusions. To achieve robustness to motion similarity, we propose the method
described in Chapter 5.

2.2 Detection Approach

Here, we review typical approaches for action detection: Hough-based, sliding
window, and action proposal approaches.

2.2.1 Hough-based Approach

The Hough-based approach extracts local spatiotemporal features from an entire
video and then casts votes for action classes, positions, and scales. The local
maxima of the voting scores indicate possible detected actions.

The implicit shape model (ISM) [Leibe et al., 2008], which is now a commonly
used Hough-based method, was originally proposed for object detection. The ISM
generates a codebook of local features using an unsupervised clustering algorithm
and uses the codebook to cast votes for object positions based on the local features
extracted from an image.

Some studies have applied the ISM framework to action recognition and detection
[Mikolajczyk and Uemura, 2008, Gall et al., 2011, Yu et al., 2011a, Yu et al.,
2012, Vijay Kumar and Patras, 2012, Vijay Kumar and Patras, 2013]. To best of
our knowledge, the study in [Mikolajczyk and Uemura, 2008] is first one applying
the framework to actions. They detected actions only spatially in a 2D spatial
and 1D scale voting space. Gall et al. proposed a supervised codebook using
random forests to improve discriminative power [Gall et al., 2011]. They applied
the method to not detection but recognition of actions. Here, we manage their
method as action detection method because their method can be naturally applied
to action detection. Similarly, Kumar et al. also proposed supervised codebook
learning methods [Vijay Kumar and Patras, 2012, Vijay Kumar and Patras, 2013].
Yu et al. attempted fast search in the voting space using a max sub-path search
strategy [Yu et al., 2011a]. They also proposed the method that is suitable when
the number of labeled training data is very small [Yu et al., 2012]. Their method
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uses the random projection tree, which can be constructed in unsupervised way, as
a codebook method. Although various methods are proposed, robustness to various
factors described in Section 1.2 is not explored sufficiently.

The Hough transform was originally proposed in 1962. Many methods have
since extended the Hough transform for various tasks. The history of the Hough
transform is described in Section 3.1.1.

2.2.2 Sliding Window Approach

The sliding window approach classifies actions in each subvolume of a video se-
quence while changing the spatiotemporal position of that subvolume, searching all
possible subvolumes in the space exhaustively.

Motivated by the success of sliding window approaches for object detection
[Viola and Jones, 2001, Felzenszwalb et al., 2010], many action detection methods
have adopted the slidingwindow approach [Cao et al., 2010,Derpanis et al., 2010,Ke
et al., 2007, Siva and Xiang, 2010, Yuan et al., 2011, Yu et al., 2011b, Tian
et al., 2013]. Many of these methods [Cao et al., 2010, Derpanis et al., 2010, Ke
et al., 2007, Siva and Xiang, 2010, Tian et al., 2013] have used global feature
representations, whereas some [Yuan et al., 2011, Yu et al., 2011b] use local feature
representations.

Because the search spaces of action detection are larger than those of object
detection, the computational cost of the sliding window approach is high, although
some research has attempted to reduce these costs. Yuan et al. proposed a branch-
and-bound search for action detection [Yuan et al., 2011]. Their search method
accelerates the sliding window approach and uses local feature representation. Yu
et al. proposed two-round coarse-to-fine searches [Yu et al., 2011b]. Their method
downsamples videos and searches the video space coarsely. Then, their method
searches actions at a finer scale. Oneata et al. also applied branch-and-bound
search to action detection [Oneata et al., 2014b]. They proposed an approximated
Fisher vector encoding and showed that sliding-window-based detection that uses
this encoding can be accelerated using branch-and-bound search. These efficient
methods accelerate action detection, though the types of feature vectors that are used
are restricted.
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2.2.3 Action Proposals Approach

The action proposal approach reduces the searched windows to accelerate the slid-
ing window approach, because the computational cost of a straightforward sliding
window is high. This approach finds general action regions and only classifies these
regions, whereas the sliding window approach classifies all possible windows.

The proposal approach was originally proposed for object detection using CNN-
based features, which are computationally expensive. In object detection, the object
proposal approach finds general object regions first and only classifies these regions.
Efficient region discovery allows detection methods to use high-cost features, such
as CNN-based features. An R-CNN [Girshick et al., 2016] is a typical method
of proposal-based detection. R-CNNs find general object regions using selective
search [Uijlings et al., 2013] and then classify each region using a CNN.

Motivated by the success of the R-CNN, proposal-based approaches to action
detection have been explored. To find general action regions, two approaches were
proposed. One approach is based on bottom-up merging in 3D spatiotemporal,
similar to a selective search. Oneata et al. proposed spatiotemporal object proposals
based on video segmentation [Oneata et al., 2014a]. Their method calculates super-
pixels in each frame and merges them in spatiotemporal space. Each merged region
is classified to detect actions. A similar method was proposed by Jain et al. [Jain
et al., 2014]. A disadvantage of these methods is their high computational cost, due
to video segmentation. Gemert et al. proposed a more efficient method that uses
DTs instead of video segmentation [Gemert et al., 2015]. Their method assumes
that the feature vector for classifying actions is composed of DTs. Their method
finds the general action regions and classifies actions in the regions using the DTs
shared in both steps. The shared features make action detection efficient.

Another approach links spatial candidate regions in each frame to finds the
general regions of actions. Yu et al. detected humans in each frame and used them
as spatial candidate regions [Yu and Yuan, 2015]. They then temporally linked the
candidate regions as a set coverage problem. They detected actions by classifying the
regions of the linked candidates. Weinzaepfel et al. used EdgeBoxes [Larry Zitnick,
2014], which find general object regions, to find spatial candidate regions and
tracked these regions using a tracking-by-detection approach [Weinzaepfel et al.,
2015]. They also detected actions by classifying the tracked regions. Gkioxari et
al. used selective search to find the spatial candidate regions [Gkioxari and Malik,
2015]. Unlike the above methods, their method classified each spatial candidate
before the linking. Their method linked the candidate regions using the Viterbi
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algorithm based on the classified scores and overlap ratios of the spatial candidate
regions.

2.2.4 Discussion

TheHough-based approach uses local feature representation and performs the voting
process independently for each local feature. In contrast, the sliding window and
action proposal approaches mainly use global feature representations and classify
action regions that have been found in advance. In the following, we discuss the
advantages of each approaches.

One advantage of the Hough-based approach is its computational efficiency.
The other detection approaches need processing for each action region that the
Hough-based approach does not, because of its simultaneous action classification
and position estimation in the voting process. In addition, the advantages of lo-
cal feature representations (i.e., robustness to occlusions) also contribute to this
detection approach.

The sliding window and action proposal approaches are superior in discrimina-
tion ability to the Hough-based approach. Because these approaches decide on the
action regions in advance, they can use global feature representations. The advan-
tages of global feature representations contribute to these detection approaches.

In this study, we focus on the Hough-based approach, proposing methods that
improve its robustness to factors other than occlusions.
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Chapter 3

The Hough Transform and Action
Detection

3.1 The Hough Transform

3.1.1 History of the Hough Transform

The Hough transform was initially proposed for line detection [Hough, 1962]. The
basic idea of the Hough transform is a transformation from the original image
space to a parameter space of the lines. First, the Hough transform detects edges,
which are the elements of the lines, in an image. Then, the all lines that can pass
through each edge are managed as the candidates of the lines in the image. The
Hough transform represents a line using two parameters described later and casts
votes for the parameters corresponding to each candidate line in the two-dimensional
parameter space. Based on the edges that lie on a common line, the Hough transform
casts votes for the parameters of the common line as well as the other parameters
of the lines that pass through the edges. Therefore, the accumulated voting score
for the parameters of the common line is high. The Hough transform detects lines
by finding such high scores in the parameter space. We call the parameter space a
voting space in this study.

The Hough transform originally represents a line as y = ax + b using two
parameters a and b [Rosenfeld, 1969]. Parameters a and b are the slope and the
intercept of the line, respectively. A problem of this representation is that slope a
of the vertical line is infinity. It is hard to implement the method that uses such
unbounded parameter. Duda and Hart represents a line as ρ = x cos θ+ y sin θ using
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two parameters ρ and θ [Duda and Hart, 1972]. Parameters ρ is the distance between
the origin and the closest point on the line, and θ is the angle of the normal vector
at the closest point, respectively. Because distance ρ is bounded by the size of the
image and angle θ is also bounded, these parameters are bounded and suitable for
implementation. Using ρ-θ representation, a point in a image space is transformed
to a sinusoidal curve in the voting space.

The Hough transform has been extended for other shapes such as circles [Duda
and Hart, 1972] and ellipses [Tsuji and Matsumoto, 1978]. For instance, a circle can
be represented by a 2D center position and a radius. The Hough transform for circle
detection casts votes in the 3D voting space (2D center position and 1D radius) [Duda
and Hart, 1972]. Ballard et al. generalized the Hough transform for arbitrary shapes
[Ballard, 1981]. The method, which is called the generalized Hough transform,
assumes that the shape of the target object is known. Because the method does not
restrict the target shapes, some of the shapes cannot be represented by mathematical
formulations, unlike lines and circles. To cast votes for the parameters of the shapes,
the method defines a reference position of the target and uses the offsets from the
edge position to the reference position. Using a template image of the target, the
method prepares an R-table that maps the gradient direction of an edge detected
in the template image to the offset. Note that one gradient direction is mapped to
multiple offsets in the R-table. To detect the targets in a image, the method detects
edges in the image, calculates the gradients of edges, casts votes based on the R-
table, and detects targets by finding local maxima in the voting space. Here, the
voting space consists of four dimensions: a 2D reference position, scale and rotation
of the target.

Computational cost of the original Hough transform is high because the method
casts votes for all possible candidates. Kimme et al. reduced the computational
cost for circle detection using directions of the gradients [Kimme et al., 1975]. The
directions of the gradients shows the directions to centers of circles. The method
should cast votes for only the circles that are located along the directions. The
generalized Hough transform also use the directions of the gradients.

Leibe et al. introduced modern computer vision techniques into the generalized
Hough transform in the ISM (also described in Section 2.2.1) [Leibe et al., 2008].
Instead of the edges and R-table, the ISM uses local features, such as SIFT [Lowe,
2004], and a codebook of the local features, respectively. The ISM generates the
codebook using unsupervised clustering algorithm. The codebook maps descriptors
of the local features and the offsets between feature positions to reference object
positions. The ISM uses the codebook to casts votes for object positions based on
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local features extracted from an image.
Recently, as well as object detection, the Hough-based approaches are applied

to various computer vision tasks such as object tracking [Gall et al., 2011]; pose
estimation of heads, [Fanelli et al., 2011], objects [Tejani et al., 2014], and humans
[Girshick et al., 2011]; facial expression recognition [Fanelli et al., 2010]; and action
recognition [Gall et al., 2011] and detection [Vijay Kumar and Patras, 2012]. These
methods indicate high flexibility of the Hough transform. The Hough transform can
manage various tasks by defining appropriate voting spaces.

Motivated recent success of CNNs, many approaches adopt CNN-based features.
As described in Section and , the proposal approaches use CNN-based global feature
representation. The Hough-based approach cannot use global feature representation.
To use CNN-based features in the Hough-based approach, Riegler et al. combined
CNN-based local features and the Hough-based approach for head pose estimation
and facial feature localization [Riegler et al., 2014]. Their CNN model uses a local
image patch as input and estimates a class label and offsets for head pose. Their
method casts votes based on the estimation of the CNN model. They showed that
using discriminative CNN-based features improve performance in the Hough-based
approach.

3.1.2 Definition of the Hough Transform

As shown in the previous section, many methods based on the Hough transform have
been proposed. The unique step of the Hough transform is the transformation from
the input space to the voting space. In this study, we define Hough-based approaches
as follows: Hough-based approaches transform the input space to the voting space
through voting.

The Hough-based approach is different from a voting-based approach. For
instance, consider the method that performs the majority voting process for the class
labels of the target based on local features. The method casts votes based on only
the feature vectors of the local features and do not transform the positions of the
local features in the input space. Such method does not belong to the Hough-based
approach.
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3.2 Hough-based Action Detection

This section explains the basic Hough-based action detection algorithm. A Hough-
based method detects actions by casting votes in a Hough voting space. To cast
votes in the voting space, the Hough-based method generates a codebook of local
features in a training step. The method then casts votes for action classes, positions,
and scales by matching local features to codebook entries in a detection step. In this
section, we first define the problem of action detection in Section 3.2.1. Then, we
explain the training step in Section 3.2.2 and describe the detection step in Section
3.2.3. Finally, Section 3.2.4 describes the implementation of the Hough-based
method used in this study.

3.2.1 Problem Definition of Action Detection

Wefirst define the problemof action detection as a problem that outputs {D1, . . . ,DN }
from a video input, where D = [c, xtl, xbr, tb, te] is a detected action, c is a class label,
xtl, xbr ∈ R2 are the top-left and bottom-right of the bounding box that encloses the
human performing the action, and tb, te ∈ R1 are the beginning and end times of the
action. Figure 3.1 shows an example of a detected action.

The Hough voting space for action detection consists of five-dimensions: action
class label c ∈ R1, spatiotemporal position x ∈ R3, and scale s ∈ R1. The spa-
tiotemporal position is usually defined as a spatiotemporal center of an action (i.e.,
the spatial and temporal positions of actions are the centers of bounding boxes and
time intervals, respectively). The scale is the height of the spatial bounding box of
an action. Here, other scale parameters, such as aspect ratio and temporal duration,
are fixed for each action class.

Two other definitions of action detection exist: temporal action detection [Gaidon
et al., 2013] and action tube detection [Gkioxari and Malik, 2015]. Temporal action
detection assumes that the video is already cropped spatially. It does not find a spatial
bounding box (i.e., xtl and xbr) and detects actions in the temporal dimension. Action
tube detection finds the spatial bounding box for each frame, whereas standard action
detection only finds one bounding box for the whole action sequence.

3.2.2 Training

During training, the Hough-based method generates a codebook of local features
using videos that include the following annotations: class labels, bounding boxes,
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Figure 3.1: Problem definition of action detection.

and time intervals. First, the method crops videos using the bounding boxes and
time intervals. The method extracts local spatiotemporal features from the cropped
action sequences. Each local feature has an annotated class label and spatiotemporal
offset from the local feature point to the annotated action position. Let f = (I, a) be
the local feature, where I is a visual feature vector and a = [c, d, s] is an annotation
for a local feature. Here, c is the class label, d ∈ R3 is the spatiotemporal offset from
the local feature point to the annotated action position, and s is the scale. In addition,
the method extracts local features from negative samples that do not include any
actions. The local features from the negative samples do not have offset d.

The Hough-based method generates the codebook using training data; various
codebook generation methods are used, including agglomerative clustering [Leibe
et al., 2008], random forests [Gall et al., 2011], and randomprojection trees [Yu et al.,
2012]. In this study, we use random forests. The details of codebook generation by
random forests are described in Section 3.2.4. Each codebook entry stores a set of
annotations consisting of class labels, offsets, and scales. The method casts votes
using the set by matching local features to codebook entries.
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t
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Figure 3.2: Hough-based action detection.

3.2.3 Detection

To detect actions, Hough-based methods cast votes for action classes, positions, and
scales based on local features. Figure 3.2 shows an overview of Hough-based action
detection.

First, we define the formulation of the probabilistic voting based on local feature
fy extracted from position y ∈ R3. The probability of an action of class c at position
x ∈ R3 of scale s based on local feature fy can be defined as

p(c, x, s | fy, y) =
∑

i

p(c, x, s | Ci, y)p(Ci | fy)

=
∑

i

p(x, s | c,Ci, y)p(c | Ci)p(Ci | fy). (3.1)

The first term represents a position estimation for class c, the second term represents
class estimation based on codebook entry Ci, and the third term represents the
probability for matching between a local feature and a codebook entry. Codebook
entry Ci stores set of annotations Ai = {[c1

i , d
1
i , s

1
i ], . . . , [c

Ni

i , d
Ni

i , s
Ni

i ]}. The class
estimation probability represented by the second term is calculated by the proportion
of the class labels in Ai. The position estimation probability represented by the first
term can be defined as

p(x, s | c,Ci, y) =
1
|Ac

i |
∑

[d,s′]∈Ac
i

G([x, s], [y + d, s′]), (3.2)

where Ac
i is the set of annotations that has class label c in Ai, G is a 4D Gaussian

kernel, and y + d refers to the voting position from local feature point y using offset
d. Using Equation (3.1), the voting score of an action of class c at position x of
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scale s based on all local features extracted from a video can be defined as

v (c, x, s | F) =
∑
fy∈F

p
(
c, x, s | fy, y

)
, (3.3)

where F is the set of local features extracted from a video. The method finds
local maxima of Equation (3.3) for each action class independently. Each local
maximum has five-dimensions of information: class label, 2D-spatial and 1D-
temporal position, and scale. The local maxima are candidate detected actions.
Local maxima that have voting scores over a threshold are detected actions.

To generate a volume that centers around the action, the method calculates
the spatial bounding box and time interval using scale s, the aspect ratio, and the
duration. We use an average aspect ratio and duration in the training data.

3.2.4 Implementation

In this study, we implement the Hough-based method using Hough forests [Gall
et al., 2011], which generate a codebook using random forests (i.e., ensembles of
decision trees). This method optimizes parameters of the split functions of tree
nodes during training.

This method trains the decision trees of random forests using a set of local
features. Local features for each tree are randomly sampled from the entire set.
During the training step for each tree, the method iterates the parameter optimization
of the split function from the root to the leaf. To optimize node parameters, the
method uses the set of local features classified into the node with the split function
of the parent node. This iteration continues until each node satisfies termination
criteria defined by the maximum depth or minimum number of local features in a
node. Leaf node L stores p(c | L), which is estimated by the label proportion of
local features for each class c, and DL

c , which is a set of offsets for class c.
The split functions can be defined as

ji,q,r,τ(I) =
{

0 if Ii(q) < Ii(r) + τ
1 otherwise,

(3.4)

where i is a feature channel, q and r are the dimensions of Ii, and τ is a threshold.
Here, we use the multi-channeled feature vectors (i.e., I = [I1, I2, · · · , II], where I
is the number of feature channels).
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In the training step, i, q, r and τ are optimized. The method generates random
parameter sets and selects the optimal one using either class uncertainty, which is
defined as

U1(A) = −|A|
∑

c

p(c | A) ln p(c | A), (3.5)

where A is a set of local features and | · | denotes the number of elements in the set,
or the uncertainty of the offsets, given as

U2(A) =
∑

c

©«
∑

d∈DA
c

d − dA
c

2ª®¬ , (3.6)

where DA
c is the offsets of the local features of class c in A and dA

c is an average
offset of DA

c . Each node randomly chooses between these measures and selects the
parameter set that minimizes uncertainty based on the split set of local features.

In the detection step, the method inputs local features into trained random forests.
Here, random forests and leaf node L correspond to the codebook and codebook
entryC, as described in Section 3.2.3. Each local feature is assigned to a leaf node (a
codebook entry). Therefore, matching between the local features and the codebook
is not probabilistic but deterministic. The method defines probability p(Li | fy) as
1/K if fy is assigned to leaf Li and as 0 otherwise, where K is the number of trees.
The probability of an action of class c at position x ∈ R3 of scale s based on local
feature fy can be defined as

p(c, x, s | fy, y) =
1
K

∑
i

p(x, s | c, Li, y)p(c | Li). (3.7)

The local maxima of Equation (3.7) indicate candidate actions.
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Chapter 4

Vote Integration in Multi-view
Videos for Robustness to Human
Orientation Variety

4.1 Introduction

This chapter focuses on the problem of human orientation variety. Changes in
action appearances are caused by the relative orientation of a human to the camera.
When the difference in relative orientation between training and test data is large,
accurate detection is difficult. To detect human actions, an approach that employs
multiview videos canmanage orientation variety. Multiview videos are synchronous
videos captured frommultiple cameras. Such observations, fromvarious viewpoints,
include a variety of orientations of the human relative to the cameras. Therefore,
these observations reduce the difference in relative orientation between the training
and test data and contribute to the robustness to orientation variety.

Most conventional methods for actions captured from multiview videos are not
detection methods, but recognition methods [Yan et al., 2008, Naiel et al., 2011, Zhu
et al., 2013]. As described in Section 1.1, action recognition methods can be applied
only to segmented video. To detect actions in multiview videos that contain multiple
action instances, action detection methods for multiview videos are required.

In this chapter, we propose a Hough-based action detectionmethod for multiview
videos. Themethod first casts votes independently in each view, then integrates them
in global coordinates. To integrate votes, we use a homographic transformation,
similar to [Sternig et al., 2011]. We assume that human feet touch the ground plane
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Figure 4.1: Main idea of our proposed approach. Votes are cast on human foot
positions in the first frame and integrated using homographic transformation on the
ground plane in global coordinates.

when they start an action. Based on this assumption, the proposed method integrates
votes on the ground plane in global coordinates. Figure 4.1 shows its main idea.

The remainder of this chapter is organized as follows. Section 4.2 reviews
related studies. We explain our proposed method in Section 4.3 and analyze our
experimental results in Section 4.4. Section 4.5 summarizes this chapter.

4.2 Related Work

Other action recognitionmethods usingmultiview videos exist. Naiel et al. proposed
majority-voting of classifiers trained in each view [Naiel et al., 2011]. Yan et al.
proposed weighted voting of outputs in each view based on 3D reconstructed models
[Yan et al., 2008]. Zhu et al. also adopted weighted voting based on the prediction
uncertainty of a classifier [Zhu et al., 2013]. In contrast, we propose a multiview
action detection method using multiview integration of Hough votes.

Many researchers have developed view-invariant features that robustly recognize
human actions. Here, view is similar to relative orientation. Zheng and Jiang
proposed a framework that learns dictionaries such that pairs of videos taken in
two views have similar sparse representations [Zheng and Jiang, 2013]. Junejo et
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al. claimed that distances between extracted low-level features for all pairs of time
frames are stable under a variety of human orientations [Junejo et al., 2011]. These
view-invariant features enable allow action descriptions that are robust description
of actions to the orientation variety. However, the orientation variety changes affect
not only the description, but also the spatial structure of local features. It is difficult
to apply the view-invariant features to the Hough-based methods.

Sternig et al. proposed a Hough voting framework for multiview human tracking
[Sternig et al., 2011]. First, they independently cast votes for the human foot
position in each view. Then, they projected the votes onto the ground plane in global
coordinates using homographic transformation to integrate the votes from each view.
We apply this integration method to multiview action detection.

4.3 Hough-based Action Detection for
MultiView Videos

This section explains the proposed Hough-based method for multiview videos. Our
proposedmethod integrates votes fromeach viewwith a homographic transformation
thatmaps a position in one plane to a position in another plane. The proposedmethod
transforms a position in an image plane of view v (Xv,Yv) into a position in the ground
plane in global coordinates (XG,YG). This transformation can be defined as

˜xiv,t = HivX̃t, (4.1)

where Hiv is the homography matrix of view iv, xiv,t ∈ R2 is a position of the image
plane in view iv at frame t, Xt ∈ R2 is a position on the ground plane in global coor-
dinates at frame t, and the tilde denotes homogeneous coordinates. Homogeneous
coordinates are usually used for projective geometry. For example, u = [x, y, · · · ]
becomes ũ = [x, y, · · · , 1] in homogeneous coordinates. ũ′ = [x, y, · · · ,m] corre-
sponds to u′ = [x/m, y/m, · · · ] in orthogonal coordinates.

The homography matrix can be calculated using four point correspondences,
which is easy compared with full-camera calibration. However, positions trans-
formed by homography must be located on a common plane in the global coordinate
system. Votes by the conventional method do not satisfy this condition. To solve this
problem, our proposed method defines the action position as the foot position in the
first frame of an action. In the following, we explain the reason for this definition in
detail. We then describe Hough-based action detection for multiview videos using
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Figure 4.2: The definition of the action position in conventional methods and
our proposed methods. Conventional methods define the action position as the
spatiotemporal center, whereas the proposed method defines it as the foot position
in the first frame of the action.

homographic transformation.

4.3.1 Definition of the Action Position

Most conventional Hough-based methods define an action position as the spatiotem-
poral center in the video of an action, as shown in Figure 4.2 (left). This definition
spatially concentrates votes in the center of the human body. The centers differ
depending on various factors, such as pose and the height of the human, and are not
located on a common plane in global coordinates. Therefore, this method cannot
integrate the votes by homographic transformations.

In contrast, we define the action position as the human’s foot position in the first
frame of an action, as shown in Figure 4.2 (right). A person’s feet inevitably touch
the ground plane when he or she begins an action. This means that the position
of the feet is on the ground plane. The Hough-based method casts votes on the
ground plane using the proposed definition and can integrate votes by homographic
transformations.
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4.3.2 Vote Integration by Homographic Transformation

Our proposed method first casts votes in Xiv,Yiv,T-space for each view iv indepen-
dently using Equation (3.7). It then integrates the votes in XG,YG,T-space. Here,
XG,YG is the ground plane in global coordinates. Using homographic transforma-
tions, the integration can be defined as

v(c,X | Fall) =
∑

iv

v
(
c, xiv | Fiv

)
, (4.2)

where Fall is the set of local features extracted from a multi-view video; Fiv is the set
of local features extracted from a video of view iv; X ∈ R3 is a position in XG,YG,T-
space; and xiv ∈ R3 is a position in Xiv,Yiv,T-space. v

(
c, xiv | Fiv

)
corresponds

to Equation (3.1), and the relation between X and xiv is represented by Equation
(4.1). Here, we ignore scale s in the voting process because scales of each view are
different. Backprojection of contributing votes [Leibe et al., 2008] can estimate the
scales of the actions.

Figure 4.1 shows the voting and integration using homographic transformations.
We integrate the votes for each spatiotemporal position and view and obtain scores
in XG,YG,T-space. The integration denotes that the voting scores in each view are
added for each position. The proposed method finds local maxima of Equation
(4.2) for each action class independently. The local maxima are candidates actions
in XG,YG,T-space. The method defines local maxima with voting scores over a
threshold as detected actions.

Our proposed method sums the voting scores of each view represented as Equa-
tion (4.2). We expect that if actions captured from some views are significantly
different from the actions in training data, actions captured from other views are
similar to the actions in training data. The votes in similar views work well and
detect actions accurately.

4.4 Experiments

We explain the experiments performed in this section. We compared our proposed
method with one baseline and three other methods [Yan et al., 2008, Naiel et al.,
2011, Zhu et al., 2013]. The difference between the baseline method and the
proposed method is the input videos. The baseline method only uses single-view
videos, whereas the proposed method uses multiview videos. The other methods
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Figure 4.3: Examples from the IXMAS dataset.

are multiview action recognition methods. To compare with these methods, we used
videos that are temporally segmented to contain only one action in these experiments.

4.4.1 Dataset

We used two different dataset: the IXMAS dataset [Weinland et al., 2006a] and
the UCR Videoweb Activities dataset [Denina et al., 2011]. The IXMAS dataset is
captured in an indoor experimentally environment. The dataset includes 11 actions:
check watch, cross arms, scratch head, sit down, get up, turn around, walk, wave,
punch, kick, and pick up. Each action was performed three times by ten actors and
recorded by five cameras. The resolution and frame rate of the videos were 390×291
and 23 fps, respectively. The orientations of the actions differed from one actor to
another. We calculated the homography matrix using the camera calibration data
provided by the dataset. The ground truth, which is set at the human foot position in
the first frame, is manually annotated for each video of each view. Figure 4.3 shows
the examples of the IXMAS dataset.

The UCR Videoweb Activities dataset was captured in a complex outdoor envi-
ronment. The dataset comprises over 2.5 hours of videos captured by 4–8 cameras.
We chose 100 scenes for this experiment, each of which was captured by 2–3 cam-
eras and contains one action. These scenes include six action classes: hug, shake
hands, shove, stand up, pick up object, and throw object. The resolution and frame
rate of the videos were 640 × 480 or 704 × 480 pixels and 30 fps, respectively. We
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Figure 4.4: Examples from the UCR Videoweb Activities dataset.

calculated the homography matrix using manually corresponding points between
each camera. The ground truth was also manually annotated for each video of each
view. The ground truth positions of hug and shake hands are the center between
the foot positions of the two people. Figure 4.4 shows examples from the UCR
Videoweb Activities dataset.

4.4.2 Evaluation method

We evaluated the methods using recognition accuracy and localization error. We
calculated the recognition accuracy by comparing the recognized label with the
correct label. We calculated the localization error from the distance between detected
position xl

iv
and ground truth xgiv in Xiv,Yiv,T-space. Position xl

iv
was projected from

detected position Xl in XG,YG,T-space using (4.1). We evaluated the localization
error by independently calculating the spatial and temporal distances, because the
former are pixel units and the latter are frame units. The spatial distance is calculated
between the spatial information of xl

iv,tl
and that of ground truth xgiv,tg . The temporal

distance is calculated between t l and temporal ground truth tg. Note that the
localization error is evaluated only for actions that are correctly recognized.
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Figure 4.5: Occlusion setting in S2. The black rectangles are the artificially occluded
regions.

4.4.3 Results

IXMAS Dataset

The experiments using the IXMAS dataset consisted of the following three settings:

Setting 1 (S1) Using all views during the training.

Setting 2 (S2) Using all views during the training and detecting occluded actions
during the testing.

Setting 3 (S3) Using one view during the training.

Our proposed method used all views for detecting actions in all settings. S1 shows
the results for a large set of training data. S2 shows the robustness to occlusions.
(Figure 4.5 shows the occlusion in this setting.) S3 shows the results when training
data only include a subset of views. Our proposed method detects actions using all
views in S2. A classifier is trained using one view, and our proposed method votes
in each view using the same classifier. We compared the proposed method with the
baseline method in this setting.

We employed leave-one-actor-out cross-validation that uses the data of one actor
as the test data and the remainder as training data for all settings. We trimmed
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Table 4.1: Recognition accuracy (%) for the IXMAS dataset in Setting 1.
Method Position All View0 View1 View2 View3 View4
Proposed 89.1 - - - - -
Hough - 83.3 82.1 80.9 86.7 70.0

Yan et al. X 78.0 72.0 53.0 68.0 63.0 -
Naiel et al. X 84.6 80.4 79.8 80.1 77.1 -
Zhu et al. X 88.0 71.5 78.7 73.9 - -

the videos so that each contains one action. Both our proposed and the baseline
methods detected the position of the largest voting scores in XG,YG,T-space as the
action position.
Setting 1
The methods used all views for training in S1. Figure 4.6 depicts a confusion matrix
of the recognition accuracy averaged over all views using the proposed method in
S1. The proposed method achieves high accuracy for most action classes, but fails in
recognizing Pick Up, possibly because of the similar stooping motions that are part
of Sit Down and Pick Up. It is difficult to accurately recognize actions that include
similar motions to other actions.

Table 4.1 presents comparisons with the conventional methods. The All column
shows the recognition results using multiview integration, and the other columns
show the recognition results in each view. The Position column shows whether
the method needs prior knowledge of the actor’s position. The Hough rows shows
the results of the baseline method that uses only single-view videos. Compared
with Hough, the proposed method achieves higher accuracy. We confirmed that
the proposed integration improves recognition accuracy. Compared with the other
methods, our proposed method achieves the highest accuracy, indicating that it is
also effective for action recognition tasks.

Table 4.2 shows the evaluation results of localization in S1. We evaluated the
localization error in Xiv,Yiv,T-space. The Average row shows the average result of
all views. The errors of both the proposed and baseline methods are small and do not
differ significantly. The baseline method localizes actions in each view accurately.
These results indicate that accurate localization in each view enables vote integration
in the proposed method.
Setting 2
We added artificial occlusions in S2. Figure 4.7 shows a confusion matrix of the
recognition accuracy averaged over all views in S2. The average recognition accuracy
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Figure 4.6: Confusion matrix of our proposed method in S1.

Table 4.2: Location estimation error for the IXMAS dataset in Setting 1.

Method
Spatial Distance

(pixel)
Temporal

Distance (frame)
Mean Std. Dev Mean Std. Dev

Proposed

View0 10.7 8.8 4.4 6.4
View1 9.1 8.0 4.4 6.4
View2 12.5 9.3 4.4 6.4
View3 11.8 7.8 4.4 6.4
View4 12.8 10.9 4.4 6.4
Average 11.4 9.1 4.4 6.4

Hough

View0 9.6 7.0 4.6 5.9
View1 7.3 4.5 4.1 4.7
View2 12.4 10.5 5.1 7.4
View3 11.6 8.3 5.4 8.1
View4 11.8 10.4 5.3 9.2
Average 10.5 8.1 4.9 7.1
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Figure 4.7: Confusion matrix of our proposed method for the IXMAS dataset in
Setting 2.

for all action classes was 88.2%. Table 4.3 shows the results of the localization error
in S2. The artificial occlusion covers a person in Views 2 and 3, as shown in Figure
4.5. The result of Figure 4.7 is competitive with the result in Figure 4.6. The
result of Table 4.3 is also competitive with the result in Table 4.2, indicating that the
proposed method is robust to large occlusions.
Setting 3
The methods used only one view for training in S3. Figure 4.8 depicts a confusion
matrix of the recognition accuracy averaged over all views in S3. Table 4.4 shows
the recognition accuracy results in S3. The rows except for Average, and the columns
except forProposed, in Table 4.4 indicate the view used for the training and detection,
respectively. The proposed method uses all views for detection. The proposed
method achieves high accuracy in all cases. Accuracy was high for the baseline
method in cases that were trained using one view and recognized actions using the
same view. However, the accuracy was very low for the baseline method when
trained using one view and recognizing actions in another view. These results
indicate that the multiview integration in the proposed method makes it robust to
changes in viewpoint.

Compared with S1, the accuracy of the proposed method was low, which means
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Table 4.3: Location estimation error for the IXMAS dataset in Setting 2.

Method
Spatial Distance

(pixel)
Temporal

Distance (frame)
Mean Std. Dev Mean Std. Dev

Proposed

View0 9.3 7.9 3.9 4.5
View1 8.1 6.7 3.9 4.5
View2 13.1 8.8 3.9 4.5
View3 12.9 8.2 3.9 4.5
View4 11.1 8.6 3.9 4.5
Average 11.1 8.6 3.9 4.5

0.86 0.09 0.03 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 
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Figure 4.8: Confusion matrix of our proposed method in Setting 3.
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Table 4.4: Recognition accuracy (%) for the IXMAS dataset in Setting 3.
PPPPPPPPPTraining

Test Proposed Hough
View0 View1 View2 View3 View4

View0 81.8 84.2 78.5 53.9 54.8 27.0
View1 83.0 77.0 83.9 59.1 58.2 26.1
View2 79.7 48.8 45.2 80.0 61.2 46.7
View3 88.8 55.2 57.9 69.4 88.5 27.3
View4 72.1 16.4 12.7 33.3 17.3 73.3
Average 81.1 82.0

Table 4.5: Means of the spatial error of location estimation (pixels) for the IXMAS
dataset in Setting 3.

PPPPPPPPPTraining
Test Proposed Hough

View0 View1 View2 View3 View4
View0 11.9 8.4 15.6 21.2 27.8 61.0
View1 9.9 19.1 7.1 19.7 29.7 62.7
View2 14.3 20.3 15.8 11.2 29.6 43.4
View3 13.0 25.5 24.0 28.2 11.7 95.8
View4 13.6 139.7 141.2 78.9 154.5 11.6
Average 14.7 10.5

that training data captured from various viewpoints improves accuracy even for the
multiview videos.

Tables 4.5 and 4.6 show the results of the spatial and temporal localization error
in S3, respectively. The Average row shows the distances averaged over all views
for training. The results in these tables shows similar tendencies to the accuracies
in Table 4.4.

UCR Videoweb Activities Dataset

We divided the 100 scenes into five sets for each action class and employed 5-fold
cross-validation in this experiment. In the training, we used 106 scenes captured
from one camera in addition to the 100 test scenes. We removed scenes that have
occlusions from the training data. The homography matrix in the dataset represents
the relation between each camera. The proposed method integrates votes not in
XG,YG,T-space, but in one of the views. Each video contains one action. Both our
proposed and the baseline method detected the position of the largest voting scores
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Table 4.6: Means of the temporal error of location estimation (frames) for the
IXMAS dataset in Setting 3.

PPPPPPPPPTraining
Test Proposed Hough

View0 View1 View2 View3 View4
View0 4.3 4.5 5.4 8.5 9.3 10.4
View1 4.2 5.3 4.3 7.2 8.0 8.8
View2 4.8 8.0 5.9 5.0 7.1 7.9
View3 4.8 10.8 8.8 5.8 5.1 7.5
View4 5.1 26.4 32.2 18.1 27.5 4.8
Average 5.4 5.4

Table 4.7: Results for the UCR Videoweb Activities dataset.

Method Recognition
Accuracy (%)

Spatial Distance
(pixel)

Temporal
Distance (frame)

Mean Std. Dev Mean Std. Dev
Proposed 95.3 16.6 29.4 1.9 1.8
Hough 87.0 19.8 56.8 5.1 17.8

as in Section 4.4.3.
Figure 4.9 depicts a confusionmatrix of the recognition accuracy of the proposed

method. Table 4.7 shows the recognition accuracy and localization error of the
proposed and baseline methods. Compared with the baseline method, the proposed
method achieves high recognition accuracy and low localization error. These results
indicate that vote integration in the proposed method is also effective in complex
scenes.

4.5 Summary

We proposed an action detection method for multiview video sequences to provide
robustness to orientation variety. Our method is based on a Hough voting framework
and homographic transformations. Wefirst vote for the action classes and human foot
positions in each view and integrate these votes using homographic transformations.
This integration enables us to robustly detect actions.
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Figure 4.9: Confusion matrix of our method for the UCR Videoweb Activities
dataset.
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Chapter 5

Vote Distribution Model for
Robustness to Motion Similarity

5.1 Introduction

This chapter focuses on the problem of motion similarity. If similar local motions
exist across different action classes, discriminating between suchmotions is difficult.
Because the Hough voting process of each local feature is performed independently,
the Hough-based method naturally votes for all relevant action classes. Therefore,
the Hough-based method is prone to casting votes for the wrong action classes and,
thus, detecting many false positives.

We propose a novel method for overcoming the false-vote problem by examining
the cause of false votes. Similar local features can cause false votes. These false
votes do not occur randomly; thus, they depend on relevant action classes. Hough-
based approaches essentially cast votes not only for a certain class but also for
other specific classes even when only one action is performed. These characteristics
are different based on each class and do not necessarily correlate. We assume
that the distribution of false votes includes important information necessary to
improving action detection. Our proposed method learns these characteristics. We
then introduce vote distributions, which represent the voting scores for each action
class, as shown in Figure 5.1. Our proposed method builds a model that represents
characteristics based on vote distributions. The method estimates likelihood using
the model and reduces the influence of false votes.

Themain contribution of this chapter is that our vote distributionmodel improves
the performance of Hough-based action detection by reducing the influence of false
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(a) Hough voting on a frame (c) Vote distribution

(b) Part of 2D slices of voting spaces
Get Up Turn Around Pick Up

Local feature
Ground truth position

0.5

0.4

0.3

0.2

0.1

0.0 Check Watch

Cross Arms

Scratch Head

Sit Down

Get Up
Turn Around

Walk
Wave

Punch
Kick

Pick Up

Figure 5.1: Hough voting and vote distribution. (a) This frame is an example of
the Get Up class. A Hough-based approach casts votes based on local features of in
the frame. (b) The votes can be visualized as 2D slices of voting spaces. The pixel
values of the slices are the voting scores for each action class. (c) A vote distribution
describes the voting scores for each action class at a given position. This vote
distribution is calculated at the ground truth position indicated by the circles.

votes caused by similar local motions across action classes. The experimental results
shown later in this chapter support this assertion.

The remainder of this chapter is organized as follows. Section 5.2 reviews
related studies. We explain our proposed method in Section 5.3 and analyze our
experimental results in Section 5.4. Section 5.5 summarizes the study in this chapter.

5.2 Related Work

Hough-based approachesmust handle false votes. Many studies have been conducted
that consider this problem for both object and action detection. One approach for
overcoming false votes involves generating a discriminative codebook. Maji et al.
and Wohlhart et al. proposed approaches to learning the discriminative weights
of the codebook using max-margin frameworks [Maji and Malik, 2009, Wohlhart
et al., 2012]. Some studies have adopted a supervised method for generating a
codebook using random forests [Gall et al., 2011] and locality-constrained linear
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coding [Vijay Kumar and Patras, 2013]. These studies have improved the training
step, which generates a codebook, to achieve robustness to false votes. Our proposed
method both constructs a vote distribution model in the training step and generates
a codebook. In addition, the proposed method does not restrict the type of code-
book generation method. We can therefore combine the proposed method with the
methods in this section.

Other studies have attempted to solve the problem of false votes by improving
the voting process. Razavi et al. indicated that sparsity of local appearance is an
effective measure for discriminating foreground and background features [Razavi
et al., 2012]. In the voting process, their method selects foreground features based
on sparsity measures and reduces the influence of background features. This method
is effective, but only for false votes generated by background features. Some studies
have attempted to group local features to reduce the independence of Hough voting
[Yarlagadda et al., 2010, Srikantha and Gall, 2014]. They have improved the voting
process to manage multiple dependent local features. In general, these studies have
improved the voting process, but only find the local maxima of votes at completion.
Our proposed method calculates vote distributions (including false votes) from the
voting space when voting is completed. The proposed method can also be combined
with these other methods to further improve the voting process.

Woodford et al. optimized vote weights for each class by minimizing entropy
in the voting space of each class separately when the voting process is completed
[Woodford et al., 2014]. They assumed that only one vote created by each local
feature is correct. This assumption is flawed when background features exist that
generate no correct votes. Their method would enlarge the weights of false votes
generated by background features during optimization. Our proposed method is not
affected by background features, unless they change the vote distributions.

Hoai and Zisserman introduced relative class score (RCS), which is similar to
vote distributions, for action recognition [Hoai and Zisserman, 2015]. RCS is a
vector representation of output scores of a multiclass action classifier. The main
difference between the vector representing vote distributions and RCS is whether
each method sorts the vector elements. The scores would become independent of
the action classes because of sorting, so that RCS-based action recognition could not
achieve satisfactory accuracy. We experimentally confirmed that vote distributions
are superior to RCS for Hough-based action detection.
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Figure 5.2: Flow of our proposed method. The orange boxes are our proposed
elements.

5.3 Hough-based Action Detection with Vote Distri-
bution Model

We introduce a vote distribution model to the conventional Hough-based method to
improve its robustness to false votes. Our proposed method reduces the influence
of false votes by learning the characteristics of Hough voting. Figure 5.2 shows the
flow of our proposed method. We further explain vote distributions in Section 5.3.1.
In Section 5.3.2, we demonstrate the training step of the vote distribution model.
Finally, we describe the detection step of our proposed method in Section 5.3.3.

5.3.1 Vote Distribution

We represent the characteristics of Hough voting using the voting scores for all action
classes. Similar local features generate false votes, although these false votes do
not occur randomly. Rather, they depend on relevant action classes. Conventional
Hough-based approaches basically cast votes for not only a certain class but also
other specific classes, as shown in Figure 5.3. We define the normalized voting scores
for all classes at a position as a vote distribution. The vote distribution represents
voting characteristics. Specifically, the vote distribution at position x ∈ R3 of scale
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Figure 5.3: Examples of vote distributions calculated at circle positions. The filled
and open circles indicate the ground truth and other positions, respectively. (a), (b),
and (c) are examples of the Get Up class, and (d) is an example of the Pick Up class.
The vote distributions of (a) and (b) are similar. These examples reveal that the
calculated vote distributions at the ground truth positions are similar if they are of
the same class.
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where v is the voting score represented by Equation (3.7), N is the number of action
classes, and Z is the normalization constant.

Figure 5.3 shows the characteristics of Hough voting represented by a vote
distribution. The vote distribution at the ground truth position of an action has a
high score on the correct class. The distribution also has a high score on classes
with similar local motions. In this figure, the distribution of the Get Up class shows
high scores on the Get Up and Pick Up classes, whereas the distribution of the Pick
Up class shows high scores on the Sit down and Pick Up classes. The characteristics
differ depending on each class and position and do not necessarily correlate. The
proposed method builds a vote distribution model by learning these characteristics.
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5.3.2 Training

To reduce the influence of false votes, our proposedmethod builds a vote distribution
model that represents the vote distributions of each class. Consider false votes for
wrong action classes generated by similar motions. If votes for the correct action
class and other specific wrong action classes exist in the training step, we can
estimate that the likelihood for the wrong action classes is low based on the trained
characteristics. This estimation enables us to reduce the influence of false votes.

To build a model that estimates likelihood for each class based on vote distri-
butions, we use a feature vector. A multiclass classifier trained using these vectors
can work as a vote distribution model and output likelihood p(c | V) using vote
distribution V.

Before extracting the vectors, the proposed method prepares the codebook de-
scribed in Section 3.2.4. The method then executes the conventional voting process
described in Section 3.2.4 on videos from the training data. We define vote dis-
tributions at the ground truth and surrounding positions as positive data, and vote
distributions far from the ground-truth position as negative data. The proposed
method builds the vote distribution model using the positive and negative data. We
note that the training videos for the codebook should be different from those for the
model. If they were the same, some votes would be cast at the ground truth position
perfectly. Positive data generated using such votes causes overfitting of the vote
distribution model.

In this study, we use random forests as the classifier. Therefore, a vote distribution
model is a nonparametric model based on random forests. The model calculates
likelihood p(c | V) based on vote distribution V(x, s). Here, the random forests
use vote distributions instead of local features. and adopt only the class uncertainty
measure of Equation (3.5) because the vote distributions do not have spatio-temporal
offsets.

5.3.3 Detection

In the detection step, our proposed method initially calculates votes using the con-
ventional voting process. We can then calculate the vote distributions using Equation
(5.1) and estimate likelihoods based on the distribution. The proposed method de-
tects actions using both the voting scores and likelihood, multiplying the scores by
the likelihood. Low likelihoods for wrong action classes estimated by the model
modulates the voting scores accumulated by false votes. The multiplied voting score
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of an action of class c at position x of scale s can be defined as:

v (c, x, s | F,V(x, s)) = v (c, x, s | F) p (c | V(x, s)) , (5.2)

The proposed method finds local maxima of Equation (5.2) for each action class
independently. The local maxima are candidate actions. The method uses the local
maxima that have voting scores greater than a threshold as detected actions.

Figure 5.4 shows an example of reducing the effect of false votes when using
the proposed method. The first row of the figure shows a video frame, the voting
scores, the likelihood based on vote distribution, and the product of the voting
scores and likelihood for the Get Up class. The second row of the figure provides
the same for the Pick Up class. The second, third, and fourth columns correspond to
v (c, x, s | F) in Equation (3.7), p(c | V(x, s)), and v (c, x, s | F,V(x, s)) in Equation
(5.2), respectively. The pixel values of (b) denote the effect of correct votes for the
Get Up class. The effect remains in (d) by using the high values estimated by the
proposed method in (c). In contrast, the pixel values of (e) refer to the influence of
false votes for the Pick Up class when theGet Up action is performed. This influence
is reduced in (g) using the low values estimated by the proposed method in (f). This
reduction enhances the robustness of the proposed method to false votes.

High values exist at non-ground-truth positions of the correct class and positions
of the wrong class, as shown in Figure 5.4 (c) and (f), respectively. These values
represent noise caused by estimation based on vote distributions. This kind of noise
often occurs at positions having extremely low voting scores, such as at values far
from the ground truth positions shown in (b) and (e). Because the vote distributions
are the normalized voting scores, as shown in Equation (5.1), a slight difference
in extremely low voting scores causes considerable variation in vote distributions
during normalization. Therefore, estimation at such positions is incorrect. However,
such noise does not considerably influence detection performance because such noise
is multiplied by extremely low voting scores.

Our proposed method assumes that the conventional voting process works well.
However, even if the voting process performs well, false votes caused by similar
motions lead to false detections. The proposed method reduces the influence of such
false votes to improve detection performance.
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(a) (b) (c) (d) 

(e) (f) (g) 

Figure 5.4: Reducing the influence of false votes. The first row shows a video frame,
the voting scores, the likelihood based on the vote distribution, and the product of
the voting scores and likelihood for the Get Up class. The second row lists the
same information for the Pick Up class. (a) is a video frame from Get Up. The
circles indicate the ground truth positions of the action in the video. The second
column visualizes 2D slices of voting spaces. The third column shows the estimated
likelihood based on the vote distribution. The fourth column shows the product
of the second and third columns. (g) shows that our proposed method reduces the
influence of false votes in (e), whereas the correct votes in (b) remain in (d).

5.4 Experiments

We evaluated our proposed method using two public action datasets: the IXMAS
[Weinland et al., 2006b] and UT-Interaction [Ryoo and Aggarwal, 2010] datasets.

We compared the proposed method with three baseline methods and a related
method proposed by Hoai et al. [Hoai and Zisserman, 2015]. The first method is the
conventional Hough-based action detection described in Section 3.2. The second
method adds nonmaximum suppression over action classes to the first method. The
voting score of the second method can be defined as

vmax (c, x, s | F) =
{
v (c, x, s | F) if c = cmax

x

0 otherwise,
(5.3)

where cmax
x = argmaxcV (c, x | V). We adopted the second method because the

voting score of the correct class is likely greater than that of other classes at its
ground truth position, as shown in Figure 5.3. If the voting score of the detection
class is not larger than that of other classes at its detection position, the detection
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is likely a false positive. The second method removes such detections. The third
method uses the vote distribution model. During the detection step, the third method
only uses the likelihood based on a vote distribution, whereas the proposed method
uses both the voting scores and likelihood. The related method uses the RCS. RCS
vectors are designed in a one-vs-all manner. The first element of an RCS vector is
the voting score of the target action class. All other elements of the vector are the
voting scores sorted in the descending order for the other action classes. Therefore,
RCS vectors identify only the target class, whereas our vote distributions identify all
classes by the original order of the classes. The method estimates class likelihood
based on RCS vectors.

We used STIP [Laptev, 2005] and HOG/HOF descriptors [Laptev et al., 2008]
for the local features of both the proposed and baseline methods. The parameter
settings were as follows: spatial scales σ2 = {2, 4, 8, 16, 32, 42} and temporal scales
τ2 = {2, 4}. The dimensions of the HOG and HOF descriptors were 72 and 90,
respectively.

The Hough-based methods must find the local maxima after calculating the
voting scores, such as in Equations (3.7), (5.2), and (5.3). In these experiments,
we used quick shift [Vedaldi and Soatto, 2008] to identify the initial coarse local
maxima. We then refined the local maxima using mean shift [Comaniciu and Meer,
2002].

We evaluated the methods using f-score. A detection was correct when the
detection class label was correct and the overlap ratio between the detection volume
and ground truth volume was greater than 0.5. We adopted the intersection-over-
union criterion for the overlap ratio.

5.4.1 Datasets

The IXMAS dataset is described in Section 4.4.1. The dataset provides ground truth
labels that include a time interval and human silhouettes for each action execution.
We defined the spatiotemporal center of the time interval and the bounding boxes
generated using the silhouettes as the ground truth of the action positions.

The UT-Interaction dataset [Ryoo and Aggarwal, 2010] contains videos of the
continuous execution of six action classes: Shake Hands, Hug, Kick, Point, Punch,
and Push. The dataset contains 20 sequences, including 162 action executions. The
dataset provides ground truth labels that include a time interval and a bounding box
for each action execution. We adopted the same definition for the ground truth of
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Punch Shake Hands
Kick

Push
Point Hug

Figure 5.5: Examples from the UT-Interaction dataset.

the action position as for the IXMAS dataset. Figure 5.5 shows examples from this
dataset. The resolution and frame rate of the videos are 720 × 480 pixels and 30
fps, respectively. In contrast with the IXMAS dataset, the UT-Interaction dataset
includes the simultaneous occurrence of multiple actions.

5.4.2 Results

IXMAS Dataset

We employed leave-one-actor-out cross-validation that uses the data of one actor
as test data and the remainder as training data. In the training step, the proposed
and third baseline methods built a vote distribution model. To avoid overfitting,
as described in Section 5.3.2, we divided the training data using the leave-one-
actor-out strategy in each validation iteration. We generated a codebook using the
larger dataset and generated training data for the vote distribution model using the
remainder. This generation was repeated while changing the division.

Table 5.1 lists the f-score averaged over all cameras and Figure 5.6 shows example
output from the proposed method. Standard, Max, and VD Only refer to the first,
second, and the third baseline methods, respectively. Hoai is the related method
using RCS [Hoai and Zisserman, 2015]. Avg is the f-score averaged over all 11
classes. The proposed method achieves the highest results of all methods, indicating
that using vote distributions improves action detection. The performance of Max
is superior to that of Standard, but inferior to that of the proposed method. Max
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Table 5.1: Average f-score for all cameras in the IXMAS dataset.
Method Check

Watch
Cross
Arms

Scratch
Head

Sit
Down

Get
Up

Turn
Around Walk Wave Punch Kick Pick

Up Avg

Standard 0.765 0.762 0.562 0.741 0.700 0.922 0.931 0.568 0.573 0.854 0.656 0.730
Max 0.784 0.792 0.622 0.820 0.745 0.959 0.931 0.614 0.637 0.857 0.702 0.769
VD Only 0.418 0.284 0.162 0.475 0.502 0.639 0.529 0.245 0.156 0.452 0.345 0.383
Hoai 0.780 0.795 0.607 0.819 0.747 0.945 0.956 0.589 0.577 0.844 0.696 0.759
Proposed 0.818 0.810 0.656 0.863 0.782 0.963 0.967 0.588 0.619 0.862 0.747 0.789

Get Up

Pick Up

Wave

Check Watch

Walk
Kick

Punch

Figure 5.6: Output examples of our proposedmethod on the IXMASdataset. Yellow,
red, and blue rectangles indicate true positives, false positives, and ground truths,
respectively.

only considers whether the voting score for a class is the maximum over all action
classes. In contrast, our proposed method uses the distribution of voting scores over
action classes. Therefore, the class that has a maximum score is insufficient, and the
distribution is essential for improved action detection performance.

VD Only performs the worst, whereas our proposed method performs the best.
VD Only uses the vote distribution model in the same manner as the proposed
method, but our proposed method uses the voting scores as well as the model. This
poor performance is based on the incorrect estimation described in Section 5.3.3.
Normalizing the vote distribution would generate an incorrect estimation at positions
with extremely low voting scores. To avoid the influence of noise, we can use a
threshold for the voting scores. If the sum of the voting scores at a position over all
action classes is lower than the threshold, themethod does not estimate the likelihood
based on the vote distribution and outputs probabilities of zero for all action classes.
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Figure 5.7: F-scores averaged over all action classes as a function of score threshold
on the IXMAS dataset.

Note that this threshold is different from the threshold for detection, and only
decides whether the estimation is performed or not. Figure 5.7 shows the results of
the methods using thresholding. The performance of VDOnly improves as the score
threshold increases. This result indicates that thresholding reduces the influence
of incorrect estimation. In contrast, the performance of our proposed method does
not vary with changes in thresholding. The proposed method multiplies the voting
scores by the likelihood and thus reduces the influence of incorrect estimation using
the low voting scores. Therefore, multiplication is essential to improving action
detection performance.

Our proposed method also achieves a higher f-score than Hoai, which indicates
that the vote distribution representation is superior to RCS for Hough-based action
detection. Figure 5.8 shows examples of vote distributions and RCS. The vote
distributions for Get Up and Pick Up have different characteristics (see (a) and (b)).
In contrast, RCSs for the two classes are similar because of sorting (see (c) and (d)).
Therefore, class-conscious vote distributions are more effective than RCS.

Table 5.2 lists the f-scores of each camera averaged over all 11 classes. The
proposed method outperforms the comparative methods, except with respect to
Camera 4. The results of all methods from Camera 4 are low. Camera 4 captured
the from overhead; the motion captured from this location does not possess sufficient
visual features for classes that contain upward and downward motions, such as Sit
Down and Get Up. Moreover, the aspect ratios in Camera 4 varied significantly
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Figure 5.8: Examples of vote distributions and RCS on the IXMAS dataset. (a) and
(b) are proposed vote distributions for Get Up and Pick Up, respectively. (c) and (d)
are the RCS of Get Up and Pick Up, respectively.

Table 5.2: Average f-score over all classes of each camera on the IXMAS dataset.
Method Cam0 Cam1 Cam2 Cam3 Cam4
Standard 0.748 0.752 0.732 0.806 0.615
Max 0.784 0.782 0.765 0.852 0.664
VD Only 0.418 0.284 0.162 0.475 0.502
Hoai 0.789 0.805 0.715 0.854 0.634
Proposed 0.823 0.824 0.783 0.872 0.642
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Figure 5.9: Precision-recall curves of Camera 0 in the IXMAS dataset. AP is the
average precision.

depending on the direction in which the person faced. We fixed the aspect ratio of
the detection volume at the average value over all ground truth labels in each camera
of the dataset; this fixed value cannot adapt to variation.

Figure 5.9 shows the precision-recall curves of the methods. The IXMAS dataset
has 11 classes and 5 cameras. The number of precision-recall curves for each class
and each camera is too large for visualization of the results. We therefore selected
three curves: the Sit Down, Get Up, Punch, and Pick Up classes of Camera 0.
Compared with the other methods, our proposed method achieves high precision for
each recall value. These results indicate that the proposed method is effective in
reducing false detections.

Figure 5.10 shows the confusion matrices for Standard and Proposed. For
example, the value of row Check Watch and column Cross Arms refers to the ratio
of detections in which Check Watch was detected while Cross Arms was performed.
Standard reveals some false detections between certain classes. For instance, the
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(b)(a)

Figure 5.10: Confusion matrix of: (a) Standard and (b) Proposed in the IXMAS
dataset.

method detected Sit Down when Pick Up was performed. This false detection might
be caused by the similar stooping motions that are part of Sit Down and Pick Up. In
our experiments, the proposed method reduced such false detections and improved
detection accuracy.

UT-Interaction Dataset

We employed 10-fold cross-validation that uses the data of two sequences as test
data and the remainder as training data. The dataset contains motions that are not
labeled. We placed such motions in the Others class for training. For detection, we
did not cast votes for any class if the local features were classified into the Others
class. For training the vote distribution models, we divided the training data as in
the previous experiment, except the 10-fold strategy was used for division instead of
the leave-one-actor-out strategy.

Table 5.3 lists the f-scores and Figure 5.11 shows examples of output when using
the proposed method. Avg is the f-score averaged over all six classes. Proposed
achieves the highest f-score compared to those from the other methods. Figure 5.12
shows the precision-recall curves of the methods. Our proposed method achieves
high precision for most recall values, as for the IXMAS dataset. These results show
that the proposed method is also effective when multiple actions occur simultane-
ously.
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Table 5.3: F-score on the UT-Interaction dataset.
Method Shake

Hands Hug Kick Point Punch Push Avg

Standard 0.750 0.894 0.698 0.645 0.327 0.710 0.670
Max 0.808 0.889 0.667 0.656 0.258 0.714 0.665
VD Only 0.576 0.680 0.294 0.471 0.128 0.491 0.440
Hoai 0.807 0.909 0.698 0.636 0.429 0.733 0.702
Proposed 0.873 0.870 0.700 0.657 0.313 0.833 0.708

Point

Hug

Push

Shake Hands

Kick Punch

Point

Figure 5.11: Output examples of our proposedmethod on theUT-Interaction dataset.
Yellow, red and blue rectangles indicate true positives, false positives, and ground
truths, respectively.
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Figure 5.12: Precision-recall curves in the UT-Interaction dataset. AP is the average
precision.
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(b)(a)

Figure 5.13: Confusion matrix of: (a) Standard and (b) Proposed for the UT-
Interaction dataset.

Figure 5.13 shows the confusion matrices for Standard and Proposed. In our
experiments, Standard frequently detected Push when Punch was performed, likely
due to the similar arm motions that are part of Push and Punch. Similarly, with
respect to the IXMAS dataset, the proposed method reduced the number of false
action detections, including similar motions in the UT-Interaction dataset.

The f-score of the proposed method for Punch is lower than that for Standard.
This resultwould only occurwhen there are fewer correct votes. The vote distribution
including such correct votes flattens out, as shown in Figure 5.14 (a). When the
distribution flattens out, the difference in frequency among action classes is small.
The likelihood of the correct action class based on such vote distribution tends to be
low. Figure 5.14 (b) and (e) show the relation between the original voting score and
likelihood based on a vote distribution. Each data point in these figures represents
a local maximum around the ground truth positions for the corresponding class.
Figure 5.14 (b) shows that the original voting scores for Punch are low. Per the low
score, the likelihood for Punch is low. The proposed method degraded the voting
score of the local maximum by multiplying by the likelihood. The threshold for
voting scores should be decreased to detect degraded local maxima as true positives.
The lower threshold would cause additional false positives, hurting the f-score for
Punch.

Similarly, Standard outperformed our proposed method for Hug. Vote distribu-
tions of the local maxima that have high voting scores (i.e., the number of correct
votes is large) are not flat, but peaky, as shown in Figure 5.14(c). The likelihood
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Figure 5.14: Voting scores and likelihood based on vote distribution. Each data
point in (b) and (e) represents a local maximum around the ground truth positions
for each class. (a) is the vote distribution of the local maximum described by the
orange triangle in (b). (c) and (d) are the vote distributions of the local maxima
described by the orange square and star in (e), respectively.

for Hug based on such distribution tends to be high. However, some local maxima
have flat vote distributions, as shown in Figure 5.14 (d). Figure 5.14 (e) shows that
such local maxima have low voting scores and the likelihood for Hug based on such
distributions tends to be low. Therefore, like Punch, the proposed method hurt the
f-score for Hug because the multiplied voting score decreased.

Our proposed method performed better than Hoai, except for Hug and Punch.
As mentioned above, the proposed method did not improve the f-score for the two
classes. This result also relates to above discussion.

The proposed method might degrade the robustness to occlusions in the Hough-
based method. If actions are occluded, the vote distributions are varied and this
variation might cause poor estimation. Here, we evaluated robustness to occlusions
using the UT-Interaction dataset with artificial occlusions, which we generated for
each action. Figure 5.15 shows examples of the occlusions. We divided the width of
the bounding box of each action equally into 10 regions. We then randomly chose
regions to occlude. We used the original local features in the training step. In the
detection step, we removed the local features in the occluded regions. Other settings
were the same as in the previous experiment using the UT-Interaction dataset.
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Figure 5.15: Examples from the UT-Interaction dataset with artificial occlusions.
There are two occluded regions in these examples.

Figure 5.16 shows the f-score using the dataset with the artificial occlusions.
The results when the number of occluded regions is zero are the same as those in
Table 5.3. The f-score of both the Standard and Proposed methods did not decrease
significantly as the number of occluded regions increased. Therefore, the proposed
method remains robust to occlusions and improves detection accuracy.

5.5 Summary

In this chapter, we proposed a novelHough-based action detectionmethod to enhance
the method’s robustness to false votes caused by similar motions. Our proposed
method employed vote distributions, which represent the voting scores for each
action class. The proposed method learns the Hough voting characteristics based on
vote distributions to reduce the effect of false votes. The main contribution of this
chapter is that our vote distributionmodel improves the performance of Hough-based
action detection by reducing the influence of false votes caused by similarities in
local motions across action classes. In experiments, we confirmed that the proposed
method reduces the number of false positive detections and improves action detection
accuracy compared with conventional methods. The proposed method achieved f-
scores of 0.789 and 0.708 on the IXMAS and UT-Interaction datasets, respectively.
These results show that the proposed method works well in a controlled environment
that contains multiple actions captured by a stationary camera.
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Figure 5.16: F-score averaged over all action classes in the UT-Interaction dataset
with artificial occlusions.
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Chapter 6

Time-warped Voting for Robustness
to Temporal Variations

6.1 Introduction

This chapter focuses on the problem of temporal variations in action detection.
Conventional Hough-based action detection methods perform poorly for actions
with temporal variation. Most Hough-based methods cast votes in X,Y,T−space
based on spatial and temporal relations between feature positions and action center
positions. If any such variations exist, the temporal relation of the test data is
different from that of the training data. Some votes do not concentrate on action
center positions because of this difference as shown in Figure 6.1. The scattered
votes lead to poor detection performance.

There are some methods for handling temporal variations, such as dynamic
time warping (DTW) [Sakoe and Chiba, 1978] and hidden Markov models (HMM)
[Bobick andWilson, 1997]. Zhou andTorre aligned action sequences based onDTW
[Zhou and Torre, 2012]. Lv and Nevatia recognize actions using their proposed
model, which is based on HMM [Lv and Nevatia, 2007]. These methods can be
applied to time series data. The Hough-based methods transform feature positions
into voting positions. The transformation discards the temporal structure of the
actions. Methods like DTW cannot easily be applied to Hough-based methods.

In this chapter, we propose a novel method for overcoming the temporal variation
problem. We introduce time warping of votes using temporal offsets. We assume
that even if scattered votes decrease the voting scores at the correct action center
positions, the scores at the positions still form local maxima. Our proposed method
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Figure 6.1: Hough voting and temporal variations of actions. Both the left and right
video sequences contain Kick actions, though the duration of the actions differs.
Some votes in the right sequence by a Hough-based method, using the left sequence
as training data, are temporally scattered.

calculates offsets by finding the local maxima of the votes from voting positions.
These offsets warp the scattered votes to concentrate them, making the method
robust even in the presence of temporal variations.

6.2 Time-warped Voting

We propose a novel Hough-based method to overcome temporal variations in ac-
tions. Temporal variations in actions scatter votes in the temporal dimension. As
shown in Section 3.2, Hough-based methods cast votes based on the spatiotemporal
offsets between local feature positions and the action positions of the training data.
When temporal variations occur between the training and test data, the offsets in
the temporal dimension are different even if they are of similar features. These dif-
ferences prevent the votes from concentrating on the correct action center positions
and lower the resulting voting scores at these positions. In addition, the differences
are propagated to the future temporal relation of the actions. Therefore, temporal
variations affect the performance of the method significantly.

Our proposed method concentrates scattered votes by introducing another tem-
poral offset to each local feature. The offsets are parameters to warp votes from
their scattered positions to the correct action center positions. The reason why the
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proposed method does not introduce the offset to each vote will be described later.
Hough voting equations, with time warped voting, correspond to Equations (3.1),
(3.2), and (3.7), and are represented by the following equation:

p(c, x, s | fy, y, θy) =
∑

i

p(x, s | c,Ci, y, θy)p(c | Ci)p(Ci | fy), (6.1)

p(x, s | c,Ci, y, θy) =
1
|Ac

i |
∑

[d,s′]∈Ac
i

G([x, s], [(y + d) + θy, s′]), (6.2)

v (c, x, s) | F,Θ) =
∑
fy∈F
θy∈Θ

p
(
c, x, s | fy, y, θy

)
, (6.3)

The calculated offset of feature fy is θy = [0, θt
y] ∈ R3, andΘ is the set of the offsets.

The spatial dimensions of the offsets are zero vectors because the offsets only affect
the temporal dimension.

To calculate optimal offsets, we need the correct action positions. Obviously,
the correct positions are unknown, so we need a measure for the correct positions.
Some votes are scattered by temporal variations but are concentrated in the correct
positions. Therefore, we assume that the voting scores obtained by the conventional
method at the correct positions are forming local maxima. The proposed method
adopts the voting scores as the measures and calculates the offsets from the given
voting positions to the positions of the local maxima of the voting scores.

The proposedmethod first calculates the offset of each vote. Figure 6.2 shows the
offset calculation. The proposed method finds the closest local maximum position
in the temporal dimension around the original voting position using mean shift.
As described above, we assume that the correct action center positions form local
maxima. Let vt ∈ R1 and mt ∈ R1 be temporal positions of a vote and a local
maximum, respectively. Offset θ is calculated as follows: θ = mt − vt. As shown
in Equation (3.1), the Hough-based method casts multiple votes based on one local
feature. Multiple offsets are also calculated based on one local feature.

The proposed method selects one offset for each local feature. We assume,
similar to [Woodford et al., 2014], that only one vote generated by each local feature
is correct. We consider that using all the offsets of each vote to the closest local
maximum position would lead to false concentrations. Therefore, we propose to
select the most reliable offset. Let vy,i ∈ R3 and θy,i ∈ R3 be the voting position and
the offset of the i-th vote of feature fy, respectively. The proposed method selects the
best offset (i.e., the highest score) based on the voting score at the local maximum
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Figure 6.2: Time-warping of a vote. A temporal offset for warping is calculated
by finding the closest local maximum. The warping gains the voting score at the
maximum position.

position by the following equation:

i∗ = arg max
i

v
(
cy,i,my,i, sy,i | F

)
, (6.4)

where cy,i is a class label of the i-th vote of feature fy, my,i = vy,i + θy,i is a local
maximum position, and sy,i is a local maximum scale. The proposed method uses
θy,i∗ as θy. We expect that the selected offsets gain voting scores only at the correct
positions. We handle time warping unreliable votes using the same selected offset.
This rough warping may scatter unreliable votes and lower the voting scores at false
local maxima.

The proposed method finds local maxima of Equation (6.3) using the calculated
offsets. The local maxima are candidate actions. The method uses the local maxima
that have voting scores greater than the threshold as detected actions.
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6.3 Experiments

We evaluated our proposed method using the UT-Interaction dataset [Ryoo and
Aggarwal, 2010], which is described in Section 5.4.1. In these experiments, we
compared the proposed method with two baseline methods. The first method is the
conventional Hough-based method described in Section 3.2. The second method
also uses time-warped voting. However, where the proposed method selects reliable
offsets using Equation (6.4), the second baseline uses naïve offsets to the found local
maximum from each vote without selection.

Hough-basedmethodsmust find localmaxima after calculating the voting scores.
In these experiments, we used mean shift [Comaniciu and Meer, 2002] to do so.

6.3.1 Evaluation Method

Both our proposed and the baseline method detected action center positions. We
separately calculated the spatial and temporal Euclidean distances between the de-
tected and ground truth action positions. If both the calculated spatial and temporal
distances were lower than the given thresholds, we defined the detection as a success.
The spatial and temporal thresholds were set to 50 pixels and 30 frames, respec-
tively. We calculated the precision, recall, and average precision for each class while
changing the thresholds for the local maxima in Equations (3.7) and (6.3).

We employed 10-fold cross-validation that uses the data of two sequences as the
test data, and the remainder as the training data. We split the data randomly for the
cross-validation and changed the split three times. Results shown in the next section
are averages of them.

The dataset contains motions that are not labeled. We assigned these motions
the Others class during training. During detection, we did not cast votes for any
class if the local features were classified as Others.

6.3.2 Results

Figure 6.3 shows the precision-recall curves of the proposed and the baseline meth-
ods, and Table 6.1 lists the average precision of the proposed and baseline methods,
where Selected Offset, Naïve Offset, and Hough refer to our proposed method, the
second baseline method, and the first baseline method, respectively. Mean AP is the
mean average precision over all six classes. Compared with both baseline methods,
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Figure 6.3: Precision-recall curves for one of three cross-validations on the UT-
Interaction dataset.
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Table 6.1: Average precision on the UT-Interaction dataset.
Method Shake

Hands Hug Kick Point Punch Push Mean
AP

Selected Offset 0.778 0.89 0.612 0.711 0.462 0.784 0.706
Naïve Offset 0.76 0.884 0.62 0.721 0.414 0.758 0.693
Hough 0.695 0.871 0.557 0.719 0.411 0.74 0.666

Table 6.2: Gains of averaged voting scores at local maxima.

Base Score
(Hough)

Score Gain
(Selected
Offset)

Score Gain
(Naïve Offset)

Number of
Votes

True Positive 1.49 0.242 0.869 4533.1
False Positive 1.01 0.0376 0.540 2752.5

the proposed method achieved the highest mean average precision. These results in-
dicate that time-warping by selected temporal offset contributed to improvements in
action detection performance. The Naïve Offset method was inferior to the Selected
Offsetmethod. Because theNaïve Offsetmethodwarps every vote to the closest local
maximum, it may warp unreliable votes to false local maxima. The vote warping by
naïve offsets may concentrate false votes and reduce these improvements. Therefore,
the selection of only the reliable offset for each local feature is important.

To analyze the reasons behind this improvement, we confirmed the gains in
voting score at the local maxima using the Selected Offset and Naïve Offsetmethods,
as shown in Table 6.2. The concentration of votes by time-warping increases the
voting scores at local maxima. The values in the table are the averages at the
local maxima that have higher scores than the best threshold for the f-scores of the
precision-recall curves. Base Score is the average score of the Hough method, and
Score Gainmeans the difference from the Base Score. The gains at the local maxima
of true positives are higher than those at the local maxima of false positives. The
higher gains explain these improvements.

We also confirmed that the correlation coefficients between the numbers of votes
and the gains by the Selected Offset and Naïve Offset methods are 0.520 and 0.797,
respectively. The numbers of votes around the true positives were higher than those
around the false positives, as shown in Table 6.2. These results indicate that many
votes were cast for correct action positions even if temporal variations of the actions
exist. Time-warping can concentrate many votes around the correct positions and
improve the voting scores.
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Table 6.2 also indicates the significant improvements in the Selected Offset
method. Consider the ratio of the gains at the local maxima of the true positives
to those at the local maxima of the false positives. The ratio by the Selected Offset
and Naïve Offset methods are 6.44 and 1.61, respectively, meaning that the Selected
Offset method only improves scores at the local maxima of the true positives. The
high ratio explains the significant improvements in the Selected Offset method.

The improvement by the Selected Offset method for the Push class was the
highest, whereas the improvement for the Point class was the lowest. The difference
between the two classes is the number of local features extracted from the actions of
the classes. The actions of the Point class include only small arm motions. Because
few local features are extracted from such small motions, a summation of the scores
based on the local features tends to be low. The Selected Offset method selects
reliable offsets that have the highest voting scores. Therefore, the Selected Offset
method infrequently selects the offsets for classes that lead to low scores, such as
the Point class. This infrequency results in the lowest rate of improvement.

We assumed that voting scores at correct action center positions form local
maxima. Maximum recall for most classes using the conventional method is nearly
one, as shown in Figure 6.3. If the positions of some actions did not form local
maxima, the maximum recall was smaller. Therefore, this result indicates that our
assumption is valid.

The proposedmethod improved precision when the recall was of moderate value;
its improvement when recall was high was small. The proposed method calculates
offsets based on conventional voting scores. The proposed method is not effective if
the voting scores are low (i.e., the votes are too scattered). When recall is high, the
evaluation focuses on local maxima that have low voting scores, resulting in little
improvement.

6.4 Summary

In this chapter, we propose a novel Hough-based action detection method that is
robust to the temporal variations of actions. We introduce time-warping by temporal
offsets to concentrate scattered votes in the correct temporal action positions. The
proposed method calculates offsets based on the votes generated by the conventional
Hough-basedmethod and selects an appropriate one for warping. We experimentally
confirmed that the selection of the offsets contributed to the improvement in average
precision and achieved higher results for the UT-Interaction dataset compared with
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the conventional method.
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Chapter 7

Looking into the Number of Local
Features

7.1 Introduction

Variations, such as occlusions, human orientation variety, temporal variations, and
action manners variety, change not only the feature descriptors of actions but also the
number of available local features. Because the Hough-based method accumulates
votes based on each local feature, voting scores depend on the number of local
features. The conventional Hough-based method uses a fixed threshold for voting
scores. Therefore, these variations mean that setting an appropriate threshold is
difficult. To detect actions with few local features, the threshold should be low.
However, a low threshold generates false positives for actions with many local
features.

In this chapter, we propose a method that is robust to variations in the number
of local features. Our proposed method improves two parts of the conventional
Hough-based method: local feature extraction and detection thresholding. First, the
proposed method reduces the dependency of the number of local features based on
the spatial scales. To accurately detect actions with varying spatial scales, Hough-
based methods cast votes for multiple scales by scaling the input video. The number
of local features extracted from each scale varies. The proposed method adjusts
the number of local features for each scale by random sampling or by changing
the sampling stride. Second, the proposed method solves the problem of setting
an appropriate threshold for voting scores. The number of local features depends
on many factors in addition to spatial scale. The proposed method determines the
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Figure 7.1: Thresholding for voting scores.

threshold based on the number of local features. Figure 7.1 shows the difference
in thresholding between the conventional and proposed methods. The conventional
Hough-basedmethod performs constant thresholding without considering variations
in the number of local features. In contrast, the proposed method uses a linearly
changing threshold (i.e., a high threshold for actions contributingmany local features
and a low threshold for those contributing few). Therefore, the proposed method can
detect actions against a variety of numbers of computed local features while avoiding
false positives from actions contributing many local features. The proposed method
adapts it thresholding by learning the relation between the number of local features
and voting scores.

7.2 Number of Local Features

In this section, we explain our proposed method. Because Hough-based action
detection accumulates votes based on each local feature, as shown in Equation (3.7),
voting scores depend on the number of local features. The proposed method solves
the problem caused by this dependency by improving two parts of the conventional
Hough-based method. Section 7.2.1 explains the improvements to feature extraction
and Section 7.2.2 describes the method’s adaptive thresholding technique.
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7.2.1 Scale-Adaptive Adjustment for the Number of Local Fea-
tures

Spatially scaling input videos is effective for detecting actions with varying spatial
scales. The number of local features extracted from actions depends on their spatial
scale. Large scales lead to many local features. Therefore, even if no action occurs
at large scales, the voting scores at these scales tend to be large, causing false
detection and lower the accuracy of the scales of detected actions. Note that the
method described in this section is unnecessary if an extraction method for local
visual features has perfect invariance for scale changes.

Our proposed method adjusts the number of local features extracted from each
scale by random sampling or by changing a sampling stride. The number of local
features is adjusted to themaximum scale. The adjustment method differs depending
on the extraction method of local visual features. When using sparse local visual
features, as with STIP, the proposed method increases the extracted local features.
The proposed method iterates to duplicate a local feature selected randomly for
each scale until the number of local features reaches that of the maximum scale.
However, when using dense local visual features, such as DTs, the proposed method
adjusts the sampling stride of the dense features. Let Wmax be the sampling stride of
maximum scale smax. The proposed method calculates the sampling stride of scale s
as Wmax(s/smax). These adjustment methods reduce the dependency on the number
of local features based on spatial scale.

7.2.2 Thresholding Based on the Number of Local Features

Our proposed method determines appropriate thresholds for voting scores based on
the number of local features. In the detection step of the Hough-based method, we
cannot know the actual number of local features extracted from each action. Instead,
the proposed method calculates the number of local features that cast votes for a
detected action. The number of local features associated with the class c action
detected at position x of scale s can be defined as:

n =
��{fy | p

(
c, x, s | fy, y

)
> 0, fy ∈ F

}�� . (7.1)

To determine the threshold, the proposed method learns the relation between
the number of local features and voting scores using a linear SVM. Feature vectors
for the SVM have two dimensions: the number of local features and the voting
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scores. Let g = an+ b be the decision boundary learned by the SVM. Here, n is the
number of local features, g is the voting score, and a and b are the learned slope and
intercept. The slope represents the relation between the number of local features
and the voting scores. The proposed method thresholds using the straight line that
possesses the learned slope, as shown in Fig 7.1. The proposed method calculates
threshold τn based on the number of local features n using the following equation:

τn = an + τb, (7.2)

where τb is a base threshold. When a = 0, the threshold is the same as that of the
conventional method. The proposed method does not use learned intercept b for
threshold calculation. Therefore, we can control the trade-off between precision and
recall using the base threshold.

To generate training data for the linear SVM, the proposed method generates
codebook forests through the conventional training steps described in Section 3.2.2.
The proposed method then casts votes and finds the local maxima in the voting
spaces through the conventional detection steps described in Section 3.2.3. Each
local maximum has a voting score. The number of local features associated with
each local maximum is calculated using Equation (7.1). The proposed method uses
the local maxima as the training data containing the voting scores and the number
of local features. Here, the local maxima of true positives and false positives are
positive and negative samples, respectively. The training data for the random forests
and SVM should be split, because the same training data lead to overfitting.

7.3 Experiments

Weused theUT-Interaction dataset [Ryoo andAggarwal, 2010] in these experiments.
The description about the UT-Interaction dataset is in Section 5.4.1.

7.3.1 Experimental Setup

We employed STIPs and DTs as sparse and dense extraction methods for local visual
features, respectively. The STIPs used HOG and HOF descriptors. The DTs used
trajectory, HOG, HOF, and MBH descriptors.

A detection is correct when the detection class label is correct and the overlap
ratio between the detection volume and ground truth volume is greater than 0.5. We
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adopted the intersection-over-union criterion for the overlap ratio.
To evaluate the methods, we calculated f-scores while changing the voting score

thresholds. The following results show the maximum f-score. We employed 10-fold
cross-validation that uses the data of two sequences as test data and the remainder
as training data.

7.3.2 Results

Table 7.1 shows the f-scores of the conventional and proposed methods. Conven-
tional is the conventional Hough-based method described in 3.2. Adjust and Thresh
are the proposed methods using only the improvements described in Section 7.2.1
and 7.2.2, respectively. Adjust-Thresh is the proposed method using both new parts.
The Adjust-Thresh method performs the proposed adjustment before voting, then
casts votes, finds local maxima, and performs the proposed thresholding after the
voting process. Avg is the f-score averaged over all six classes. When STIPs are
used, the average f-score of the Adjust and Threshmethods improves compared with
that of the conventional method. This result indicates that both parts of the proposed
method are effective for action detection. The Adjust-Thresh method improves the
f-score for all classes compared with the conventional method and achieves a higher
f-score for most classes compared with Adjust and Thresh. The results when using
DTs are similar to those derived from using STIP. The proposed method works well
for both sparse and dense local visual features.

Figure 7.2 shows an example of a trained linear SVM for the Shake Hands
class when using STIPs. The circles and triangles in this figure are true and false
positives, respectively, of the Hough-based method. Note that they are samples for
training the linear SVM. As the number of local features increased, the voting scores
increased. The straight line indicates the decision boundary of the linear SVM,
which is between the true and false positives. The slope of the line represents the
relation between the number of local features and voting scores. If the conventional
method uses threshold τb = 2, it detects many false positives with many local
features. In contrast, the proposed method can reduce false positives using adaptive
thresholding per this decision boundary.

The proposed method may degrade robustness to occlusions in the Hough-
based method. If actions are occluded, the number of local features varies, and
this variation may generate improper threshold calculations. Here, we evaluated
robustness to occlusions using the UT-Interaction dataset with artificial occlusions.
Figure 7.3 shows examples of the occlusions. We divided the width of the bounding
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Table 7.1: F-scores of the conventional and proposed method.
Method Shake Hands Hug Kick Point Punch Push Avg

STIP
Conventional 0.786 0.870 0.408 0.618 0.290 0.667 0.606
Adjust 0.764 0.894 0.549 0.618 0.238 0.723 0.631
Thresh 0.868 0.870 0.455 0.607 0.303 0.717 0.637
Adjust-Thresh 0.836 0.917 0.558 0.618 0.255 0.793 0.663

Dense Trajectories
Conventional 0.690 0.889 0.667 0.576 0.282 0.767 0.645
Adjust 0.769 0.909 0.791 0.491 0.385 0.786 0.688
Thresh 0.786 0.894 0.667 0.625 0.339 0.815 0.687
Adjust-Thresh 0.840 0.930 0.810 0.597 0.448 0.857 0.747
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Figure 7.2: Example of a trained linear SVM for the Shake Hands class using STIPs.
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Figure 7.3: Examples from the UT-Interaction dataset with artificial occlusions
represented by black regions.

box of each action equally into five regions. We then randomly chose regions to
occlude. We used all original local features in the training step, but in the detection
step, we removed the local features in the occluded regions. All other settings were
the same as those in the previous experiment.

Figure 7.4 shows the f-score when using the dataset with artificial occlusions.
The f-score of each method with artificial occlusions did not decrease significantly
compared to that without occlusions. The proposed method remains robust to
occlusions and improves detection accuracy. This result indicates that occlusions
does not change the relationship between the number of local features and voting
scores, in despite of changing the number of local features.

7.4 Summary

Weproposed a novelHough-based action detectionmethod that is robust to variations
in the number of local features. Our proposed method improves two parts of the
conventional Hough-based method, the extraction of local features and threshold
detection. The proposed method reduces the dependency of the number of local
features based on spatial scale. It adjusts the number of local features for each
spatial scale using random sampling or changing sampling strides. In addition,
the proposed method determines appropriate thresholds for voting scores based on
the number of local features by learning the relationship between the number of
local features and voting scores. We experimentally confirmed that both parts of
our proposed method improve f-scores when extracting both sparse and dense local
visual features.
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Figure 7.4: F-score averaged over all classes on the UT-Interaction dataset with
artificial occlusions.
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Chapter 8

Conclusion

8.1 Summary

In this thesis, we improved robustness of the Hough-based action detection in var-
ious environments. Chapter 1 presented the difficulty of action detection and the
contributions of this study. Various factors such as occlusions, human orientation
variety, motion similarity, temporal variations, and action manners variety make
accurate action detection difficult. We focused on the Hough-based approach for
action detection. An advantage of the Hough-based approach is the robustness to
occlusions. In addition, we proposed the methods that give the robustness to other
four factors: human orientation variety, motion similarity, temporal variations, and
action manners variety.

In Chapter 2, we discussed the related work of this study. Our Hough-based
approach uses the local feature representation. The local feature representation
gives the robustness to occlusions whereas the discrimination ability is inferior to
the global feature representation. Compared with the other detection approaches
(i.e. the sliding window and action proposals approach), an advantage of the Hough-
based approach is computational efficiency.

Chapter 3 presented the basic algorithm of the Hough-based approach. The
approach casts votes for action classes, positions and scales based on the local
features. The approach finds local maxima in the voting space and detects the local
maxima that have voting scores over a threshold as actions.

In Chapter 4, we discussed the problem of the variety of human orientations
relative to cameras. Appearances of actions change depending on relative human
orientation against cameras. Using multiview video is one solution for this problem.
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To use multiview videos in Hough-based action detection, we proposed the integra-
tion of Hough votes by homographic transformations. We assume that human feet
touch the ground plane when they start an action. This assumption enables vote
integration in the ground plane. In experiments, we confirmed that our proposed
methods used multiview information effectively for vote integration and achieved
robustness to human orientation variety.

Chapter 5 focused on the problem of false votes caused by motion similarity.
If similar local motions exist between different action classes, the Hough-based
method is prone to cast false votes for wrong action classes because discriminating
such motions is difficult. Our proposed method employed vote distributions, which
are distributions of the voting scores for each action class. The proposed method
learns the characteristics of Hough voting based on vote distributions to reduce the
effect of false votes. Experiments showed that the proposed method reduces the
number of false positive detections in similar action classes. These reductions make
the method robust to motion similarity.

In Chapter 6, we discussed in the problem of temporal variations. Temporal
variations scatter Hough votes in the temporal dimension. We introduced the time-
warping of votes to concentrate scattered votes in the temporally correct action
positions. The proposed method calculates the offsets between the scattered voting
positions and the concentrated positions by finding temporal local maxima and
selects an appropriate one for the warping. We experimentally confirmed that the
proposed time-warping concentrates scattered votes and contributes to robustness
to temporal variations.

Chapter 7 focused on variations in the number of local features that are caused
by factors, such as occlusions, human orientation variety, temporal variations, and
action manners variety. The proposed scale-adaptive adjustment for the number
of local features and thresholding based on the number of local features contribute
to solving this problem. In experiments, we confirmed that our proposed method
reduces the influence of the number of local features and improves action detection
performance. Reducing the influence improves robustness to human orientation
variety, temporal variations, and action manners variety in different aspects from
the three methods above.

We focused on the robustness in this study. The robustness is important especially
for the real world situations. Combining our four proposed methods contribute the
robustness to five factors: occlusions, human orientation variety, motion similarity,
temporal variations, and action manners variety. We expect that the robustness
advances action detection to the real world situations.
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8.2 Future Direction

This study focused on the detection of actions, which are the mid-level elements in
the action hierarchy. However, some problems exist in applying action detection to
real-world situations. In addition, activities, which are the top-level elements in the
action hierarchy, should be also considered to understand humans in a scene. In the
following, we discuss these future directions.

8.2.1 Online Action Detection

In this study, we focused on offline action detection. Online action detection is
also important for some applications, such as robots that support and communicate
with humans. In offline action detection, whole video sequences are available. In
contrast, online action detection uses video streams as input and detects actions
using only the past and current frames at each frame. Online detection is important
because computers must react to human actions not when they are finished, but at
the right time.

In online action detection, the following are important:
1) Real-time processing: to process continuous video streams, real-time processing
is required. In this study, we did not consider processing speed. Hough-based
methods have the advantage of computational efficiency. The proposed methods,
however, cannot achieve real-time processing. One of the time-consuming parts of
this method is the feature extraction. Motion features are important, but calculating
optical flow, which is a typical motion feature, is slow. Fast methods for motion
features make an impact on real-time action detection. Recent work proposed
motion representations for action recognition using end-to-end learning by CNNs
[Tran et al., 2015, Diba et al., 2016]. These representations achieve over 200
fps. Combining these representations with our detection framework would achieve
real-time action detection.
2) Early detection: computers must detect actions using a part of an action sequence
for online action detection. In this study, we confirmed that our proposed methods
are robust to occlusions. Early detection situations are similar to occlusions; early
detection observations are lacking in the temporal dimension, whereas those of
occlusions are lacking in the spatial dimensions. Therefore, the proposed methods
would work well for early detection. Some methods, such as recurrent neural
networks, use time series models to represent temporal dynamics [De Geest et al.,
2016, Li et al., 2016]. These methods are also effective for early detection. In
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addition, considering activities, as well as actions, could be useful in online action
detection. Activities represent interactions of multiple people when multiple people
exist in a scene. Actions in interactions are related to each other. Past actions would
contribute the early detection. The work building the model that manages the action
hierarchy such as [Lan et al., 2012a, Amer et al., 2014] would be effective for this
task.

8.2.2 Activity Detection

Detection of only actions is insufficient for some applications, such as surveillance
and robots. For example, using individual actions cannot judge suspicious activities
from surveillance camera data and robots should understand the intentions behind
activities to communicate with and support humans. Therefore, activity detection
is necessary in addition to action detection.

Some approaches that use graphical models [Lan et al., 2012b] or context-free
grammars [Ryoo and Aggarwal, 2011] have been proposed to represent high-level
activities. These approaches capture the relationships between actions in a scene.
These approaches have achieved good results in activity recognition but can work
for action detection in only limited situations. Activity detection in complex scenes
is still an open problem. A difficult problem is segmentation of each activities.
Consider the activity that includes multiple actions occurs in a complicated scene,
as well as the surrounding actions that do not relate to the activity. It is difficult
to judge whether or not the actions relate to the activity because the intra-class
variations of activities is very large. Hough-based approaches can group local
elements by transforming them to the parameter space. Managing actions as local
elements and applying a Hough-based approach would be a possible solution.
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