平成28(2016)年度 博士学位論文

カーボン系硬質膜の摩擦面その場 観察による低摩擦発現メカニズム の解明

西村 英典

名古屋大学大学院

工学研究科 機械理工学専攻 機械科学分野

先端材料・創製工学講座 生産プロセス工学グループ

梅原研究室 博士課程後期課程

目次

1	1			
1				
1				

目 次

第1章 緒論1
1.1 本研究の位置づけ1
1.2 カーボン系硬質膜の低摩擦特性と低摩擦発現メカニズム5
1.2.1 窒化炭素(CNx)膜の低摩擦特性と低摩擦発現メカニズム5
1.2.2 水素含有 DLC(a-C:H)膜の低摩擦特性と低摩擦発現メカニズム12
1.3 従来提案されている低摩擦発現メカニズムの解明手法に対する問題
点とその解決策14
1.4 摩擦面その場観察手法16
1.5 本論文の目的19
1.6 本論文の構成
第2章 反射分光分析による摩擦中摩擦面その場評価手法の提案23
2.1 緒言
2.2 反射分光分析により摩擦中に測定すべき量の測定可能性の検討24
2.2.1 反射分光分析24
2.2.2 カーボン系硬質膜の摩擦において摩擦中に測定すべき量の抽出
と反射分光分析による測定可能性の検討
2.3 摩擦面その場観察摩擦試験機
2.4 反射分光分析による構造変化層及び油膜の摩擦中測定手法の提案38
2.4.1 摩擦中の反射率測定手法の提案
2.4.2 光学モデルの構築による構造変化層及び油膜測定手法の提案40

2.4.3	カーボン系硬質膜内の化学結合の誘電率46
2.5 反	射分光分析によるカーボン系硬質膜及び油膜の摩擦中測定可能性
のオ	検討
2.5.1	検討方法
2.5.2	測定された反射率スペクトルの時間安定性の検討61
2.5.3	モデル反射率スペクトルと実際に測定された反射率スペクトル
	との誤差63
2.5.4	カーボン系硬質膜厚さ,構造変化層厚さ及び化学結合割合の測
	定可能性の検討65
2.5.5	材料の分極率体積の測定可能性の検討75

- - - 3.2.2 摩擦中その場観察試験方法......101
 - 3.2.3 摩擦試験後の摩耗痕及び油に対する試験方法......102
 - 3.2.3.1 原子間力顕微鏡による表面粗さ測定102
 - 3.2.3.2 AFM ナノスクラッチ試験による薄膜硬さの測定103

3.3 摩擦中その場観察試験結果106
3.3.1 CNx 膜の乾燥ガス中における摩擦試験106
3.3.2 CNx 膜の PAO 油中における摩擦試験114
3.4 摩擦試験後の摩耗痕及び油に対する試験結果124
3.4.1 CNx 膜の乾燥ガス中における摩擦試験124
3.4.2 CNx 膜の PAO 油中における摩擦試験127
3.5 考察130
3.5.1 反射分光分析による構造変化層及び油膜の測定値の最小分解能 の第出
3.5.2 CNx 膜の乾燥カス中における低摩擦発現メカニスムの提案132
3.5.2.1 構造変化層硬さの摩擦係数に及ぼす影響
3.5.2.2 摩擦モデルの適用による低摩擦発現メカニズムの提案138
3.5.3 CNx 膜の PAO 油中における低摩擦発現メカニズムの提案 141
3.5.4 提案された CNx 膜の低摩擦発現メカニズムの再現性の検証142
3.6 結言153
第4章 a-C:H 膜の低摩擦発現メカニズムの解明155
4.1 緒言155
4.2 試験片及び試験方法156
4.2.1 試験片156
4.2.2 摩擦中その場観察試験方法157
4.2.3 摩擦試験後の摩耗痕に対する試験方法158
4.2.3.1 原子間力顕微鏡による表面粗さ測定158
4.2.3.2 AFM ナノスクラッチ試験による薄膜硬さの測定159
4.2.3.3 ESEM による表面エネルギー測定160

目次

- 4.5.2 a-C:H 膜の乾燥ガス中における低摩擦発現メカニズムの提案..181
- 4.5.3 提案された a-C:H 膜の低摩擦発現メカニズムの再現性の検証.183

1.1 本研究の位置づけ

人類の活動に伴って排出される二酸化炭素や窒素酸化物等をできる限 り削減し、そしてより効率よく機械を動かすために、自然現象からエネル ギーを生み出す風車のような機械やアイドリングストップ車の活用が考 えられている^{1)·10)}. つまり起動・停止を繰り返す機械の活用が、これから の低環境負荷・エネルギー高効率利用社会の実現のために必要とされてい る.この起動・停止を繰り返す機械の活用において問題となる点が、機械停 止時の摩擦面における潤滑被膜の枯渇である.摩擦面での潤滑に油を用い ている場合機械停止時には摩擦面に油膜が形成されなくなるため、機械の 再起動時には材料同士の摩擦が発生してしまう.つまり起動・停止を繰り返 す機械の活用のためには高面圧及び低速度領域において低摩擦係数を発 現する潤滑手法が求められる.

この要求に対して、摩擦しゅう動部に固体潤滑剤をコーティングするこ とが解決策として考えられる.一般的な固体潤滑剤として黒鉛、二硫化モ リブデン(MoS_2)、ポリテトラフルオロエーテル(PTFE)の3種類が考 えられる.しかし黒鉛と MoS_2 は耐荷重性に優れているが摩耗量は多いた め、定期的に摩擦しゅう動面に黒鉛や MoS_2 を塗布し続けなければならな い^{11),12)}.また MoS_2 は相対湿度20%RH~30%RH以上での摩擦では摩擦係 数µは0.2を超え、寿命が低下すると報告されているため相対湿度が変化 する大気中では MoS_2 を低摩擦材料として用いることは難しい¹³⁾.そして PTFE は耐摩耗性に優れているが耐荷重能は低いため、PTFE の高面圧下 での利用は期待できない^{12),14)-17)}.

この問題に対して、カーボン系硬質膜を摩擦しゅう動部へコーティング するという解決策が考えられる.カーボン系硬質膜は主に炭素を主成分と する薄膜であり、成膜手法や添加元素により様々な特性をもつカーボン系

硬質膜が得られる 18),19). 硬度の高いカーボン系硬質膜は耐摩耗性に優れ るため,ハードディスク表面や工具等にコーティングされている²⁰⁾⁻²²⁾. またカーボン系硬質膜は自動車エンジン内バルブリフターの摩擦面にコ ーティングされており、高面圧下でもカーボン系硬質膜を利用することが 期待できると考えられる 23). さらにカーボン系硬質膜は油中及び乾燥ガス 中において摩擦係数 μ が μ=0.05 を下回る低摩擦を発現することが報告さ れている²⁴⁾⁻⁴⁰⁾. 梅原らは Si 基板上に成膜された窒化炭素膜と Si₃N₄ 球を 乾燥窒素ガス中で摩擦させたとき,μ=0.009 まで減少したと報告している ^{24),25)}. 榊原らは Si 基板上に成膜された窒化炭素膜同士を潤滑油中で摩擦 させたとき, u=0.05 を下回る低摩擦を発現したと報告している²⁸⁾. Eldemir らは水素含有 DLC(Diamond-Like Carbon)膜同士を乾燥窒素ガス中で摩擦さ せたとき, μ=0.003 の低摩擦を発現したと報告している⁴⁰⁾. さらに機械部 品のしゅう動部にカーボン系硬質膜をコーティングしたところ、従来のコ ーティング無しの場合は u=0.1 以上であったのに対しコーティングしたと きは μ=0.02~0.08 であった⁴¹⁻⁴⁶⁾. 以上より摩擦しゅう動部へのカーボン系 硬質膜のコーティングにより摩擦損失が低減したと報告されている.以上 より,カーボン系硬質膜は耐摩耗性に優れ,高面圧下での利用が期待でき, そして低摩擦を発現する材料であることから,起動-停止を繰り返す機械の 摩擦しゅう動面へのコーティング材料としては最適な材料である.

一方で、カーボン系硬質膜の低摩擦発現メカニズムは明らかとなってい ない.野老山らは、乾燥窒素ガス中で窒化炭素膜が低摩擦を発現した後の 摩耗痕の極表面に、窒化炭素膜よりもグラファイト化し低せん断強度で、 窒素が脱離した層(構造変化層)が10nm程度の厚さで形成されたと報告 している.この低せん断強度な構造変化層が低摩擦を発現した要因である と報告している³⁷⁾.しかし構造変化層が摩擦係数に与える影響は定量的に は明らかとなっていない.また窒化炭素膜の油中摩擦及び水素含有 DLC 膜の乾燥ガス中における摩擦においては、低摩擦発現のためには構造変化 層の形成が重要であるという説と構造変化層が形成されずとも低摩擦を

 $\mathbf{2}$

発現しうるという説がそれぞれ提案されており、構造変化層が摩擦係数に 与える影響は不明である³⁸⁻⁴²⁾.したがってカーボン系硬質膜が低摩擦を発 現するときの摩擦面の詳細な状況が明らかとなっていないため、カーボン 系硬質膜の低摩擦発現メカニズムが明らかにならないのである.この原因 として、過去の研究では摩擦試験後の摩耗痕に対する分析のみからカーボ ン系硬質膜の低摩擦発現メカニズムを推定していることが挙げられる.摩 擦試験後の分析からは、低摩擦発現メカニズムによって変化した複数の量 が観測されるため、低摩擦を発現させる様々な可能性が考えられるために 低摩擦発現メカニズムを決定できないのである.

そこで、摩擦中に摩擦面をその場観察することがカーボン系硬質膜の低 摩擦発現メカニズムを解明に必要であると考える. 摩擦中に摩擦面を観察 することで低摩擦発現時の様子が明らかとなり,このことが低摩擦発現メ カニズム解明につながると考えたからである. さらに摩擦中摩擦面その場 観察のための手法として、反射分光分析を用いることを提案する、反射分 光分析は試験片にコーティングされている薄膜の厚さ及び光学定数を測 定する手法である.薄膜の厚さ及び光学定数は試験片の可視光線領域にお ける絶対反射率スペクトルを測定し、このスペクトルを光学モデルから計 算される反射率スペクトルとフィッティングさせることで得られる.この 分析手法は摩擦中に非破壊で測定できるため、摩擦面に影響を与えない分 析手法である.またカーボン系硬質膜の摩擦特性は環境により変化するた め,摩擦面の環境が変化しても分析できる手法が必要である.反射分光分 析は使用環境の制限はなく、乾燥ガス中でも油中でも利用可能な分析手法 である.以上から,本論文では反射分光分析を用いてカーボン系硬質膜の 摩擦中摩擦面その場分析を行うことで、カーボン系硬質膜の低摩擦発現メ カニズムを解明することを本研究の目的とする.

過去の研究に対して、本論文は摩擦試験後に分析していた量を摩擦中に その場で観察するものとして位置づけられる.摩擦中その場観察を行うた めには摩擦中の反射率測定手法及び分析手法を提案し、かつ測定された量

の誤差範囲を求めることで構造変化層のような非常に薄い膜が摩擦中に 測定可能であるかを検討しなければならない.そこで,本論文では反射分 光分析による摩擦中摩擦面その場観察手法の提案と得られた値の誤差範 囲から本手法の構造変化層程度の薄膜の厚さと物性の測定可能性を検討 する.得られた結果の基づき,本論文では過去の研究では特定できなかっ たカーボン系硬質膜の低摩擦発現メカニズムをその場観察により特定す る.特にカーボン系硬質膜のの算膜のうち窒化炭素膜と水素含有 DLC(Diamond-Like Carbon)膜に注目し,摩擦中摩擦面その場観察により これらの薄膜の低摩擦発現メカニズムを明らかにする. 1.2 カーボン系硬質膜の低摩擦特性と低摩擦発現メカニズム

1.2.1 窒化炭素(CNx)膜の低摩擦特性と低摩擦発現メカニズム

窒化炭素(CNx: Carbon Nitride)膜は炭素と窒素で構成される膜で、Cohen らの報告によると CNx 膜が β-C₃N₄構造をもつとき、その硬度はダイヤモ ンドを上回ると理論的に推測されている^{43),44)}. この CNx 膜の乾燥ガス中 における低摩擦特性に関して、梅原らは Si 基板上に成膜された CNx 膜と Si₃N₄球を乾燥窒素ガス中で摩擦させたとき、図 1-1 に示すように μ =0.009 まで減少したと報告している^{24),25)}. さらに梅原らは乾燥窒素ガス中におい て CNx 膜と Si₃N₄球を摩擦させ、摩擦試験後の CNx 膜上の摩耗痕に対して XPS(X-ray Photoelectron Spectroscopy)分析を行った. その結果、摩耗痕最 表面の構造がグラファイト化していることを明らかにした²⁵⁾. このことか ら梅原らは、CNx 膜の乾燥窒素中における低摩擦係数は、摩耗痕最表面が グラファイト化し低せん断な層(構造変化層)が形成されることによって 発現するというメカニズムを提案している²⁵⁾.

野老山らは、乾燥窒素ガス中において CNx 膜と Si₃N₄ 球を摩擦させて低 摩擦を発現させた後の摩耗痕表面の化学結合状態を、AES(Auger Electron Spectroscopy)分析及び XPS(X-ray Photoelectron Spectroscopy)分析により測 定した.その結果、CNx 膜摩耗痕の極表面に構造変化層が形成されたと報 告している.さらにその構造変化層は窒素が脱離しており、さらに図 1-2 に示すようにグラファイトに近い構造であった.このグラファイトライク な構造変化層が低摩擦を発現した要因であると報告している³⁷⁾.また野老 山らは、CNx 膜が低摩擦を発現しなかったとき、CNx 膜の極表面には構造 変化層は形成されなかったと報告している.さらに Si₃N₄ 球への CNx 膜の 移着膜は、摩擦係数によらず形成されたと報告している³⁷⁾.さらに井上ら は乾燥窒素ガス中及び大気中において CNx 膜と Si₃N₄ 球を摩擦させた後の CNx 膜 側 の 摩 耗 痕 内 外 の **ਓ** 結 合 の プ ラ ズ モ ン ピ ー ク を STEM-EELS(Scanning Transmission Electron Microscopy-Electron Energy Loss Spectroscopy)法により測定した. その結果,図1-3に示すように構造 変化層の厚さは9~12 nm であると明らかにした³⁸⁾.また加藤らは、大気 中で乾燥窒素ガスを吹き付けながら CNx 膜と Si₃N4 球を摩擦させたとき、 µ=0.017 の低摩擦を発現したと報告している²⁶⁾. 宮平らは CNx 膜とサファ イア半球を乾燥窒素ガス及び乾燥アルゴンガスを吹き付けながら摩擦さ せたとき、摩擦係数が 0.05 を下回る低摩擦を発現したと報告している.さ らに摩擦中に電子増倍型 CCD カメラで摩擦面をその場観察した際、図 1-4 に示すように低摩擦を発現した時には摩擦面近傍でトライボマイクロプ ラズマと考えられる発光現象が観察され、対して低摩擦が発現しなかった 時にはトライボマイクロプラズマと考えられる発光現象は観察されなか ったと報告している²⁷⁾.

続いて CNx 膜の油中における低摩擦特性に関して、榊原らは Si 基板上 に成膜された CNx 膜と Si₃N₄ 球に成膜された CNx 膜同士を PAO4 油中で摩 擦させたとき,図 1-5 に示すように摩擦係数が 0.05 を下回る低摩擦を発現 したと報告している.さらにその摩擦係数は, a-C(Amorphous Carbon)膜同 士の摩擦係数の約半分であったと報告している²⁸⁾. CNx 膜の PAO 油中に おける低摩擦特性を明らかにするために、市村らは振り子式摩擦試験機を 用いて境界潤滑下における CNx 膜の油中摩擦試験を行った.その結果油温 の上昇に伴い摩擦係数が減少していることが明らかとなった.このことか ら油温の上昇が CNx 膜表面に軟質な構造変化層を形成し、この構造変化層 が低摩擦を発現したと示唆している³⁹⁾.また田上らは振り子式摩擦試験機 により摩擦係数に対する油粘度の影響を調べ、CNx 膜の摩擦係数が油粘度 の上昇に伴い減少したと報告している.田上らはこの結果から、CNx 膜の 摩擦面に油膜が形成されたことが CNx 膜の油中における低摩擦発現の要 因であると報告している⁴⁰⁾.

図 1-1 摩擦面環境の CNx 膜の摩擦係数に及ぼす影響²⁴⁾

図 1-2 CNx 膜の摩擦試験前後の摩耗痕表面,ダイヤモンド及び HOPG の XPS 測定結果³⁷⁾

図 1-3 CNx 膜の摩耗痕内外の σ 結合のプラズモンピークの深さ方向測

定 38)

図 1-4 乾燥アルゴンガス吹き付け摩擦試験における電子増倍型 CCD カ メラによる観察画像²⁷⁾

図 1-5 カーボン系硬質膜の油中摩擦における摩擦繰り返し数に伴う摩 擦係数の変化²⁸⁾

1.2.2 水素含有 DLC(a-C:H)膜の低摩擦特性と低摩擦発現メカニズム

水素含有 DLC(a-C:H: Hydrogenated amorphous carbon)膜は、炭素と水素 を構成要素とする薄膜である. 三宅らは a-C:H 膜同士を真空中で摩擦させ たとき、 μ =0.01 と低摩擦を発現したと報告している²⁹⁾. Eldemir らは a-C:H 膜同士を乾燥窒素ガス中で摩擦させたとき、図 1-6 に示すように μ =0.003 の低摩擦を発現したと報告している. さらに Eldemir らは a-C:H 膜表面に 水素で終端された構造が形成されることで摩擦面においてせん断抵抗が 減少し、その結果低摩擦が発現したというメカニズムを提案している³⁰⁾. Fontaine らは乾燥水素ガス中における a-C:H 膜同士の摩擦において、低摩 擦を発現したと報告している. さらに a-C:H 膜同士の摩擦において、低摩 擦を発現したと報告している. さらに a-C:H 膜あ面への水素原子の供給 によって a-C:H 膜上に水素終端表面が維持されることが必要であるという 低摩擦発現メカニズムを提案している⁴¹⁾. Racine らは、a-C:H 膜が低摩 擦を発現するためには水素終端表面が形成されることと同時に a-C:H 膜の 摩耗痕の最表面に硬質で水素含有量の少ない層が形成されることも必要 であると報告している⁴²⁾.

図 1-6 a-C:H 膜の乾燥窒素ガス中摩擦試験における摩擦繰り返し数に伴う摩擦係数の変化³⁰⁾

1.3 従来提案されている低摩擦発現メカニズムの解明手法に対する 問題点とその解決策

CNx 膜の乾燥ガス中の摩擦において,軟質な構造変化層の形成によって 低摩擦が発現するという説が提案されているが,どの程度軟質になればい いのか,またどれくらいの厚さが低摩擦の発現にとって必要十分なのかと いう定量的な議論はまだされていない^{25),37)}.つまり摩擦係数に与える構造 変化層の構造や物性の影響はまだ明らかになっておらず,CNx 膜の乾燥ガ ス中における低摩擦発現メカニズムが解明されたと結論できない状況で ある.

次に CNx 膜の油中低摩擦発現メカニズムとして,従来の報告からは油膜 が形成されたことによって低摩擦を発現したという説と,構造変化層の形 成によって低摩擦を発現したという説の 2 つが考えられる^{39),40)}.これらの 説のどちらが正しいかを検証することが,今後 CNx 膜を油中低摩擦発現材 料として工業的利用するためには必要不可欠である.しかし従来の報告で は検証したという報告はされておらず, CNx 膜の油中低摩擦発現メカニズ ムは明らかとなっていない.

さらに a-C:H 膜の乾燥ガス中の低摩擦発現メカニズムとして、構造変化 層を必要としなくても低摩擦を発現するという説と、構造変化層があるか らこそ低摩擦を発現するという説の 2 つが考えられる^{30),41),42)}. a-C:H 膜の 乾燥ガス中における低摩擦発現メカニズムは複数提案されており、 a-C:H 膜の低摩擦発現メカニズムを明らかにするためには提案されている仮説 の検証が必要であるが、検証したという報告はまだない. したがって、 a-C:H 膜の低摩擦発現メカニズムは未だ明らかとなっていない.

以上から,従来の研究からはカーボン系硬質膜の低摩擦発現メカニズム を明らかにできていないことがわかる.この問題の原因は従来の研究では 摩擦試験後の分析結果から低摩擦発現メカニズムを推測しているためと 考えられる.摩擦試験後の表面分析を行うことで,低摩擦を発現した時と

しなかった時の表面形状や物性の違いを比較することは可能であるが、そ の違いがどれだけ低摩擦に寄与したかどうかを判断することはできない からである.低摩擦発現に寄与したと考えられる量が複数列挙できれば, その数だけの低摩擦発現メカニズムが考えられるため、従来の研究ではカ ーボン系硬質膜の低摩擦発現メカニズムを明らかにすることができなか ったと考えられる.この問題を解決しなければカーボン系硬質膜の低摩擦 発現メカニズムを明らかにすることはできず、このことは将来の低環境負 荷・高効率社会の実現を阻む問題である.したがってカーボン系硬質膜の 摩耗痕や摩擦面を従来とは異なる手法で観察することが、問題解決のため には必要不可欠である.そこで今回我々は、この問題点を解決するために は摩擦中に摩擦面をその場で観察すること必要であると考えた. 低摩擦発 現時の摩擦面の様子を摩擦中にその場観察することができれば、構造変化 層や油膜の摩擦中の定量評価も可能であるし、複数提案されている低摩擦 発現メカニズムも特定可能であると考えたからである.したがって本論文 では摩擦中摩擦面その場観察という手法に注目し、カーボン系硬質膜の低 摩擦発現メカニズム解明を試みる.次節では、カーボン系硬質膜の低摩擦 発現メカニズム解明のためにはどのような摩擦面その場観察手法が必要 であるかを検討する.

1.4 摩擦面その場観察手法

Johnston, Spikes らは, 鋼球とガラスディスクとの油中摩擦試験を行い, 摩擦面に形成された油膜厚さを光干渉法により測定した.このことにより, 流体潤滑下の摩擦面の油膜厚さ測定法が確立され, 摩擦中の油膜の詳細な 挙動が明らかとなった⁴⁵⁾.この手法を用いることで流体潤滑下の油膜厚さ を測定することが可能である.しかし我々が想定している潤滑状態は境界 潤滑であるため,この手法をそのまま境界潤滑下の摩擦試験に用いること ができるか不明である.また構造変化層厚さは測定することができない.

宮平らは乾燥窒素ガス中及び乾燥アルゴンガスを摩擦面前方から吹き 付けながら CNx 膜とサファイア半球との摩擦試験を行った.さらに光学顕 微鏡を用いて摩擦面をサファイア半球越しに観察することで,摩擦中の摩 擦面の状態をその場観察した.その結果,摩擦繰り返し数の増加に伴い移 着膜の厚さが増加したと報告している²⁷⁾.この手法では,移着膜を観察す ることは可能であるが,構造変化層の厚さを観察することはできない.

大久保らは MoDTC(Molybdenum dithiocarbamates)が添加された PAO(Poly-Alpha-Olefin)油を潤滑油とし、a-C:H 膜が成膜された鋼球と鋼板 との摩擦試験を行った.さらにその摩擦中に a-C:H 膜のしゅう動面に対し て摩擦中ラマン分光分析を行った.その結果、MoDTC 添加 PAO 油中摩擦 おける a-C:H 膜の摩耗メカニズムが明らかとなったと報告している⁴⁶⁾.こ の手法を用いることで摩擦面の化学分析が可能となる.しかしラマン分光 分析の深さ分解能は約1 µm と報告されていることから、この手法では 10 nm 程度の構造変化層の化学分析を行うことは困難であると考えられる⁴⁷⁾.

神田らは乾燥窒素ガス中において Si 基板に成膜された CNx 膜と Si₃N₄ 円筒との摩擦試験を行った.さらにこの摩擦中に CNx 膜の摩擦面に対して FT-IR(Fourier Transform Infrared Spectroscopy)分析を行った.その結果,摩 擦係数の減少に伴い,摩擦初期に CNx 膜の摩擦面に存在していた O-H 結 合及び N-H 結合は減少したことが明らかとなった⁴⁸⁾.この手法を用いる と、構造変化層表面の化学結合状態が明らかとなる.しかしこの試験を行 うことができる環境は乾燥ガス中もしくは真空中であり、油中での摩擦試 験を行うことはできない.

次に三島は鉄板と鉄製ピンを大気中で摩擦させた.そしてその摩擦中に 摩擦面を光学顕微鏡でその場観察した.その結果,摩擦面における摩耗紛 形成機構が明らかとなったと報告している⁴⁹⁾.この手法を用いる場合,摩 擦面を詳細に観察可能である点で有効であるが,この手法からは構造変化 層の物性を測定することはできない.

赤上らは SEM(Scanning Electron Microscope)内に Ball-on-disk 型摩擦試験 機を導入することで摩擦により発生する摩耗粒子の発生過程をその場観 察可能なシステムを開発したと報告している⁵⁰⁾.この装置では摩擦面の状 態を詳細に観察することが可能であるが,使用環境が高真空中に限られる ため,乾燥ガス中や油中での摩擦試験を行うことはできない.

平山らは中性子反射率法を用いて金属表面に吸着する潤滑油の厚さ及 び密度を測定した.その結果,吸着層は 1.5~2.0 nm の厚さであることが 明らかとなったと報告している⁵¹⁾.この測定法を用いれば,nm スケール の潤滑油の厚さを測定することが可能であるが,この試験を行うためには 非常に高価な装置を用いる必要があり,より簡便な試験法が求められる.

以上より従来提案されている摩擦面その場観察手法ではカーボン系硬 質膜の低摩擦発現メカニズムを明らかにすることはできない.そこでカー ボン系硬質膜の低摩擦発現メカニズム解明のために,本論文では反射分光 分析を用いた摩擦中摩擦面その場観察という手法を新たに提案する.反射 分光分析とは薄膜がコーティングされた試験片表面の反射率スペクトル を測定し,その反射率スペクトルを解析することで薄膜の厚さや光学定数 を測定する分析手法である.この分析手法を用いれば薄膜の厚さを測定で きるため,構造変化層のような10nm程度の非常に薄い膜の厚さを測定で きる可能性がある.また反射分光分析は非破壊測定であるため摩擦中に用 いても摩擦面に影響はない.さらに反射分光分析は使用環境を選ばないた め,乾燥ガス中でも油中でも反射率を測定可能である.以上の点から,反 射分光分析による摩擦中摩擦面その場観察はカーボン系硬質膜の低摩擦 発現メカニズムを明らかにすることができる手法であると考えられる.

1.5 本論文の目的

本論文では、反射分光分析による摩擦中摩擦面その場観察によりカーボ ン系硬質膜の低摩擦発現メカニズムを解明することを目的とする.この目 的を達成するために、第一に反射分光分析による構造変化層及び油膜の測 定手法を提案し、測定された値の誤差範囲を求めることで反射分光分析が 構造変化層のような非常に薄い薄膜を摩擦中に測定することが可能であ るかを検討する.そして第二に反射分光分析による CNx 膜と a-C:H 膜に対 する摩擦中摩擦面その場観察を行い、乾燥ガス中及び油中における構造変 化層及び油膜が摩擦係数に与える影響を明らかにする.そしてこの結果か ら低摩擦発現メカニズムを提案し、さらにそのメカニズムに再現性がある かどうかを検証するために再びその場観察試験を行い、カーボン系硬質膜 の低摩擦発現メカニズムを明らかにする.

1.6本論文の構成

本論文は図 1-7 に示されるように以下の 5 章から構成される.

第1章の「緒論」では、カーボン系硬質膜の工業的利用の必要性を説明 し、現在までに報告されているカーボン系硬質膜の低摩擦特性とその発現 メカニズムを説明する.次に今までに報告されている低摩擦発現メカニズ ムの解明手法に対する問題点を明らかにし、その問題を解決するためには どのような分析手法を用いて低摩擦発現メカニズムを明らかにする必要 があるかについて説明する.

第2章の「反射分光分析による摩擦中摩擦面その場評価手法の提案」で は、まず反射分光分析の概略を説明する.次にカーボン系硬質膜の低摩擦 発現メカニズムを明らかにするためには摩擦中にどのような量を測定し なければならないかを検討する.そして摩擦中に測定すべき量が反射分光 分析により測定可能であるかを検討する.さらに反射分光分析による摩擦 中摩擦面その場観察用摩擦試験機を作製し、摩擦中に測定すべき量のその 場測定手法を新たに提案する.そして測定された値の誤差範囲を求めるこ とで反射分光分析により構造変化層のような非常に薄い薄膜を摩擦中に 測定することが可能であるかを検討する.

第3章の「CNx 膜の低摩擦発現メカニズムの解明」では、反射分光分析 による CNx 膜の摩擦中摩擦面その場分析を行う.試験環境は、大気中乾燥 アルゴンガス吹き付け及び PAO4 油中の2通りの試験を行う.大気中で乾 燥アルゴンガスを摩擦面に吹き付けながらの摩擦試験では、反射分光分析 により構造変化層厚さ及び化学結合割合を摩擦中測定する. PAO4 油中の 摩擦試験では、反射分光分析により構造変化層厚さと分極率、油膜厚さと 分極率を摩擦中測定する.これらの結果と、摩擦試験後の摩耗痕の分析結 果を補助的に用い、乾燥ガス中及び油中における構造変化層及び油膜が摩 擦係数に与える影響を明らかにする.そしてこの結果から低摩擦発現メカ ニズムを提案し、さらにそのメカニズムに再現性があるかどうかを検証す

るために再びその場観察試験を行い, CNx 膜の乾燥ガス中及び油中におけ る低摩擦発現メカニズムを明らかにする.

第4章の「a-C:H 膜の低摩擦発現メカニズムの解明」では、反射分光分 析による a-C:H 膜の摩擦中摩擦面その場分析を行う.a-C:H 膜に対しては 大気中で乾燥窒素ガスを摩擦面に吹き付けながら摩擦試験を行う.この摩 擦試験では反射分光分析により構造変化層の厚さ及び化学結合割合を摩 擦中測定する.これらの結果と、摩擦試験後の摩耗痕の分析結果を補助的 に用い、乾燥ガス中における構造変化層が摩擦係数に与える影響を明らか にする.そしてこの結果から低摩擦発現メカニズムを提案し、さらにその メカニズムに再現性があるかどうかを検証するために再びその場観察試 験を行い、a-C:H 膜の乾燥ガス中における低摩擦発現メカニズムを明らか にする.

第5章の「結論」では、第2章から第4章までの結論をまとめる.

図 1-7 本論文の構成

第2章 反射分光分析による摩擦中摩擦面その場評価手法の提案

2.1 緒言

第1章において、カーボン系硬質膜の低摩擦発現メカニズム解明のため には摩擦中摩擦面その場観察が必要不可欠であると述べた. さらに, その 摩擦中摩擦面その場観察手法として,反射分光分析を用いることが必要で あると述べた、この分析手法を用いるに当たって、解決しなければならな い問題が3点挙げられる.1点目は、カーボン系硬質膜の低摩擦発現メカ ニズム解明のために反射分光分析によりどのような量を測定すれば良い のかが不明であること、そして2点目は反射分光分析によりそれらの値が 測定可能なものであるかどうかが不明であることである.そこで本章では, まず反射分光分析の概略を説明した後、カーボン系硬質膜の低摩擦発現メ カニズムを明らかにするために摩擦中に測定すべき量の抽出を行う. そし て摩擦中に測定すべき量が反射分光分析により測定可能であるかを検討 することで1点目及び2点目の問題に回答する. さらに3点目の問題とし て, 摩擦中に反射分光分析によりカーボン系硬質膜や油膜に関する量が正 しく測定できるかどうか不明であるということである. そこで本章では反 射分光分析による摩擦中摩擦面その場観察用摩擦試験機を設計、試作し、 摩擦中における反射分光分析による量のその場測定手法を新たに提案す る. そして測定された値の誤差を求め,反射分光分析により構造変化層の ような非常に薄い薄膜を摩擦中に測定することが可能であるかを検討す ることでこの3点目の問題に回答する.

2.2 反射分光分析により摩擦中に測定すべき量の測定可能性の検討

2.2.1 反射分光分析

反射分光分析は、薄膜がコーティングされている試験片に対してある波 長範囲の光を照射したときの絶対反射率スペクトルを測定し、測定された 絶対反射率スペクトルと光学モデルから計算された絶対反射率スペクト ルをフィッティングさせることでから薄膜の厚さや光学定数を測定する 手法である.本手法の絶対反射率 *R* は以下の式(2-1)で表される^{52),58),61).}

$$R = \frac{I_r}{I_i} \tag{2-1}$$

ここで *I*_iは単位時間当たりの入射光強度,*I*_rは単位時間当たりの反射光強 度を表す.また *R* は光波長に依存する値である.次に絶対反射率スペクト ルから薄膜の厚さや光学定数を測定するために,入射光の薄膜内多重反射 を考慮した光学モデルを提案し,この光学モデルから絶対反射率を計算す る.式(2-2)に空気中で1層の薄膜に光が入射角 *θ*₀で入射した時の反射率を 計算したときの絶対反射率 *R* を示す^{52),58),61).}

$$R = \left| \frac{r_{01} + r_{12} \exp(-i2\beta)}{1 + r_{01}r_{12} \exp(-i2\beta)} \right|^2$$
(2-2)

$$N_m = n_m - ik_m \quad (m=0,1,2, N_m, n_m 及び k_m は波長 \lambdaの関数)$$
(2-3)

$$r_{ij} = \frac{N_i \cos\theta_i - N_j \cos\theta_j}{N_i \cos\theta_i + N_j \cos\theta_j} \quad (i=0,1, j=1,2)$$
(2-4)

$$\beta = \frac{2\pi d_1 N_1 \cos\theta_1}{\lambda} \tag{2-5}$$

$$N_0 \sin \theta_0 = N_1 \sin \theta_1 = N_2 \sin \theta_2 \tag{2-6}$$

*R*は反射率, *d*₁は薄膜厚さ, λは光波長, *n*は屈折率, *k*は消衰係数を表す. 下付き添え字の 0,1,2 で示される材料はそれぞれ空気, 薄膜, 基板を示す. また θ₀は光の入射角, θ₁及び θ₂はそれぞれ薄膜及び基板への透過角を表 す. 最後に式(2-1)のように測定された絶対反射率スペクトルと式(2-2)で表 される絶対反射率スペクトルを非線形最小二乗法を用いてフィッティン グさせることで, 薄膜の厚さや光学定数が求められる. このフィッティン グに当たっては, Gauss-Newton 法や Levenberg-Marquardt 法というアルゴ リズムが用いられる^{53),54)}. これらのアルゴリズムの目的は, *m* 個のデータ 点 {(*x_i*, *y_i*);*i* = 1,..., *m*}と式(2-7)に示されるモデル関数 *f* とのフィッティング残 差の平方和 *S*[式(2-8)]が最小になるようなパラメータ *y* を反復計算で見つ けることである.

$$y = f(x, \gamma) \tag{2-7}$$

$$S(\gamma) = \sum_{i=1}^{m} (y_i - f(x_i, \gamma))^2$$
(2-8)

ここで y は薄膜の膜厚や光学定数等の未知パラメータを表す.
Gauss-Newton 法における y の探索手法は式(2-9)及び式(2-10),
Levenberg-Marquardt法におけるyの探索手法は式(2-11)及び式(2-12)のよう にそれぞれ表される.

$$\gamma^{(s+1)} = \gamma^{(s)} - (J_s^T J_g)^{-1} J_g^T \{ y_i - f(x_i, \gamma^{(s)}) \}$$
(2-9)

$$J_{g} = \frac{\partial \left\{ y_{i} - f(x_{i}, \gamma^{(s)}) \right\}}{\partial \gamma}$$
(2-10)

$$f(x_i, \gamma^{(s+1)}) \approx f(x_i, \gamma^{(s)}) + J_l \delta$$
(2-11)

$$J_{l} = \frac{\partial f(x_{i}, \gamma^{(s)})}{\partial \gamma}$$
(2-12)

ここで*s*は反復計算回数である. $\gamma^{(0)}$ は初期値を示す. J^{T} は行列Jの転置を 表す. Gauss-Newton 法を用いると収束は早いがフィッティング残差の平方 和*S*が極所最小値に落ち込むために出力された解が正しい値ではないこと がある.対して Levenberg-Marquardt 法を用いると収束するまでに時間がか かるが,フィッティング残差の平方和*S*の値ができるだけ極所最小値に収 束しないように設計されているために Gauss-Newton 法より正しい解を得 やすい^{54),58),61)}. 次に本論文で用いた反射分光分析装置について述べる.本論文では,反 射分光分析のための装置として,大塚電子社製反射分光膜厚計 FE-3000 を 用いた.装置の概略図を図 2-1 に示す.これは薄膜がコーティングされて いる試験片表面に白色光を照射してその反射光を分光器で 300 nm~800 nm の範囲で分光し,試験片の絶対反射率スペクトルを得る装置である. ここで絶対反射率とは,薄膜の光学定数及び厚さ,光の反射角度のみに依 存し,装置定数などは含まれない絶対量である.以下,絶対反射率のこと を「反射率」と称す.通常の反射率スペクトル測定では,まず Al が表面 コーティングされた試験片(以後,Al 標準反射板と称す)の反射光強度を 大気中で測定する.今,Al 標準反射板に対して測定された各波長における 絶対反射率 R^{std}は式(2-13)のように示される⁵⁵⁾⁻⁵⁹⁾.

$$R^{std} = \frac{f_g^{std} I_r^{std}}{I_i}$$
(2-13)

ここで、 f_g^{std} は Al 標準反射板の測定条件に伴う定数 (ゲイン、露光時間)、 f_r^* は Al 標準反射板に対して測定された任意の露光時間における各波長の 反射光強度を表す. つまり $f_s^{std}I_r^{std}$ は Al 標準反射板に対して測定された単 位時間当たりの反射光強度を表す. 次に、試験片に対して測定された各波 長における絶対反射率 R^{smp} は式(2-14)のように示される.

$$R^{smp} = \frac{f_g^{smp} I_r^{smp}}{I_i}$$
(2-14)

ここで, *f^{smp}*は試験片の測定条件に伴う定数(ゲイン, 露光時間), *F*, は 試験片に対して測定された任意の露光時間における各波長の反射光強度 を表す. つまり *f^{smp}I^{rmp}*は試験片に対して測定された単位時間当たりの反射 光強度を表す. そして, 試験片の反射率は, 式(2-15)のように整理される.

$$R^{smp} = R^{std} \frac{I_r^{smp}}{I_r^{std}} \frac{f_g^{smp}}{f_g^{std}}$$
(2-15)

装置内には Al 標準反射板の反射率データが内蔵されているため、 R^{std} は既 知である.また $\frac{f_g^{smp}}{f_g^{std}}$ はゲインを一定とすれば露光時間のみで決定される値

となり、AI標準反射板と試験片の露光時間の比となるため、露光時間を記 録すればこれも既知となる.以上から、AI標準反射板の反射強度を測定し ていれば、試験片の反射強度を測定することで試験片の反射率スペクトル を測定することが可能となる. また図 2-1 より FE-3000 には測定位置調整 用の光学顕微鏡も搭載されており, 青破線はその光学顕微鏡の光路を表す. 赤破線は入射光及び反射光の光路を表し、対物レンズの焦点(2つの赤破 線が交わる点)を試験片にコーティングされている薄膜表面に合わせるこ とで、薄膜表面から反射された光や薄膜と基板との間で反射した光が FE-3000 内の分光器に入り、各波長に分光された光の強度から反射率スペ クトルが得られる.本試験では開口数 0.35,入射角範囲 14.6 度~20.5 度の 反射型対物レンズを用いた、白色光光源としては、重水素及びヘリウムラ イトを用いた、そしてその測定された反射率スペクトルを、光学モデルか ら計算される反射率スペクトルとフィッティングさせることで、試験片に コーティングされている薄膜の厚さ及び光学定数(屈折率 n 及び消衰係数 k) を求めることができる. このフィッティングには FE-3000 を制御する PC に搭載されている解析用ソフトウェアを用いた. この解析ソフトウェ アでは計算の高速化のために光の入射角 θωを 15.99 度として光学モデルか ら計算される反射率スペクトルの計算を行い、フィッティングを行った. フィッティングには非線形最小二乗法、アルゴリズムとしては Levenberg-Marquardt 法を用い、フィッティング残差が最小となる膜厚及び 光学定数の値を出力した⁵⁸⁾. 図 2-2 に今回のフィッティング手順の概要を 示す.

図 2-1 反射分光膜厚計の模式図

図 2-2 反射率のフィッティング手順の概略

2.2.2 カーボン系硬質膜の摩擦において摩擦中に測定すべき量の抽出 と反射分光分析による測定可能性の検討

2.2.1 節から,反射分光分析からは薄膜の厚さが求められると述べた.さらに大原らは反射分光分析により a-C 膜の油中摩擦後の構造変化層厚さを 測定した.その結果,構造変化層厚さが摩擦係数に影響を及ぼすことを報告している⁶⁰⁾.以上より,油膜も層の1つと考えることで構造変化層の厚 さは反射分光分析により摩擦中に測定可能であると考えられる.また油膜 も層の1つと考えることで油中摩擦における油膜厚さも反射分光分析により摩擦中に測定可能であると考えられる.

加えて反射分光分析により構造変化層や油膜の光学定数を求めること ができる.光学定数とは屈折率 n 及び消衰係数 k のことを指す.屈折率は 真空中の光速を物質中の光速で除した値であると定義され、消衰係数は物 質の吸収を表現する指標であると定義される^{61),62)}.ここで、カーボン系硬 質膜の光学定数に関する報告をまとめる. Mednikarov らは PE-CVD(Plasma Enhanced-Chemical Vapor Deposition) 法で成膜された a-C:H 膜と NCD(Nanocrystalline diamond)含有 a-C(Amorphous Carbon)膜の光学定数を 400 nm~1000 nm の範囲でそれぞれ測定した. その結果, 短波長領域(400 nm~500 nm 付近) での消衰係数が a-C:H 膜の方が高いことが明らかとな った. このことについて, Mednikarov らは a-C:H 膜内に sp²結合の割合が 増加したためであると報告している⁶³⁾. Lifshitz らは a-C 膜の光学定数を 300 nm~1700 nm の範囲で測定し, a-C 膜の sp²結合割合を TEM-EELS 法 で測定した. その結果, sp²結合内の π 電子の増加に伴って消衰係数が上 昇することが明らかとなった⁶⁴⁾. 平塚らは種々のカーボン系硬質膜の屈折 率を測定した.その結果,屈折率の上昇に伴い,膜の硬さが上昇すること が明らかとなった⁶⁵⁾.また大竹らはカーボン系硬質膜の規格化の指標の1 つとして屈折率及び消衰係数を提案している. 膜質の違いにより屈折率及 び消衰係数が変化することを報告している 66-68). 以上から,カーボン系
硬質膜の光学定数を測定することで,膜の物性に関する様々な物理量を推 定可能であると考えられる.しかし,カーボン系硬質膜の光学定数の低摩 擦係数に与える影響は明らかとなっていない.そこで本節では構造変化層 や油膜に関する低摩擦発現メカニズムから摩擦中に測定すべき物性値を 抽出し,光学定数からこれらの物性値を求めることを試みる.

梅原らは乾燥窒素ガス中において CNx 膜と Si₃N₄ 球を摩擦させ,摩擦試 験後の CNx 膜上の摩耗痕に対して XPS 分析を行った.その結果,摩耗痕 最表面の構造がグラファイト化していることを明らかにした²⁵⁾.また Racine らは, a-C:H 膜が低摩擦を発現するためには水素終端表面が形成さ れることと同時に a-C:H 膜の摩耗痕の最表面に硬質で水素含有量の少ない 層が形成されることも必要であると報告している⁴²⁾.ここから,乾燥ガス 中のカーボン系硬質膜の低摩擦発現メカニズム解明のためには構造変化 層内の化学結合の存在割合を測定する必要があると考える.

この構造変化層の化学結合の割合を構造変化層の光学定数から測定す るために、本論文では有効媒質近似法を用いることを提案する.有効媒質 近似法とは薄膜に含まれている複数の異種物質の体積割合を薄膜の光学 定数から求める手法である^{61),69)-73)}.有効媒質近似法では薄膜を複数の異 種物質で構成された膜と仮定することで、薄膜内に存在する*j* 個の異種物 質の体積割合と光学定数の関係が以下の式のように結び付けられる.

$$\sum_{j} f_{j} \frac{\varepsilon_{j} - \varepsilon}{\varepsilon_{j} + 2\varepsilon} = 0$$

$$\sum_{j} f_{j} = 1$$

$$\varepsilon_{j} = \left(n_{j}^{2} - k_{j}^{2}\right) - i\left(2n_{j}k_{j}\right)$$

$$(2-16)$$

$$(2-17)$$

$$(2-18)$$

ここで, f_j と ε_jは, それぞれ薄膜内の j 番目の異種物質の体積割合と誘電 率であり, n は屈折率, k は消衰係数である. 薄膜全体の誘電率 ε 及び j 個 の構成要素それぞれにおける誘電率が既知であれば, j 個の構成要素それ ぞれにおける体積割合が求められる. 例として有効媒質近似法は薄膜の表

面粗さ層の厚さや光学定数の分析に用いられている.この表面粗さ層を分 析するために、表面粗さ層には2つの構成要素があると仮定する.1つを 薄膜、もう1つを空気として計算することで、薄膜上の表面粗さ層のモデ ル化が可能となる⁷⁴⁾⁻⁷⁷⁾. さらに有効媒質近似法は不均質薄膜内に存在す る物質の推定にも用いられている. Smith らは a-C:H 膜には 4 種類の構造 (アモルファスダイヤモンドライク構造、グラファイト構造、ポリマー構 造及び空孔)が存在すると有効媒質近似法で仮定し, a-C:H 膜の反射率の データから構造解析を行った.その結果,450℃以上でアニーリング後の a-C:H 膜にはグラファイト構造と空孔が増加していることが明らかとなっ た⁷⁸⁾. また Mui らは水素化アモルファスシリコン膜に対して, Si-Si₄ 結合, Si-Si₃H 結合, Si-Si₂H₂ 結合及び Si-SiH₃ 結合の計 4 種類の異種物質が膜内 に存在するとして有効媒質近似法によるモデル化を行った.その結果,既 知の膜の誘電率と有効媒質近似法によるモデル化から求められた膜の誘 電率がよく一致したと報告している⁷⁹⁾.誘電率は光学定数から求められる ため、有効媒質近似法を用いることで薄膜の光学定数から膜内の化学結合 の体積割合が求めることは可能であると考えられる. さらに膜内の各化学 結合の誘電率が明らかとなれば、カーボン系硬質膜の厚さや化学結合割合 が測定可能となる.これらの測定値は Cauthy モデルや Tauc-Lorentz モデル といった理論モデルに依存しない値として求められるため、本手法を用い ることでより正確な値を求めることができると考えられる⁶¹⁾. したがって 本論文では, CNx 膜の構造変化層内には C-Csp²結合, C-Csp³結合及び C-N 結合の3種類が存在し、a-C:H膜の構造変化層にはC-Csp²結合、C-Csp³結 合及び C-H 結合が存在すると仮定することにより, 有効媒質近似法によっ てカーボン系硬質膜の化学結合割合を求めることとする.

次に油中摩擦において摩擦中に測定すべき量を抽出する.田上らは, CNx 膜の境界潤滑下での摩擦において,潤滑油の粘度が増加するにしたがって 摩擦係数が減少したと報告している⁴⁰⁾.つまり摩擦中に潤滑状態が境界潤 滑から混合潤滑に遷移することが低摩擦発現にとって重要であると考え

られる. つまり摩擦中に潤滑状態が遷移するためには, 摩擦中に油膜厚さ が増加することが必要である. ここで境界潤滑下において, CNx 膜と相手 材との真実接触面積 A_r のうち CNx 膜や相手材に吸着した油分子同士が接 触している面積 A_{oil} の割合を被覆率 χ と定義すると, 被覆率 χ は以下の式 のように表される.

$$\chi = \frac{A_{oil}}{A_{oil} + A_s} \tag{2-19}$$

 $A_r = A_{oil} + A_s$

(2-20)

 A_s は CNx 膜と相手材が直接接触している面積を表す. そして油膜厚さの 増加の要因として本論文では χ の増加という仮説を提案する. 潤滑油が CNx 膜表面を被覆するに従い CNx 膜と相手材との間隔が増し,油膜厚さ が増加するからである⁸⁰⁾. そしてさらに χ が増加することは, CNx 膜と潤 滑油との間のファンデルワールス力の増加につながると考えられる⁶⁵⁾. 過 去の報告において CNx 膜の油中摩擦には PAO4 油という無極性の潤滑油を 用いている^{28),39),40)}. したがって CNx 膜と PAO4 油との間で生じるファン デルワールス力は無極性物質同士のもの,つまり誘起双極子-誘起双極子間 相互作用による力(分散力)であると考えられる⁸¹⁾. 無極性分子 1 と無極 性分子 2 間で生じるファンデルワールス力 F_v は以下の式(2-21)のように表 される^{81),82)}.

$$F_{\nu} = \frac{9\alpha'_{1}\alpha'_{2}}{r^{7}} \frac{I_{1}I_{2}}{I_{1} + I_{2}}$$
(2-21)

$$\alpha' = \frac{\alpha}{4\pi\varepsilon_0} \tag{2-22}$$

α'は分子の分極率体積,αは分子の分極率,ε₀は真空の誘電率,rは分子間 距離,Iは分子の第一イオン化エネルギー,下付き添え字の1,2はそれぞ れ無極性分子1,2を表す.ここで分極率とは原子に電場をかけたときに 電荷がどの程度偏るかを表す物理量である.また原子核から距離Iだけ離 れてその周囲をまわっている最外殻電子を考えたとき,体積分極率はその 電子雲が覆う体積を表す. つまり式(2-23)のように表される. α'=l³ (2-23) 従来の報告では物質の電子分極の評価には分極率体積を用いているため, 本論文でも分極率体積を用いることとする^{81),83)}.式(2-21)から,油膜また は CNx 膜の分極率体積が上昇することは油と CNx 膜との間にはたらくフ ァンデルワールス力が増加することを意味する.分極率体積は式(2-24)の ように表される^{61),81),83),84)}.

$$\alpha' = \frac{3M}{4\pi\rho N_A} \frac{\varepsilon_r - 1}{\varepsilon_r + 2} \tag{2-24}$$

 $\varepsilon_r = n^2 - k^2 \tag{2-25}$

M は平均原子量または平均分子量, *p* は物質の密度, *N_A* はアボガドロ数, *ε_r* は物質の比誘電率, *n* は物質の屈折率, *k* は物質の消衰係数を表す.この *n* 及び *k* の値は 589 nm の光によって測定された値とする⁸⁵⁾.以上から摩 擦中に分極率体積を測定することで潤滑油の CNx 膜に対する物理吸着能 を摩擦中その場推定することができると考えられる.そして分極率体積は 物質の光学定数から求められると明らかとなった.以上から, 摩擦中の潤 滑油の CNx 膜に対する物理吸着能を推定するために, 油膜や構造変化層の 分極率体積を測定することとする.

以上から,摩擦中に測定すべき量として構造変化層の厚さ,化学結合割 合及び分極率体積,油膜の厚さ及び分極率体積の5点を提案し,これらす べての量が反射分光分析から測定可能であると明らかとなった.

2.3 摩擦面その場観察摩擦試験機

図 2-3 に、大気中乾燥ガス吹き付け摩擦用摩擦面その場観察摩擦試験機の概略図を示す.カーボン系硬質膜の相手材としては可視光線領域で透過 性の高いサファイア半球を用いた.そしてサファイア半球直上に反射分光 膜厚計の対物レンズを設置した.この構成にすることで、サファイア半球 越しに摩擦面を観察することができる.また荷重は Z 軸を上下させ、サフ ァイア半球をカーボン系硬質膜に押し付けることによって与えた.荷重及 び摩擦力は、平行板バネに貼り付けたひずみゲージによって測定した.さ らに乾燥ガスを摩擦面に吹き付ける機構を設置することで摩擦面におい て乾燥ガス環境を再現した.

図 2-4 に,油中摩擦用摩擦面その場観察摩擦試験機の概略図を示す.回 転ステージ中心部に油浴溝を作り,その中に試験片と潤滑油を入れること で油中摩擦試験を行うことができる.この摩擦試験機の構成は,図 2-3 の 乾燥ガス吹き付け機構以外は同一のものである.

図 2-3 大気中乾燥ガス吹き付け摩擦用摩擦面その場観察摩擦試験機

図 2-4 油中摩擦用摩擦面その場観察摩擦試験機

2.4 反射分光分析による構造変化層及び油膜の摩擦中測定手法の提案

2.4.1 摩擦中の反射率測定手法の提案

図 2-5 に、摩擦試験中にカーボン系硬質膜の反射率を測定するときの光路の模式図を示す.図 2-5 の赤線は入射光及び反射光の光路を表し、対物レンズの焦点(2 つの赤線が交わる点)をカーボン系硬質膜の表面に合わせる.図 2-5 において反射光 *Rloss* は反射率測定用光路から大きく外れるため*Rloss*の光強度は反射分光膜厚計では測定されない.本論文で用いた解析用ソフトウェアにおいては反射光はすべて装置に戻ってくると仮定している.つまり*Rloss* も反射光として装置内の分光器に入ると仮定しているのである.したがって、この状態で測定される反射率からは、カーボン系硬質膜の厚さや光学定数を正しく分析することができない.そこでサファイア半球越しのカーボン系硬質膜の反射率スペクトルから *Rloss* の影響を除く測定手法について検討する.

式(2-15)より,反射分光膜厚計は AI 標準反射板の大気中における反射光 強度をもとにして試験片の反射率スペクトルを測定している.ここから *Rloss*の情報が除かれた AI 標準反射板の反射光強度が測定されれば,サフ ァイア半球越しのカーボン系硬質膜の分析が可能になると考えた.したが って,サファイア半球越しに AI 標準反射板の反射光強度を測定した後に サファイア半球越しにカーボン系硬質膜の反射率スペクトルを測定する ことで,得られた反射率スペクトルからカーボン系硬質膜の解析が可能と なる.本論文ではこの手法で反射率スペクトルを測定し,分析を行うこと とする.以降は,大気中での AI 標準反射板の反射光強度を基準にして得 られる反射率スペクトルを「反射率スペクトル」,サファイア半球越しに 測定された AI 標準反射板の反射光強度を基準として得られる反射率スペ クトルを「分析用反射率スペクトル」と称す.

図 2-5 摩擦試験中の反射率測定用光路

2.4.2 光学モデルの構築による構造変化層及び油膜測定手法の提案

本節では,2.4.1節で提案された手法により測定された分析用反射率スペ クトルとフィッティングさせるための光学モデルを構築する.今回構築す るモデルは,乾燥ガス中摩擦及び油中摩擦の2種類のモデルを提案する.

まず乾燥ガス中摩擦における光学モデルを提案する.まず今回提案する モデルの模式図を図 2-6 に示す.雰囲気層としてサファイアを選択した. サファイア半球上の空気層を設定しない理由は,2.4.1 節で提案された分析 用反射率スペクトル測定手法では空気層とサファイア半球との反射を除 いており,空気層の存在を考慮する必要がないからである.そして雰囲気 層の下にカーボン系硬質膜から変質した構造変化層,その下にカーボン系 硬質膜,そして基板層として Si(100)を設定した.この設定から計算される 反射率 R は以下の式で表される^{61),86),87)}.

$$R = \left| \frac{r_{01} + r_{12} \exp(-i2\beta_1) + [r_{01}r_{12} + \exp(-i2\beta_1)]r_{23} \exp(-i2\beta_2)}{1 + r_{01}r_{12} \exp(-i2\beta_1) + [r_{12} + r_{01}\exp(-i2\beta_1)]r_{23}\exp(-i2\beta_2)} \right|^2$$
(2-26)

$$N_m = n_m - ik_m \quad (m=1,2, N_m, n_m 及び k_m は波長 \lambdaの関数)$$
 (2-27)

$$r_{ij} = \frac{N_i \cos\theta_i - N_j \cos\theta_j}{N_i \cos\theta_i + N_j \cos\theta_j} \quad (i=0,1,2, j=1,2,3)$$
(2-28)

$$\beta_m = \frac{2\pi d_m N_m \cos\theta_m}{\lambda} \tag{2-29}$$

 $N_0 \sin \theta_0 = N_1 \sin \theta_1 = N_2 \sin \theta_2 = N_3 \sin \theta_3$ (2-30)

R は反射率, d_1 は構造変化層厚さ, d_2 は構造変化層下のカーボン系硬質膜 の厚さ, λ は光波長を表す.下付き添え字の 0,1,2,3 で示される材料はそれ ぞれサファイア,構造変化層,カーボン系硬質膜,Si である.また θ_0 は光 の入射角, θ_1 , θ_2 及び θ_3 はそれぞれ構造変化層,カーボン系硬質膜及び Si 基板への透過角を表す.そして構造変化層及びカーボン系硬質膜の光学 定数と化学結合割合の関係は,有効媒質近似法によって式(2-31)のように 表される^{61),88)}.

$$0 = f_{C-Csp^2} \frac{\varepsilon_{C-Csp^2} - \varepsilon}{\varepsilon_{C-Csp^2} + 2\varepsilon} + f_{C-Csp^3} \frac{\varepsilon_{C-Csp^3} - \varepsilon}{\varepsilon_{C-Csp^3} + 2\varepsilon} + f_{(C-N)or(C-H)} \frac{\varepsilon_{(C-N)or(C-H)} - \varepsilon}{\varepsilon_{(C-N)or(C-H)} + 2\varepsilon}$$
(2-31)

ε は誘電率, f は各化学結合の体積割合を表す. CNx 膜の場合は C-Csp², C-Csp³ 及び C-N 結合の 3 種類の誘電率及び体積割合, a-C:H 膜の場合は C-Csp², C-Csp³ 及び C-H 結合の 3 種類の誘電率及び体積割合で表される. 式(2-26)から式(2-30)より,反射率を測定することにより構造変化層厚さや 化学結合割合が測定できることが示された. ここで上記化学結合の誘電率 が明らかとなれば式(2-31)内の未知数がより少なくなり, 化学結合割合が 測定しやすくなる. そこで摩擦試験に先立ち各化学結合の誘電率を求めた. 詳細は 2.4.3 節に記す.

次に油中摩擦における光学モデルを提案する.今回提案するモデルの模式図を図 2-7 に示す.雰囲気層はサファイア,雰囲気層の下に油膜,その下に CNx 膜から変質した構造変化層,基板層として CNx 膜を設定した. この設定から計算される反射率 R は以下の式で表される^{61),86),87)}.

$$R = \left| \frac{r_{01} + r_{12} \exp(-i2\beta_1) + [r_{01}r_{12} + \exp(-i2\beta_1)]r_{23} \exp(-i2\beta_2)}{1 + r_{01}r_{12} \exp(-i2\beta_1) + [r_{12} + r_{01}\exp(-i2\beta_1)]r_{23}\exp(-i2\beta_2)} \right|^2$$
(2-32)

$$N_m = n_m - ik_m \quad (m=1,2, N_m, n_m 及び k_m は波長 \lambdaの関数)$$
(2-33)

$$r_{ij} = \frac{N_i \cos\theta_i - N_j \cos\theta_j}{N_i \cos\theta_i + N_j \cos\theta_j} \quad (i=0,1,2, j=1,2,3)$$
(2-34)

$$\beta_m = \frac{2\pi t_m N_m \cos\theta_m}{\lambda} \tag{2-35}$$

 $N_0 \sin \theta_0 = N_1 \sin \theta_1 = N_2 \sin \theta_2 = N_3 \sin \theta_3$ (2-36) R は反射率, t_1 は油膜厚さ, t_2 は構造変化層厚さ, λ は光波長を表す.下付 き添え字の 0,1,2,3 で示される材料はそれぞれサファイア,油膜,構造変化 層, CNx 膜である.また θ_0 は光の入射角, θ_1 , θ_2 及び θ_3 はそれぞれ油膜, 構造変化層及び CNx 膜への透過角を表す.ここで,油中摩擦における光学 モデルでは, CNx 膜を基板層として設定している.この理由は,雰囲気層 と基板層との間に挟まれる薄膜層の数をできる限り少なくするためであ る. もし CNx 膜を薄膜層, Si を基板層として設定すると, CNx 膜の厚さ が新たな未知数として解析する必要が加わり,解析により時間を要する. 本論文で我々が知りたい値は油膜と構造変化層の値であるため,今回は CNx 膜を基板層として設定した.このモデルの妥当性は 2.5.7 節に詳細に 示す.さらに分極率体積は式(2-24)のように表される.分極率体積の測定 において,CNx 膜の平均原子量は 12.03,PAO4 油の平均分子量は 4.667, CNx 膜の密度は 2.4 g/cm³, PAO4 油の密度は 6.8 g/cm³ とした ^{38),89)}.式(2-24), 式(2-32)から式(2-36)より,反射率を測定することにより構造変化層や油膜 が測定できることが示された.

最後に,乾燥ガス中摩擦試験及び油中摩擦試験における構造変化層の化 学結合割合と分極率体積,油膜の分極率体積の算出方法のまとめを表 2-1 に示す.表 2-1 において, a_{t1}'は構造変化層の分極率体積, M_{t1}は構造変化 層の平均原子量, p_{t1}は構造変化層の密度, n_{t1(589 nm)}は構造変化層の 589 nm における屈折率の値, k_{t1(589 nm)}は構造変化層の 589 nm における消衰係数の 値, a_{oi1}'は PAO4 油の分極率体積, M_{oi1} は PAO4 油の平均原子量, p_{oi1} は PAO4 油の密度, n_{oi1(589 nm)}は PAO4 油の 589 nm における屈折率の値, k_{oi1(589 nm)} は PAO4 油の 589 nm における消衰係数の値を表す. なお M_{t1}の値として CNx 膜の平均原子量, p_{t1}の値として CNx 膜の密度を用いた.また以降は, 光学モデルから計算された反射率スペクトルを「モデル反射率スペクトル」 と称す.

図 2-6 乾燥ガス中摩擦における光学モデル

図 2-7 油中摩擦における光学モデル

表 2-1 構造変化層の化学結合割合と分極率体積,油膜の分極率体積の算 出方法のまとめ

			Equations
Transformed layer	Chemical bond fractions	CNx coating	$0 = f_{C-Csp^{2}} \frac{\varepsilon_{C-Csp^{2}} - \varepsilon}{\varepsilon_{C-Csp^{2}} + 2\varepsilon} + f_{C-Csp^{3}} \frac{\varepsilon_{C-Csp^{3}} - \varepsilon}{\varepsilon_{C-Csp^{3}} + 2\varepsilon} + f_{C-N} \frac{\varepsilon_{C-N} - \varepsilon}{\varepsilon_{C-N} + 2\varepsilon}$
		a-C:H coating	$0 = f_{C-Csp^{2}} \frac{\varepsilon_{C-Csp^{2}} - \varepsilon}{\varepsilon_{C-Csp^{2}} + 2\varepsilon} + f_{C-Csp^{3}} \frac{\varepsilon_{C-Csp^{3}} - \varepsilon}{\varepsilon_{C-Csp^{3}} + 2\varepsilon} + f_{C-H} \frac{\varepsilon_{C-H} - \varepsilon}{\varepsilon_{C-H} + 2\varepsilon}$
	Polarizability volume	CNx coating	$\alpha_{tl}' = \frac{3M_{tl}}{4\pi\rho_{tl}N_{A}} \frac{n_{tl(589\ nm)}^{2} - k_{tl(589\ nm)}^{2} - 1}{n_{tl(589\ nm)}^{2} - k_{tl(589\ nm)}^{2} + 2}$
Oil film	Polarizability volume	CNx coating	$\alpha_{oil}' = \frac{3M_{oil}}{4\pi\rho_{oil}N_A} \frac{n_{oil(589nm)}^2 - k_{oil(589nm)}^2 - 1}{n_{oil(589nm)}^2 - k_{oil(589nm)}^2 + 2}$

2.4.3 カーボン系硬質膜内の化学結合の誘電率

2.4.2 節で提案した有効媒質近似法によりカーボン系硬質膜の化学結合 割合を測定するためには、カーボン系硬質膜の各化学結合の誘電率スペク トルは既知でなければならない.よって本節では CNx 膜及び a-C:H 膜内の 各化学結合の誘電率スペクトルを測定する.

まず CNx 膜内の各化学結合の誘電率スペクトルを測定するために,3種 類の CNx 膜(CNx 膜-1, CNx 膜-2, CNx 膜-3)を用意した.3種類の諸元 を表 2-2 に示す.sp²/sp³比は XPS(X-ray Photoelectron Spectroscopy),窒素 含有量は AES(Auger Electron Spectroscopy)を用いて測定し,これらの値か ら各化学結合割合を計算した.さらに反射分光分析から得られた CNx 膜の 反射率スペクトルを図 2-8 に示す.次に光学モデルを空気/CNx 膜/Si とし, フィッティング波長範囲を 300 nm~600 nm としたときに得られた膜厚を 図 2-9 に示す.これは表 2-2 に示した値とほぼ一致しており,このフィッ ティングから得られる光学定数スペクトルは CNx 膜の光学定数スペクト ルを正しく表していると考えられる.このフィッティングから得られた光 学定数スペクトルを図 2-10 から図 2-12 にそれぞれ示す.この光学定数ス ペクトルの屈折率の値は最小で 1.5 程度であったが,Fendrych らは CNx 膜 の可視光域での屈折率は 1.2~2.3 と報告しているため,図 2-10 から図 2-12 の光学定数の値は妥当であると考えられる⁹⁰⁾.ここで,各波長における CNx 膜の光学定数は以下のように表される^{62),91)}.

$$n = f_{C-Csp^2} n_{C-Csp^2} + f_{C-Csp^3} n_{C-Csp^3} + f_{C-N} n_{C-N}$$
(2-37)

$$k = f_{C-Csp^2} k_{C-Csp^2} + f_{C-Csp^3} k_{C-Csp^3} + f_{C-N} k_{C-N}$$
(2-38)

$$f_{C-Cm^2} + f_{C-Cm^3} + f_{C-N} = 1$$
(2-39)

ここで得られた 3 種類の CNx 膜の光学定数スペクトルを式(2-37)から式 (2-38)にそれぞれ代入すると,式(2-37)から 3 種類の式,式(2-38)から 3 種 類の式の計 6 種類の式が得られる.このうち未知数は式(2-37)では n_{C-Csp}^2 , n_{C-Csp}^3 , n_{C-N} ,式(2-38)では k_{C-Csp}^2 , k_{C-Csp}^3 , k_{C-N} の計 6 種類であるため,得

られた6種類の式から6種類の未知数を一意に決定することが可能である. さらに各波長における化学結合の誘電率は以下の式のように表される 62),91)

$$\varepsilon_{C-Csp^2} = (n_{C-Csp^2}^2 - k_{C-Csp^2}^2) - i(2n_{C-Csp^2}k_{C-Csp^2})$$
(2-40)

$$\varepsilon_{C-Csp^{3}} = (n_{C-Csp^{3}}^{2} - k_{C-Csp^{3}}^{2}) - i(2n_{C-Csp^{3}}k_{C-Csp^{3}})$$
(2-41)

$$\varepsilon_{C-N} = (n_{C-N}^2 - k_{C-N}^2) - i(2n_{C-N}k_{C-N})$$
(2-42)

式(2-37)から式(2-38)から測定された各波長における n_{C-Csp}^2 , n_{C-Csp}^3 , n_{C-N} , k_{C-Csp}^2 , k_{C-Csp}^3 , k_{C-N} を式(2-40)から式(2-42)に代入することで, CNx 膜内の C-Csp², C-Csp³及び C-N 結合の誘電率スペクトルが求められる. 図 2-13 から図 2-15 に, CNx 膜内の C-Csp², C-Csp³及び C-N 結合の誘電率スペクトルをそれぞれ示す. ここで ε_1 は誘電率スペクトルの実部, ε_2 は誘電率スペクトルの虚部を表す. これら誘電率スペクトルの値を CNx 膜の化学結合 割合測定に用いた.

次に a-C:H 膜内の各化学結合の誘電率スペクトルを測定するために, a-C:H 膜及び 2 種類の a-C 膜 (a-C 膜-1, a-C 膜-2) を用意した. a-C:H 膜 及び a-C 膜の諸元を表 2-3 に示す. 結合比は XPS, 水素含有量は ERDA(Elastic Recoil Detection Analysis)を用いてそれぞれ測定し、これらの 値から各化学結合割合を計算した. さらに反射分光分析から得られた a-C:H 膜及び a-C 膜の反射率スペクトルを図 2-16 に示す. 次に a-C:H 膜の 光学モデルを空気/a-C:H 膜/Si, a-C 膜の光学モデルを空気/a-C 膜/Si とし, フィッティング波長範囲を 300 nm~600 nm としたときに得られた膜厚を 図 2-17 に示す. これは表 2-3 に示した値とほぼ一致しており, このフィッ ティングから得られる光学定数スペクトルは a-C:H 膜及び a-C 膜の光学定 数スペクトルを正しく表していると考えられる. このフィッティングから 得られた光学定数スペクトルを図 2-18 から図 2-20 に示す. ここで, 各波 長における a-C:H 膜及び a-C 膜の光学定数は以下のように表される^{62),91)}. $n = f_{C-Cxp^{2}} n_{C-Cxp^{2}} + f_{C-Cxp^{3}} n_{C-Cxp^{3}} + f_{C-H} n_{C-H}$ (2-43) $k = f_{C-Cxp^{2}}k_{C-Cxp^{2}} + f_{C-Cxp^{3}}k_{C-Cxp^{3}} + f_{C-H}k_{C-H}$ (2-44)

 $f_{c-csp^2} + f_{c-csp^3} + f_{c-H} = 1$ (2-45) ここで得られた 3 種類の a-C:H 膜及び a-C 膜の光学定数スペクトルを式 (2-43)から式(2-44)にそれぞれ代入すると,式(2-43)から 3 種類の式,式 (2-44)から 3 種類の式の計 6 種類の式が得られる.このうち未知数は式 (2-43)では n_{c-csp^2} , n_{c-csp^3} , n_{C-H} ,式(2-44)では k_{c-csp^2} , k_{c-csp^3} , k_{C-H} の計 6 種類であるため,得られた 6 種類の式から 6 種類の未知数を一意に決定す ることが可能である.さらに各波長における化学結合の誘電率は以下の式 のように表される $6^{2),91}$.

$$\varepsilon_{C-Csp^2} = (n_{C-Csp^2}^2 - k_{C-Csp^2}^2) - i(2n_{C-Csp^2}k_{C-Csp^2})$$
(2-46)

$$\varepsilon_{C-Csp^3} = (n_{C-Csp^3}^2 - k_{C-Csp^3}^2) - i(2n_{C-Csp^3}k_{C-Csp^3})$$
(2-47)

$$\varepsilon_{C-H} = (n_{C-H}^2 - k_{C-H}^2) - i(2n_{C-H}k_{C-H})$$
(2-48)

式(2-43)から式(2-44)から測定された各波長における n_{C-Csp}^2 , n_{C-Csp}^3 , n_{C-H} , k_{C-Csp}^2 , k_{C-Csp}^3 , k_{C-H} を式(2-46)から式(2-48)に代入することで, a-C:H 膜内 の C-Csp², C-Csp³ 及び C-H 結合の誘電率スペクトルが求められる. 図 2-21 から図 2-23 に, a-C:H 膜内の C-Csp², C-Csp³及び C-H 結合の誘電率スペ クトルをそれぞれ示す.ここで ϵ_1 は誘電率スペクトルの実部, ϵ_2 は誘電率 スペクトルの虚部を表す.これら誘電率スペクトルの値を a-C:H 膜の化学 結合割合測定に用いた.ここで、CNx 膜と a-C:H 膜の各化学結合の誘電率 スペクトルの値が異なっているが, これは CNx 膜と a-C:H 膜のダングリン グボンド数密度もしくは残留圧縮応力が異なっているためであると考え られる. ダングリングボンド数密度に関して, Robertson はカーボン系硬 質膜のダングリングボンド数密度が減少すると光学バンドギャップは広 がると報告している¹⁰²⁾.また Tauc は材料の消衰係数 k から光学バンドギ ャップが計算できると報告している⁹²⁾. ここからカーボン系硬質膜のダン グリングボンド数密度が変化すれば消衰係数スペクトルの値も変化する と考えられる. さらに残留圧縮応力に関しては, Hainsworth らはカーボン 系硬質膜の残留圧縮応力の増加により膜内の結合距離が減少すると報告 している⁹³⁾. さらに安藤は結合距離が変化することで材料の屈折率が変化 することを報告している⁹⁴⁾. ここからカーボン系硬質膜の残留圧縮応力が 変化すれば屈折率スペクトルの値も変化すると考えられる.以上から, CNx 膜と a-C:H 膜のダングリングボンド数密度もしくは残留圧縮応力が異なる ために,各化学結合の光学定数スペクトルに違いが生まれ,結果として誘 電率スペクトルの値が異なったものと考えられる.

以上より、本節で求められた誘電率スペクトルを用いて、摩擦中のカー ボン系硬質膜の化学結合割合を測定した.

	CNx coating -1	CNx coating -2	CNx coating -3
Substrate	Si(100)	Si(100)	Si(100)
Deposition method	IBAD	IBAD	IBAD
Thickness of CNx coating	100 nm	100 nm	100 nm
Nitrogen content	11.1 at%	10.0 at%	9.6 at%
sp ² /sp ³ ratio	2.17	2.04	1.96
${\rm f_{C-Csp}}^2$	0.609	0.604	0.599
f _{C-Csp} ³	0.280	0.296	0.305
f _{C-N}	0.111	0.100	0.096

表 2-2 3 種類の CNx 膜の諸元

表 2-3 a-C:H 膜及び 2 種類の a-C 膜の諸元

	a-C:H coating	a-C coating -1	a-C coating -2
Substrate	Si(100)	Si(100)	Si(100)
Deposition method	PIG Plasma CVD	Arc ion plating PVD	IBAD
Thickness of coating	1000 nm	300 nm	100 nm
Hydrogen content	25 at%	0 at%	0 at%
sp ² /(sp ³ +C-H) ratio	1.78	1.13	1.89
${\rm f_{C-Csp}}^2$	0.640	0.530	0.654
f _{C-Csp} ³	0.110	0.470	0.346
f _{C-H}	0.250	0.000	0.000

図 2-8 3 種類の CNx 膜の反射率スペクトル

図 2-10 CNx 膜-1 の光学定数スペクトル

図 2-11 CNx 膜-2 の光学定数スペクトル

図 2-12 CNx 膜-3 の光学定数スペクトル

図 2-13 CNx 膜内の C-Csp² 結合の誘電率スペクトル

図 2-15 CNx 膜内の C-N 結合の誘電率スペクトル

図 2-20 a-C 膜-2 の光学定数スペクトル

図 2-21 a-C:H 膜内の C-Csp² 結合の誘電率スペクトル

図 2-23 a-C:H 膜内の C-H 結合の誘電率スペクトル

2.5 反射分光分析によるカーボン系硬質膜及び油膜の摩擦中測定可能 性の検討

2.5.1 検討方法

2.2.2 節では摩擦試験中に反射分光分析により測定すべき量を抽出した. 本節ではこの量を反射分光分析により測定したときの誤差を求め、反射分 光分析によるカーボン系硬質膜及び油膜の摩擦中測定可能性を検討する. まず摩擦中に断続的に反射率スペクトルを測定するにあたり、反射率スペ クトルの時間安定性を検討する必要がある. そこで Si 基板の反射率を 30 分おきに測定し、この装置から測定される反射率スペクトルの時間安定性 を検討する. 続いて 2.2.1 節より, 対物レンズから試験片へ入射される光 の入射角は 14.6 度から 20.5 度までの幅をもっている一方で,解析ソフト ウェアでは入射角を 15.99 度と仮定したときの反射率を計算し、フィッテ ィングを行っている.しかしこの仮定により計算されたモデル反射率スペ クトルと実際に測定された反射率スペクトルとの誤差の検討はされてい ない. そこで Si 基板を用いてこれらの反射率スペクトルの誤差を測定する ことでフィッティングのためにモデル反射率スペクトルを用いても良い かを検討する.次に反射分光分析により測定されたカーボン系硬質膜厚さ, 構造変化層厚さ及び化学結合割合,石英の分極率体積の値の誤差を求める ことで反射分光分析によりカーボン系硬質膜厚さ、構造変化層厚さ及び化 学結合割合,分極率体積が測定可能であるかどうかを検討する.この後, 摩擦中の測定環境を再現した状態でカーボン系硬質膜の厚さ及び化学結 合割合を測定し、測定された値の誤差を求めることで摩擦中に膜厚や化学 結合割合が測定可能であるかを検討する.次に 2.4.2 節より,油中摩擦の 光学モデルにおいて CNx 膜を基板層として設定した. しかし CNx 膜は Si 基板上に成膜された薄膜であり、この光学モデルの設定の妥当性を検討す る必要がある.そこで構造変化層厚さが既知の CNx 膜を用いて, CNx 膜

を薄膜層としたときと基板層と設定した時に測定される構造変化層厚さ を比較し, CNx 膜を基板層と設定しても測定結果の妥当性を失わないかを 検討する. さらに油中摩擦試験において,表面粗さをもつカーボン系硬質 膜とサファイア半球との間に存在する油膜の厚さは,反射分光分析によっ てどのように測定されるかが不明である. そこで摩擦中の測定環境を再現 した状態で油膜厚さを測定し,反射分光分析から求められる油膜厚さの意 味とその測定誤差を求めることで摩擦中に油膜厚さが測定可能であるか を検討する.

2.5.2 測定された反射率スペクトルの時間安定性の検討

本節では反射分光膜厚計から測定される反射率スペクトルの時間安定 性を検証するために,光源起動後 30 分おきに Si 基板の反射率スペクトル を測定した.試験片として表 2-4 に示すような厚さ 350 µm の Si(100)基板 を用いた.光源起動後 30 分おきに測定した Si 基板の反射率スペクトルの 変化を図 2-24 に示す.この図から示されるように反射率スペクトルは経過 した時間によらずほぼ同じであり,摩擦中に断続的に反射率スペクトルを 測定しても支障がないことが確認された.

Diameter	50 mm	
Thickness	350 µm	
Orientation	<100>	
Resistivity	1 ~ 20 Ω•cm	
Crystal growth	Czochralski	
process	process	

表 2-4 Si 基板の諸元

図 2-24 光源起動後 30 分おきに測定した Si 基板の反射率スペクトルの変

2.5.3 モデル反射率スペクトルと実際に測定された反射率スペクトル との誤差

本節では、モデル反射率スペクトルと実際に測定された反射率スペクト ルとの誤差を測定することでフィッティングのためにモデル反射率スペ クトルを用いても良いかを検討する. 試験片として表 2-5 に示すような厚 さ 350 µm の Si(100)基板を用いた. まず反射分光膜厚計で Si 基板の反射率 スペクトルを測定し、その後光学モデルからモデル反射率スペクトルを計 算し、これらのスペクトルとの誤差を計算した.

Si 基板の反射率スペクトルと光学モデルを空気/Si と設定した時に計算 されるモデル反射率スペクトルを図 2-25 に示す.図 2-25 の 2 つの反射率 スペクトルはほぼ一致しており、2 スペクトルの誤差は最大で 1.8 %(380 nmにおける反射率)であった.以上から、モデル反射率スペクトルの計算 のために入射角を 15.99 度と仮定して計算しても最大 1.8 %の誤差でフィ ッティング可能であると明らかとなった.

Diameter	50 mm	
Thickness	350 µm	
Orientation	<100>	
Resistivity	1 ~ 20 Ω•cm	
Crystal	Czochralski process	
growth		
process		

表 2-5 Si 基板の諸元

図 2-25 Si 基板の反射率スペクトルとモデル反射率スペクトル

2.5.4 カーボン系硬質膜厚さ,構造変化層厚さ及び化学結合割合の測定 可能性の検討

本節ではカーボン系硬質膜厚さ,構造変化層厚さ及び化学結合割合の測 定可能性について検証する.試験片として表 2-6 に示すような CNx 膜及び a-C:H 膜を用いた. CNx 膜 No.1 は井上らが摩擦試験の際に用いた CNx 膜 の摩耗痕内を表す³⁸⁾. CNx 膜 No.1 の構造変化層厚さ及び化学結合割合は STEM-EELS により求められた³⁸⁾.表 2-6 に示した CNx 膜及び a-C:H 膜の 反射率を測定し,反射率スペクトルのフィッティングから CNx 膜 No.1 に 関しては構造変化層厚さ及び化学結合割合,CNx 膜 No.2及び a-C:H 膜 No.3 に関しては膜厚さを測定した.

まず CNx 膜及び a-C:H 膜の反射率スペクトルを図 2-26 に示す. CNx 膜 No.1 及び No.2 の反射率スペクトルに関して,光波長の増加に伴い反射率 の値は徐々に増加した. a-C:H 膜 No.3 の反射率スペクトルに関して,500 nm までは反射率の値は波長の増加に伴い徐々に増加したが,500 nm 以上 では反射率の値が上下しスペクトルが波のような形になった.

次に光学モデルを構築して CNx 膜または構造変化層の厚さ,構造変化層 の化学結合割合を測定した.今回の光学モデルは CNx 膜 No.1 に関して, 摩擦前の段階で CNx 膜表面から 50 nm の深さで構造が異なる層が存在した ため,空気/構造変化層/CNx 膜-1(50 nm)/CNx 膜-2(150 nm)/Si と設定した³⁸⁾. CNx 膜 No.2 に関しては空気/CNx 膜/Si, a-C:H 膜 No.3 に関しては空気 /a-C:H 膜/Si と設定した.ここで反射率スペクトルとモデル反射率スペク トルとのフィッティングを行うときのフィッティング波長範囲について 検討する. 試験片に光吸収があるとき, 試験片に入射した光強度は試験片 に侵入した深さに応じて減少する.ここで強度 I の光が試験片に d_p nm 侵 入したときの光強度を I_d とすると,光の侵入深さ d_pは式(2-49)のように表 される.

$$d_p = -\frac{\lambda}{4\pi k} \ln(\frac{I_d}{I})$$

(2-49)

ここで A は光波長(nm), k は膜の消衰係数である. 光強度を一定とすれば, 短波長の光では侵入深さが減少し、長波長の光では侵入深さが増加する. ここから10nm程度の非常に薄い構造変化層を測定するためには短波長領 域でのフィッティングが適していると考え、フィッティング波長の始点は 300 nm からとした. また長波長の光は CNx 膜を貫通して Si 基板まで到達 しやすくなるため、長波長領域での反射率スペクトルには CNx 膜と Si 基 板との境界で反射した光強度の割合が短波長領域に比べて多く含まれる. この CNx 膜と Si 基板間で反射した光強度の割合が CNx 膜厚さや構造変化 層厚さの測定結果に与える影響は不明である.そこで,まずフィッティン グ波長範囲の構造変化層厚さに及ぼす影響を明らかにするため、フィッテ ィング波長範囲の広さを 50 nm 刻みで設定し,種々のフィッティング波長 範囲が膜厚または構造変化層厚さに及ぼす影響を調べた。その結果を図 2-27 から図 2-29 に示す.まず図 2-27 より、どの波長範囲においても構造 変化層厚さは 9.4 nm~11.5 nm の範囲で求められた. これは井上らの報告し ている構造変化層厚さ(10.5 nm)とおおむね一致する値である.次に図 2-28 より、フィッティング範囲が 300 nm~600 nm までは膜厚は 133 nm と求め られ,表 2-6の諸元と近い値であった.しかしフィッティング範囲が 300 nm~650 nm 以上では求められた膜厚は表 2-6 の諸元の値より大きな値を出 力した. 次に図 2-29 より, フィッティング範囲が 300 nm~350 nm のとき 膜厚は 1009 nm と求められ、これは表 2-6 で示される膜厚より小さな値で あった.これは膜厚に対して光の侵入深さが小さいためだと考えられる. フィッティング範囲が 300 nm~600 nm までは膜厚は 1045 nm と求められ, 膜厚は表 2-6 の諸元と近い値であった. しかしフィッティング範囲が 300 nm~650 nm 以上では求められた膜厚は表 2-6 の諸元の値より小さな値を出 力した.次にフィッティング波長範囲により求められた膜厚が変化した理
由を明らかにするために、各膜の光の侵入深さを求めた. $\frac{I_a}{I} = \frac{1}{e^2} \approx 0.135$ の ときの光波長に伴う光の侵入深さ d_p の変化を図 2-30 に示す. ここから、 光の侵入深さが膜厚と一致する光波長の値が、膜厚が正しく求められた最 大波長の値と一致していた. ここから、光が基板に到達したときに $\frac{I_a}{I} = \frac{1}{e^2} \approx 0.135$ 以上であると、その反射した光は基板の影響を受けてカーボ ン系硬質膜の測定ができなくなると考えられる. したがって、カーボン系 硬質膜の反射率スペクトルのフィッティングには、まず膜厚と同等の侵入 深さとなる光波長をフィッティング範囲の上限とすべきであると明らか となった.

上記のフィッティング波長範囲決定手法から,各試験片のフィッティン グ波長範囲を決定した. CNx 膜 No.1 は 300~800 nm, CNx 膜 No.2 は 300~600 nm, a-C:H 膜 No.3 は 300~600 nm となった. そしてこれらのフィ ッティング波長範囲から,カーボン系硬質膜全体の厚さは大気中では最大 3.8%の誤差で測定が可能であると明らかとなった. さらに構造変化層厚さ は大気中では最大 9.5%の誤差で測定が可能であると明らかとなった.

さらに上記フィッティング波長範囲から求められた構造変化層の C-Csp²結合割合と C-Csp³結合割合を図 2-31 に示す.ここから,特に構造 変化層の化学結合割合は最大 7.1%の誤差で測定が可能であると明らかと なった.

表 2-6 CNx 膜及び a-C:H 膜の諸元

	CNx coating No.1	CNx coating No.2	a-C:H coating No.3
Substrate	Si(100)	Si(100)	Si(100)
Deposition method	IBAD	IBAD	PIG Plasma CVD
Thickness of CNx coating	200 nm	130 nm	1040 nm
Hydrogen content			25 at%
Nitrogen content	12.0 at%	8.6 at%	
sp ² fraction	0.86		
sp ³ fraction	0.14		
Thickness of transformed	10.5 nm		
layer	10.5 шп		

図 2-26 CNx 膜及び a-C:H 膜の反射率スペクトル

図 2-27 フィッティング波長範囲の CNx 膜構造変化層厚さに及ぼす影響

図 2-28 フィッティング波長範囲の CNx 膜厚さに及ぼす影響

図 2-29 フィッティング波長範囲の a-C:H 膜厚さに及ぼす影響

図 2-30
$$\frac{I_d}{I} = \frac{1}{e^2} \approx 0.135$$
のときの光波長に伴う光の侵入深さ d_p の変化

測定結果

2.5.5 材料の分極率体積の測定可能性の検討

次に材料の分極率体積の測定可能性について検討する.検討のための材料として直径 50 mm,板厚 0.5 mm の合成石英板を用いた.まず石英板の反射率スペクトルを図 2-32 に示す.光波長の増加に伴い反射率は徐々に減少した.図 2-33 に反射分光分析から測定された石英の分極率体積と Lasaga らが報告している石英の分極率体積の値を示す⁹⁵⁾.ここから,反射分光分析により測定された石英の分極率体積は 29.6 ×10⁻²⁵ cm³ であり,Lasaga らが報告している値より 1.0×10⁻²⁵ cm³ だけ大きかった.以上から反射分光分析により測定された分極率体積は,3.4%の誤差で測定が可能であると明らかとなった.

図 2-32 合成石英板の反射率スペクトル

図 2-33 反射分光分析による石英の分極率体積測定結果と文献値との比

較

2.5.6 摩擦中の測定環境におけるカーボン系硬質膜の厚さ及び化学結 合割合の測定可能性の検討

次に摩擦中の測定環境を模擬した状態でのカーボン系硬質膜の厚さ及 び化学結合割合の測定可能性を検討する.この検証に用いたカーボン系硬 質膜として表 2-6 の CNx 膜 No.2 を用いた. CNx 膜 No.2 の sp²/sp³比は XPS 測定から 2.5 であった. 今回の試験では図 2-3 で示す摩擦試験を用い た.荷重 0.1N でサファイア半球を CNx 膜に押し付け, CNx 膜とサファイ ア半球との接触面中心に対して反射率スペクトルを測定した.このときの ヘルツ接触直径は 24 µm であり、これは反射分光分析のスポット直径 10 µm の倍以上あるため、測定された反射率スペクトルは接触面における値 を表していると考えられる.図 2-34 に測定された反射率スペクトルを示す. 光波長の増加に伴い反射率の値は増加した. さらに図 2-35 に分析用反射率 スペクトルを示す. 光波長 500 nm 付近で反射率が極小となった. この分 析用反射率スペクトルとモデル反射率スペクトルをフィッティングさせ ることで、CNx 膜厚さと化学結合割合を測定した.光学モデルは Al₂O₃/CNx 膜/Siとし、フィッティング波長範囲は 2.5.2 節から 300~600 nm とした. 図 2-36 及び図 2-37 に反射分光分析による CNx 膜厚さと化学結合割合を測 定した結果を示す.反射分光分析により CNx 膜厚さは 134 nm, sp²結合割 合は 74%, sp³ 結合割合は 26%と求められた. ここから, 摩擦中の測定環 境を再現した状態では反射分光分析による CNx 膜厚さは 3.1%の誤差で測 定可能であることが明らかとなった.また化学結合割合は 9.8%の誤差で 測定可能であることが明らかとなった.

図 2-34 CNx 膜の反射率スペクトル

図 2-35 CNx 膜の分析用反射率スペクトル

図 2-36 反射分光分析による CNx 膜の厚さ測定結果

図 2-37 反射分光分析による CNx 膜の化学結合割合の測定結果

2.5.7 CNx 膜の光学モデルの設定が構造変化層厚さの測定に与える 影響

本節では構造変化層厚さが既知の CNx 膜を用いて, CNx 膜を薄膜層と したときと基板層と設定した時に測定される構造変化層厚さを比較し, CNx 膜を基板層と設定しても測定結果の妥当性を失わないかを検討する. 今回用いた CNx 膜の諸元は表 2-6 の"CNx coating No.1"に示されている.ま ずこの CNx 膜の摩耗痕内の反射率スペクトルを測定し,そして空気/構造 変化層/CNx 膜/Si,空気/構造変化層/CNx 膜の 2 種類の光学モデルを設定し てそれぞれフィッティングを行い,構造変化層厚さを測定した.フィッテ ィング波長範囲は 300 nm~800 nm とした.

CNx 膜の摩耗痕内の反射率スペクトルは図 2-26 の"CNx coating No.1"に 示されている.次に2種類の光学モデルによるフィッティングから計算さ れた構造変化層厚さの結果を図 2-38 に示す.ここから,測定された2つの 膜厚の測定誤差は7.4%であった.これは2.5.4節の構造変化層厚さの最大 測定誤差の9.5%を下回っている.結果より,光学モデルが異なっても構造 変化層厚さの測定結果に変化はないことが明らかとなった.以上から,油 中摩擦の光学モデルにおいて CNx 膜を基板層として設定しても,構造変化 層のような薄膜の測定に問題はないと考えられる.

図 2-38 2 種類の光学モデルによるフィッティングから計算された構造変

化層厚さ

2.5.8 反射分光分析により測定される油膜厚さの意味とその測定可能 性の検討

さらに油中摩擦試験において, 表面粗さをもつカーボン系硬質膜とサフ ァイア半球との間に存在する油膜の厚さは、反射分光分析によってどのよ うに測定されるかは不明である. そこで摩擦中の測定環境を再現した状態 で油膜厚さを測定し,反射分光分析から求められる油膜厚さの意味とその 測定誤差を求めることで摩擦中に油膜厚さが測定可能であるかを検討す る. この検討には 5 種類の表面粗さの異なるカーボン系硬質膜を用いた. 5 種類のカーボン系硬質膜の名称を DLC No.1, DLC No.2, DLC No.3, DLC No.4, DLC No.5 とつけるとすると, 各膜の諸元は表 2-7 のように表される. 本検証には図 2-5 に示す摩擦試験機を用いた. PAO4 油を注入した油浴内 にカーボン系硬質膜を置き、その上からサファイア半球を 0.1 N の荷重で 押し付けた.これは摩擦試験前の状態を模擬している.そしてサファイア 半球とカーボン系硬質膜の接触面中心に対して反射率スペクトルを測定 し、サファイア半球とカーボン系硬質膜との間に生じる隙間を測定した. このときのヘルツ接触直径は24 µm であり、これは反射分光分析のスポッ ト直径 10 µm の倍以上あるため、測定された反射率スペクトルは接触面に おける値を表していると考えられる. 図 2-39 に各 DLC 膜に対して測定さ れた反射率スペクトルを示す.図 2-40 に反射分光分析により測定された隙 間厚さを示す. DLC No.1 の隙間厚さは 140 nm, DLC No.2 は 170 nm, DLC No.3 は 91 nm, DLC No.4 及び DLC No.5 は 0 nm と測定された. この測定 された隙間厚さと DLC 膜及びサファイア半球の表面粗さとの関係を図 2-41 から図 2-43 に示す.図 2-41 から図 2-43 より、中心線平均粗さ Ra と 反射分光分析により測定された隙間厚さの値の比は 1:0.0948、最大高さ粗 さ Rz と反射分光分析により測定された隙間厚さの値の比は 1:1.1152, 最 大山高さ Rp と反射分光分析により測定された隙間厚さの値の比は 1:1.032 であった.これらの結果より、反射分光分析により測定される隙間厚さは

カーボン系硬質膜とサファイア半球の Rp の和を表していると明らかとなった. つまり, 摩擦中に反射分光分析により測定される油膜厚さはカーボン系硬質膜の表面粗さ曲線の中心線とサファイア半球の表面粗さ曲線の中心線との距離を表していることが明らかとなった. また摩擦中の測定環境を再現した状態では反射分光分析による油膜厚さは 3.2 %の誤差で測定可能であることが明らかとなった.

表 2-7 用意したカーボン系硬質膜の諸元

	DLC No.1	DLC No.2	DLC No.3	DLC No.4	DLC No.5
Substrate	Si(100)	Si(100)	Si(100)	Si(100)	Si(100)
Deposition method	IBAD	IBAD	IBAD	PIG Plasma CVD	PIG Plasma CVD
Thickness of CNx coating	100 nm	200 nm	500 nm	1000 nm	1000 nm
Hydrogen content	0 at%	0 at%	0 at%	25 at%	25 at%
Nitrogen content	6.4 at%	3.5 at%	0 at%	0 at%	0 at%
Surface roughness Ra	8.92 nm	19.03 nm	9.86 nm	6.08 nm	1.93 nm
Surface roughness Rz	150.27 nm	190.63 nm	108.54 nm	15.82 nm	6.11 nm
Surface roughness Rp	142.24 nm	175.97 nm	96.35 nm	9.65 nm	3.71 nm

図 2-39 各 DLC 膜に対して測定された反射率スペクトル

図 2-40 反射分光分析により測定された隙間厚さ

図 2-41 中心線平均粗さ Ra と反射分光分析により測定された隙間厚さ との関係

図 2-42 最大高さ粗さ Rz と反射分光分析により測定された隙間厚さと

の関係

図 2-43 最大山高さ Rp と反射分光分析により測定された隙間厚さとの

関係

2.6 結言

本章ではカーボン系硬質膜の低摩擦発現メカニズムを明らかにするた めに反射分光分析による摩擦中摩擦面その場測定手法を提案し,その手法 による構造変化層及び油膜の摩擦中測定可能性を検討した.まずカーボン 系硬質膜の低摩擦発現メカニズムを明らかにするために摩擦中に測定す べき量の抽出を行い,それらが反射分光分析により測定可能であることが 明らかとなった.さらに摩擦中における反射分光分析によるその場測定手 法を新たに提案し,その手法の摩擦中測定可能性について検討した.得ら れた主な結論を以下に示す.

- CNx 膜の乾燥ガス中における低摩擦発現メカニズム解明のためには、 構造変化層厚さ及び化学結合割合をその場測定すべきであると明らか となった.またこれらの量は有効媒質近似法を用いることで反射分光分 析により測定可能であると明らかになった.
- 2. CNx 膜の油中における低摩擦発現メカニズム解明のためには、油膜厚 さ、油膜の分極率、構造変化層厚さ及び構造変化層の分極率を測定すべ きであると明らかとなった.またこれらの量は反射分光分析により測定 可能であると明らかとなった.
- 3. a-C:H 膜の乾燥ガス中における低摩擦発現メカニズム解明のためには、 構造変化層厚さ及び化学結合割合をその場測定すべきであると明らか となった.またこれらの量は有効媒質近似法を用いることで反射分光分 析により測定可能であると明らかになった.
- 4. 摩擦中反射分光分析のための反射率測定手法及び光学モデルを提案し、 反射率と構造変化層厚さ、化学結合割合、分極率と油膜厚さ、分極率との関係を明らかにした.
- 5. 反射分光分析により測定されたカーボン系硬質膜の厚さ及び構造変化 層厚さの値が反射率スペクトルのフィッティング波長範囲に及ぼす影

響を検討した.その結果,カーボン系硬質膜の反射率スペクトルのフィ ッティングには,まず膜厚と同等の侵入深さとなる光波長をフィッティ ング範囲の上限とすべきであると明らかとなった.またそのとき,構造 変化層厚さは9.5%の誤差で測定可能であることが明らかとなった.

- 反射分光分析により測定された構造変化層の化学結合割合を STEM-EELSにより測定された値と比較し、構造変化層の化学結合割合 は7.1%の精度で測定可能であることが明らかとなった。
- 7. 反射分光分析により測定された石英の分極率体積と文献値とを比較し、 分極率体積は3.4%の誤差で測定可能であることが明らかとなった。
- 8. 摩擦中の測定環境を模擬した状態でのカーボン系硬質膜の厚さ及び化 学結合割合を測定し、反射分光分析による CNx 膜厚さは 3.1 %の誤差で 測定可能であることが明らかとなった.また化学結合割合は 9.8 %の誤 差で測定可能であることが明らかとなった.
- 9. 摩擦中の測定環境を再現した状態で油膜厚さを測定した結果,摩擦中に 反射分光分析により測定される油膜厚さはカーボン系硬質膜の表面粗 さ曲線の中心線とサファイア半球の表面粗さ曲線の中心線との距離を 表していることが明らかとなった.また摩擦中の測定環境を再現した状 態では反射分光分析による油膜厚さは 3.2%の誤差で測定可能であるこ とが明らかとなった.

第3章 CNx 膜の低摩擦発現メカニズムの解明

3.1 緒言

梅原らは Si_3N_4 球を相手材として CNx 膜を乾燥窒素中で摩擦させたとき, 摩擦係数 μ=0.009 の低摩擦係数を発現したと報告している^{24),25)}. さらに榊 原らは CNx 膜同士の油中摩擦において、摩擦係数 0.05 を下回る低摩擦を 発現し、a-C 膜同士の摩擦係数と比較して半分程度の摩擦係数となったこ とを報告している²⁸⁾. これらの報告から, CNx 膜は乾燥ガス環境において も油中においても低摩擦を発現する材料であることがわかる. この CNx 膜の低摩擦発現メカニズムとして、野老山らは乾燥窒素中での低摩擦発現 のためには CNx 膜表面に軟質,低せん断でグラファイトライクな構造変化 層が形成されることが必要であると報告している³⁷⁾.しかし構造変化層が どの程度軟質になればいいのか, またどれくらいの厚さが低摩擦の発現に とって必要十分なのかという定量的な議論はまだされていないため、CNx 膜の乾燥ガス中における低摩擦発現メカニズムが明らかにはなっていな い. また市村らの報告から,油中における低摩擦発現メカニズムとして CNx 膜に最表面に構造変化層が形成されることが必要であると示唆され る³⁹⁾.対して田上らは CNx 膜の油中における低摩擦発現のためには油膜 が形成されることが必要であると報告している⁴⁰⁾. CNx 膜の油中摩擦にお ける低摩擦発現メカニズム仮説が複数あることから CNx 膜の油中におけ る低摩擦発現メカニズムは明らかとなっていない. CNx 膜の低摩擦発現メ カニズムが解明されなければ CNx 膜の工業的利用は不可能となるため,将 来の高効率社会実現のためには CNx 膜の低摩擦発現メカニズムを明らか にすることが必要不可欠である.

この問題を解決するために、本論文では摩擦中に摩擦面をその場観察す ることが必要であると考えた.しかし構造変化層や油膜を摩擦中に測定し たという報告はされていない.そこで本章では反射分光分析による摩擦中

摩擦面その場観察により CNx 膜の低摩擦発現メカニズムを解明する.この 後の節ではまず試験片及び試験方法を説明する.そしてその場観察による 測定結果と摩擦試験後の摩耗痕の分析結果を示す.これらの結果を用いて, 乾燥ガス中及び油中における構造変化層及び油膜が摩擦係数に与える影 響を明らかにする.そしてこの結果から低摩擦発現メカニズムを提案し, さらにそのメカニズムに再現性があるかどうかを検証するために再びそ の場観察試験を行い, CNx 膜の乾燥ガス中及び油中における低摩擦発現メ カニズムを明らかにする.

3.2 試験片及び試験方法

3.2.1 試験片

本試験で用いる CNx 膜は IBAD(Ion Beam Assisted Deposition)法により成 膜された.本試験で用いた IBAD 法は電子ビームによりカーボンターゲッ トを熱して昇華させると同時にマイクロ波イオン源によりイオン化した 窒素イオンビームを照射し、炭素及び窒素をミキシングするダイナミック ミキシング法である. 直径 50 mm,厚さ 0.35 mm の Si(100)基板上に CNx 膜を成膜した.乾燥ガス中及び油中摩擦試験で用いた CNx 膜の諸元を表 3-1 にそれぞれ示す.

また相手材として使用したサファイア半球の代表的な特性を表 3-2 に, 光学的透過率の波長依存性を図 3-1 に示す. 波長 300 nm より長波長域に おいて透過率が 85%を超えているため,可視光領域においてサファイアは 透明な物質であると考えることができる. サファイア半球はアメリカベア リング工業会規格(AFBMA)で規定する 25 等級のもので直径 8 mm のもの を使用し,表面粗さを減少させるためサファイア球を研磨した.

	CNx coating used in	CNx coating used in friction		
	friction test under dry gas	test under oil lubrication		
Substrate	Si(100)	Si(100)		
Deposition method	IBAD	IBAD		
Thickness of CNx coating	100 nm	300 nm		
Nitrogen content	8.9 at%	1.6 at%		
Hardness	13.5 GPa	12.4 GPa		
Surface roughness Ra	7.6 nm	9.5 nm		
Surface roughness Rz	20.1 nm	172.2 nm		

表 3-1 摩擦試験に用いた CNx 膜の諸元

(1) Elastic modulus	440 GPa	
(2) Poisson ratio	0.30	
(3) Thermal expansion coefficient	$5.4 \sim 6.2 \times 10^{-6}$ /K	
(4) Thermal conductivity	40 W/mK	
(5) Tensile strength	190 MPa	
(6) Density	3.99-3.98×10 ⁶ kg/m ³	
(7) Hardness	22.5 GPa	
(8) Compressive strength	2.1 GPa	
(9) Surface roughness	Ra 0.01 µm	

表 3-2 サファイア半球の特性一覧表

図 3-1 サファイア半球の光学的透過率の波長依存性

3.2.2 摩擦中その場観察試験方法

乾燥ガス中における摩擦中摩擦面その場観察は,図 2-3 に示す試験機を 用いた.摩擦試験は荷重 0.1 N,相対する二面のすべり速度を 83.8 mm/s(400 rpm),雰囲気温度は室温下(23~24 ℃)で行った.吹付けるガスの流量 は 5 L/min で,内径 4.5 mm のテフロンホースを用いて摩擦方向前方から摩 擦しゅう動面に吹付けた.さらに CNx 膜摩擦面に対する反射率スペクトル の測定を摩擦中 30 秒毎に行った.反射率測定時間は 10 秒とした.構造変 化層の分析に用いる光波長範囲は 300 nm~600 nm とした.

次に油中環境における摩擦中摩擦面その場観察は,図 2-4 に示す試験機 を用いた.摩擦試験は荷重 0.1 N,相対する二面のすべり速度を 83.8 mm/s (400 rpm),雰囲気温度は室温下(23~24 ℃)で行った.潤滑油として PAO4 を用い,摩擦面から油が枯渇しないよう十分な量の油を油浴に注入 した.以上の条件より,最小油膜厚さは 9.0 nm,膜厚比 A は 0.8 に設定さ れた.さらに CNx 膜摩擦面に対する反射率スペクトルの測定を摩擦中 30 秒毎に行った.反射率測定時間は 10 秒とした.構造変化層及び油膜の分 析に用いる光波長範囲は 300 nm~600 nm とした.

3.2.3 摩擦試験後の摩耗痕及び油に対する試験方法

3.2.3.1 原子間力顕微鏡による表面粗さ測定

CNx 膜及びサファイア半球の摩耗痕内外の表面粗さを測定するために, 原子間力顕微鏡 (AFM: Atomic Force Microscope) を用いた. AFM は試料 と探針間に働く力を利用して試料表面の凹凸をナノメートルレベルでの 分解能で観察できる. AFM 装置としてセイコーインスツルメンツ株式会社 製 Nanopics1000を用いた. 測定範囲は 400 µm×400 µm とした.
3.2.3.2 AFM ナノスクラッチ試験による薄膜硬さの測定

摩擦試験後の摩耗痕内表面に形成されている構造変化層の硬さを測定 するために, AFM ナノスクラッチ試験という手法を用いた. これはダイヤ モンドがコートされた Si 製 AFM 探針で薄膜表面をスクラッチし, そのス クラッチ深さから薄膜の硬さを推定する手法である^{96),97)}. 今回の試験では AFM 装置として SII 社製走査型プローブ顕微鏡 SPA-400 を用い, 探針とし ては nanoworld 社製ダイヤモンドコート Si カンチレバーCDT-NCHR-10 を 用いた. 以下に木村らが提案している薄膜硬さの推定手法を示す⁹⁸⁾.

加藤らの報告から、ダイヤモンドがコートされた AFM 探針を用いたカ ーボン系硬質膜に対するスクラッチ試験ではアブレシブ摩耗が発生して いると考えられる⁹⁹⁾.そこで今回のスクラッチ試験ではアブレシブ摩耗モ デルを適用することで硬さを計算した.アブレシブ摩耗の場合,AFM 探針 は図 3-2 に示すようにスクラッチしていると考えられる¹⁰⁰⁾.探針が試験 片に食い込みながらスクラッチすることで試験片が取り除かれるため、摩 耗量は食い込み深さにともない増大する.また、スクラッチ方向の前方半 分および同方向の左(もしくは右)半分が接触しているため、基板に垂直 方向の接触投影面は四半円であると考えられる.この接触面が垂直荷重を 支持しているため、図 3-3 に表すように、材料硬さと荷重により垂直方向 の投影面積を求めることができる.さらに圧子の幾何形状が分かれば圧子 の食い込み深さ h を見積もることができる.すなわち、接触投影面積 A_c は荷重 Wと硬さ H を用いて次のように示される.

$$A_{c} = \frac{1}{4}\pi r^{2}$$
(3-2)

また,幾何的に押し込む深さhは以下の式のように表される.

ように表される.

$$h = r - \sqrt{r^2 - r'^2}$$
 (3-3)
ここで,幾何的に押し込む深さ h は実験から得られる実際の押し込む深さ
h'に摩耗係数 K を乗じた形で表すことができるから式(3-3)を変形すると以
下のように表される.

$$h = Kh' = r - \sqrt{r^2 - 4W/\pi H} \tag{3-4}$$

よって硬さ H について解くと,以下の式(4-5)のように表される.

$$H = \frac{4W}{\pi \left(2Krh' - K^2 h'^2\right)} \tag{3-5}$$

以上, AFM ナノスクラッチ試験による薄膜硬さの測定法を示した.

図 3-2 アブレシブ摩耗モデルにおける探針の接触面 98)

図 3-3 アブレシブ摩耗モデルにおける摩耗深さ 98)

3.3 摩擦中その場観察試験結果

3.3.1 CNx 膜の乾燥ガス中における摩擦試験

摩擦面に乾燥アルゴンガスを吹き付けながら CNx 膜とサファイア半球 を摩擦させたときの試験結果を述べる.まず摩擦繰り返し数に伴う摩擦係 数の変化を図 3-4 に示す. 摩擦係数は摩擦繰り返し数の増加と共に徐々に 減少し, 1000 cycles 付近で摩擦係数 μ が 0.05 を下回り低摩擦を発現した. 4500 cycles~5000 cycles までの平均摩擦係数は μ=0.022 であった. 図 3-5 に反射分光膜厚計に搭載されている光学顕微鏡による摩擦面観察画像を 示す. CNx 膜のしゅう動方向は画像内の左下から右上方向である. 摩擦前 の画像からは CNx 膜とサファイア半球との隙間により形成される円形の 干渉縞(ニュートンリング)が観察された. 摩擦開始直後から 5000 cycles にかけて,画像左下(摩擦方向前面)と接触点左上に黒色の物体が観察さ れた.これは CNx 膜から発生した摩耗粉がサファイア半球側に移着したも の(移着膜)であると考えられる.なお写真内に存在する黒い円形の線, 円形線から写真外側に伸びる4本の直線,そして画像中心に存在する黒い 点は反射率測定のためのピント調整に用いる目印である. 反射分光膜厚計 に搭載されている光学顕微鏡では反射分光膜厚計内にある目印を通して 摩擦面を観察しているため、この目印は摩擦面に存在していない.

次に摩擦試験前,1000 cycles,2000 cycles,3000 cycles,4000 cycles 及び 5000 cycles における反射率スペクトルを図 3-6 に示す.摩擦開始直後から 移着膜の形成が確認されたため,200 cycles~5000 cyclesの反射率スペク トルは移着膜が形成されていない摩耗痕に対して測定された.反射率スペ クトルの値は摩擦繰り返し数の増加に伴い徐々に減少した.図 3-7 に摩擦 試験前,1000 cycles,2000 cycles,3000 cycles,4000 cycles 及び 5000 cycles に おける分析用反射率スペクトルを示す.このスペクトルの値も摩擦繰り返 し数の増加に伴い徐々に減少した. 続いて図 3-7 の分析用反射率スペクトルから構造変化層分析を行った結 果を示す.まず図 3-8 に摩擦繰り返し数に伴う構造変化層厚さと摩擦係数 の変化を示す.構造変化層は 1600 cycles から形成され,摩擦繰り返し数の 増加に伴い構造変化層厚さが増加した.5000 cycles での構造変化層厚さは 10.2 nm であった.

図 3-9 に摩擦繰り返し数に伴う構造変化層内の各化学結合割合と摩擦係数の変化を示す. 摩擦係数の減少に伴い C-Csp²結合割合が増加し, C-Csp³結合割合が減少した.

図 3-4 CNx 膜の乾燥アルゴンガス吹き付け摩擦試験における摩擦繰り 返し数に伴う摩擦係数の変化

Before friction test

1000 cycles

2000 cycles

3000 cycles

4000 cycles

5000 cycles

図 3-5 光学顕微鏡による摩擦面観察画像

図 3-6 CNx 膜の乾燥アルゴンガス吹き付け摩擦試験における反射率スペクトル(摩擦試験前, 1000 cycles, 2000 cycles, 3000 cycles, 4000 cycles 及び 5000 cycles における反射率スペクトルを記載)

 図 3-7 CNx 膜の乾燥アルゴンガス吹き付け摩擦試験における分析用反 射率スペクトル(摩擦試験前, 1000 cycles, 2000 cycles, 3000 cycles, 4000 cycles 及び 5000 cycles における分析用反射率スペクトルを記載)

図 3-8 CNx 膜の乾燥アルゴンガス吹き付け摩擦試験における摩擦繰り 返し数に伴う構造変化層厚さと摩擦係数の変化

図 3-9 CNx 膜の乾燥アルゴンガス吹き付け摩擦試験における摩擦繰り 返し数に伴う構造変化層内の各化学結合割合と摩擦係数の変化

3.3.2 CNx 膜の PAO 油中における摩擦試験

PAO4 油中で CNx 膜とサファイア半球を摩擦させたときの試験結果を述 べる.まず摩擦繰り返し数に伴う摩擦係数の変化を図 3-10 に示す.摩擦係 数は摩擦繰り返し数の増加と共に徐々に減少した.5500 cycles~6000 cycles までの平均摩擦係数は μ=0.012 であった.図 3-11 に反射分光膜厚計 に搭載されている光学顕微鏡による摩擦面観察画像を示す.CNx 膜のしゅ う動方向は画像内の左下から右上方向である.摩擦前の画像からは CNx 膜とサファイア半球との隙間により形成される円形の干渉縞(ニュートン リング)が観察された.摩擦開始直後,接触点中心付近のニュートンリン グが観察されなくなった.1000 cycles から後は摩擦面の画像に大きな変化 は認められなかった.なお写真内に存在する黒い円形の線,円形線から写 真外側に伸びる4本の直線,そして画像中心に存在する黒い点は反射率測 定のためのピント調整に用いる目印である.反射分光膜厚計に搭載されて いる光学顕微鏡では反射分光膜厚計内にある目印を通して摩擦面を観察 しているため,この目印は摩擦面に存在していない.

次に摩擦試験前,1000 cycles,2000 cycles,3000 cycles,4000 cycles,5000 cycles 及び 6000 cycles における反射率スペクトルを図 3-12 に示す.反射 率スペクトルの値は摩擦試験開始直後に430 nm 以下の波長範囲では増加 し,430 nm 以上の波長範囲では減少した.その後は摩擦繰り返し数が増加 に伴い反射率はわずかに減少した.図 3-13 に摩擦試験前,1000 cycles,2000 cycles,3000 cycles,4000 cycles,5000 cycles 及び 6000 cycles における分析用 反射率スペクトルを示す.このスペクトルの値も摩擦試験開始直後に430 nm 以下の波長範囲では増加し,430 nm 以上の波長範囲では減少した.そ の後は摩擦繰り返し数が増加に伴い反射率はわずかに減少した.

続いて図 3-13 の分析用反射率スペクトルから構造変化層分析を行った 結果を示す.図 3-14 に摩擦繰り返し数に伴う構造変化層厚さと摩擦係数の 変化を示す.本試験で用いた CNx 膜には摩擦試験前から構造変化層が形成

114

されており,摩擦試験前の構造変化層厚さは 2.6 nm と測定された.摩擦試 験開始後は約 4.0 nm まで増加後,400 cycles から摩擦試験終了まで厚さは ほとんど変化しなかった.6000 cycles での構造変化層厚さは 4.3 nm であっ た.

図 3-15 に摩擦繰り返し数に伴う構造変化層の分極率体積と摩擦係数の 変化を示す. 摩擦試験前の分極率体積は 15.4×10^{-25} cm³, 摩擦試験中は 400 cycles に 17.0×10^{-25} cm³ となったが, 400 cycles から 6000 cycles まで分極 率体積の大きな変化は観察されなかった.

さらに油膜の分析を行った結果を示す.図 3-16 に摩擦繰り返し数に伴う 油膜厚さと摩擦係数の変化を示す.摩擦繰り返し数の増加に伴い油膜厚さ は徐々に増加した. 6000 cycles での油膜厚さは 42.0 nm であった.

図 3-17 に摩擦繰り返し数に伴う油膜の分極率体積と摩擦係数の変化を 示す.油膜の分極率体積は 4800 cycles まで摩擦繰り返し数の増加に伴い 徐々に増加し,4800 cycles から 5200 cycles にかけて急激に増加した.6000 cycles での油膜の分極率体積は 10.5×10⁻²⁵ cm³ であった.

4000 cycles

50 µm

5000 cycles

6000 cycles

50 µm

光学顕微鏡による摩擦面観察画像 図 3-11

図 3-12 CNx 膜の油中摩擦試験における反射率スペクトル(摩擦試験前, 1000 cycles, 2000 cycles, 3000 cycles, 4000 cycles, 5000 cycles 及び 6000 cycles における反射率スペクトルを記載)

図 3-13 CNx 膜の油中摩擦試験における分析用反射率スペクトル(摩擦試験前, 1000 cycles, 2000 cycles, 3000 cycles, 4000 cycles, 5000 cycles 及び 6000 cycles における分析用反射率スペクトルを記載)

図 3-14 CNx 膜の油中摩擦試験における摩擦繰り返し数に伴う構造変化 層厚さと摩擦係数の変化

図 3-15 CNx 膜の油中摩擦試験における摩擦繰り返し数に伴う構造変化 層の分極率体積と摩擦係数の変化

図 3-16 CNx 膜の油中摩擦試験における摩擦繰り返し数に伴う油膜厚さ と摩擦係数の変化

図 3-17 CNx 膜の油中摩擦試験における摩擦繰り返し数に伴う油膜の分 極率体積と摩擦係数の変化

3.4 摩擦試験後の摩耗痕及び油に対する試験結果

3.4.1 CNx 膜の乾燥ガス中における摩擦試験

まず AFM により測定された CNx 膜の摩耗痕内及びサファイア半球表面 の AFM 像を図 3-18 に示す. CNx 膜の摩耗痕内の表面粗さ Ra は 1.9 nm, Rz は 6.5 nm であった. 移着膜の表面粗さ Ra は 41.0 nm, Rz は 150.3 nm であった.

次に CNx 膜の摩耗痕内外に対して, スクラッチ回数に伴うスクラッチ深 さの変化を測定した結果を図 3-19 に示す. ここから, この CNx 膜には摩 耗痕内に軟質な構造変化層が 10.3 nm 形成されていることが明らかとなっ た. さらに図 3-19 より摩耗痕外のスクラッチ深さは 100 回で 3.7 nm, 荷 重は 3000 nN であるから, これらの値を式(3-5)に代入すると, 摩耗係数 K は 3.85×10⁻⁹と求められた. この K の値は摩耗痕内の構造変化層でも変化 しないと仮定し, 構造変化層の硬さを求める. 構造変化層のスクラッチ深 さは 70 回で 10.3 nm であるから, これを式(3-5)に代入すると, 摩耗痕内の 構造変化層硬さは 4.0 GPa と求められた.

CNx coating

Sapphire hemisphere

図 3-18 CNx 膜及びサファイア半球表面の AFM 像

図 3-19 CNx 膜の摩耗痕内外に対するスクラッチ回数に伴うスクラッチ 深さの変化

3.4.2 CNx 膜の PAO 油中における摩擦試験

まず AFM により測定された CNx 膜及びサファイア半球表面の AFM 像 を図 3-20 に示す. CNx 膜の摩耗痕内の表面粗さ Ra は 3.2 nm, Rz は 21.2 nm であった.サファイア半球の摩耗痕内の表面粗さ Ra は 6.0 nm, Rz は 42.6 nm であった.図 3-20 より,サファイア半球の摩耗痕直径が CNx 膜の摩耗 痕幅より大きく観察された.そこで図 3-21 に示すようにサファイア半球頂 点付近の摩擦前後の表面形状を AFM データから抽出した.この図からサ ファイア半球の摩耗痕内は中心に向かって高さの変化があり,これがサフ ァイア半球の摩耗痕直径が CNx 膜の摩耗痕幅より大きく観察された理由 であると考えられる.

次に CNx 膜の摩耗痕内外に対して,スクラッチ回数に伴うスクラッチ深 さの変化を測定した結果を図 3-22 に示す. ここから,この CNx 膜には摩 耗痕外においても軟質な構造変化層が約 3 nm 形成されていることが明ら かとなった.そしてこの結果から摩耗痕内の硬さは表面から 2.6 nm の深さ までは 1.9 GPa, 2.6 nm から 4.1 nm の深さでは 8.0 GPa と求められた.

図 3-20 CNx 膜及びサファイア半球表面の AFM 像

図 3-21 サファイア半球頂点付近の摩擦前後の表面形状

図 3-22 CNx 膜の摩耗痕内外に対するスクラッチ回数に伴うスクラッチ 深さの変化

3.5 考察

3.5.1 反射分光分析による構造変化層及び油膜の測定値の最小分解能 の算出

反射分光分析による構造変化層及び油膜の摩擦中の測定値の最小分解 能を算出した.まず摩擦中に測定された構造変化層の厚さの最小分解能を 算出した.図 3-8 においては摩擦係数が大きく変化していない 3000 cycles から 6000 cycles にかけて構造変化層厚さが線形的に変化していると仮定 すると,最大で 0.5 nm の誤差があった.図 3-14 においては 600 cycles か ら 5000 cycles にかけて構造変化層厚さが線形的に変化していると仮定す ると,最大で 0.35 nm の誤差があった.以上から,構造変化層厚さの最小 分解能は 0.5 nm であることが明らかとなった.

摩擦中に測定された構造変化層の化学結合割合の最小分解能を算出した. 図 3-9 においては 3000 cycles から 6000 cycles にかけて構造変化層の 化学結合割合が線形的に変化していると仮定すると,最大で 2%の誤差が あった.以上から,構造変化層の化学結合割合の最小分解能は 2%である と明らかとなった.

さらに摩擦中に測定された構造変化層の分極率体積の最小分解能を算 出した. 図 3-15 においては 600 cycles から 5000 cycles にかけて構造変化 層の分極率体積が線形的に変化していると仮定すると,最大で 0.3×10^{-25} cm³の誤差があった.以上から,構造変化層の分極率体積の最小分解能は 0.3×10^{-25} cm³であると明らかとなった.

次に摩擦中に測定された油膜厚さの最小分解能を算出した.図 3-16 においては摩擦係数が大きく変化してない 5000 cycles から 6000 cycles にかけて油膜厚さが線形的に変化していると仮定すると,最大で 0.9 nm の誤差があった.以上から,油膜厚さの最小分解能は 0.9 nm であることが明らかとなった.

さらに摩擦中に測定された油膜の分極率体積の最小分解能を算出した. 図 3-17 においては 5000 cycles から 6000 cycles にかけて油膜の分極率体積 が線形的に変化していると仮定すると,最大で 0.6×10⁻²⁵ cm³の誤差があ った.以上から,油膜の分極率体積の最小分解能は 0.6×10⁻²⁵ cm³ である と明らかとなった.

3.5.2 CNx 膜の乾燥ガス中における低摩擦発現メカニズムの提案

3.5.2.1 構造変化層硬さの摩擦係数に及ぼす影響

Robertson らは、ta-C:H 膜の sp³割合が膜の硬さの 2/3 乗と線形に相関す ることを報告している¹⁰²⁾.この報告から、反射分光分析により測定され た C-Csp³結合割合から CNx 膜の硬さが推定できるのではと考えた.そこ で本節では反射分光分析から測定された CNx 膜の C-Csp³結合割合と膜硬 さの相関を評価し、摩擦中の構造変化層の硬さを推定することを試みた.

CNx 膜の C-Csp³ 結合割合と膜硬さの相関を評価するために,まず数種 類の CNx 膜を用意した.表 3-3 に用意した CNx 膜の諸元を示す.表 3-3 に示した CNx 膜とサファイア半球との摩擦試験を行った.摩擦面に乾燥ア ルゴンガスを吹き付けながら試験を行った.摩擦試験の条件は 3.2.2 節と 同様である.摩擦試験後,摩耗痕内の C-Csp³ 結合割合を反射分光分析によ り測定し,そして摩耗痕内の硬さを AFM ナノスクラッチ試験により測定 した.

図 3-23 に反射分光分析により測定された摩擦試験前の CNx 膜表面及び 摩擦試験後の摩耗痕内の C-Csp³結合割合を示す.図 3-23 内の[µ=x]の x の 値は摩擦試験終了前 500 cycles の平均摩擦係数を表している.図 3-24 に AFM ナノスクラッチ試験により測定された摩擦試験前の CNx 膜表面及び 摩擦試験後の摩耗痕内の硬さをそれぞれ示す.以上より, CNx 膜表面の C-Csp³結合割合と硬さの 2/3 乗との関係は図 3-25 のように表される.CNx 膜表面の C-Csp³結合割合と硬さの 2/3 乗は線形相関すると仮定すれば,図 3-23 と図 3-24 の関係は以下の式のように表される¹⁰²⁾.

 $H^{\frac{2}{3}} = 17.3 \times f_{C-Cm^{3}} + 1.0 \tag{3-6}$

この式(3-6)を用いて,摩擦中の C-Csp³結合割合から構造変化層硬さを推定 した.式(3-6)より,摩擦繰り返し数に伴う構造変化層硬さと摩擦係数の変 化を図 3-26 に示す.構造変化層硬さは摩擦繰り返し数の増加に伴い徐々に減少し, 5000 cycles での構造変化層硬さは 4.2 GPa であった.

表 3-3 CNx 膜の諸元

	CNx coating -1	CNx coating -2
Substrate	Si(100)	Si(100)
Deposition method	IBAD	IBAD
Thickness of CNx coating	100 nm	100 nm
Nitrogen content	6.0 at%	8.9 at%
Hardness	15.8 GPa	11.9 GPa
sp ² /sp ³ ratio	2.1	2.25

図 3-23 反射分光分析により測定された摩擦試験前の CNx 膜表面及び摩 擦試験後の摩耗痕内の C-Csp³結合割合

図 3-24 AFM ナノスクラッチ試験による摩擦試験前の CNx 膜表面及び摩 擦試験後の摩耗痕内の硬さ

図 3-25 CNx 膜表面の C-Csp³ 結合割合と硬さの 2/3 乗との関係

図 3-26 CNx 膜の乾燥アルゴンガス吹き付け摩擦試験における摩擦繰り 返し数に伴う構造変化層硬さと摩擦係数の変化

3.5.2.2 摩擦モデルの適用による低摩擦発現メカニズムの提案

Halling らは、硬質材料の上に形成された薄膜と表面粗さをもつ相手材 (剛体)を摩擦させた際に生じる摩擦係数として、以下の式を提案している¹⁰³⁾.

$$\mu = \frac{1}{\alpha} \frac{\overline{H}\overline{A} + 1}{\overline{H}\overline{A} + k\overline{H}}$$
(3-7)

$$\overline{A} = \frac{1}{2\left\{\exp(\frac{t}{\sigma}) - \frac{t}{\sigma} - 1\right\}}$$
(3-8)

$$\overline{H} = \frac{H_s}{H_c}$$
(3-9)

 H_s は基板の硬さ、 H_c は薄膜の硬さ、tは薄膜の厚さ、 σ は合成表面粗さを 表す.この摩擦モデルは硬質材料の上に形成された薄膜の厚さと硬さ、表 面粗さによって摩擦係数が決定されることを表している.この式(3-7)は、 σ が一定と仮定すれば薄膜の厚さと硬さが分かれば摩擦係数が計算可能で あることを表している.そこで本節では、構造変化層を Halling の摩擦モ デルにおける薄膜層と考え、構造変化層の厚さと硬さの結果を摩擦モデル に代入して摩擦係数を計算することで、CNx 膜の低摩擦発現メカニズムが Halling の提案する摩擦モデルで表されるかどうかを検証した.

構造変化層は 1600 cycles から形成されたことから, 1600 cycles から式 (3-7)を用いて摩擦係数を計算した. *k*=1.0 とし, *a* は 1600 cycles の摩擦係 数,構造変化層厚さ及び硬さを式(3-7)に代入することで計算された. その 結果 *a* は 4.2 と求められた. *k* 及び *a* は摩擦中に変化しないとして摩擦係 数を計算した結果を図 3-27 に示す.式(3-7)から計算される摩擦係数の値 と実際に測定された摩擦係数は非常に良い一致をしていることがわかる. 以上より, CNx 膜の乾燥ガス中における低摩擦発現メカニズムは Halling が提案した摩擦モデルに則ることが明らかとなった. なお摩擦開始から
1600 cycles までにおいては構造変化層が形成されなくても摩擦繰り返し 数の増加に伴い摩擦係数が減少しているが、この減少は摩擦開始後すぐに 形成された移着膜によるものであると考えられる.つまり低摩擦発現前に おいては移着膜が摩擦係数を低減させ、低摩擦発現後は構造変化層の摩擦 係数に与える影響が支配的になると考えられる.

図 3-27 摩擦繰り返し数に伴う摩擦係数と摩擦モデルから計算された摩 擦係数の比較

3.5.3 CNx 膜の PAO 油中における低摩擦発現メカニズムの提案

図 3-17 より,摩擦繰り返し数の増加に伴い油膜の分極率体積が増加した. この理由は油膜が酸化したためと考えられる. Ahmed らの報告から,油膜 が酸化するとまずヒドロキシ基やカルボキシ基が形成され,極性基をもつ 他の油分子と縮重合して油分子の分子量が増加して油粘度が増加すると 報告している¹⁰⁴⁾. PAO4 油の分極率は PAO4 油 1 分子に存在する結合分極 率の合計を表しているので,油分子量が増加すれば PAO4 油の分極率も増 加する.以上から,油膜の分極率の増加は油の酸化によるものであると結 論付けた.

図 3-16 より,摩擦繰り返し数の増加に伴い油膜厚さが 6000 cycles で 42.0nm まで増加した.対してこの摩擦試験条件での最小油膜厚さは 9.0 nm であった.この理由は油の酸化により油粘度が増加したためであると考え る. Ahmed らは,油は酸化することで油粘度が増加すると報告しており, さらに先の考察では摩擦中に油膜は酸化したと結論した ¹⁰⁴⁾.また石塚ら は油の酸化に伴い油の動粘度が上昇したと報告している ¹⁰⁵⁾.ここから, 摩擦中に油粘度が増加したと考えられる.つまり油粘度の増加によって油 膜厚さが増加したと考えられる.

以上から, CNx 膜の PAO 油中における低摩擦発現メカニズムを提案す る.まず摩擦試験開始後から徐々に油の分極率が増加した.ここから油は 摩擦開始後すぐに酸化をはじめたと考えられる.その結果油粘度が増加し, 油膜厚さが徐々に増加したと考えられる.さらに 4800 cycles から油の分極 率が大幅に増加した,つまり油の酸化が促進された.油膜厚さも 4800 cycles から増加していることが試験結果から明らかとなっている.この油 粘度増加による膜厚さの増加が潤滑状態を境界潤滑状態から混合潤滑状 態に変化させ,低摩擦を発現したと考えられる¹⁰⁷⁾.つまり CNx 膜の油中 低摩擦発現メカニズムとしては田上らの提案するものが正しいと考えら れる⁴⁰⁾.

3.5.4 提案された CNx 膜の低摩擦発現メカニズムの再現性の検証

3.5.2.2 節及び 3.5.3 節で提案された CNx 膜の低摩擦発現メカニズムの再 現性を検証するために, 3.2.2 節で述べた実験条件での摩擦試験を再度行い, 得られた結果が 3.3 節で示したデータと同様の傾向を示すかどうかを確か めた.

まず摩擦面に乾燥アルゴンガスを吹き付けながら CNx 膜とサファイア 半球を摩擦させたときの試験結果を述べる. 摩擦繰り返し数に伴う摩擦係 数の変化を図 3-28 に示す. 摩擦係数は 600 cycles 付近で μ =0.03 を下回っ たがすぐに摩擦係数は上昇した.その後 800 cycles 付近で摩擦係数 μ が 0.05 を下回り低摩擦を発現した.4400 cycles 付近で摩擦係数が 0.01 程度上昇し た.4500 cycles~5000 cycles までの平均摩擦係数は μ =0.012 であった.

次に図 3-29 に摩擦繰り返し数に伴う構造変化層厚さと摩擦係数の変化 を示す.構造変化層は 200 cycles から形成されたが 600 cycles から一旦観 測されなくなった.その後は 1200 cycles から構造変化層が再形成され,摩 擦繰り返し数の増加に伴い構造変化層厚さが増加した.5000 cycles での構 造変化層厚さは 9.1 nm であった.

図 3-30 に摩擦繰り返し数に伴う C-C sp³ 結合割合,構造変化層硬さと摩擦係数の変化を示す.ここから摩擦係数の減少に伴い構造変化層硬さは減少した. 5000 cycles での構造変化層硬さは 4.6 GPa であった.

さらに図 3-31 に摩擦繰り返し数に伴う摩擦係数と Halling が提案する摩 擦モデルから計算された摩擦係数の比較を示す.式(3-7)の α の値は 1000 cycles での摩擦係数,構造変化層厚さや硬さの値を用いて計算した.この 図より,1000 cycles 以降は Halling のモデルから計算された摩擦係数の値 とおおむねー致しているが,1000 cycles より前の低摩擦を発現していない 領域に関しては Halling のモデルから計算された摩擦係数と実際に測定さ れた摩擦係数が一致しなかった.これは低摩擦を発現していない状況では Halling のモデルは適用できないことを表しているものと考えられる.

以上の結果は、3.5.2.2節で測定した低摩擦発現時の構造変化層の摩擦中 その場分析結果と一致する.したがって、本節での摩擦試験における CNx 膜の乾燥ガス中における低摩擦発現メカニズムは 3.5.2.2 節で提案した低 摩擦発現メカニズムと一致すると考えられる.このことから a-C:H 膜の低 摩擦発現メカニズムの再現性が確かめられた.

次に PAO4 油中で CNx 膜とサファイア半球を摩擦させたときの試験結果 を述べる. 摩擦繰り返し数に伴う摩擦係数の変化を図 3-32 に示す. 摩擦係 数は摩擦繰り返し数 200 cycles 付近で急激に減少し, 低摩擦を発現した. 5500 cycles~6000 cycles までの平均摩擦係数は μ=0.013 であった.

図 3-33 に摩擦繰り返し数に伴う油膜厚さと摩擦係数の変化を示す.摩擦 試験開始後は油膜厚さが徐々に減少したが,600 cycles 以降は油膜厚さは 28 nm 付近で安定した.6000 cycles での油膜厚さは 28.1 nm であった.

図 3-34 に摩擦繰り返し数に伴う油膜の分極率体積と摩擦係数の変化を 示す.油膜の分極率体積は 800 cycles まで摩擦繰り返し数の増加に伴い 徐々に増加し, 800 cycles から摩擦試験終了まで値の大きな変化はなかっ た. 6000 cycles での油膜の分極率体積は 20.6×10⁻²⁵ cm³であった.

さらに摩擦試験前後で油分子構造が変化しているかどうかを明らかにす るために、FT-IR(Fourier Transform Infrared Spectroscopy)分析による PAO4 油の構造測定を行った.FT-IR 分析ではまず赤外光領域における有機化合 物の吸収率を測定し、横軸に赤外光波数(cm⁻¹)、縦軸に吸収率を取ること で有機化合物の吸収率スペクトルを得ることができる.そして吸収率の高 い波数を列挙し、その波数で吸収率が高い分子構造を分析することで有機 化合物の分子構造分析を行う.FT-IR 分析のための装置として、日本分光 株式会社製フーリエ変換赤外分光光度計 FT/IR-6300 を用いた.本試験では 赤外光波数は 700 cm⁻¹~4000 cm⁻¹ とし、吸収率スペクトルの積算回数は 100 回、赤外線検出素子として MCT(Mercury cadmium telluride)素子を用い た.本試験ではまず摩擦試験前の PAO4 油を FT-IR 装置にスポイトで移動 させ、吸収率スペクトルを測定した.そして摩擦試験後の PAO4 油に対し

ても同様の操作で吸収率スペクトルを測定した.図 3-35 に摩擦試験前後の PAO4 油の吸収率スペクトルを示す. 摩擦試験後の PAO4 油において摩擦 試験前には観測されなかったピークが存在していた. 波数の小さい値から, 640 cm⁻¹付近, 1240 cm⁻¹付近, 1760 cm⁻¹付近であった. また摩擦試験前よ りも吸収率が増加したピークの位置は 3260 cm⁻¹付近であった. これらの ピークから, 摩擦試験後の PAO4 油には O-C=O 結合(620 cm⁻¹付近), C-O 結合(1240 cm⁻¹付近), C=O 結合(1760 cm⁻¹付近), O-H 結合(3260 cm⁻¹付近) が多く存在したことが明らかとなった¹⁰¹⁾. したがって, 摩擦試験後の油 からはカルボキシ基が形成されていると考えられる. ここで Ahmed らは 油の酸化反応によりカルボキシ基が形成されると報告している¹⁰⁴⁾. また 松本らは油の酸化劣化に伴いカルボン酸を生成すると報告している¹⁰⁶⁾. 以上から, 摩擦試験後の油は酸化したことが明らかとなった.

以上の結果は 3.5.3 節で測定した低摩擦発現時の構造変化層の摩擦中そ の場分析結果と一致する.したがって、本節での摩擦試験における CNx 膜の PAO 油中における低摩擦発現メカニズムは 3.5.3 節で提案した低摩擦 発現メカニズムと一致すると考えられる.このことから CNx 膜の油中摩擦 における低摩擦発現メカニズムの再現性が確かめられた.

図 3-28 CNx 膜の乾燥アルゴンガス吹き付け摩擦試験における摩擦繰り 返し数に伴う摩擦係数の変化

図 3-29 CNx 膜の乾燥アルゴンガス吹き付け摩擦試験における摩擦繰り 返し数に伴う構造変化層厚さと摩擦係数の変化

図 3-30 CNx 膜の乾燥アルゴンガス吹き付け摩擦試験における摩擦繰り 返し数に伴う C-C sp³結合割合,構造変化層硬さと摩擦係数の変化

図 3-31 摩擦繰り返し数に伴う摩擦係数と摩擦モデルから計算された摩 擦係数の比較

図 3-32 CNx 膜の油中摩擦試験における摩擦繰り返し数に伴う摩擦係数の変化

図 3-33 CNx 膜の油中摩擦試験における摩擦繰り返し数に伴う油膜厚さ と摩擦係数の変化

図 3-34 CNx 膜の油中摩擦試験における摩擦繰り返し数に伴う油膜の分 極率体積と摩擦係数の変化

図 3-35 摩擦試験前後の PAO4 油の吸収率スペクトル

3.6 結言

本章では反射分光分析による摩擦中摩擦面その場観察を行い,CNx 膜の 低摩擦発現メカニズムを明らかにした.まず乾燥ガスを CNx 膜の摩擦面に 吹き付けながら反射分光分析による摩擦中摩擦面その場観察摩擦試験を 行い,乾燥ガス中における構造変化層が摩擦係数に与える影響を明らかに した.そしてこの結果から乾燥ガス中の摩擦における低摩擦発現メカニズ ムを提案した.また油中での CNx 膜の摩擦において反射分光分析による摩 擦中摩擦面その場観察試験を行い,油中における構造変化層及び油膜が摩 擦係数に与える影響を明らかにした.そしてこの結果から油中摩擦におけ る低摩擦発現メカニズムを提案した.さらに提案されたメカニズムに再現 性があるかどうかを検証するために再びその場観察試験を行い,CNx 膜の 乾燥ガス中及び油中における低摩擦発現メカニズムを明らかにした.得ら れた主な結論を以下に示す.

- 乾燥アルゴンガスを CNx 膜の摩擦面に吹き付けながら行った摩擦試験 において,構造変化層は 1600 cycles から形成され,摩擦試験終了まで に 10.2 nm まで増加したことが明らかとなった.また摩擦繰り返し数の 増加に伴い構造変化層の C-Csp²結合割合は増加し,C-Csp³結合割合は 減少したと明らかとなった.
- 2. CNx 膜の C-Csp³ 結合割合から膜硬さを推定する手法を提案し, 摩擦中の構造変化層硬さを推定した. その結果,構造変化層硬さは摩擦繰り返し数に伴い減少し,構造変化層硬さは最小 4.2 GPa まで減少した.
- 3. Halling らの提案する摩擦モデルに構造変化層厚さと硬さの結果を代入 した.その結果, Halling らの提案する摩擦モデルから計算された摩擦 係数が実際に測定された摩擦係数とよく一致した.ここから CNx 膜の 乾燥ガス中における低摩擦発現メカニズムが明らかとなった.
- 4. CNx 膜の油中における摩擦試験において、構造変化層は摩擦試験前か

ら形成され,摩擦中に 4.0 nm まで増加した.また構造変化層の分極率 体積は摩擦試験全体において CNx 膜の値よりも大きかった.

- 5. 油膜厚さは摩擦繰り返し数に伴い増加し,最大で42.0 nmまで増加した. また油膜の分極率体積は摩擦繰り返し数に伴い増加し,特に4800 cycles からは急激に増加した.
- 6. 油膜の分極率の結果から油の酸化メカニズムが明らかとなり,油の酸化 によって摩擦中に油の粘度が増加したことが明らかとなった.このこと より, CNx 膜が油中で低摩擦を発現した理由は,摩擦中に油の酸化に よる粘度増加に伴い油膜厚さが増加し,潤滑状態が境界潤滑から混合潤 滑に変化したためであることが明らかとなった.

第4章 a-C:H 膜の低摩擦発現メカニズムの解明

4.1 緒言

Eldemir らは a-C:H 膜を乾燥窒素中で摩擦させたとき,摩擦係数が 0.05 を下回る低摩擦を発現したと報告している³⁰⁾. さらに Eldemir らは摩擦中 に a-C:H 膜に水素で終端された表面が形成されて a-C:H 膜と相手材とのせ ん断抵抗が減少した結果低摩擦が発現したという説を提案している³⁰⁾.対 して Racine らは a-C:H 膜が低摩擦を発現するとき, a-C:H 膜に水素終端表 面が形成されるのと同時に硬質で水素量の少ない構造変化層が形成され ると報告している⁴²⁾. a-C:H 膜の工業的利用のためにはこれら 2 つの仮説 のどちらが正しいかを検証する必要がある.しかしこの検証についてはま だ報告されておらず,現状では a-C:H 膜の乾燥ガス中における低摩擦発現 メカニズムは明らかとなっていない.

そこで本章では反射分光分析による摩擦中摩擦面その場観察により a-C:H 膜の低摩擦発現メカニズムを明らかにすることを目的とする.この 後の節ではまず試験片及び試験方法を説明する.そしてその場観察による 測定結果と摩擦試験後の摩耗痕の分析結果を示す.これらの結果を用いて, 乾燥ガス中における構造変化層が摩擦係数に与える影響を明らかにする. そしてこの結果から低摩擦発現メカニズムを提案し,さらにそのメカニズ ムに再現性があるかどうかを検証するために再びその場観察試験を行い, a-C:H 膜の乾燥ガス中及び油中における低摩擦発現メカニズムを明らかに する.

4.2 試験片及び試験方法

4.2.1 試験片

本試験で用いる a-C:H 膜は PIG(Penning Ionization Gauge)プラズマ CVD(Chemical Vapor Deposition)法により成膜された. 直径 50 mm, 厚さ 0.35 mm の Si(100)基板上に a-C:H 膜を 1.0 µm の厚さで成膜した. a-C:H 膜の水 素含有量は 25 %であった. 膜の硬さは 11.0 GPa, 表面粗さに関しては中心 線平均粗さ Ra が 1.1 nm, 最大高さ粗さ Rz が 5.3 nm であった.

また相手材としてはサファイア半球を用いた.これは 3.2.1 節で説明したものと同一の材料である.

4.2.2 摩擦中その場観察試験方法

乾燥ガス環境における摩擦中摩擦面その場観察は,図 2-3 に示す試験機を用いた.摩擦試験は荷重 0.1 N,相対する二面のすべり速度を 83.8 mm/s (400 rpm),雰囲気温度は室温下 (23~24 ℃)で行った.吹付けるガスの 流量は 5 L/min で,内径 4.5 mm のテフロンホースを用いて摩擦方向前方か ら摩擦しゅう動面に吹付けた.さらに a-C:H 膜摩擦面に対する反射率スペクトルの測定を摩擦中 30 秒毎に行った.反射率測定時間は 10 秒とした. 構造変化層の分析に用いる光波長範囲は 300 nm~600 nm とした.

4.2.3 摩擦試験後の摩耗痕に対する試験方法

4.2.3.1 原子間力顕微鏡による表面粗さ測定

a-C:H 膜及びサファイア半球の摩耗痕内外の表面粗さを測定するために, 原子間力顕微鏡 (AFM: Atomic Force Microscope)を用いた. AFM は試料 と探針間に働く力を利用して試料表面の凹凸をナノメートルレベルでの 分解能で観察できる. AFM 装置としてセイコーインスツルメンツ株式会社 製 Nanopics1000を用いた. 測定範囲は 400 µm×400 µm とした.

4.2.3.2 AFM ナノスクラッチ試験による薄膜硬さの測定

摩擦試験後の摩耗痕内表面に形成されている構造変化層の硬さを測定 するために, AFM ナノスクラッチ試験を用いた.これはダイヤモンドがコ ートされた Si 製 AFM 探針で薄膜表面をスクラッチし,そのスクラッチ深 さから薄膜の硬さを推定する手法である^{96),97)}.本試験は 3.2.3.2 節で述べ たものと同様の手法を用いた.

4.2.3.3 ESEM による表面エネルギー測定

摩擦試験後の摩耗痕の表面エネルギーは,ESEM(Environmental Scanning Electron Microscope)を用いた液滴法によって測定された.これは梅原らに よって提案されている測定手法であり,この手法を用いれば摩耗痕内に形 成される微小な液滴を観察することで摩耗痕内の表面エネルギー測定が 可能である¹⁰⁸⁾⁻¹¹⁰⁾.本試験で用いた ESEM 装置としては FEI 社製走査電子 顕微鏡 Quanta450,液滴媒質としては水及びジョードメタンを用い,試験 片表面に液滴を凝集させるために試験片の温度を-10℃に冷却した.以下に 梅原らが提案している表面エネルギー測定手法を示す.

試験片の表面エネルギー測定のために,まずは液滴の接触角の測定方法 を示す.本試験では接触角の測定方法として3点法を用いた.3点法では, 液滴直径と液滴高さを測定することにより接触角を求めることができる. 3点法の概要を以下の図4-1に示す.液滴を球面の一部と仮定した場合, 接触角は液滴の頂点,液滴の端点および液滴底面の中心点がなす角の2倍 であることが幾何学的関係より導かれる.このことから接触角は以下の式 (4-1)から算出できる.

 $\theta = 2tan^{-1} \left(\frac{2h}{d}\right) \tag{4-1}$

次に図 4-2 のように液滴を ø 度の角度から俯瞰して観測する場合の接触 角算出方について述べる.液滴を俯瞰した場合,液滴の幅 d は直接計測可 能であるが液滴の高さ h の実測は不可能であるため,幾何学的な関係に基 づき計算する必要がある.図 4-2 のように,液滴を球体の一部と仮定し, その曲率半径を R とした場合,俯角 ø と見かけ上の液滴の高さ h'との間 には次の関係式(4-2)が成り立つ.

$$R = h + \frac{d}{2}\tan\phi + \frac{(R-h')}{\cos\phi}$$
(4-2)

また、液滴の高さhと幅dの間には次の関係式が成り立つ.

$$R^{2} = (R-h)^{2} + \left(\frac{d}{2}\right)^{2}$$
(4-3)

式(4-2)および式(4-3)を用いて液滴の高さhに関して整理を行うと次式のような2次方程式となる.

$$(1+\cos\phi)h^2 + 2\left(\frac{d}{2}\sin\phi - h'\right)h + (1-\cos\phi)\left(\frac{d}{2}\right)^2 = 0$$
 (4-4)

この式において各項の係数はいずれも,既知の値であるため2次方程式を 解くことによって液滴の高さhを算出することができる.

梅原らの報告より,液滴の高さhを測定することで,試験片の表面エネ ルギーを計算することができる.その計算方法を以下に示す.

表面エネルギーは以下の式(4-5)のように求められる 111),112).

$$\cos\theta = 2\sqrt{\gamma_s^d} \left(\frac{\sqrt{\gamma_l^d}}{\gamma_l}\right) + 2\sqrt{\gamma_s^h} \left(\frac{\sqrt{\gamma_l^h}}{\gamma_l}\right) - 1$$
(4-5)

ここでθは固体試料と液体試料との接触角, y は表面エネルギーを表し, y の上付き文字のdは分散成分, h は極性成分, y の下付き文字のs は固体試 料,1 は液体試料を表す.θ は液滴観察と式(4-1)から求められるので,式(4-5) における未知数は固体試料の表面エネルギーの分散成分と極性成分の2つ となる.表面エネルギーが既知である2種類の液体試料で連立方程式を解 くことによって固体試料の表面エネルギーを求めることができる¹¹²⁾.本 研究で用いた液体試料は純水とジョードメタンで,それぞれの物性値は表 4-1 に示す¹¹⁰⁾.

図 4-1 3 点法の概要 110)

図 4-2 俯角を持つときの接触角測定における幾何学的関係 110)

表 4-1 液体試料の物性値

	$\gamma_L(mJ/m^2)$	γ_L^{d}	$\gamma_L^{\ h}$
Water	71.5	29.1	42.4
Diiodomethane	46.8	46.8	0

4.3 摩擦中その場観察結果

摩擦面に乾燥窒素ガスを吹き付けながら a-C:H 膜とサファイア半球を摩 擦させたときの試験結果を述べる.まず摩擦繰り返し数に伴う摩擦係数の 変化を図 4-3 に示す.摩擦係数は摩擦繰り返し数の増加と共に徐々に減少 し,1000 cycles 付近で摩擦係数 µ が 0.05 を下回り低摩擦を発現した.4500 cycles~5000 cycles までの平均摩擦係数は µ=0.02 であった.図 4-4 に反射 分光膜厚計に搭載されている光学顕微鏡による摩擦面観察画像を示す. a-C:H 膜のしゅう動方向は画像内の左下から右上方向である.摩擦開始直 後から 10000 cycles にかけて,画像中心にしゅう動方向に長細い黒色の物 体が観察された.これは a-C:H 膜から発生した摩耗紛がサファイア半球側 に移着したもの(移着膜)であると考えられる.なお写真内に存在する黒 い円形の線,円形線から写真外側に伸びる 4 本の直線,そして画像中心に 存在する黒い点は反射率測定のためのピント調整に用いる目印である.反 射分光膜厚計に搭載されている光学顕微鏡では反射分光膜厚計内にある 目印を通して摩擦面を観察しているため,この目印は摩擦面に存在してい ない.

次に摩擦試験前, 2000 cycles, 4000 cycles, 6000 cycles, 8000 cycles 及び 10000 cycles における反射率スペクトルを図 4-5 に示す. 摩擦開始直後か ら移着膜の形成が確認されたため, 200 cycles~10000 cycles の反射率スペ クトルは移着膜が形成されていない摩耗痕に対して測定された. 反射率ス ペクトルの値は, 摩擦試験開始後に摩擦繰り返し数の増加に伴い徐々に増 加した. 図 4-6 に摩擦試験前, 2000 cycles, 4000 cycles, 6000 cycles, 8000 cycles 及び 10000 cycles における分析用反射率スペクトルを示す. このス ペクトルの値も摩擦試験開始後は摩擦繰り返し数の増加に伴い徐々に増 加した.

続いて図 4-6 の分析用反射率スペクトルから構造変化層分析を行った結果を示す.図 4-7 に摩擦繰り返し数に伴う構造変化層厚さと摩擦係数の変

化を示す.構造変化層は 200 cycles から形成され,摩擦繰り返し数の増加 に伴い構造変化層厚さが増加した.10000 cycles での構造変化層厚さは15.8 nm であった.

図 4-8 に摩擦繰り返し数に伴う構造変化層内の各化学結合割合と摩擦係数の変化を示す. 摩擦係数の減少に伴い C-Csp²結合割合が増加し, C-Csp³結合割合が減少した.

図 4-3 a-C:H 膜の乾燥窒素ガス吹き付け摩擦試験における摩擦繰り返し 数に伴う摩擦係数の変化

Before friction test

2000 cycles

4000 cycles

6000 cycles

8000 cycles

10000 cycles

図 4-4 光学顕微鏡による摩擦面観察画像

図 4-5 a-C:H 膜の乾燥窒素ガス吹き付け摩擦試験における反射率スペクトル(摩擦試験前, 2000 cycles, 4000 cycles, 6000 cycles, 8000 cycles 及び 10000 cycles における反射率スペクトルを記載)

図 4-6 a-C:H 膜の乾燥窒素ガス吹き付け摩擦試験における分析用反射率
 スペクトル(摩擦試験前, 2000 cycles, 4000 cycles, 6000 cycles, 8000 cycles
 及び 10000 cycles における分析用反射率スペクトルを記載)

図 4-7 a-C:H 膜の乾燥窒素ガス吹き付け摩擦試験における摩擦繰り返し 数に伴う構造変化層厚さと摩擦係数の変化

図 4-8 a-C:H 膜の乾燥窒素ガス吹き付け摩擦試験における摩擦繰り返し 数に伴う構造変化層内の各化学結合割合と摩擦係数の変化

4.4 摩擦試験後の摩耗痕に対する試験結果

まず AFM により測定された a-C:H 膜の摩耗痕内及びサファイア半球表 面の AFM 像を図 4-9 に示す. a-C:H 膜の摩耗痕内の表面粗さ Ra は 1.5 nm, Rz は 5.9 nm であった. 移着膜の表面粗さ Ra は 4.4 nm, Rz は 29.0 nm で あった.

次に a-C:H 膜の摩耗痕内外に対して,スクラッチ回数に伴うスクラッチ 深さの変化を測定した結果を図 4-10 に示す.ここから,この a-C:H 膜には 摩耗痕内において硬質な構造変化層が約 16 nm 形成されていることが明ら かとなった.そしてこの結果から摩耗痕内の硬さは 19.2 GPa と求められた.

最後に ESEM による表面エネルギー測定結果を示す.まず摩耗痕内外表 面に形成された水及びジョードメタン液滴の SEM 観察画像を図 4-11 に示 す.SEM 画像から水及びジョードメタン液滴の接触角を測定した結果を図 4-5 に示す.摩耗痕内の水の平均接触角は 75.0°,ジョードメタンの平均 接触角は 69.0°であった.また摩耗痕外の水の平均接触角は 62.0°,ジョ ードメタンの平均接触角は 57.0°であった.図 4-12 の接触角の結果から摩 耗痕内外の表面エネルギーを計算した結果を図 4-13 に示す.摩耗痕内の表 面エネルギーは 31.5 mJ/m² と計算された.表面エネルギーのうち分散成分 は 22.0 mJ/m²,極性成分は 9.5 mJ/m² と計算された.また摩耗痕外の表面エ ネルギーは 40.5 mJ/m² と計算された.表面エネルギーのうち分散成分は 28.0 mJ/m²,極性成分は 12.5 mJ/m² と計算された.

Transfer layer 100 μm

CNx coating

Sapphire hemisphere

図 4-9 a-C:H 膜及びサファイア半球表面の AFM 像

図 4-10 a-C:H 膜の摩耗痕内外に対するスクラッチ回数に伴うスクラッチ 深さの変化

図 4-11 摩耗痕内外表面に形成された水及びジョードメタン液滴の SEM 観察画像

図 4-12 摩耗痕内外の液滴接触角

図 4-13 摩耗痕内外の表面エネルギー

4.5 考察

4.5.1 構造変化層の充てん率の構造変化層硬さに及ぼす影響

図 4-8 より,乾燥窒素ガスを吹き付けながら a-C:H 膜の摩擦試験を行っ たとき,構造変化層の C-Csp² 割合が増加し, C-Csp³ 割合が減少した.対 して図 4-10 より,摩擦試験後の構造変化層の硬さは a-C:H 膜の硬さよりも 高かった.このことは過去の報告から矛盾する.Robertson らは, sp³結合 の増加に伴い膜硬さが増加していると報告しているからである¹⁰²⁾.さら に 4.4 節より,構造変化層の硬さは a-C:H 膜の硬さよりも大きいことが明 らかとなった.第 3 章で示した Halling が提案した摩擦係数の式によると, 薄膜層(構造変化層)の硬さが上昇するに従い摩擦係数は増加する¹⁰³⁾. つまり Halling が報告する摩擦係数の関係式によると, a-C:H 膜より硬い構 造変化層では低摩擦は発現しない.しかし実際に a-C:H 膜は低摩擦を発現 した.ここから, a-C:H 膜の低摩擦発現メカニズムは Halling が提案する摩 擦係数の関係式では説明できないと考えた.そこで本節では a-C:H 膜の構 造変化層硬さが上昇した原因について新たに考察することで, a-C:H 膜の 低摩擦発現メカニズムについて考える.

Jiang らは, a-C:H 膜の充てん率fは以下の式により表されると報告して いる¹¹³⁾.

$$f = \frac{12}{12(f_{C-Csp^3} + f_{C-Csp^2}) + f_{C-H}} \rho \left(\frac{f_{C-Csp^3}}{3.51} + \frac{f_{C-Csp^2}}{2.26} + \frac{f_{C-H}}{3.51} \left(\frac{37}{77}\right)^3\right)$$
(4-6)

ここでρは a-C:H 膜の密度を表す. さらに Jiang らは, a-C:H 膜の充てん率 の上昇に伴い膜の硬度が増加していると報告している¹¹³⁾. このことから, a-C:H 膜の構造変化層の硬さが上昇した要因は充てん率が上昇したためで はないかと仮説を立て, 充てん率の計算を行った.

図 4-14 に摩擦繰り返し数に伴う構造変化層の充てん率と摩擦係数の変 化を示す.ここから摩擦係数の減少に伴い充てん率が上昇したことが明ら かとなった. さらに a-C:H 膜の充てん率は 0.71 であるのに対し, 10000 cycles における構造変化層の充てん率は 0.78 であった. したがって, a-C:H 膜の構造変化層は充てん率の上昇により硬度が増加したと考えられる.

図 4-14 a-C:H 膜の乾燥窒素ガス吹き付け摩擦試験における摩擦繰り返し 数に伴う構造変化層の充てん率と摩擦係数の変化

4.5.2 a-C:H 膜の乾燥ガス中における低摩擦発現メカニズムの提案

図 4-13 から, 摩耗痕内の表面エネルギーの極性成分の値は摩耗痕外の値 に比べて 3.0 mJ/m²低かった.ここから, 摩耗痕内は摩耗痕外に比べて疎 水性となっていると考えられる.さらに Eldemir らの報告から,水素終端 表面は C-H 結合が多く存在するゆえに疎水性表面となっていると報告し ている.ここから,本試験で用いた a-C:H 膜の摩耗痕内には水素終端表面 が形成されていると考えられる.次に図 4-14 から,構造変化層の充てん率 は a-C:H 膜の充てん率よりも高かった.また図 4-10 から,構造変化層硬さ は a-C:H 膜よりも高かった.さらに図 4-8 から構造変化層の C-Csp²結合割 合は増加し, C-H 結合割合は減少していた.以上から,構造変化層は水素 量が少なく, C-Csp²結合が密に存在するために硬質化していると考えられ る.

以上をまとめることで、a-C:H 膜の乾燥ガス中における低摩擦発現メカ ニズムが提案できる.まず摩擦力 F は式(4-7)のように表される¹⁰⁷⁾. F=sA (4-7)

ここで、*s*はせん断抵抗,*A*は真実接触面積を表す.a-C:H 膜が低摩擦を発 現するとき,a-C:H 膜表面には水素終端表面が形成されることで相手材と のせん断抵抗が減少する.かつ水素終端表面の下には硬質で水素量の少な い構造変化層が存在するため,a-C:H 膜と相手材との真実接触面積が減少 する.つまり,式(4-7)の*s*と*A*がともに減少することによって a-C:H 膜が 乾燥ガス中において低摩擦を発現すると考えられる.したがって Racine らの提案する低摩擦発現メカニズムが正しいと考えられる⁴²⁾.なお 4000 cycles から 5000 cycles 付近で摩擦係数の変動が確認されたが,この時の構 造変化層厚さや充てん率には変化がほとんど見られなかった.これは移着 膜によるものと考えられる.式(4-7)の*s*を減少させるためには構造変化層 表面に水素終端表面が形成されることと同時に移着膜表面にも水素終端 表面が形成されることが重要である.4000 cycles から 5000 cycles におい

ては移着膜の水素終端表面が一部失われたために摩擦係数の変動が発生 したものと考えられる.つまり構造変化層の充てん率が上昇し水素終端表 面が形成されることは低摩擦発現のための必要条件であり,移着膜の水素 終端表面の形成は低摩擦発現のための十分条件であると考えられる.

4.5.3 提案された a-C:H 膜の低摩擦発現メカニズムの再現性の検証

4.5.2節で提案された低摩擦発現メカニズムの再現性を検証するために、
4.2.2節で述べた実験条件での摩擦試験を再度行い,得られた結果が 4.3節
及び 4.5.1節で示したデータと同様の傾向を示すかどうかを確かめた.

摩擦繰り返し数に伴う摩擦係数の変化を図 4-15 に示す. 摩擦係数は摩擦 繰り返し数の増加と共に徐々に減少し, 5000 cycles 付近で摩擦係数 μ が 0.05 を下回り低摩擦を発現した. 9500 cycles~10000 cycles までの平均摩 擦係数は μ=0.015 であった.

次に図 4-16 に摩擦繰り返し数に伴う構造変化層厚さと摩擦係数の変化 を示す.構造変化層は 2200 cycles から形成され,摩擦繰り返し数の増加に 伴い構造変化層厚さが増加した. 10000 cycles での構造変化層厚さは 12.6 nm であった.

図 4-17 に摩擦繰り返し数に伴う構造変化層の充てん率と摩擦係数の変 化を示す.ここから摩擦係数の減少に伴い充てん率が上昇したことが明ら かとなった.さらに a-C:H 膜の充てん率は 0.71 であるのに対し,10000 cycles における構造変化層の充てん率は 0.76 であった.したがって, a-C:H 膜の構造変化層の硬さは a-C:H 膜に比べて高いと考えられる.

以上の結果は4.3節及び4.5.1節で測定した低摩擦発現時の構造変化層の 摩擦中その場分析結果と一致する.したがって、本節での摩擦試験におけ る a-C:H 膜の乾燥ガス中における低摩擦発現メカニズムは 4.5.2 節で提案 した低摩擦発現メカニズムと一致すると考えられる.このことから a-C:H 膜の乾燥ガス中における低摩擦発現メカニズムの再現性が確かめられた.

図 4-15 a-C:H 膜の乾燥窒素ガス吹き付け摩擦試験における摩擦繰り返し数に伴う摩擦係数の変化

図 4-16 a-C:H 膜の乾燥窒素ガス吹き付け摩擦試験における摩擦繰り返し 数に伴う構造変化層厚さと摩擦係数の変化

図 4-17 a-C:H 膜の乾燥窒素ガス吹き付け摩擦試験における摩擦繰り返し 数に伴う構造変化層の充てん率と摩擦係数の変化

4.6 結言

本章では反射分光分析による摩擦中摩擦面その場観察を行い, a-C:H 膜 の低摩擦発現メカニズムを明らかにした.まず乾燥ガスを a-C:H 膜の摩擦 面に吹き付けながら反射分光分析による摩擦中摩擦面その場観察摩擦試 験を行い,乾燥ガス中における構造変化層が摩擦係数に与える影響を明ら かにした.そしてこの結果から乾燥ガス中の摩擦における低摩擦発現メカ ニズムを提案した.さらに提案されたメカニズムに再現性があるかどうか を検証するために再びその場観察試験を行い, a-C:H 膜の乾燥ガス中及び 油中における低摩擦発現メカニズムを明らかにした.得られた主な結論を 以下に示す.

- 乾燥窒素ガスを a-C:H 膜の摩擦面に吹き付けながら行った摩擦試験において、構造変化層は 200 cycles から形成され、摩擦試験終了までに15.8 nm まで増加したことが明らかとなった.また摩擦繰り返し数の増加に伴い構造変化層の C-Csp² 結合割合は増加し、C-Csp³ 結合割合及びC-H 結合割合は減少したと明らかにした.
- 構造変化層の化学結合割合から充てん率を計算し,充てん率が摩擦繰り返し数の増加に伴い上昇したと明らかにした.ここから,構造変化層は a-C:H 膜よりも硬質であることが明らかとなった.
- 3. a-C:H 膜に最表面に形成された構造変化層の表面エネルギーを測定し, 極性成分が a-C:H 膜よりも減少したと明らかにした.ここから,構造変 化層表面は疎水性であり,水素終端表面が存在していると示唆された.
- 4. 構造変化層上の摩擦面に水素終端表面が形成されたことによるせん断抵抗の減少と,硬質な構造変化層の形成による真実接触面積の減少という2つの現象が発生したことが a-C:H 膜の低摩擦発現の要因であるという低摩擦メカニズムが明らかとなった.

第5章 結論

5.1 本論文の結論

低環境負荷・エネルギー高効率利用社会の実現のために、風車やアイド リングストップ車などの起動-停止を繰り返す機械の活用が期待されてい る.しかしこの機械を油潤滑で駆動する場合、機械の再起動時には摩擦し ゆう動部の潤滑被膜が枯渇するため高摩擦となる問題がある.そこで摩擦 しゅう動部へカーボン系硬質膜をコーティングするという解決策が考え られている.カーボン系硬質膜は乾燥ガス中においても油中においても摩 擦係数 µ=0.05 を下回る低摩擦を発現することから、カーボン系硬質膜の適 用により起動-停止を繰り返す機械のさらなる高効率化が期待できる.ここ でカーボン系硬質膜の摩擦しゅう動部への適用のためには低摩擦発現メ カニズムが明らかである必要があるが、現状では低摩擦発現メカニズムは 明らかにはなっていない.したがって低環境負荷・エネルギー高効率利用 社会の実現のためにカーボン系硬質膜の低摩擦発現メカニズムの解明が 強く求められている.

そこで本論文では反射分光分析による摩擦中摩擦面その場観察手法を 用いて,カーボン系硬質膜の CNx 膜及び a-C:H 膜の低摩擦発現メカニズム を明らかにすることを研究目的とした.まず摩擦中に測定すべき量を抽出 し,それらの量が反射分光分析により摩擦中に測定する手法を提案した. さらに反射分光分析により測定した量の他手法による測定値との誤差か ら,反射分光分析により構造変化層や油膜のような nm スケールの薄膜を 摩擦中に測定することは可能であることを明らかにした.

次に CNx 膜の乾燥ガス中における低摩擦発現メカニズムを明らかにす るために,乾燥ガスを CNx 膜の摩擦面に吹き付けながら反射分光分析によ る摩擦中摩擦面その場観察摩擦試験を行った.その結果から, CNx 膜の乾 燥ガス中における低摩擦発現メカニズムを定量的に明らかにした.次に油

中での CNx 膜の摩擦において反射分光分析による摩擦中摩擦面その場観 察試験を行った.その結果から CNx 膜の油中低摩擦発現メカニズムが明ら かとなり、複数提案されていた低摩擦発現メカニズムが初めて特定された.

さらに a-C:H 膜の乾燥ガス中における低摩擦発現メカニズムを明らかに するために,乾燥ガスを a-C:H 膜の摩擦面に吹き付けながら反射分光分析 による摩擦中摩擦面その場観察摩擦試験を行った.この結果から, a-C:H 膜の乾燥ガス中における低摩擦発現メカニズムを明らかとなり,複数提案 されていた低摩擦発現メカニズムが初めて特定された.得られた主な結論 を以下にまとめる.

- カーボン系硬質膜の低摩擦発現メカニズム解明のためには,反射分光分析により構造変化層厚さ,化学結合割合,分極率体積と油膜厚さ,分極率の計5種類の量を摩擦中に測定する必要があることを明らかにした. また反射分光分析による上記5種類の量の測定手法を提案し,構造変化層厚さは9.5%,構造変化層の化学結合割合は7.1%,分極率体積は3.4%の誤差で測定可能であることが明らかとなった.
- 2. 乾燥アルゴンガスを CNx 膜の摩擦面に吹き付けながら行った摩擦試験 において,構造変化層は 1600 cycles から形成され,摩擦試験終了まで に 10.2 nm まで増加したことが明らかとなった.さらに CNx 膜の C-Csp³ 結合割合から膜硬さを推定する手法を提案し,摩擦中の構造変化層硬さ を推定した.その結果,構造変化層硬さは摩擦繰り返し数に伴い減少し, 構造変化層硬さは最小 4.2 GPa まで減少した.そして Halling らの提案 する摩擦モデルに構造変化層厚さと硬さの結果を代入した.その結果, Halling らの提案する摩擦モデルから計算された摩擦係数が実際に測定 された摩擦係数とよく一致した.ここから CNx 膜の乾燥ガス中におけ る低摩擦発現メカニズムが明らかとなった.
- 3. CNx 膜の油中における摩擦試験において、油膜厚さは摩擦繰り返し数 に伴い増加し、最大で 42.0 nm まで増加した.また油膜の分極率体積は

摩擦繰り返し数に伴い増加し,特に4800 cyclesからは急激に増加した. また油の分極率体積の結果から油が摩擦中に酸化したことが明らかと なった.さらに油の酸化メカニズムが明らかとなり,油の酸化によって 摩擦中に油の粘度が増加したことが明らかとなった.このことより, CNx 膜が油中で低摩擦を発現した理由は,摩擦中に油の酸化による粘 度増加に伴い油膜厚さが増加し,潤滑状態が境界潤滑から混合潤滑に変 化したためであることが明らかとなった.

4. 乾燥窒素ガスを a-C:H 膜の摩擦面に吹き付けながら行った摩擦試験において、構造変化層は 200 cycles から形成され、摩擦試験終了までに15.8 nm まで増加したことが明らかとなった.また摩擦繰り返し数の増加に伴い構造変化層の C-Csp²結合割合は増加し、C-Csp³結合割合及びC-H 結合割合は減少したと明らかにした.さらに構造変化層の化学結合割合から充てん率を計算し、充てん率が摩擦繰り返し数の増加に伴い上昇したと明らかにした.ここから、構造変化層は a-C:H 膜よりも硬質であることが明らかとなった.また a-C:H 膜に最表面に形成された構造変化層の表面エネルギーを測定し、極性成分が a-C:H 膜よりも減少したと明らかにした.ここから、構造変化層表面は疎水性であり、水素終端表面が形成されたことによるせん断抵抗の減少と、硬質な構造変化層の形成による真実接触面積の減少という 2 つの現象が発生したことが a-C:H 膜の低摩擦発現の要因であるという低摩擦メカニズムが明らかとなった.

5.2 今後の課題及び展望

本論文では、反射分光分析によるその場観察手法により CNx 膜及び a-C:H 膜の低摩擦発現メカニズムが初めて明らかとなった.したがって反 射分光分析によるその場観察手法はカーボン系硬質膜の低摩擦発現メカ ニズムの解明に対して非常に有効な手法であると考えられる.今後も反射 分光分析により CNx 膜や a-C:H 膜以外のカーボン系硬質膜の低摩擦発現メ カニズムを明らかにすることができると期待される.しかしカーボン系硬 質膜の低摩擦発現メカニズムをより詳細に明らかにするために改善しな ければいけない課題が 3 点存在する.1 点目は摩擦時の環境温度である. 本論文では常温大気中もしくは油中 (25℃前後) でのカーボン系硬質膜の 低摩擦発現メカニズムを明らかにした.しかし実機でのしゅう動面環境の 温度は常温のみならず,80℃以上の高温環境となる場合がある¹¹⁴⁾⁻¹¹⁷⁾.さ らにカーボン系硬質膜の高温油中での摩擦特性に関する報告がなされて おり、幅広い温度環境でのカーボン系硬質膜の摩擦特性の解明が今後期待 される¹¹⁸⁾⁻¹²⁰⁾.したがって今後は高温環境下での摩擦中反射分光分析のた めに、油中温度を調整可能な摩擦試験機の開発が期待される.

2 点目はカーボン系硬質膜の相手材の制限を無くすことである.本論文では、カーボン系硬質膜の相手材として可視光線での光透過性の高いサファイア半球を用いた.これは反射分光膜厚計からの入射光を摩擦面に到達させるためであった.しかし実機では相手材がサファイア半球ということはなく、相手材が金属材料もしくはカーボン系硬質膜同士の摩擦が想定される¹²¹⁾⁻¹²³⁾.そこで、カーボン系硬質膜の相手材料によらずに反射分光分析が可能な摩擦試験機を新たに考案することが望まれる.

さらに3点目はより高い面圧の試験を行う必要があるということである. 今回は荷重0.1 Nの試験を行い,その面圧は220 MPaであった¹⁰⁷⁾.しか し実機では面圧が1GPa以上に達する場合があるため,より高面圧での摩 擦試験が可能な試験機の開発が期待される^{124),125)}.

したがって今後の課題としては「高温,高面圧で相手材を選ばない」摩 擦試験機の開発であるとまとめられる.そこでここでは上記の条件を満た す摩擦試験機の改良案を提案する.摩擦試験機の改良案の模式図を図 5-1 に示す.これは Spikes らが用いている摩擦試験機から着想を得たもので, サファイア板の片面に成膜された薄いカーボン系硬質膜と相手球との摩 擦試験の模式図を表している⁴⁵⁾.サファイア板下方の油浴にはヒーターを 内蔵することで,高温油中での摩擦試験が可能である.さらにサファイア 板上方から反射分光分析を行うことで,摩擦中に摩擦面の反射率を測定す ることが可能である.この構成であれば高温環境,高面圧環境,そして相 手球に制限がない摩擦試験を行うことができる.なおサファイア板のよう な絶縁体にカーボン系硬質膜を成膜する手法は,a-C 膜や CNx 膜に関して は基板に電圧を印加しない手法の IBAD 法が適していると考える.また a-C:H 膜の成膜には高周波放電プラズマ CVD 法が適していると考えられる. 森口らの報告により,この手法を用いれば絶縁基板でも a-C:H 膜の成膜が 可能であるからである¹²⁶⁾.

以上から、本論文で提案した反射分光分析による摩擦中摩擦面その場観 察手法は、本論文で用いた摩擦試験機を改良することで様々な環境におけ るカーボン系硬質膜の低摩擦発現メカニズムを明らかにできる可能性を もつ手法である.つまり実験室レベルの試験環境のみならず実機レベルで の試験環境における摩擦面の状態を詳細にその場観察可能である点で、本 論文で提案した手法は科学的、工業的に非常に有用なものである.したが ってカーボン系硬質膜の低摩擦発現メカニズム解明のために今後も用い るべき手法であると考えられる.

図 5-1 摩擦試験機の改良案

参考文献

- D. M. Kammen,「離陸する再生可能エネルギー」,『日経サイエンス 2006年12月号』, (2006), pp. 72-83.
- M. Z. Jacobson and M. A. Delucchi, 「2030 年 化石燃料全廃計画」, 『日経サイエンス 2010 年 1 月号』, (2010), pp. 22-29.
- D. Castelvecchi,「原発から自然エネルギーへ カギ握る電力貯蔵」,『日 経サイエンス 2012 年 6 月号』, (2012), pp. 90-95.
- 4. 辰巳敬,「化学便覧 応用化学編I」, 丸善出版, (2014), pp. 74-79.
- 太田勝敏,「エコドライブの地球温暖化防止効果―アイドリングストップの意義」,『JAMAGAZINE 8月号 Vol.36』, (2002), pp. 7-11.
- 谷口正明,「省エネ運転の推進と燃料消費削減の可能性」,交通工学, Vol.41, No.5, (2006), pp. 54-62.
- 小谷野眞司,岡村整,宮城実,「最新排出ガス規制適合の路線バスのア イドリングストップによる CO2 等の低減効果」,東京都環境科学研究所 年報,(2009), pp. 76-85.
- 2009)、
 8. 土肥学、瀧本真理、並河良治、「長時間アイドリング、アイドリングストップ効果に関する考察」、土木学会第 64 回年次学術講演会、(2009)、
 pp. 205-206.
- 9. 近藤美則,加藤秀樹,「車両利用中のアイドリングストップが大気環境 に及ぼす影響の考察」,大気環境学会誌, Vol.47, No.4, (2012), pp. 155-161.
- 田中竜司,「軽自動車用エンジンの低燃費化への取組み」, Motor Ring No.36, (2013), pp. 18-21.
- 11. 淵上武,「固体潤滑剤 —二硫化モリブデン—」,潤滑, Vol.19, No.10, (1974), pp. 695-699.
- 川邑正広,「固体潤滑材料 ―結合型固体被膜潤滑剤について―」,表面 技術, Vol.65, No.12, (2014), pp. 591-594.

- 西村允,野坂正隆,宮川行雄,坂本潤,「化学反応による二硫化モリブ デン膜の潤滑特性に関する研究(第2報)」,潤滑, Vol.24, No.11, (1979), pp. 745-752.
- 14. 甲斐慎一郎,「潤滑性付与剤としての PTFE」,潤滑, Vol.19, No.10, (1979),
 pp. 724-726.
- 15. 長岡秀夫,「シール用四ふっ化エチレン樹脂の耐摩耗性について」, 三菱 電線工業時報, Vol.96, (2000), pp. 69-74.
- タントロンロン、木本淳志、宇野修悦、「樹脂材料軸受のエネルギー機器への適用」、まてりあ、Vol.42、No.1、(2003)、pp. 45-51.
- 17. 炭村透, 鵜野禎史,「すべり支承用すべり材の基本特性」, 土木学会第
 58回年次学術講演会予稿集, (2003), pp. 1305-1306.
- 斎藤秀俊,「ダイヤモンド膜から DLC 膜まで」,トライボロジスト, Vol.47, No.11, (2002), pp. 795-801.
- 19. 田中章浩,「最近の DLC 膜・ダイヤモンド膜の製作技術およびそれら被膜の諸特性」、トライボロジスト、Vol.47, No.11, (2002), pp. 802-808.
- 20. 角谷透, 森河和雄, 三尾淳, 片岡征二, 「DLC 膜の塑性加工工具への適用」, トライボロジスト, Vol.47, No.11, (2002), pp. 821-826.
- 21. 園部勝,「DLC 膜の切削工具への適用」,トライボロジスト, Vol.47, No.11, (2002), pp. 827-832.
- 22. 渡部慶二,中村哲一,有賀敬治,「DLC 成膜技術と次世代 HDD 媒体保 護膜への応用」,月刊トライボロジー, Vol.24, No.6, (2010), pp. 56-58.
- 23. 馬渕豊,保田芳輝,浜田孝浩,加納真,「水素フリーDLCバルブリフターの開発」,日本トライボロジー学会トライボロジー会議予稿集,(2005), pp. 497-498.
- 24. N. Umehara, K. Kato and T. Sato, "Tribological properties od Carbon Nitride coating by Ion Beam Assisted Deposition", Proceedings of International Conference of Metallurgical Coatings and Thin Films, (1998), p.151.

- 25. N. Umehara, M. Tatsuno and K. Kato, "Nitrogen lubricated sliding between CNx coatings and ceramic balls", Proceedings of the International Tribology Conference Nagasaki 2000, (2000), pp. 1007-1012.
- K. Kato, N. Umehara and K. Adachi, "Friction, wear and N2-lubrication of carbon nitride coatings: a review", Wear, Vol.254, Issue 11, (2003), pp. 1062-1069.
- 27. 宮平裕生,野老山貴行,梅原徳次,不破良雄,「窒化炭素膜の摩擦面その場観察手法によるトライボマイクロプラズマと移着膜形成の観察」, トライボロジスト, Vol.56, No.6, (2011), pp. 378-384.
- 28. 榊原和希,野老山貴行,眞鍋和幹,梅原徳次,不破良雄,「窒化炭素膜の潤滑油中低摩擦発現のための基礎研究」,日本機械学会 2012 年度年次大会講演論文集,(2012), J111031.
- S. Miyake, S. Takahashi, I. Watanabe and H. Yoshihara, "Friction and Wear Behavior of Hard Carbon Films", ASLE Transactions, Vol.30, Issue 1, (1987), pp. 121-127.
- A. Eldemir, "The role of hydrogen in tribological properties of diamond-like carbon films", Surface and Coatings Technology, Vol.146-147, (2001), pp. 292-297.
- 31. 鈴木雅裕,「自動車部品への DLC の応用技術」,トライボロジスト, Vol.54, No.1, (2009), pp. 34-39.
- 32. 安藤淳二,中西和之,「Si含有 DLC 膜のトライボロジー特性とその応用」, トライボロジスト, Vol.52, No.2, (2007), pp. 120-125.
- 33. 桑山健太,「DLC コートしたアルミナとその水栓バルブへの応用」,ト ライボロジスト, Vol.42, No.6, (1997), pp. 24-29.
- 34. 馬渕豊,「DLC 膜の自動車部品への適用」、トライボロジスト、Vol.58,
 No.8, (2013), pp. 557-565.
- 35. 太刀川英男,「自動車産業のトライボロジーに関する技術課題と DLC コ

ーティング」, 表面技術, Vol.59, No.7, (2008), pp. 437-442.

- 36. 斎藤秀明,「油圧ポンプのトライボロジー」,『産業用車両の潤滑』, 養賢 堂, (2012), pp. 100-101.
- 37. T. Tokoyroyama, M. Goto, N. Umehara, T. Nakamura and F. Honda, "Effect of nitrogen atoms desorption on the friction of the CNx coating against Si₃N₄ ball in nitrogen gas", Tribology Letters, Vol.22, No.3, (2006), pp. 215-220.
- H. Inoue, S. Muto, X. Deng, S. Arai and N. Umehara, "Structure analysis of topmost layer of CNx after repeated sliding using scanning transmission electron microscopy electron energy-loss spectroscopy", Thin Solid Films, Vol. 616, (2016), pp. 134-140.
- 39. 市村和之,梅原徳次,野老山貴行,不破良雄,眞鍋和幹,石川健治,「CNx 膜の油中における超低摩擦メカニズムの検討」,日本機械学会 2014 年度 年次大会講演論文集,(2014), S1110603.
- 田上裕也,西村英典,上坂裕之,「CNx 膜の潤滑油中における低摩擦発現に及ぼす油の粘度と油膜厚さの影響」,日本機械学会 2015 年度年次大会講演論文集,(2015), S1110402.
- J. Fontaine, C. Donnet, A. Grill and T. LeMogne, "Tribochemistry between hydrogen and diamond-like carbon films", Surface and Coating Technology, Vol.146-147, (2001), pp. 286-291.
- B. Racine, M. Benlahsen, K. Zellama, M. Zarrabian, J. P. Villain, G. Turban and A. Grosman, "Hydrogen Stability in Diamond-Like Carbon Films During Wear Tests", Applied Physics Letters, Vol.75, No.22, (1999), pp. 3479-3481.
- A. Y. Liu and M. L. Cohen, "Prediction of New Low Compressibility Solids", Science, Vol.245, Issue 4920, (1989), pp. 841-842.
- 44. A. Y. Liu and M. L. Cohen, "Structural properties and electronic structure of low-compressibility materials: β-Si₃N₄ and hypothetical β-C₃N₄", Physical Review B, Vol.41, No.15, (1990), pp. 10727-10734.

- 45. G. J. Johnston, R. Wayte and H. A. Spikes, "The measurement and Study of Very Thin Lubricant Films in Concentrated Contacts", Tribology Transactions, Vol.34, No.2, (1991), pp. 187-194.
- 46. H. Okubo and S. Sasaki, "In situ Raman observation of structural transformation of diamond-like carbon films lubricated with MoDTC solution: Mechanism of wear acceleration of DLC films lubricated with MoDTC solution", Tribology International, (2016), In press.
- 47. 古川行夫, 高柳正夫, 「赤外・ラマン分光法」, 講談社, (2009), p. 69.
- 48. 神田慎吾,野老山貴行,梅原徳次,不破良雄,「CNx 膜の摩擦面の FTIR その場分析」,日本機械学会東海支部第 57 期総会講演会講演論文集, (2008), pp. 157-158.
- 49. H. Mishima, "Surface deformation and formation of original element of wear particles in sliding friction", Wear, Vol.215, (1998), pp. 10-17.
- 50. 赤上研太,竹野貴法,足立幸志,「摩擦摩耗解析のための in-situ SEM ト ライボシステムの開発」,2015 年度精密工学会秋季大会学術講演会講演 論文集,(2015), pp. 603-604.
- 51. 平山朋子,鳥居誉司,小西庸平,前田成志,松岡敬,井上和子,日野正裕,山崎大,武田全康,「中性子反射率法を用いた金属表面における添加剤吸着層の厚みおよび密度測定とそのトライボロジー特性」,日本機械学会論文集(C編), Vol.77, No.779, (2011), pp. 319-328.
- 52. 藤原史郎,石黒浩三,池田英生,横田英嗣,「光学薄膜」,共立出版,(1986), pp. 8-18.
- 53. W. G. Oldham, "Numerical techniques for the analysis of lossy films", Surface Science, Vol.16, (1969), pp. 97-103.
- 54. 中川徹,小柳義男,「最小二乗法による実験データ解析」,東京大学出版 会,(1982), pp. 95-110.
- 55. W. Budde and C. X. Dodd, "Absolute reflectance measurements in the $D/0^{\circ}$

geometry", Die Farbe, Vol.19, (1970), pp. 94-102.

- 56. W. Budde, "Calibration of Reflectance Standards", JOURNAL OF RESEARCH of the National Bureau of Standards-A. Physics and Chemistry, Vol.80A, No.4, (1976), pp. 585-595.
- 57. "CIE 044-1979 Absolute methods for reflectance measurement", CIE Pub. No.44, (1979).
- 58. 大塚電子株式会社, FE-3000 ハードウェア取扱説明書, pp. 7-9.
- 59. 峰松陽一,山崎光広,「硫酸バリウムの絶対分光反射率の測定」,照明学 会誌, Vol.69, No.2, (1985), pp. 94-98.
- K. Ohara, N. A. Masripan, N. Umehara, H. Kousaka, T. Tokoroyama, S. Inami, K. Zushi and M. Fujita, "Evaluation of transformed layer of DLC after sliding in oil with spectroscopic reflectometry", Tribology International, Vol.65, (2013), pp. 270-277.
- 61. 藤原裕之,「分光エリプソメトリー」,丸善, (2007), pp. 5-6, 19, 39-44, 146-154.
- 62. R. P. Feynman,「ファインマン物理学II 光,熱,波動」,富山小太郎訳, 岩波書店, (1980), pp. 59-73.
- B. Mednikarov, G. Spasov, Tz. Babeva, J. Pirov, M. Sahatchieva, C. Popov and W. Kulisch, "OPTICAL PROPERTIES OF DIAMOND-LIKE CARBON AND NANOCRYSTALLINE DIAMOND FILMS", Journal of Optoelectronics and Advanced Materials, Vol.7, No.3, (2005), pp. 1407-1413.
- 64. Y. Lifshitz, G. D. Lempert, E. Grossman, H. J. Scheibe, S. Voellmar, B. Schultrich, A. Breskin, R. Chechik, E. Shefer, D. Bacon, R. Kalish and A. Hoffman, "Optical and photoemission studies of DLC films prepared with a systematic variation of the sp³:sp² composition", Diamond and Related Materials, Vol.6, (1997), pp. 687-693.

- M. Hiratsuka, H. Nakamori, Y. Kogo, M. Sakurai, N. Ohtake and H. Saitoh, "Correlation between Optical Properties and Hardness of Diamond-Like Carbon Films", Journal of Solid Mechanics and Materials Engineering, Vol.7, No.2, (2013), pp. 187-198.
- 66. 大竹尚登, 平塚傑工, 斎藤秀俊, 「DLC 膜の規格化について」, トライ ボロジスト, Vol.58, No.8, (2013), pp. 538-544.
- 67. 大竹尚登, 平塚傑工, 斎藤秀俊, 「DLC 膜の分類と標準化」, NEW DIAMOND, Vol.28, No.3, (2012), pp. 12-18.
- 68. 平塚傑工,「分光エリプソメトリ法による屈折率と消衰係数の測定」, NEW DIAMOND, Vol.28, No.3, (2012), pp. 38-40.
- D. Stroud, "Generalized effective-medium approach to the conductivity of an inhomogeneous material", Physical Review B, Vol.12, No.8, (1975), pp. 3368-3373.
- M. H. Cohen, "Theory of optical and microwave properties of microscopically inhomogeneous materials", Physical Review B, Vol.15, No.12, (1977), pp. 5712-5723.
- D. E. Aspnes, "OPTICAL PROPERTIES OF THIN FILMS", Thin Solid Films, Vol.89, (1982), pp. 249-262.
- D. E. Aspnes, "Local-field effects and effective-medium theory: A microscopic perspective", American Journal of Physics, Vol.50, (1982), pp. 704-709.
- 73. Z. Yin and F. W. Smith, "Optical dielectric function and infrared absorption of hydrogenated amorphous silicon nitride films: Experimental results and effective-medium-approximation analysis", Physical Review B, Vol.42, No.6, (1990), pp. 3666-3675.
- 74. R. W. Collins, I. An, H. Fujiwara, J. Lee, Y. Liu, J. Koh and P. I. Rovira, "Advances in multichannel spectroscopic ellipsometry", Thin Solid Films,

Vol.313-314, (1998), pp. 18-32.

- 75. R. W. Collins, J. Koh, H. Fujiwara, P. I. Rovira, A. S. Ferlauto, J. A. Zapien,
 C. R. Wronski and R. Messier, "Recent progress in thin film growth analysis by multichannel spectroscopic ellipsometry", Applied Surface Science, Vol.145-155, (2000), pp. 217-228.
- 76. 神崎陽介,若木守明,三宅秀人,平松和政,「有効媒質近似を用いた GaN ナノ針状構造の光学モデルの構築」,東海大学紀要工学部, Vol.46, No.2, (2006), pp. 17-22.
- 77. 藤原裕之,赤川真隆,「分光エリプソメトリーの基礎と太陽電池評価への応用」,光学, Vol.39, No.8, (2010), pp. 372-378.
- F. W. Smith, "Optical constants of a hydrogenated amorphous carbon film", Journal of Applied Physics, Vol.55, (1984), pp. 764-771.
- 79. K. Mui and F. W. Smith, "Optical dielectric function of hydrogenated amorphous silicon: Tetrahedron model and experimental results", Physical Review B, Vol.38, No.15, (1988), pp. 10623-10632.
- G. B. Karelitz, "Boundary lubrication", In E. Rabinowicz, "Proceedings of the special summer conferences on friction and surface finish", M.I.T. Press, (1969), pp. 102-106.
- J.N.イスラエルアチヴィリ,「分子間力と表面力」,大島広行訳,朝倉書店,(1996), pp. 27, 75-77, 81.
- F. London, "The general theory of molecular forces", Transactions of the Faraday Society, Vol.33, (1937), pp. 8-26.
- 83. R. P. Feynman,「ファインマン物理学IV 電磁波と物性」,戸田盛和訳, 岩波書店, (1972), 99.167-175.
- 84. 岩澤康裕,「化学便覧 基礎編II」, 丸善出版, (2004), pp. 644-645.
- 85. ISO 489 : 1999. Plastics -- Determination of refractive index.
- 86. J. D. Rancourt,「光学薄膜ユーザーズハンドブック」,小倉繁太郎訳,日

刊工業新聞社, (1991), pp. 7-8.

- 87. 小檜山光信,「光学薄膜の基礎理論」,オプトロニクス社,(2011), pp. 83-96.
- 88. 川畑州一,「偏光解析法における膜厚測定および有効媒質近似理論」,表面科学, Vol.18, No.11, (1997), pp. 681-686.
- 89. E. R. Booser, "Tribology Data Handbook", CRC Press, (1997), p. 38.
- 90. F. Fendrych, L. Pajasova, T. Wagner, L. Jastrabik, D. Chvostova, L. Soukup and K. Rusnak, "CNx coatings sputtered by DC magnetron: hardness, nitrogenation and optical properties", Diamond and Related Materials, Vol.8, (1999), pp. 1711-1714.
- 91. 鶴田匡夫,「光の鉛筆 3 屈折率と密度 2 多成分系」, OplusE, Vol.24, No.10, (2002), pp. 1140-1149.
- 92. J. Tauc, "Optical constant of a hydrogenated amorphous carbon film", J. Appl. Phys., Vol.55, (1984), pp. 764-771.
- 93. S. V. Hainsworth and N. J. Uhure, "Diamond-Like Carbon Coatings for Tribology: Production Techniques, Characterization Methods and Applications", International Materials Reviews, Vol.52, No.3, (2007), pp. 153-174.
- 94. 安藤慎治,「光学ポリマーの屈折率制御:理論予測と分子設計の手法」,
 光学, Vol.44, No.8, (2015), pp. 298-303.
- 95. A. C. Lasaga and R. T. Cygan, "Electronic and ionic polarizabilities of silicate minerals", American Mineralogist, Vol.67, (1982), pp. 328-334.
- 96. S. Miyake, S. Watanabe, H. Miyazawa, M. Murakami, R. Kaneko and T. Miyamoto, "Improved microscratch hardness of ion-plated carbon film by nitrogen inclusion evaluated by atomic force microscope", Applied Physics Letters, Vol.65, No.25, (1994), pp. 2306-3208.
- 97. K. Kato, H. Koide, N. Umehara, "Micro-wear properties of carbon nitride

coatings", Wear, Vol.238, (2000), pp. 40-44.

- 98. N. Kimura, Y. Tsukiyama, T. Tokoroyama, N. Umehara, "Evaluation of Mechanical Properties of the Superficial Layer of CNx with Ultra Low Friction in N₂ Gas", Transactions of the Japan Society of Mechanical Engineers, Series C, Vol.76, No.772, (2010), pp. 612-617.
- K. Kato, N. Umehara and H. Koide, "Micro-wear Mechanisms of Thin Hard Coatings Sliding against Diamond Tip of AFM", In B. Bhushan and K. Ono, "Advances in Information Storage Systems", World Scientific, (1998), pp. 289-301.
- 100. E. Rabinowicz and A. Mutis, "Effect of Abrasive Particle Size on Wearmethodology", Wear, Vol.8, (1965), pp. 381-390.
- 101. 田中誠之, 寺前紀夫, 「赤外分光法」, 共立出版, (1993), pp. 1-47.
- 102. J. Robertson, "Diamond-like amorphous carbon", Materials Science and Engineering R, Vol.37, (2002), pp. 129-281.
- 103. J. Halling, "Surface Coating-Materials Conservation and Optimum Tribological Performance", Tribology International, Vol.12, No.5, (1979), pp. 270-277.
- 104. N. S. Ahmed and A. M. Nassar, "Lubricating Oil Additives", In C. H. Kuo,"Tribology-Lubricants and Lubrication", InTech, (2011), pp. 249-255.
- 105. 石塚悟,木村重利,「油分析技術について」, IIC REVIEW, No.46, (2011), pp. 38-44.
- 106. 松本正和, 佐伯隆, 大川義人, 「劣化オイルの添加剤による再生効果と そのメカニズム」, 高田技報, Vol.22, (2012), pp. 10-15.
- 107. 山本雄二, 兼田楨宏, 「トライボロジー」, 理工学社, (2004), pp. 9,96.
- 108. Y. Yamaguchi and N. Umehara, "A study of evaluation method of surface energy with micron size liquid drop", Proceedings of JAST Tribology Conference, (1998), pp. 540-541.

- 109. K. Umehara, "Estimation of change of surface energy with an ESEM", Proceedings of JSME annual meeting, (2002), pp. 93-94.
- 110. 中尾太一,梅原徳次,上坂裕之,鄧興瑞,「ESEM 内表面エネルギーその場評価装置の試作と有効性の検証」,第16回日本機械学会機素潤滑設計部門講演会,(2016), pp. 113-114.
- 111. 田中一義, 田中庸裕, 「物理化学」, 丸善, (2010), pp. 451-452.
- 112. D. K. Owens and R. C. Wendt, "Estimation of the surface free energy of polymers", Journal of Applied Polymer Science, Vol.13, (1969), pp. 1741-1747.
- 113. X. Jiang, K. Reichelt and B. Stritzker, "Mechanical properties of a-C:H films prepared by plasma decomposition of C₂H₂", Journal of Applied Physics, Vol.68, No.3, (1990), pp. 1018-1022.
- 114. 吉田善一,東崎康嘉,吉田孝文,関亘,「ターボ冷凍機高性能化のためのトライボロジー要素技術」,三菱重工技報,Vol.38,No.6, (2001), pp. 300-303.
- 115. 藤浪行敏,「風力発電装置用潤滑剤」、トライボロジスト, Vol.56, No.6, (2011)、 pp. 22-27.
- 116. 栗栖徹,木村昇平,白井裕久,菅近直範,「エンジンの省燃費を支える トライボロジ解析技術」,マツダ技報,No.32, (2015), pp. 203-209.
- 117. 中村隆,「トライボロジー技術の進展による自動車の省エネ」,トライボ ロジスト, Vol.61, No.2, (2016), pp. 65-70.
- 118. K. Ohara, N. A. Masripan, N. Umehara, H. Kousaka, T. Tokoroyama, S. Inami, K. Zushi and M. Fujita, "Evaluation of transformed layer of DLC after sliding in oil with spectroscopic reflectometry", Tribology International, Vol.65, (2013), pp. 270-277.
- 119. H. A. Tasdemir, M. Wakayama, T. Tokoroyama, H. Kousaka, N. Umehara, Y.Mabuchi and T. Higuchi, "Ultra-low friction of tetrahedral amorphous

diamond-like carbon (ta-C DLC) under boundary lubrication in poly alpha-olefin (PAO) with additives", Tribology International, Vol.65, (2013), pp. 286-294.

- 120. S. Yazawa, I. Minami and B. Prakash, "Reducing Friction and Wear of Tribological Systems through Hybrid Tribofilm Consisting of Coating and Lubricants", Lubricants, Vol.2, (2014), pp. 90-112.
- 121. 角舘聡,田口浩,武田信和,中平昌隆,柴沼清,「ITER 遠隔保守機器用
 DLC 歯車の耐久性試験」,プラズマ・核融合学会第 24 回年会,(2007),
 29pA11P
- 122. 馬渕豊,奥田紗知子,「水素フリーDLC 膜による超低フリクション化技術:エンジンバルブリフタへの適用」,自動車技術, Vol.62, No.4, (2008),
 pp. 44-48.
- 123. 中村健太,森河和雄,玉置賢次,西村信司,「プレス加工用金型への高耐久性 DLC 膜の成膜技術の開発」,東京都立産業技術研究センター研究報告,No.6, (2011), pp. 88-89.
- 124. 水谷嘉之,「地球にやさしい車づくりとトライボロジー」,豊田中央研究 所 R&D レビュー, Vol.28, No.1, (1993), pp. 3-12.
- 125. 片岡征二,「プロセストライボロジーにおける DLC の位置づけ」,大竹 尚登,『DLC の応用技術』,シーエムシー出版, (2007), pp. 9-18.
- 126. 森口秀樹, 大原久典, 辻岡正憲, 「DLC 製造プロセスの歴史とその応用」, SEI テクニカルレビュー, No.188, (2016), pp. 38-43.

終わりに臨み,終始懇切なるご指導ご鞭撻を賜りました,指導教員 名 古屋大学大学院工学研究科機械理工学専攻 教授 梅原徳次先生に深く 感謝の意を表します.

本研究をまとめるにあたり,有益なご指導ならびにご助言を賜りました 名古屋大学大学院工学研究科機械理工学専攻 教授 福澤健二先生に深 く感謝の意を表します.

本研究を遂行するにあたり,有益なご指導ならびにご助言を賜りました 名古屋大学大学院情報科学研究科複雑系科学専攻 准教授 張賀東先生 に深く感謝の意を表します.

本研究を遂行するにあたり,多くの場面で有益なご指導ならびにご助言 を賜りました岐阜大学工学部機械工学科 教授 上坂裕之先生に深く感 謝の意を表します.

本研究活動のみならず多くの場面でも大変お世話になりました名古屋 大学大学院工学研究科機械理工学専攻 助教 村島基之先生,実験装置の 製作について多くの有益なご助言ならびにご協力を賜りました名古屋大 学技術職員 千田進幸氏に深く感謝の意を表します.

有益な学びの場を多数提供していただいたフロンティア宇宙開拓リー ダー養成プログラムならびにスタッフの皆様に深く感謝の意を表します.

研究生活を通して常に有益なディスカッションをさせていただいた梅 原研究室の大学院生,学部生,卒業生ならびにスタッフの方々に深く感謝 の意を表します.

本研究活動のみならず私生活においても大変お世話になりました名古 屋大学大学院法学研究科総合法政専攻 博士後期課程3年 代田清嗣氏に 深く感謝の意を表します.

最後に,学生生活を通して様々な支援を賜りました両親と祖父母に深く 感謝の意を表します.