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1-1.  Introduction 

The oxidation reaction is one of the most widely used transformations in synthetic organic 

chemistry.  Traditionally, toxic heavy metal oxidants or precious transition metal-based catalysts 

have been used for oxidation reactions.  Recently, because of their environmentally benign 

characteristics, hypervalent iodines have been the focus of great attention as alternatives to toxic 

metal oxidants such as Pb(IV), Tl(III), Cr(VI), and Os(VIII).1  However, due to their potentially 

shock-sensitive explosiveness and/or poor solubility in common organic solvents, the stoichiometric 

use of hypervalent iodines has been limited.1  Therefore, the catalytic use of these compounds 

would be desirable from both economical and environmental perspectives. 

To date, several hypervalent organoiodine(V) reagents have been developed for oxidation 

reactions.1  Representative examples include 2-iodoxybenzoic acid (IBX) and Dess–Martin 

periodinane (DMP).  IBX was first synthesized by Meyer’s group in 1893.2  However, the 

practical application of IBX has been restricted due to its low solubility in common organic solvents, 

except for DMSO.  Almost a century later, in 1983, Dess and Martin used IBX as a precursor for 

the synthesis of DMP, which was recognized as a selective and mild oxidant (Scheme 1).3,4  In 

1994, Frigerio and Santagostino first used IBX in DMSO as a stoichiometric oxidant for the 

oxidation of alcohols to the corresponding carbonyl compounds.5  Previously, IBX was 

synthesized from 2-iodobenzoic acid (pre-IBX) with the use of potassium bromate as an oxidant 

under strong acidic conditions (Scheme 1).3,6  However, some bromate or other impurity in the 

samples was later found to be explosive.7 

Scheme 1.  IBX and DMP as Representative Hypervalent Iodine(V) Compounds3,6,8 

 

In 1999, Santagostino’s group developed an alternative method for the preparation of IBX by 

using Oxone (2KHSO5⋅KHSO4⋅K2SO4) as an environmentally safe oxidant (Scheme 1).8  This 
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simple and secure preparation of IBX from pre-IBX has made it one of the most popular oxidants.   

IBX is now recognized as a powerful oxidant for a variety of oxidative transformations (Figure 1).9 

 

Figure 1.  IBX as a powerful yet selective oxidant for a variety of oxidative transformations.9 

However, the stoichiometric use of IBX results in the generation of equimolar amounts of 
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transfer catalyst to generate tetrabutylammonium peroxymonosulfate in situ under biphasic 

conditions that included Oxone.  The catalyst loading of pre-IBX could be reduced to 10 mol%, 

and primary benzylic alcohols could be selectively oxidized to the corresponding aldehydes.  

However, the oxidation of primary aliphatic alcohols afforded the corresponding carboxylic acids.  

In 2007, Page and colleagues reported the IBX-catalyzed selective oxidation of primary and 

secondary alcohols to the respective aldehydes and ketones in dichloroethane in the presence of 

tetraphenylphosphonium peroxymonosulfate (TPPP, Ph4P+HSO5
–) as a soluble oxidant in organic 

solvents (Scheme 3c).10c  TPPP was prepared from Oxone and tetraphenylphosphonium chloride 

by counterion exchange. 

Scheme 2.  In Situ Generation and Catalytic Use of IBX 

 

Scheme 3.  IBX-catalyzed Oxidation of Alcohols10 
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4b).12  1a could be prepared from the oxidation of 2-iodobenzenesulfonic acid (pre-IBS, 2a·H) 

with Oxone.  However, 1a was found to be unstable due to self-decomposition, and was highly 

reactive toward organic solvents such as dimethyl sulfoxide, methanol, and acetonitrile.  Thus, it 

was not possible to investigate its oxidation ability.12  In contrast, our group found that IBSes 1 

could be prepared in situ from pre-IBSes (2·H, 2·Na or 2·K) and Oxone under nonaqueous 

conditions, and showed greater catalytic activity than IBX for alcohol oxidation reactions (Scheme 

4c).11 

Scheme 4.  Development of IBS Catalysis 
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With the use of IBX/Oxone catalysis, a variety of primary and secondary alcohols could be 

oxidized efficiently under optimized nonaqueous conditions (Scheme 5).11  Importantly, both 

primary benzylic and aliphatic alcohols could be oxidized selectively to the corresponding 

aldehydes and carboxylic acids by controlling the amount of Oxone used in the presence of pre-IBS 

2a·Na (0.05–5 mol%).  Theoretical calculations revealed that Goddard’s hypervalent twisting13 

would be the rate-determining step for the stoichiometric oxidation of alcohols with not only IBX 

but also IBSes.  The relatively ionic character of the intramolecular hypervalent iodine(V)–OSO2 

bond of IBS might lower the twisting barrier of the alkoxyperiodinane intermediate [1–OR] 

(Scheme 4c).11  However, the rate-limiting step (r.l.s.) of catalytic alcohol oxidations might be the 

regeneration of iodine(V) species from iodine(III) 3, because the reaction rate under catalytic 

conditions was increased with the use of powdered Oxone due to its increased surface area (Scheme 

4c).11  Therefore, the generation of iodine(V) species 1 from 3 as well as 2 should be faster than 

with IBX (Scheme 4c). 

Scheme 5.  IBS-Catalyzed Highly Efficient and Selective Oxidation of Alcohols with Oxone11 
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Scheme 6.  IBS-Catalyzed Selective Cascade Oxidations of Cycloalkanols11 

 

Scheme 7.  5-Me-IBS-Catalyzed Oxidative Rearrangement of tert-Allylic Alcohols14 
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and colleagues achieved a high-yield oxidation of adamantanol bearing two ketal groups by using 2 

mol% of 2a·Na with Oxone under mild conditions (Scheme 8c).15c  The resulting ketone was used 

as a key synthetic intermediate for high energy-density polynitroadamantanes.  Masson, Zhu and 

colleagues developed an Ugi four-component reaction of alcohols instead of aldehyde by using an 

IBS/Oxone system (Scheme 8d).15d  On the other hand, Zhang and colleagues reported the  

Scheme 8.  IBS (or HMBI)/Oxone Catalysis for Various Oxidative Transformations15 
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IBS-catalyzed oxidation of benzylic C–H bonds to carbonyl compounds with Oxone (Scheme 8e).15e  

Purohit and colleagues reported the first example of an oxidative 1,2-shift of 1,1’-disubstituted 

olefins by using a catalytic amount of sodium 2-iodo-5-methyl-benzenesulfonate (2b·Na) with 

Oxone (Scheme 8f).15f  The authors suggested that the catalytically active species is not 5-Me-IBS, 

but rather 1H-1-hydroxy-5-methyl-1,2,3-benziodoxanthiole-3,3-dioxide (HMBI, 3b). 

We have been interested in the extension of IBS catalysis to challenging reactions such as the 

catalytic, regio- and site-selective oxidation of phenols.  This thesis focuses on the development of 

a highly efficient and selective oxidation of phenols to the corresponding 1,2-quinones and 

1,2-quinols through the use of IBS/Oxone catalysis. 

1-3.  5-Me-IBS-Catalyzed Regioselective Oxidation of Phenols to 1,2-Quinones (Chapter 2) 

1,2-Quinones are highly useful synthons for the synthesis of natural products and biologically 

active compounds (Figure 2).16,17  ortho-Selective oxidation of phenols is a powerful method for 

the preparation of these compounds.  In Nature, L-dopaquinone, a precursor of melanin, is 

biosynthesized through a hydroxylase-mediated ortho-selective oxidation of L-tyrosine as a key 

process (Scheme 9).17 

 
Figure 2.  Biologically active compounds including 1,2-quinones.16,17 

Scheme 9.  Biosynthesis of Melanin via ortho-Selective Oxidation of L-Tyrosine17 
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oxidants such as Fremy’s radical,18 MeReO3,19 dimethyldioxirane20 and bisbenzeneselenic acid 

anhydrate21 afforded para-quinones unless this was blocked by a substituent.  However, less is 

known about the ortho-selective oxidation of phenols to ortho-quinone.22 

In 2002, Pettus’s group reported the first ortho-selective oxidation of phenols to 1,2-quinones 

using a stoichiometric amount of IBX as an oxidant (Scheme 10).23  The corresponding 

1,2-quinones or their catechol derivatives could be obtained in high yield.  After Pettus’ findings, 

IBX oxidation has been applied to the synthesis of various biologically important compounds such 

as catecholestrogen,24 catecholamine,25 hydroxytyrosol,26 flavonoid27 derivatives, and so on. 

Scheme 10.  IBX-Mediated ortho-Selective Oxidation of Phenols to 1,2-Quinones23 
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Harvey and colleagues reported the hypervalent organoiodine(III or V)-mediated 

regioselective oxidation of polycyclic aromatic phenols to the corresponding ortho- or 

para-quinones (Scheme 11a).28  Oxidation with an iodine(III) such as PIDA or PIFA under 

aqueous conditions afforded the corresponding 1,4-quinones through the nucleophilic addition of 

water to the iodine(III)–phenol intermediate I (Scheme 11b).28,29  In contrast, oxidation with IBX as 

an iodine(V) oxidant under non-aqueous conditions afforded the corresponding 1,2-quinones via 

[2,3]-sigmatropic rearrangement from an iodine(V)–phenol intermediate II (Scheme 11b).28,29  

However, in general, both oxidation methods required a stoichiometric amount of hypervalent 

iodine compound as an oxidant. 

In 2009, Bernini’s group reported the ortho-selective oxidation of phenols by using 

polystyrene (PS)-supported IBX (Scheme 12).30  The corresponding catechols were obtained in 

high yields via 1,2-quinones followed by reduction with Na2S2O4.  Although PS-supported IBX 

was reusable, re-oxidization to iodine(V) was still required, and the reactivity of the reagent 

gradually degraded. 

Scheme 12.  Polymer-Supported IBX-Mediated ortho-Selective Oxidation of Phenols30 
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the presence of water (Scheme 11b).  In contrast, we previously found that an IBS/Oxone system 

provided efficient catalytic activity under nonaqueous conditions.12  Therefore, we envisioned that 

the catalytic ortho-selective oxidation of phenols could be achieved with the use of IBS catalysis. 

Scheme 13.  Hypervalent Iodine(III)-Catalyzed para-Selective Oxidation of Phenols32 
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Scheme 14.  5-Me-IBS-catalyzed ortho-selective oxidation of phenols to 1,2-quinones 
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Our ortho-selective catalytic oxidation protocol has been applied to the natural product 

synthesis.  Matsushita and colleagues reported the efficient synthesis of a diterpenoid 

ortho-hydroquinone, (+)-demethylsalvicanol, from (+)-pisiferic acid via the 5-Me-IBS-catalyzed 

ortho-oxidation of (+)-pisiferanol (Scheme 15).34  Notably, a lower chemical yield was observed 

with the use of stabilized IBX (SIBX)29 as a stoichiometric oxidant.  

Scheme 15.  IBS-catalyzed ortho-Selective Phenol Oxidation to Natural Product Synthesis34 
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required to release 2-iodobenzoic acid from the IBA diester of cyclodimer.  Later, Quideau and 

colleagues developed a general procedure for the ortho-selective oxidation of 2-substituted phenols 

and naphthols using a stoichiometric amount of SIBX (Scheme 16b).37a  The oxidation of phenols 
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followed by the acid-mediated release of iodine(III) species from the initially formed IBA diester of 

cyclodimer afforded the corresponding cyclodimers, whereas the oxidation of naphthols afforded 

the corresponding ortho-naphthoquinols directly via the in situ hydrolysis of iodine(III) species.  

This oxidation procedure was then applied to the synthesis of several natural products.37  However, 

due to its low reactivity, the substrate scope was limited to electron-donating group-substituted 

highly reactive phenols and long reaction times were required (1–7 days).  Additionally, no 

site-selectivity was observed for the oxidation of unsymmetrically 2-substituted phenols: the 

maximum possible yield of the 1,2-benzoquinol-derived cyclodimers is reported to be 50%.37,38   

 

Figure 3.  Natural products including 1,2-quinols, their cyclodimers and derivatives.36 

The proposed reaction mechanism for the organoiodine(V)-mediated oxidation of phenols is 

summarized in Figure 4.  IBX reversibly combines with phenols to give iodine(V)-phenol 

complex 4a, which serves to transfer oxygen from an iodoxy (IV=O) to either the 2- or 6-position 

via concerted intramolecular [2,3]-sigmatropic rearrangement.29  During this process, the 

competition between electronic and steric factors might lead to nonselective oxidation.  Oxygen 
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obtained after hydrolysis.  On the other hand, a reaction at the nonsubstituted 6-position affords 

catechol–iodine(III) monoester 7a, after rapid aromatizing keto/enol tautomerization.  Undesired 

1,2-benzoquinones 10 are then obtained via the in situ reduction of iodine(III) to iodine(I).  

Importantly, reductive or strong-acidic work-up is required to release iodine(III), 2-iodosobenzoic 

acid, from 5a or 6a (Scheme 16).23,37a  Due to this necessity, the catalytic use of IBX for 

1,2-benzoquinols would be difficult.  To overcome these issues, we introduced IBS catalysis for 

the site-selective hydroxylative dearomatization of phenols.  Since the iodine(V) atom of IBS is 

more Lewis-acidic than that of IBX, we envisioned that a larger partial positive charge (δ+) would 

be generated for the IBS–phenol complex 4b.  This might lead to a high reactivity and preferential 

oxygen transfer at a substituted 2-position of unsymmetrical phenols.  Moreover, due to its strong 

electron-withdrawing sulfo group, iodine(III) species would be readily released in situ from quinol 

(5b) or cyclodimer (6b), which would make the catalytic use of IBS possible. 

Scheme 16.  IBX-Mediated ortho-Selective Oxidation of 2-Substituted Phenols to 1,2-Quinols23,37a 
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Figure 4.  Proposed reaction mechanism for the organoiodine(V)-mediated oxidation of phenols. 
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Scheme 17.  4,5-Me2-IBS-Catalyzed Highly Site-Selective Oxidation to 1,2-Quinols39 
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in situ from 2-iodobenzenesulfonic acids with Oxone, successfully catalyzed these reactions under 

mild nonaqueous conditions.  2-Unsubstituted phenols could be converted to the corresponding 

1,2-quinones with high regioselectivity.  Symmetrical or unsymmetrical 2-substituted phenols 

could be converted to the corresponding 1,2-quinols or their cyclodimers with excellent regio- 

and/or site-selectivities.  Several natural compounds such as biscarvacrol and lacinilene C methyl 

ether could be synthesized in high yield under mild reaction conditions.  Compared to even 

stoichiometric oxidations with IBX, the present IBS-catalyzed oxidation with Oxone extended the 

substrate scope for the synthesis of both 1,2-quinone and 1,2-quinols.  Importantly, the oxidation 

reaction rate could be improved with the use of “buffered Oxone”, which was prepared by 

pre-mixing Oxone with potassium carbonate.  Moreover, both the reaction rate and site-selectivity 

to 1,2-quinols could be improved by the introduction of a trialkylsilylmethyl substituent at the 

ortho-position of phenols.  By taking advantage of the silicon effect, we achieved unprecedented 

oxidative [4+2]-cycloaddition cascade reactions to give various useful structural motifs. 
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Chapter 2 

 

 

5-Me-IBS-Catalyzed Regioselective Oxidation of Phenols to 1,2-Quinones 

 

 

 
Abstract:  We have developed the first example of hypervalent iodine(V)-catalyzed regioselective 

oxidation of phenols to 1,2-quinones.  The reaction rate of IBS-catalyzed oxidation under 

nonaqueous conditions was further accelerated in the presence of an inorganic base such as 

potassium carbonate, a phase transfer catalyst such as tetrabutylammonium hydrogen sulfate, and a 

dehydrating agent such as anhydrous sodium sulfate. 
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Introduction 

1,2-Quinones are useful synthetic intermediates for the synthesis of medicinally and 

biologically important compounds.1  To date, numerous methods have been developed for the 

preparation of quinones by the oxidation of phenols or their derivatives.2  For example, the 

oxidation of phenols with Fremy’s radical,3 MeReO3,4 dimethyldioxirane,5 or benzeneseleninic 

anhydride6 mostly gives 1,4-quinones, unless blocked by a substituent.  However, there have been 

only a few studies on the direct conversion of a phenol into 1,2-quinones.  In 2002, Pettus and 

colleagues reported the regioselective oxidation of phenols with stoichiometric amounts of 

2-iodoxybenzoic acid (IBX) to the 1,2-quinones.7  After Pettus’ pioneering findings, this method 

was applied to the synthesis of biologically active compounds such as acatecholestrogen,8 

catecholamine,9 hydroxytyrosol,10 and flavonoid11 derivatives.  In 2010, Harvey and colleagues 

reported the regiospecific oxidation of polycyclic aromatic phenols to quinones using hypervalent 

iodine(III and V) reagents.12  Accordingly, oxidation with IBX in non-aqueous DMF gives 

1,2-quinones, while oxidation with bis(trifluoro-acetoxy)iodobenzene (PIFA) in aqueous DMF 

gives 1,4-quinones selectively. 

Recently, the hypervalent organoiodine(III or V)-catalyzed oxidation reactions by using a 

suitable co-oxidant have also been extensively investigated.13  From 2007 to 2009, Yakura and 

colleagues reported the para-selective oxidation of 4-alkoxyphenols or 4-arylphenols to the 

corresponding 1,4-quinones or 1,4-quinols, respectively, in excellent yields by using catalytic 

amounts of 4-iodophenoxyacetic acid with Oxone (KHSO5·KHSO4·K2SO4) as a co-oxidant in 

aqueous acetonitrile (Scheme 1).14  To the best our knowledge, however, there are no successful  

examples of a catalytic hypervalent iodine system for the ortho-selective oxidation of phenols to 

1,2-quinones. 

Scheme 1.  Hypervalent Iodine-Catalyzed para-Selective Oxidation of Phenols14 
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presence of catalytic amounts (1–5 mol%) of 2-iodobenzenesulfonic acids (pre-IBSes, 1) or their 

sodium salts (1·Na) under nonaqueous conditions (Scheme 2a).15,16  2-Iodoxybenzenesulfonic acids 

(IBSes) 2 as organoiodine(V), which are generated in situ from 1 and Oxone, serve as the actual 

catalysts for the oxidations (Scheme 2b).15,16 

Scheme 2.  2-Iodobenezenesulfonic Acid (IBS) Catalysis15–17 
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hypervalent I(V)-OSO2 bond of IBS 2a lowers the twisting barrier of the alkoxyperiodinane 

intermediate.  In fact, 2 shows much more catalytic activity than IBX.15  The oxidation rate in 

2a-catalyzed oxidation under nonaqueous conditions is further accelerated by the use of powdered 

Oxone due to its increased surface area.  When Oxone is used under nonaqueous conditions, 

wastes derived from Oxone can be removed by simple filtration.  Furthermore, we developed the 

oxidative rearrangement of tertiary allylic alcohols to β-disubstituted α,β-unsaturated ketones with 

Oxone catalyzed by in situ-generated 5-Me-IBS (2b) (Scheme 2c).17  The addition of inorganic 

bases such as potassium carbonate, and a phase transfer catalyst such as tetrabutylammonium 

hydrogen sulfate (Bu4NHSO4), extended the substrate scope for oxidative rearrangement reactions.  

R1

OH

R2

I

SO3Na
1a·Na (0.05–5 mol%)

powdered Oxone (0.6–1.2 equiv)

CH3CN or CH3NO2 or EtOAc, 50–70 ºC, 1–12 h

R1

OH

H R1

O

OHR1

O

H
or

R1

O

R2

a) Oxidation of alcohols15,16

b) In situ generated-IBS catalysts

R1 R3

OH

R2
or OH

R

1b·Na (5–10 mol%)
Bu4NHSO4 (10 mol%)

powdered Oxone (1 equiv)

K2CO3 (0.5 equiv)
EtOAc, Na2SO4, 60 ºC, 3–92 h

R1 or
O

R2

R3
O

R( )n ( )n

c) Oxidative rearrangement of tertiary allylic alcohols17

I

SO3M

Oxone
(2KHSO5·KHSO4·K2SO4)

(in situ) S
O

I

O O

HO O

IBS 2a–cpre-IBS·M 1·M (M = H, Na, K)
R = H (1a), 5-Me (1b), 4,5-Me2 (1c)

R R



Chapter 2.  5-Me-IBS-Catalyzed Regioselective Oxidation of Phenols to 1,2-Quinones 
 

 26 

Recently, the IBS/Oxone catalytic oxidation system was applied to benzylic oxidation18 and 

oxidation of fluorinated alcohols.19  As part of our continuing interest in the IBS-catalyzed 

oxidation system, we report here the in situ-generated IBS-catalyzed regioselective oxidation of 

phenols to 1,2-quinones with Oxone.20 

Results and Discussion 
Initially, we investigated the reactivity and regioselectivity of the oxidation of 1-naphthol (3a) 

using conventional hypervalent catalysts under non-aqueous conditions (Table 1).  A mixture of 

3a, powdered Oxone (2 equiv) and Bu4NHSO4 (10 mol%), as a solid-liquid phase transfer catalyst, 

was heated in ethyl acetate at 40 ºC in the presence of 5 mol% of iodobenzene or Yakura’s 

pre-catalyst (4-iodophenoxyacetic acid, 6) (entries 2 and 3).14  However only trace amounts of 

desired product was detected, and more than 80% of 3a was recovered with small amount of 

unidentified side-products.  Additionally, the use of pre-IBX (7) gave both 1,2-naphthoquinone 

(4a) and 1,4-naphthoquinone (5a) each in 5% yield, and 80% of 3a was recovered (entry 4).  

Although 3a was completely consumed fully and chemical yields of both 4a and 5a were increased 

under harsh reaction conditions (CH3CN, 70 °C) that was used for the oxidation of alcohols,15 

various unidentified side-product were also obtained. (entry 5).  In sharp contrast, and to our 

delight, when pre-IBS (1a·Na) was used under mild conditions, 3a was completely consumed in 11 

h, and quinones 4a and 5a were obtained in respective yields of 64% and 5% together with highly 

polar compounds (entry 6).  As expected from our previous work,15,17 the use of pre-5-Me-IBS 

(1b·Na) or pre-4,5-Me2-IBS (1c·Na) gave slightly better results, and the former gave the best results 

(entries 7 and 8).  Interestingly, when the oxidation was conducted in aqueous acetonitrile, 5a was 

obtained selectively as a major product in 51% yield (entry 9).  We found that the 

carbon(1)-carbon(2) bond of 1,2-quinone (4a) was oxidatively cleaved under identical aqueous 

conditions to highly polar compounds including trans-2-carboxycinnamic acid (8)21 and other minor 

unidentified compounds (Scheme 3).  These results indicated that non-aqueous conditions were 

essential for the preparation of 1,2-quinones in high yields.  According to our previous works, the 

selective oxidation of acid-sensitive alcohols could be achieved in the presence of anhydrous 

sodium sulfate as a dehydrating agent.15,17  Additionally the oxidation rate and selectivity could be 

further accelerated with the use of additional base to buffer the acidity of the reaction mixture.17  

Based on these previous findings, the reaction of 3a was carried out in the presence of 1 equivalent 

of potassium carbonate and anhydrous sodium sulfate under the modified conditions in entry 6.  

Thus, 4a was obtained in 78% yield after 1 h, when Oxone and K2CO3 were sufficiently premixed 

in the presence of anhydrous Na2SO4 in ethyl acetate at room temperature for 24 h before the 
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addition of 2b, 3a, and Bu4NHSO4 (entry 10).  Notably, the use of Bu4NHSO4 was essential for the 

present oxidation, since almost no reaction occurred in its absence (entry 11). 

Table 1.  Optimization of Reaction Conditions 

 
Entry Precat. Additive (equiv) Time (h) 4a, Yield (%)a 5a, Yield (%)a 
1 – – 24 <1 <1 
2 PhI – 24 <1 <1 
3 6 – 24 <1 <1 
4 7 – 24 5 5 
5b 7 – 24 16 10 
6 1a·Na – 11 64c 5c 
7 1b·Na – 8 69c 6 
8 1c·Na – 9 67c 6 
9d 1b·Na – 3.5 <1 51 
10e 1b·Na K2CO3 (1) 1 78c 6c 
11f 1b·Na K2CO3 (1) 24 <1 <1 
a 1H NMR analysis.  b The reaction was performed in CH3CN at 70 ºC.  c Isolated yield.  d The reaction 
was performed in CH3CN–H2O (2:1, v/v) instead of EtOAc.  e After a mixture of Oxone and K2CO3 in ethyl 
acetate was vigorously stirred in the presence of Na2SO4 for 24 h at room temperature, 1a·Na, 3a and 
Bu4NHSO4 were added.  f In the absence of Bu4NHSO4. 

 

Scheme 3.  Oxidative Carbon-Carbon Bond Cleavage of 4a to 8 under Aqueous Conditions 

 

To explore the generality of the in situ-generated 5-Me-IBS-catalzed oxidation of phenols with 

Oxone, various naphthols, phenanthrols, and phenols (3b–l) were examined as substrates under the 

optimized conditions: powdered Oxone (2 equiv) and potassium carbonate (1 equiv) in ethyl acetate 

were vigorously stirred at room temperature for 24 h in the presence of anhydrous sodium sulfate, 
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Table 2.  5-Me-IBS-Catalyzed Oxidation of Naphthols, Phenanthrols and Phenols 3a 

 
Entry Substrate 3 Product 4 Time (h) Yield (%)b 

1 

 

3a 

 

4a 1 78 

2 
 

3b 4a 4 84 

3 

 

3f 4a 2 72 

4 
5 
6 

 

3c (R = Cl) 
3d (R = Br) 
3e (R = OMe) 

 

4c 
4d 
4e 

5 
3 
2 

80 
75 
50c 

7 

 

3g 

 

4g 2 90 

8 

 

 
3h 

 

 
4h 2 97 

9 

 

 
3i 

 

 
4i 5 63 

10 
11 

 

3j (R = OMe) 
3k (R = t-Bu) 

 

4j 
4k 

5 
24 

66d 
73 

a Reaction conditions: 3 (1 mmol), powdered Oxone (2 mmol), K2CO3 (1 mmol), 1b·Na (0.05 mmol), 
Bu4NHSO4 (0.1 mmol), Na2SO4 (1 g), EtOAc (10 mL), 40 ºC.  Oxone and K2CO3 were premixed in EtOAc 
for 24 h at room temperature in the presence of anhydrous Na2SO4.  b Isolated yield.  c 1,4-Naphthoquinone 
(5a) was obtained in 15% yield.  d 2-tert-Butyl 1,4-quinone (5j) obtained in 16% yield. 

1b·Na (5 mol%)
Bu4NHSO4 (10 mol%)

powdered Oxone (2 equiv)
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and then 1b (5 mol%), 3a and Bu4NHSO4 (10 mol%) were added and the resulting mixture was 

heated to 40 ºC (Table 2).  As expected, 4a was obtained in slightly better yield by the oxidation of 

2-naphthol 3b than by the oxidation of 3a (entries 1 and 2).  4-Bromo- or chloro-substituted 

1-naphthols 3c and 3d gave the corresponding 1,2-quinones in high yields (entries 4 and 5).  

Notably, the desired 1,2-quinones were obtained as a major product under our catalytic conditions 

even with the oxidation of 4-methoxy-1-naphthol (3e) and 4-methoxyphenol (3j) (entries 6 and 10).  

In contrast, the previous iodine(III)-mediated oxidation of para-alkoxy phenols gave 1,4-quinones 

exclusively.14  Additionally, the oxidation of phenanthrols (3g) and (3h) gave the desired 

1,2-quinones in excellent yields (entries 7 and 8).  These polycyclic aromatic quinones were 

obtained in only moderate yields by stoichiometric oxidations with IBX.12  The oxidation of 

2,4-di-tert-butylphenol (3k) gave desired 1,2-quinone (4k) in 73% yield after 24 h (entry 11).  In 

contrast, the oxidation of 3-methoxy-1-naphthol (3l) gave 1,4-quinone (5l) rather than 1,2-quinone 

(4l) as a major product (Scheme 4).  Additionally, the oxidation of 3l with Oxone even in the 

absence of 1b also gave 5l selectively, but in lower yield after longer reaction time. 

Scheme 4.  Oxidation of 3-Methoxy-1-Naphthol 3l 

 

Based on previous studies12,15–17 and present results, a proposed reaction mechanism is depicted 

in Figure 1.  In situ-generated IBS (2) reversibly combines with 3 to give IBS-phenol complex A, 

which serves to transfer oxygen from an iodoxy group (IV = O) to the ortho-site of the phenol 

through concerted intramolecular [2,3]-rearrangement.  During this process, the iodine(V) atom is 

concurrently reduced to the iodine(III)-catechol complex C, which gives 1,2-quinones 4 and 

pre-IBS 1.  The catalytic cycle of IBS 2 can be accomplished by the regeneration of 2 through the 

successive oxidations 1 and 9 with tetrabutylammonium peroxymonosulfate, Bu4NHSO5, which can 

be generated in situ from KHSO5 and Bu4NHSO4. 
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Figure 1.  Possible mechanism for the IBS-catalyzed ortho-selective oxidation of phenols. 

While, the reason for the para-selective oxidation of 3l is not yet clear, a plausible mechanism 

is depicted in Figure 2.  The peroxy-IBS complex D might be generated reversibly in situ from 

IBS and ammonium Oxone.  Electrophilic aromatic oxidation at the highly nucleophilic carbon(4) 

position of 3l with D gives E, which easily tatutomerizes to IBS-hydroquinone complex F.  

Finally, the oxidation of hydroquinone gives 1,4-quinone 5l and iodine(III) 9.  Notably, 5l was 

also obtained by the oxidation of 3l with only Oxone (Scheme 4).22  The reactivity of Oxone 

should be accelerated by complexation with IBS.23  Thus, the oxidation was faster and the 

chemical yield of 5l was higher in the presence of IBS (Scheme 4). 
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Figure 2.  Possible mechanism for the para-selective oxidation of 3l. 

Conclusion 

We have developed the first example of hypervalent iodine(V)-catalyzed ortho-selective 

oxidation of phenols to 1,2-quinones.  Various phenols could be oxidized to the corresponding 

1,2-quinones in good to excellent yields using catalytic amounts of sodium salts of 

2-iodobenzenesulfonic acids (pre-IBSes) and stoichiometric amounts of Oxone as a co-oxidant 

under mild conditions.  The reaction rate of IBS-catalyzed oxidation under nonaqueous conditions 

was further accelerated in the presence of an inorganic base such as potassium carbonate, a phase 

transfer catalyst such as tetrabutylammonium hydrogen sulfate, and a dehydrating agent such as 

anhydrous sodium sulfate. 
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Experimental Section 

General methods:  Infrared (IR) spectra were recorded on a JASCO FT/IR 460 plus spectrometer.  
1H NMR spectra were measured on a JEOL ECS-400 (400M MHz) spectrometer at ambient 

temperature.  Data were recorded as follows: chemical shift in ppm from internal tetramethylsilane 

on the δ scale, multiplicity (s = singlet; d = doublet; t = triplet; q = quartet; m = multiplet), coupling 

constant (Hz), integration, and assignment.  13C NMR spectra were measured on a JEOL ECS-400 

(100 MHz) spectrometers.  Chemical shifts were recorded in ppm from the solvent resonance 

employed as the internal standard (deuterochloroform at 77.00 ppm).  For thin-layer 

chromatography (TLC) analysis throughout this work, Merck precoated TLC plates (silica gel 60 

GF254 0.25 mm) were used.  The products were purified by column chromatography on silica gel 

(E. Merck Art. 9385).  High-resolution mass spectral analysis (HRMS) was performed at 

Chemical Instrument Center, Nagoya University.  Pre-catalysts were prepared according to known 

procedures.  Additionally, 1a and 1b (as potassium salts) are also commercially available from 

Junsei Chemical Japan, TCI and Sigma-Aldrich.  Starting materials 3c,25 3e,24 3g,12 and 3l26 were 

prepared according to known procedures.  In experiments that required solvents, ethyl acetate, 

acetonitrile and nitromethane were purchased from Wako Pure Chemical Industries, Ltd. in 

“anhydrous” form and used without any purification.  Other simple chemicals were 

analytical-grade and obtained commercially. 

 

General procedure for the oxidation phenol to quinone: 
A mixture of powdered Oxone (1.2 g, 2.0 mmol), potassium carbonate (0.14 g, 1.0 mmol) and 

anhydrous sodium sulfate (1.0 g, dried by a heat-gun under vacuum before use), in ethyl acetate (4.0 

mL) was vigorously stirred at room temperature for 24 h.  To the resulting mixture were added 3 

(1.0 mmol), n-Bu4NHSO4 (34 mg, 0.10 mmol), 1b (17 mg, 0.050 mmol), and EtOAc (6.0 mL), and 

the resulting mixture was stirred vigorously at 40 ºC.  The reaction was monitored by TLC 

analysis.  After the reaction was completed, the reaction mixture was cooled to room temperature 

and the solids were filtered-off and washed with EtOAc.  The filtrate was washed with water, and 

the aqueous layers were extracted with EtOAc.  The combined organic layers were washed by 

water and brine, and dried over anhydrous Na2SO4.  The solvents were removed under vacuo, and 

the residue was purified by column chromatography on silica gel (hexane–EtOAc as eluent) to give 

the corresponding quinones 4 or 5. 
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1,2-Naphthoquinone (4a):27  Brown solid; TLC, Rf = 0.21 (hexane–EtOAc = 4:1); 1H NMR 

(CDCl3, 400 MHz) δ 6.45 (d, J = 10 Hz, 1H), 7.25 (d, J = 8.2 Hz, 1H), 7.45 (d, J = 7.8 Hz, 1H), 

7.53 (dd, J = 6.4, 7.8 Hz, 1H), 7.66 (ddd, J = 1.4, 5.9, 6.4 Hz, 1H), 8.13 (d, J = 7.3 Hz, 1H); 13C 

NMR (CDCl3, 100 MHz) δ 128.0, 130.0, 130.3, 131.0, 131.7, 134.9, 136.0, 145.6, 179.0, 181.0. 

 

 
1,4-Naphthoquinone (5a):28  Yellow solid; TLC, Rf = 0.41 (hexane–EtOAc = 4:1); 1H NMR 

(CDCl3, 400 MHz) δ 6.99 (s, 1H), 7.77 (m, 2H), 8.10 (m, 2H); 13C NMR (CDCl3, 100 MHz) δ 

128.6, 132.0, 134.1, 138.8, 185.2. 

 

 
trans-2-Carboxycinnamic acid (8):21  Pale yellow solid; 1H NMR (DMSO-d6, 400 MHz) δ 6.43 

(d, J = 16 Hz, 1H), 7.51 (t, J = 7.5 Hz, 1h), 7.60 (t, J = 6.8 Hz, 1H), 7.82 (d, J = 7.3 Hz, 1H), 7.88 

(dd, J = 0.9, 7.8 Hz, 1H), 8.31 (d, J = 16 Hz, 1H); 13C NMR (DMSO-d6, 100 MHz) δ 121.4, 127.8, 

129.8, 130.4, 131.1, 132.2, 134.9, 142.6, 167.5, 168.2. 

 

 
4-Chloro-1,2-Naphthoquinone (4d):  Brown solid; TLC, Rf = 0.58 (hexane–EtOAc = 1:1); IR 

(KBr) 1658, 1582, 1322, 1287, 1242, 936, 769 cm–1; 1H NMR (CDCl3, 400 MHz) δ 6.76 (s, 1H), 

7.63 (t, J = 7.8 Hz, 1H), 7.77 (t, J = 7.8 Hz, 1H), 7.90 (d, J = 7.8 Hz, 1H), 8.17 (d, J = 7.8 Hz, 1H); 
13C NMR (CDCl3, 100 MHz) δ 127.7, 128.0, 130.2, 130.6, 132.2, 132.7, 135.9, 152.8, 178.1, 178.4; 

HRMS (FAB+) m/z calcd for C11H14O3Cl (M+H) 193.0056, found 193.0054. 
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4-Bromo-1,2-Naphthoquinone (4e):29  Brown solid; TLC, Rf = 0.62 (hexane–EtOAc = 1:1); 1H 

NMR (CDCl3, 400 MHz) δ 7.05 (s, 1H), 7.61 (t, J = 7.5 Hz, 1H), 7.77 (t, J = 7.3 Hz, 1H), 7.90 (d, J 

= 7.8 Hz, 1H), 8.15 (d, J = 7.3 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ 130.1, 130.6, 130.9, 132.1, 

133.6, 136.0, 145.9, 178.2. 

 

 
4-Methoxy-1,2-Naphthoquinone (4f):30  Yellow solid; TLC, Rf = 0.29 (hexane–EtOAc = 1:1); 1H 

NMR (CDCl3, 400 MHz) δ 4.08 (s, 3H), 5.99 (s, 1H), 7.59 (dd, J = 7.3, 7.8 Hz,1H), 7.71 (t, J = 7.8 

Hz, 1H), 7.87 (d, J = 8.2 Hz, 1H), 8.13 (d, J = 7.3 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ 57.0, 

103.2, 124.9, 129.2, 130.4, 131.7, 132.1, 135.1, 168.8, 179.5, 179.6. 

 

 
1,2-Phenanthraquinone (4g):12  Red solid; TLC, Rf = 0.54 (hexane–EtOAc = 1:1); 1H NMR 

(CDCl3, 400 MHz) δ 6.59 (d, J = 10 Hz, 2H), 7.70 (m, 2H), 7.91 (m, 1H), 7.98 (d, J = 8.2 Hz, 1H), 

8.17 (d, J = 8.2 Hz, 1H), 8.31 (m, 2H); 13C NMR (CDCl3, 100 MHz) δ 123.6, 124.4, 127.7, 128.6, 

129.4, 129.7, 129.8, 131.4, 132.0, 137.3, 139.6, 179.5, 180.8. 

 

 
9,10-Phenanthraquinone (4h):31  Yellow solid; TLC, Rf = 0.50 (hexane–EtOAc = 1:1); 1H NMR 

(CDCl3, 400 MHz) δ 7.47 (dd, J = 7.3, 7.8 Hz, 2H), 7.72 (ddd, J = 1.4, 6.9, 7.3 Hz, 2H), 8.03 (d, J = 

8.3 Hz, 2H), 8.20 (dd, J = 1.4, 6.4 Hz, 2H); 13C NMR (CDCl3, 100 MHz) δ 124.1, 129.7, 130.5, 
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131.0, 135.9, 136.2, 180.3. 

 

 
4-tert-Butyl-1,2-benzoquinone (4i):32  Brown solid; TLC, Rf = 0.38 (hexane–EtOAc = 1:1); 1H 

NMR (CDCl3, 400 MHz) δ 1.24 (s, 9H), 6.29 (d, J = 2.2 Hz, 1H), 6.40 (d, J = 10 Hz, 1H), 7.19 (dd, 

J = 2.5, 10 Hz, 1H); 13C NMR (DMSO-d6, 100 MHz) δ 27.4, 35.3, 123.2, 129.4, 140.2, 161.5, 

180.0. 

 

 
3-tert-Butyl-5-methoxy-1,2-benzoquinone (4j):  Red solid; TLC, Rf = 0.42 (hexane–EtOAc = 

1:1); IR (KBr) 1649, 630, 1589, 1440, 1367, 1228, 1007, 900, 783 cm–1; 1H NMR (CDCl3, 400 

MHz) δ 1.26 (s, 9H), 3.84 (s, 3H), 5.73 (d, J = 2.7 Hz, 1H), 6.62 (d, J = 3.2 Hz, 1H); 13C NMR 

(CDCl3, 100 MHz) δ 28.9, 35.2 56.7, 101.0, 133.0, 151.5, 170.0, 178.6, 179.9; HRMS (FAB+) m/z 

calcd for C11H14O3 (M+H) 195.1021, found 195.1013. 

 

 
2-tert-Butyl-1,4-benzoquinone (5j):33  Brown solid; TLC, Rf = 0.71 (hexane–EtOAc = 4:1); 1H 

NMR (CDCl3, 400 MHz) δ 1.30 (s, 9H), 6.61 (d, J = 1.4 Hz, 1H), 6.69 (d, J = 1.4 Hz, 2H); 13C 

NMR (CDCl3, 100 MHz) δ 29.2, 35.3, 131.6, 135.0, 138.7, 156.1, 188.5. 

 

 
3,5-Di-tert-butyl-1,2-benzoquinone (4k):33  Brown solid; TLC, Rf = 0.71 (hexane–EtOAc = 1:1); 
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1H NMR (CDCl3, 400 MHz) δ 1.23 (s, 9H), 1.27 (s, 9H), 6.22 (d, J = 2.3 Hz, 1H), 6.93 (d, J = 2.3 

Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ 28.0, 29.3, 35.6, 36.1, 122.2, 133.6, 150.0, 163.4, 180.2, 

181.2. 

 

 
3-Methoxy-1,4-naphthoquinone (5l):34  Yellow solid; TLC, Rf = 0.46 (hexane–EtOAc = 1:1); 1H 

NMR (CDCl3, 400 MHz) δ 3.90 (s, 3H), 6.17 (s, 1H), 7.73 (m, 2H), 8.10 (d, J = 8.0 Hz, 2H); 13C 

NMR (CDCl3, 100 MHz) δ 56.6, 110.0, 126.3, 126.8, 131.1, 132.1, 133.4, 134.5, 160.5, 180.2, 

185.0. 

  

O

O
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Chapter 3 

 

 

4,5-Me2-IBS-Catalyzed Highly Site-selective Oxidation of 

2-Substituted Phenols to 1,2-Quinols 

 

 

 
Abstract:  We have developed a site-selective hydroxylative dearomatization of phenols to 

1,2-quinols or their cyclodimers catalyzed by 4,5-dimethyl-2-iodoxybenzenesulfonic acid 

(4,5-Me2IBS) with Oxone.  Importantly, both the reaction rate and site-selectivity were further 

improved by the introduction of a trialkylsilylmethyl substituent at the 2-position of phenols.  The 

corresponding 1,2-benzoquinols could be transformed to various useful structural motifs via 

cascade [4+2]-cycloaddition reactions. 
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Introduction 

1,2-Quinols and their [4+2]-cyclodimers are highly attractive synthons for the synthesis of 

biologically active compounds.1  These compounds also constitute the main structural elements of 

many natural products such as biscarvacol,2 chamaecypanone C,3 grandifloracin,4 lacinilenes,5 etc.1  

Numerous synthetic methods have been developed for these compounds through the hydroxylative 

dearomatization of phenols using hypervalent iodine reagents.6,7  In general, iodine(III) and 

iodine(V) reagents have been used for para- and ortho-selective oxidations, respectively (Scheme 

1a).6  Recently, in situ generated organoiodine(III or V)-catalyzed8 regioselective oxidation to 

1,4-benzoquinols,9 1,4-benzoquinones9 and 1,2-benzoquinones10 have also been developed.  

However, the catalytic site-selective hydroxylative dearomatization of 2-substituted phenols to 

1,2-benzoquinols has not been reported.  Here, we report the first organoiodine(V)-catalyzed 

site-selective oxidation to 1,2-quinols. 

Conventionally, 2-iodoxybenzoic acid (IBX, 1a)11 or its stabilized form, SIBX,12 has been used 

as a stoichiometric oxidant for the ortho-selective oxidation of 2-substituted phenols to 

1,2-benzoquinols.13  However, due to its low reactivity, the substrate scope was limited to 

electron-releasing group-substituted high reactive phenols.  Additionally, no site-selectivity was 

observed for the oxidation of unsymmetrical 2-substituted phenols:  maximum possible yield of 

the 1,2-benzoquinol-derived cyclodimers is reported to be 50%.6a,13  IBX reversibly combines with 

phenols 2 to give iodine(V)–phenol complex 3a, which serves to transfer oxygen from an iodoxy 

(IV = O) to either the 2- or 6-position via concerted intramolecular [2,3]-sigmatropic rearrangement 

(Scheme 1b).6  During this process, the competition between electronic and steric factors might 

lead to nonselective oxidation.  Oxygen transfer at the substituted 2-position affords the 

1,2-benzoquinol–iodine(III) ester 4a, which then readily undergoes cyclodimerization to give 5a.  

1,2-Benzoquinols 7 or cyclodimers 8 are then obtained after hydrolysis.  On the other hand, a 

reaction at the nonsubstituted 6-position affords catechol–iodine(III) monoester 6a, after rapid 

aromatizing keto-enol tautomerization.  Undesired 1,2-benzoquinones 9 are then obtained via the 

in situ reduction of iodine(III) to iodine(I).  Importantly, reductive or strong-acidic work-up is 

required to release iodine(III), 2-iodosobenzoic acid, from 4a or 5a.13  Due to this necessity, it 

would be difficult to use IBX catalytically for 1,2-benzoquinols.  To overcome these issues, we 

introduced 2-iodoxybenzenesulfonic acid (IBS, 1b) catalysis14 for the ortho-selective hydroxylative 

dearomatization of phenols.  Since iodine(V) atom of 1b is more Lewis-acidic than that of 1a,14a 

we envisioned that a larger partial positive charge (δ+) would be generated for the IBS–phenol 

complex 3b.  This might lead to a high reactivity and prefential oxygen transfer at a substituted 
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2-position of unsymmetrical phenols (Scheme 1b).  Moreover, due to its strong 

electron-withdrawing sulfo group, iodine(III) species would be readily released in situ from quinol 

(4b) or cyclodimer (5b), which would make the catalytic use of IBS possible. 

Scheme 1.  Hypervalent Iodine-Mediated Oxidation of Phenols 

 

Results and Discussion 

First, we investigated the oxidation of carvacrol 2a as a 2-substituted phenol using IBS 

catalysts, which were generated in situ from pre-IBS and Oxone (Table 1).  A mixture of 2a, 

powdered Oxone and Bu4NHSO4 (10 mol%), as a solid-liquid phase transfer catalyst, was heated in 

ethyl acetate at 40 ºC in the presence of 5-mol% of pre-5-Me-IBS (10b).  To our delight, the 

reaction proceeded smoothly and natural product biscarvacrol (8a) was obtained in 60% yield via 

b) Oxidation of unsymmetrical 2-substituted phenols
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the in situ dimerization of 1,2-benzoquinol 7a (entry 1).  However, undesired 1,2-benzoquinone 9a 

was also obtained in 25% yield along with epoxyquinol7b and 1,4-benzoquinone7b in a combined 

yield of 5%.  Notably, no reaction occurred in the absence of a phase transfer catalyst (entry 2).  

A brief solvent screening revealed that dimethyl carbonate (DMC), as a more polar solvent than 

ethyl acetate, improved the site-selectivity (entries 3–10).  Additionally, the site- and 

chemoselectivity were further increased by the lowering the reaction temperature to 20 ºC, and 8a 

could be obtained in 80% yield (entry 12).  However, a long reaction time was required to 

complete the reaction. 

Table 1.  Initial Investigation of the IBS-Catalyzed Oxidation of Carvacrol 

 

Entry Solvent T (°C) Time (h) 2a, Conv. (%)b 
Yield (%)b 

8ab 9ab Byproductsc 
1 EtOAc 40 16 >99 60 25 5 
2d EtOAc 40 24 0 0 0 0 
3 DMC 40 16 >99 73 17 5 
4 EC 40 12 >99 70 19 5 
5 CH3NO2 40 16 >99 66 0 <5 
6 CH3CN 40 16 >99 59 0 <5 
7 HFIP 40 16 >99 messy   
8 Toluene 40 20 >99 58 0 5 
9 CH2Cl2 40 16 36 20 1 10 
10 DMCe 40 16 >99 72 15 <5 
11 DMC 60 6 >99 68 19 10 
12 DMC 20 80 >99 80 15 <5 

b Determined by NMR analysis.  c These byproducts could not be isolated.  The formation of these 
compounds was confirmed by comparing in situ NMR chemical shifts with literature values.7b  The 
combined yields of these byproducts are determined by in situ NMR analysis of reaction mixture just before 
quench.  d In the absence of Bu4NHSO4.  e DMC (0.2 M).  DMC, dimethyl carbonate; EC, ethylene 
carbonate; HFIP, 1,1,1,3,3,3-Hexafluoro-2-propanol. 

2a

pre-5-Me-IBS (10b, 5 mol%)
Bu4NHSO4 (10 mol%)

powdered Oxone (1 equiv)

Solvent (0.1 M)

OH

iPr
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O

OH HO
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O
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Next, we investigated the substituent effect of IBS catalysts (Table 2). As in our previous 

studies,14a the regeneration iodine(V) species might be rate-limiting for the present phenol oxidation.  

Indeed, the reaction rate at 20 ºC was accelerated by 1.5- to 3-fold with the use of electron-donating 

group-substituted14a pre-catalysts (entries 2–4 versus entry 1).  Although the highest reactivity was 

observed with pre-5-MeO-IBS (10d) (entry 4), it was unstable under these conditions (entry 5).  

Additionally, the reaction rate could be further accelerated with the use of “buffered” Oxone,10 

which was prepared by premixing of Oxone and potassium carbonate in DMC at room temperature 

and 8a was obtained in 82% yield after a shorter reaction time (entry 6).  A brief screening of the 

stoichiometric amount of potassium carbonate used and the premixing time of these solid reagents 

(entries 7–11) revealed that the premixing of 1 equivalent of Oxone with 0.5 equivalent of 

potassium carbonate for more than 12 hours was optimal (entries 6 and 7).  On the other hand, as  

Table 2.  Investigation of Precatalysts and Buffered Oxone for the Oxidation of Carvacrol 

 
Entry Precat. Additive (equiv) Time (h) 8a, Yield (%)a 9a, Yield (%)a 
1 10b – 120 80 15 
2 10a – 80 80 15 
3 10c – 48 82b 15 
4 10d – 36 80 15 
5c 10d – 16 28 24 
6 10c K2CO3 (0.5)d,e 24 82b 15 
7 10c K2CO3 (0.5)d,e 24 80 15 
8 10c K2CO3 (0.5)d,e 24 50 <5 
9 10c K2CO3 (0.5)d,e 24 30 <5 
10 10c K2CO3 (0.6)d,e 24 20 <5 
11 10c K2CO3 (0.3)d,e 24 55 <5 
12f 10e – 40 3 <1 
13g 1af – 24 55 40 
a Determined by NMR analysis.  b Isolated yield.  c at 40 ºC in EtOAc.  10d was decomposed under these 
conditions.  d “Buffered” Oxone was prepared via vigorous stirring of Oxone in the presence K2CO3 in 
dimethyl carbonate at room temperature.  f Premixing time of Oxone and K2CO3 = 24 h (entries 6, 10, 11), 
12 h (entry 7), 6 h (entry 8), 0 h (entry 9).  f at 40 °C.  2a (90%) was recovered.  g Stoichiometric 
oxidation: Reaction was performed with IBX (1a, 1.1 equiv) in DMC (0.1 M) at 20 °C in the absence of 
Oxone and Bu4NHSO4. 

2a

Precat. (5 mol%)
Bu4NHSO4 (10 mol%)

powdered Oxone (1 equiv)
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DMC, 20 ºC

8a 9a+

I

CO2H
10e

O
I

O

OHO
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I
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       4,5-Me2 (10c)
       5-MeO (10d)



Chapter 3.  4,5-Me2-IBS-Catalyzed Highly Site-selective Oxidation of 2-Substituted Phenols to 1,2-Quinols 
 

 44 

expected, almost no reaction proceeded with the use of pre-IBX (10e) (entry 12).  Additionally, 

the stoichiometric oxidation of 2a with IBX (1.1 equiv), even under our optimized conditions, 

afforded 8a in 55% yield along with 9a in 40% yield (entry 13). 

However, the beneficial roles of buffered Oxone for the present oxidation is not clear yet.  

The use of buffered Oxone is almost ineffective for the oxidation of iodine(I) to iodine(III and V) 

under both aqueous and non-aqueous conditions (Table 3).  Moreover, it was confirmed that 10c 

was much more easily oxidized to hypervalent iodine species than that of 10a.  Since IBSes are 

not stable enough to isolate in pure form, we could not investigate the stoichiometric oxidation with 

the use of IBS. 

Table 3.  Effect of Buffered Oxone for the Oxidation of Iodine(I) to Iodine(III and V) 

 
 Ratio of Iodine(I:III:V) 

Time 
(h) 

in CD3CN–D2O (1:1, v/v) in CD3CN 
10a 

w/o K2CO3 
10a 

w/ K2CO3 
10c 

w/o K2CO3 
10c 

w/ K2CO3 
10c 

w/o K2CO3 
10c, 

w/ K2CO3 
10c 

w/ K2CO3
a 

1 49:51:0 47:43:0 0:80:20 0:80:20 99:0:0 90:0:10 90:0:10 
5 21:59:20 22:57:21 0:45:55 0:45:55 90:0:10 85:0:15 85:0:15 
24     41:0:59 43:0:57 45:0:55 
a A solution of Oxone and K2CO3 was premixed for 24 h before the addition of 10c and PTC. 

Various 2-substituted phenols were examined under the optimized reaction conditions (Tables 

4 and 5).  The oxidation of unsymmetrical phenols 2b–g was conducted at 20 ºC by using 

pre-catalyst 10c and buffered Oxone to induce high site-selectivity (Table 4).  The corresponding 

cyclodimers 8b–g were obtained in good to high yields (62–80%) regardless electronic nature of the 

substituents.  Oxidation of 5-methoxy-2-methylphenol (2c) proceeded smoothly, however, 

cyclodimerization process required high temperatures for the reaction to complete.  The 

benzoquinone side products 9 or their reductive catechol forms could not be isolated with these 

reactions, except for the oxidation of 2f.  Notably, oxidation of 2,3,6-trimethylphenol (2g) 

proceeded selectively at the less hindered 6-position to give the corresponding cyclodimer 8g in 

70% yield.  On the other hand, the ortho-selective oxidation of symmetrical 2,6-disubstituted 

phenols 2h–l proceeded smoothly at 40 ºC, and the corresponding cyclodimers 8h–l were obtained 

I

SO3Na S
O

I

O O

OH
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O

I

O O

HO
O
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in excellent yields (Table 5).  In contrast to low temperature conditions (20 ºC) that are required 

for the site-selective oxidation of unsymmetrical phenols, almost same results were obtained with 

both pre-catalysts 10a and 10c at 40 ºC.  Notably, in contrast to IBX-mediated oxidations,13 

electron-withdrawing group-substituted phenols such as 2d, 2e, 2i, 2k and 2l could be oxidized 

smoothly with the use of our IBS/Oxone catalysis.  For example, oxidation of 2i bearing two ester 

groups at both ortho-positions using a stoichiometric amount of IBX did not proceed even at 

elevated temperatures.   

Table 4.  Regio- and Site-selective Oxidation of Unsymmetrical 2-Substituted Phenolsa 

 
Entry Substrate 2 Product 8 Time (h) Yield (%)b 
1 

2c 

3 

4  

2b (R = Me) 

2c (R = OMe) 

2d (R = F) 

2e (R = Br)  

8b 
8c 

8d 

8e 

24 

48 

24 

24 

65 

70 

62 

80 

5 

 

2f 

 

8f 24 66d 

6 

 

2g 

 

8g 24 70e 

a Reaction conditions: 2 (0.5 mmol), powdered Oxone (0.5 mmol), K2CO3 (0.25 mmol), 10c (0.025 mmol), 
Bu4NHSO4 (0.05 mmol), DMC (5 mL), 20 ºC.  Oxone and K2CO3 were premixed in DMC for 24 h at room 
temperature.  b Isolated yield.  c at 80 ºC.  d 9a was obtained in 17% yield.  e The isomeric 
ortho-benzoquinol, oxidation product at the 2-position, was isolated in 22% yield. 

The selective oxidation of ortho-substituted 1- or 2-naphthols 2m–s under optimized 

conditions gave the corresponding ortho-naphthoquinols 7m–s (Scheme 3).  Notably, the catalytic 

oxidation of naphtholic ester 2o completed within 35 h; for comparison, the IBX-mediated 

stoichiometric oxidation required 7 days.13c   Furthermore, the antibacterial natural product 

lacinilene C methyl ether (7s)5 could be synthesized by the clean oxidation of another natural 
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product, 2-hydroxy-7-methoxycadalene (2s),5a in 91% yield.  In contrast highly toxic 

diphenylseleninic anhydride5c or Zr(IV)/TBHP5d had been required previously for the oxidation of 

2s to 7s. 

Table 5.  Regioselective Oxidation of Symmetrical 2,6-Disubstituted Phenolsa 

 

Entry Substrate 2 Product 8 Time (h) Yield (%)b 

1 
2c 

 

2h (R = Me) 
2i (R = CO2Me) 

 

8h 
8i 

16 
16 

98 
98 

3 
4 
5 

 

2j (R = Me) 
2k (R = Ac) 
2l (R = CO2Me) 

 

8j 
8k 
8l 

16 
12 
12 

94 
91 
91 

a Reaction conditions: 2 (0.5 mmol), powdered Oxone (0.375 mmol), 10a (0.025 mmol), Bu4NHSO4 (0.05 
mmol), DMC (5 mL), 40 ºC.  b Isolated yield.  c Oxone (1.2 equiv). 

Scheme 2.  Oxidation of Naphthols to ortho-Naphthoquinols 

 

Reaction time and isolated yields are shown.  a EtOAc instead of DMC.  b Oxone (1 equiv). 
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However, the oxidation of 2-cresol (2t) as the simplest substrate gave a complex mixture, and 

desired cyclodimer 8t was obtained in only 20% yield (Scheme 3a).  To stabilize the partial 

positive charge developing at an alkylated 2-position, we introduced a trialkylsilylmethyl 

substituent at the 2-position of phenols.  To our delight, the clean oxidation of 

α-trimethylsilyl-o-cresol (11a) proceeded smoothly and the corresponding cyclodimer 12a was 

obtained in 64% yield along with quinone 13a in 33% yield (Scheme 3b).  Both the site-selectivity 

and the reaction rate were enhanced by the β-silicon effect.15    Notably, oxidative desilylation 

was not observed under our oxidative conditions.  A variety of trialkylsilyl groups could be easily 

installed at the benzylic position, and easily removed after the oxidation.  For instance, 8t could be 

isolated in good yield from the oxidation of phenol 11b followed by TBAF-mediated desilylation 

(Scheme 3c).  On the other hand, as expected, almost no reaction proceeded with the use the  

Scheme 3.  Oxidation of 2-Cresol (2t) and Its Silylated Analogues 
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stoichiometric amount of IBX instead of IBS/Oxone catalysis (Scheme 3d).  Additionally, 

although 11a was completely consumed fully under harsh reaction conditions with trifluoroacetic 

acid (TFA), various unidentified side-product were also obtained (Scheme 3d). 

The oxidation of various 2-(silylmethyl)phenols 11 was examined under optimized conditions 

(Table 6).  The reaction of the silylated analogue of carvacrol 11c gave cyclodimer 12c 

exclusively.  Moreover, compared to their non-silyl counterparts 2b, 2d and 2u, phenols 11d-f 

bearing electron-donating or -withdrawing substituents at meta- or ortho-positions gave their 

corresponding cyclodimers in higher yields after shorter reaction times.  Additionally, the 

oxidation of 1-silylmethyl-2-naphthol 11g also proceeded smoothly and desired 

ortho-naphthoquinol 14g was isolated in high yield (Scheme 4). 

Table 6.  Oxidation of Various 2-(Silylmethyl)phenols 11 

 
Entry Substrate 2 Product 8 Time (h) Yield (%)a 

1b 
2 

 

11c (X = SiMe3) 
2a (X = H) 

 

12c 
8a 

5 
24 

94 
82c 

3 
4 

 

11d (X = SiMe3) 
2b (X = H) 

 

12d
8b 

5 
24 

72 
65 

5 
6 

 

11e (X = SiMe3) 
2d (X = H) 

 

12e 
8d 

7 
24 

83 

62 

7 
8 

 

11f (X = SiMe3) 
2u (X = H) 

 

12f 
8u 

5 
44 

57 
27 

a Isolated yield.  b Oxone (0.75 equiv), K2CO3 (0.375 equiv).  c 9a was obtained in 15%. 
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Scheme 4.  Oxidation of 1-Silylmethyl-2-Naphthol 14g 

 

On the other hand, the oxidation of 4-methylphenol 11h gave a complex mixture of products, 

and neither the desired 1,2-benzoquinol nor its cyclodimer could be isolated (Scheme 5a).  We 

speculated that, due to the acidity of Oxone, Peterson olefination16 of unstable 14 might proceed 

preferentially to gibe 1,2-benzoquinone 2-methide 15, which readily undergoes decomposition.17  

This failure provided us an opportunity to achieve unprecedented cascade reaction.  In deed, the 

elimination of silanol could be suppressed by the use of buffered Oxone, and a relatively clean 

reaction was achieved in the presence of excess methyl vinyl ketone (MVK) to give 

[4+2]-cycloadduct 16a in good yield as a single diastereomer (Scheme 5b).18  On the other hand, 

15 could also be trapped in the presence of electron-rich alkenes such as indene under acidic 

conditions to give the corresponding tetracyclic chroman 17a (Scheme 5c).17 

Scheme 5.  Oxidative Cascade Reactions 
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Other examples are shown in Schemes 6 and 7 for the cascade [4+2]-cycloaddition of both 

1,2-benzoquinols and 1,2-benzoquinone 2-methides with several dienophiles, such as MVK, methyl 

acrylate, aryl alkenes, and alkyl vinyl ether.  Notably to accelerate the generation of ortho-quinone 

methide from stable ortho-naphthoquinol 14g derived from 2-naphthol 11g, a catalytic amount of 

para-toluene sulfonic acid was used instead of HFIP and the cycloadducts 17c and 17d were 

obtained in high yield.  Importantly, the IBS-catalyzed chemoselective oxidation of phenols 

proceeded efficiently under these mild conditions even in the presence of an excess amount of 

alkenes.  ortho-Naphthoquinol 14g derived from 2-naphthol 11g, a catalytic amount of 

para-toluene sulfonic acid (TsOH) was used instead of HFIP and the cycloadducts 17c and 17d 

were obtained in high yield.  Importantly, the IBS-catalyzed chemoselective oxidation of phenols 

proceeded efficiently under these mild conditions even in the presence of an excess amount of 

alkenes.  However, the oxidative cascade cycloaddition of both ortho-quinols and ortho-quinone 

methides with acetylenes (e.g., acetylenedicarboxylates, aryl or alkyl acetylenes) gave complex 

reaction mixtures (Scheme 8). 

Scheme 6.  Oxidative Cascade Reaction to [4+2]-Cycloadducts 16 via 1,2-Quinols 
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Scheme 7.  Oxidative Cascade Reaction to Chromanes 17 via ortho-Quinone Methide 

 

Scheme 8.  Unsuccessful Examples for the Oxidative Cascade Reactions 
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nucleophilic epoxidation of the resulting enone 19 (Scheme 9b).  On the other hand, we succeeded 

in the efficient synthesis of the unique α-methylenebicyclo[2.2.2]octanone core (22) of natural 

products or biologically active compounds such as crotogoudin,19 15-oxospiramilactone,20 etc., from 

18b through the chemoselective hydrogenation of alkene to 21 followed by olefination (Scheme 9c). 

Scheme 9.  Additional Synthetic Utility of Silylated Benzoquinols 
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In conclusion, we have succeeded in the first site-selective hydroxylative dearomatization of 

phenols by using IBS/Oxone catalysis.  The corresponding 1,2-quinols or their [4+2]-cyclodimers 
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Experimental Section 

Infrared (IR) spectra were recorded on a JASCO FT/IR 460 plus spectrometer.  1H NMR 

spectra were measured on a JEOL ECS-400 (400 MHz) spectrometer at ambient temperature.  

Data were recorded as follows: chemical shift in ppm from internal tetramethylsilane on the δ scale, 

multiplicity (s = singlet; d = doublet; t = triplet; q = quartet; quin = quintet; m = multiplet; brs = 

broad singlet), coupling constant (Hz), integration, and assignment.  13C NMR spectra were 

measured on a JEOL ECS-400 (100 MHz) and Bruker AVANCE III HD (125 MHz) spectrometer.  

Chemical shifts were recorded in ppm from the solvent resonance employed as the internal standard 

(deuterochloroform at 77.00 ppm).  For thin-layer chromatography (TLC) analysis throughout this 

work, Merck precoated TLC plates (silica gel 60 GF254 0.25 mm) were used.  The products were 

purified by column chromatography on silica gel (E. Merck Art. 9385 or Fuji Silysia NH-DM 1020).  

High-resolution mass spectral analysis (HRMS) was performed at Chemical Instrument Center, 

Nagoya University (JEOL JMS-700). 
In experiments that required solvents, dimethyl carbonate (DMC), ethyl acetate (EtOAc), 

acetonitrile and nitromethane were purchased from Wako Pure Chemical Industries, Ltd. as the 

“anhydrous” and used without further purification.  pre-4,5-Me2-IBS (10c·Na) and 

pre-5-MeO-IBS (10d·Na) were prepared according to known procedures.14a  pre-IBS (10a·K) and 

pre-5-Me-IBS (10b·K) are commercially available from Wako Pure Chemical Industries, Ltd., 

Junsei Chemical Japan, or Aldrich Chemical Co., Inc.  Powdered Oxone was prepared according 

to known procedure.14a  Other simple chemicals were analytical-grade and obtained commercially 

and used without further purification. 

 

Synthesis and Characterization of Substrates 

 
Dimethyl 2-hydroxyisophthalate (2i):21  2i was prepared from 2,6-dimethylphenol according to 

the literature.[3]  White solid; TLC, Rf = 0.33 (hexane–EtOAc = 4:1); 1H NMR (CDCl3, 400 MHz) 

δ 3.96 (s, 6H), 6.93 (t, J = 8.0 Hz, 1H), 8.04 (d, J = 8.0 Hz, 1H), 11.8 (brs, 1H); 13C NMR (CDCl3, 

100 MHz) δ 52.5, 116.5, 118.4, 136.3, 161.5, 168.1. 

 

 

 

MeO2C CO2Me
OH
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Synthesis of 2l: 

 
To a stirring mixture of 2,6-dimethylphenol (0.610 g, 5.00 mmol) and p-toluenesulfonic acid 

monohydrate (1.00 g, 5.30 mmol) in CHCl3 (40.0 mL) was added NIS (1.20 g, 5.30 mmol) at 0 ºC.  

The resulting mixture was allowed to room temperature.  After stirring for 18 h, to the resulting 

mixture was added aqueous NaHCO3, and aqueous layers were extracted with CHCl3 (twice).  The 

combined organic layers were washed with brine and dried over anhydrous MgSO4.  The solvents 

were removed in vacuo.  The residue was purified by column chromatography on silica gel 

(hexane–EtOAc as eluent) to give 4-iodo-2,6-dimethylphenol (1.20 g, 4.83 mmol, 97% yield). 

To a solution of this compound (1.20 g, 4.83 mmol) in dry THF (20.0 mL) was added n-BuLi 

(6.90 mL, 11.0 mmol, 1.6 M in hexane) at –78 ºC.  After stirring for 1 h at –78 ºC, methyl 

chloroformate (0.920 mL, 12.0 mmol) was added dropwise at –78 ºC.  The reaction mixture was 

allowed to room temperature gradually.  After stirring for 14 h at room temperature, the resulting 

mixture was quenched by aqueous NH4Cl at 0 °C, and aqueous layers were extracted with Et2O 

(twice).  The combined organic layers were washed with brine with brine and dried over 

anhydrous MgSO4.  The solvents were removed in vacuo.  To a stirring mixture of this crude 

mixture in THF (10.0 mL) was added aqueous NH3 (25%, 1.50 mL) at room temperature.  After 

stirring for 12 h, the reaction was neutralized with aqueous NH4Cl, and aqueous layers were 

extracted with EtOAc (twice).  The combined organic layers were washed with brine and dried 

over anhydrous MgSO4.  The solvents were removed in vacuo.  The residue was purified by 

column chromatography on silica gel (hexane–EtOAc as eluent) to give 2l (0.339 g, 1.88 mmol, 

39% yield). 

Methyl 4-hydroxy-3,5-dimethylbenzoate (2l):22  White solid; TLC, Rf = 0.24 (hexane–EtOAc = 

4:1); 1H NMR (CDCl3, 400 MHz) δ 2.28 (s, 6H), 3.87 (s, 3H), 5.01 (brs, 1H), 7.71 (s, 2H); 13C 

NMR (CDCl3, 100 MHz) δ 15.8, 51.8, 121.9, 122.8, 130.5, 156.3, 167.1. 

 

 
2-Methyl-1-naphthol (2m):23  2m was prepared from 1-hydroxy-2-naphthoic acid according to 

OH
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OH

I
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the literature.[4]  White solid; TLC, Rf = 0.52 (hexane–EtOAc = 4:1); 1H NMR (CDCl3, 400 MHz) 

δ 2.41 (s, 3H), 5.07 (brs, 1H), 7.24 (d, J = 8.2 Hz, 1H), 7.37–7.48 (m, 3H), 7.77 (d, J = 7.2 Hz, 1H), 

8.12 (d, J = 8.2 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ 15.6, 116.1, 120.1, 120.8, 124.1, 125.3, 

125.4, 127.6, 128.9, 133.4, 148.4. 

 

 
4-Bromo-2-methyl-1-naphthol (2n):  2n was prepared from 4-bromo-1-hydroxy-2-naphthoic 

acid as 2o.[4]  77% yield.  Pale yellow solid; TLC, Rf = 0.50 (hexane–EtOAc = 4:1); IR (CHCl3) 

3455, 2877, 1654, 1377, 1177 845 cm-1; 1H NMR (CDCl3, 400 MHz) δ 2.40 (s, 3H), 5.06 (brs, 1H), 

7.51–7.57 (m, 3H), 8.13 (d, J = 7.2 Hz, 1H), 8.15 (d, J = 7.2 Hz, 1H); 13C NMR (CDCl3, 100 MHz), 

δ 15.3, 112.9, 117.3, 121.4, 125.4, 125.9, 126.7, 126.9, 131.3, 132.2, 148.4; HRMS (FAB+) m/z 

calcd for [C11H9
79BrO]/[C11H9

81BrO] ([M]/[M+2]) 235.9837/237.9816, found 235.9833/237.9827. 

 

 
1-Methyl-2-naphthol (2o):24  2o was prepared from 2-hydroxy-1-naphthoic acid as 2o.[4]  White 

solid; TLC, Rf = 0.56 (hexane–EtOAc = 4:1); 1H NMR (CDCl3, 400 MHz) δ 2.54 (s, 3H), 4.81 (brs, 

1H), 7.07 (d, J = 8.8 Hz, 1H), 7.34 (dd, J = 6.8, 8.8 Hz, 1H), 7.50 (dd, J = 6.8, 8.2 Hz, 1H), 7.63 (d, 

J = 8.8 Hz, 1H), 7.77 (d, J = 8.2 Hz, 1H), 7.92 (d, J = 8.8 Hz, 1H); 13C NMR (CDCl3, 100 MHz) 

δ 10.4, 115.2, 117.5, 123.1(2C), 126.3, 127.3, 128.4, 129.2, 133.8, 150.4. 

 

 
1,3-Dimethyl-2-naphthol (2r):24  2r was prepared from 1-bromo-2-naphthol according to the 

literature.[5]  White solid; TLC, Rf = 0.57 (hexane–EtOAc = 10:1); 1H NMR (CDCl3, 400 MHz) 

δ 2.42 (s, 1H), 2.52 (s, 1H), 4.88 (brs, 1H), 7.31 (dd, J = 7.6, 8.0 Hz, 1H), 7.43 (dd, J = 7.6, 8.8 Hz, 

1H), 7.48 (s, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.85 (d, J = 8.8 Hz, 1H); 13C NMR (CDCl3, 100 MHz) 

δ .10.6, 17.0, 114.4, 122.9, 123.1, 125.3, 125.4, 127.0, 127.7, 129.0, 132.5, 150.0. 

 

OH

Br

OH
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4-Isopropyl-7-methoxy-1,6-dimethyl-2-naphthol (2s):5d  2s was prepared from 

2-methoxytoluene and succinic anhydride according to literature.5d  White solid; TLC, Rf = 0.39 

(hexane–EtOAc = 10:1); 1H NMR (CDCl3, 400 MHz) δ 1.35 (d, J = 6.8 Hz, 1H), 2.37 (s, 3H), 2.46 

(s, 3H), 3.65 (sep, J = 6.8 Hz, 1H), 3.96 (s, 3H), 4.72 (brs, 1H), 6.83 (s, 1H), 7.09 (s, 1H), 7.77 (s, 

1H); 13C NMR (CDCl3, 100 MHz) δ 10.7, 17.0, 23.6, 28.3, 55.1, 101.2, 111.2, 111.7, 122.0, 124.7, 

124.9, 134.4, 143.6, 150.0, 157.0. 

 

Synthesis of 11a:25 

 
To a stirring mixture of ortho-cresol (1.08 g, 10.0 mmol) and potassium carbonate (2.10 g, 

15.0 mmol) in DMF (30.0 mL) was added methyl iodide (0. 930 mL, 15.0 mmol) at room 

temperature.  After stirring for 12 h, the solids were filtered-off and washed with Et2O.  The 

filtrate was neutralized with 1M HCl, and the aqueous layers were extracted Et2O (twice).  The 

combined organic layers were washed with brine and dried over anhydrous MgSO4.  The solvents 

were removed in vacuo.  The residue was purified by column chromatography on silica gel 

(hexane–Et2O as eluent) to give ortho-cresol methyl ether (1.22 g, 9.99 mmol, 99% yield).   

To a solution of ortho-cresol methyl ether (1.22 g, 9.99 mmol) in dry THF (50.0 mL) was 

added n-BuLi (7.50 mL, 12.0 mmol, 1.6 M in hexane) at –78 ºC.  After stirring for 15 min at –78 

ºC, to the resulting mixture was added dropwise potassium tert-butoxide (12.0 mL, 12.0 mmol, 1.0 

M in THF), and then 2,2,6,6-tetramethylpiperidine (1.70 mL, 9.99 mmol).  After stirring for 1 h at 

–78 ºC, to the resulting mixture was added dropwise chlorotrimethylsilane (3.20 mL, 25.0 mmol) 

was added at –78 °C.  The reaction mixture was allowed to room temperature gradually.  After 

stirring for 5 h at room temperature, the resulting mixture was quenched with aqueous NH4Cl, and 

the aqueous layers were extracted Et2O (twice).  The combined organic layers were washed with 

brine and dried over anhydrous MgSO4.  The solvents were removed in vacuo.  The residue was 

OHMeO

OH MeI (1.5 equiv)
K2CO3 (1.5 equiv)

DMF, rt, 12 h

1. nBuLi (1.2 equiv)
    KOtBu (1.2 equiv)
    TMP (1.0 equiv)
    THF, –78 ºC, 1 h

2. Me3SiCl (2.5 equiv)
    THF, –78 ºC to rt,
3. BBr3 (1.0 equiv)
    CH2Cl2, –78 ºC, 3 h

OMe OH SiMe3

11a
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purified by column chromatography on silica gel (hexane–Et2O as eluent) to give 

(2-methoxybenzyl)trimethylsilane (1.93 g, 9.95 mmol, 99% yield). 

To a stirring solution of this methyl ether (1.93 g, 9.95 mmol) in dry CH2Cl2 (30.0 mL) was 

added dropwise BBr3 (9.95 mL, 9.95 mmol, 1.0 M in CH2Cl2) at –78 ºC.  The resulting mixture 

was allowed to room temperature.  After stirring for 3 h, the resulting mixture was poured into a 

water/ice mixture (20 mL).  The aqueous layers were separated and extracted with CH2Cl2 (twice).  

The combined organic layers were washed with brine, and dried over anhydrous MgSO4.  The 

solvents were removed under vacuo, and the residue was purified by column chromatography on 

silica gel (hexane–EtOAc as eluent) to give 11a (1.28 g, 7.92 mmol, 80% yield). 

2-((Trimethylsilyl)methyl)phenol (11a):26  Yellow oil; TLC, Rf = 0.30 (hexane–EtOAc = 10:1); 
1H NMR (CDCl3, 400 MHz) δ 0.03 (s, 9H), 2.06 (s, 2H), 4.47 (brs, 1H), 6.73 (d, J = 7.2 Hz, 1H), 

6.83 (dd, J = 1.6, 8.0 Hz, 1H), 6.95–6.99 (m, 2H); 13C NMR (CDCl3, 100 MHz) δ –1.6, 20.2, 115.0, 

120.7, 125.2, 126.8, 130.0, 152.4. 

 

Synthesis of 11b:25 

 
To a stirring mixture of ortho-cresol (1.08. g, 10.0 mmol) and N,N-diisopropylethylamine 

(2.30 mL, 13.0 mmol) in THF (30.0 mL) was added chloromethyl methyl ether (0.990 mL, 13.0 

mmol) at 0 ºC.  The reaction mixture was allowed to room temperature.  After stirring for 16 h, 

the resulting mixture was quenched with aqueous NH4Cl, and the aqueous layers were extracted 

Et2O (twice).  The combined organic layers were washed with brine and dried over anhydrous 

MgSO4.  The solvents were removed in vacuo.  The residue was purified by column 

chromatography on silica gel (hexane–Et2O as eluent) to give 

1-(methoxymethoxy)-2-methylbenzene (1.52 g, 9.99 mmol, 99% yield).   

To a solution of MOM ether (1.52 g, 9.99 mmol) in dry THF (50.0 mL) was added n-BuLi 

(7.50 mL, 12.0 mmol, 1.6 M in hexane) at –78 ºC.  After stirring for 15 min at –78 ºC, to the 

resulting mixture was added dropwise potassium tert-butoxide (11.0 mL, 11.0 mmol, 1.0 M in 

THF), and then 2,2,6,6-tetramethylpiperidine (1.70 mL, 9.99 mmol).  After stirring for 1 h at –78 

ºC, to the resulting mixture was added dropwise chloro(dimethyl)phenylsilane (4.20 mL, 25.0 

OH MOMCl (1.3 equiv)
DIPEA (1.3 equiv)

THF, 0 ºC to rt, 16 h

1. nBuLi (1.2 equiv)
    KOtBu (1.2 equiv)
    TMP (1.0 equiv)
    THF, –78 ºC, 1 h

2. Me3SiCl (2.5 equiv)
    THF, –78 ºC to rt,
3. TsOH (10 mol%)
    MeOH, 50 ºC, 4 h

OMOM OH SiMe2Ph

11b
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mmol) was added at –78 °C.  The reaction mixture was allowed to room temperature gradually.  

After stirring for 5 h at room temperature, the resulting mixture was quenched with aqueous NH4Cl, 

and the aqueous layers were extracted Et2O (twice).  The combined organic layers were washed 

with brine and dried over anhydrous MgSO4.  The solvents were removed in vacuo.  The residue 

was purified by column chromatography on silica gel (hexane–Et2O as eluent) to give 

(2-(methoxymethoxy)benzyl)dimethyl(phenyl)silane (2.84 g, 9.92 mmol, 99% yield). 

A solution of this ether (2.84 g, 9.92 mmol) in MeOH (30.0 mL) was stirred at 50 ºC in the 

presence of para-toluenesulfonic acid monohydrate (0.189 g, 0.992 mmol).  After stirring for 4 h, 

the resulting mixture was cooled to room temperature, and then poured into H2O.  The aqueous 

layers were extracted EtOAc (twice).  The combined organic layers were washed with brine and 

dried over anhydrous MgSO4.  The solvents were removed under vacuo, and the residue was 

purified by column chromatography on silica gel (hexane–Et2O as eluent) to give 11b (1.68 g, 6.92 

mmol, 70% yield). 

2-((Dimethyl(phenyl)silyl)methyl)phenol (11b):27  Yellow oil; TLC, Rf = 0.32 (hexane–EtOAc = 

10:1); 1H NMR (CDCl3 400 MHz) δ 0.30 (s, 9H), 2.31 (s, 2H) 4.33 (brs, 1H), 6.98 (d, J = 7.2 Hz, 

1H), 6.80 (t, J = 7.2 Hz, 1H), 6.90 (d, J = 7.2 Hz, 1H), 6.98 (t, J = 7.2 Hz, 1H), 7.34–7.37 (m, 3H), 

7.50 (d, J = 6.8 Hz, 2H); 13C NMR (CDCl3, 100 MHz) δ –3.2, 19.7, 115.2, 121.0, 125.6, 126.0, 

127.7, 128.0, 129.0, 130.0, 133.5, 133.7, 138.6, 152.5. 

 

 
5-Isopropyl-2-((trimethylsilyl)methyl)phenol (11c):  11c was prepared from carvacrol (2a) as 

described above for 11b.  58% yield (for 3 steps).  Yellow oil; TLC, Rf = 0.31 (hexane–EtOAc = 

10:1); IR (neat) 3462, 2988, 1504, 1251, 876 cm-1; 1H NMR (CDCl3, 400 MHz) δ 0.02 (s, 9H), 

1.22 (d, J = 6.8 Hz, 6H), 2.01 (s, 2H), 2.81 (sep, J = 6.8 Hz, 1H), 4.39 (brs, 1H), 6.61 (s, 1H), 6.68 

(dd, J = 1.2, 8.0 Hz, 1H), 6.87 (d, J = 8.0 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ –1.6, 19.7, 24.0, 

33.5, 113.1, 118.7, 123.4, 129.8, 146.4, 152.2; HRMS (FAB+) m/z calcd for [C13H22OSi] (M) 

222.1440, found 222.1445. 

 

 

OH SiMe3
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5-Methyl-2-((trimethylsilyl)methyl)phenol (11d):  11d was prepared from p-xylenol (2b) as 

described above for 11b.  57% yield (for 3 steps).  Yellow oil; TLC, Rf = 0.30 (hexane–EtOAc = 

10:1); IR (neat) 3435, 2954, 2896, 1419, 1237, 845 cm-1; 1H NMR (CDCl3, 400 MHz) δ 0.02 (s, 

9H), 2.01 (s, 2H), 2.26 (s, 3H), 4.43 (brs, 1H), 6.56 (s, 1H), 6.64 (d, J = 8.0 Hz, 1H), 6.84 (d, J = 

8.0 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ –1.5, 19.7, 20.8, 115.7, 121.4, 123.2, 129.9, 135.0, 

152.2; HRMS (FAB+) m/z calcd for [C11H18OSi] (M) 194.1127, found 194.1136. 

 

Synthesis of 11e: 

 
To a stirring mixture of 5-fluoro-2-methylphenol (2c, 0.540 mL, 5.00 mmol) and potassium 

carbonate (1.00 g, 7.50 mmol) in DMF (15.0 mL) was added methyl iodide (0.470 ml, 7.50 mmol) 

at room temperature.  After stirring for 16 h, the solids were filtered-off and washed with Et2O.  

The filtrate was neutralized with 1M HCl, and the aqueous layers were extracted Et2O (twice).  

The combined organic layers were washed with brine and dried over anhydrous MgSO4.  The 

solvents were removed in vacuo.  The residue was purified by column chromatography on silica 

gel (hexane–Et2O as eluent) to give 4-fluoro-2-methoxy-1-methylbenzene (0.698 g, 4.98 mmol, 

99% yield). 

To a mixture of this methyl ether (0.698 g, 4.98 mmol) and benzoyl peroxide (0.120 g, 0.498 

mmol) in CCl4 (30.0 mL) was added N-bromosuccinimide (0.931 g, 5.23 mmol).  The resulting 

mixture was refluxed with stirring for 7 h.  The reaction mixture was cooled to room temperature, 

the solids were then filtered-off and washed with CH2Cl2.  The filtrate was poured into H2O, and 

the aqueous layers were extracted with CH2Cl2 (twice).  The combined organic layers were washed 

with brine and dried over anhydrous MgSO4.  The solvents were removed under vacuo, and the 

residue was purified by column chromatography on silica gel (hexane–Et2O as eluent) to give 

1-(bromomethyl)-4-fluoro-2-methoxybenzene (0.872 g, 3.98 mmol, 80% yield). 

To a mixture of magnesium turnings (0.150 g, 5.97 mmol) and a crystal of iodine under N2 was 

added dry THF (10.0 mL), and the resulting mixture was stirred for 10 min at room temperature.  

OH SiMe3

OH
1. MeI (1.5 equiv)
    K2CO3 (1.5 equiv)
    DMF, rt, 

2. NBS (1.05 equiv)
    BPO (10 mol%)
    CCl4, reflux, 7 h

OMe Br
1. Mg (1.5 equiv)
    TMSCl (1.2 equiv)
    THF, 0 ºC to rt, 2 h

2. BBr3 (1 equiv)
    CH2Cl2, –78 ºC,F

2c
F

OH SiMe3

F
11e
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To this mixture was added dropwise chlorotrimethylsilane (0.606 mL, 4.78 mmol) followed by a 

solution of aryl bromide (0.872 g, 3.98 mmol) in dry THF (10.0 mL) at 0 ºC.  The resulting 

mixture was allowed to room temperature.  After stirring for 2 h at room temperature, the reaction 

was quenched with brine, and the aqueous layers were extracted with EtOAc (twice).  The 

combined organic layers were washed with brine, and dried over anhydrous MgSO4.  The solvents 

were removed under vacuo, and the residue was purified by column chromatography on silica gel 

(hexane–Et2O as eluent) to give (4-fluoro-2-methoxybenzyl)trimethylsilane (0.499 g, 2.35 mmol, 

59% yield). 

To a solution of this compound (0.499 g, 2.35 mmol) in dry CH2Cl2 (10.0 mL) was added 

dropwise BBr3 (2.35 mL, 2.35 mmol, 1.0 M in CH2Cl2) at –78 ºC.  The resulting mixture was 

allowed to room temperature.  After stirring for 3 h, the resulting mixture was poured into a 

water/ice mixture (5.00 mL).  The aqueous layers were separated and extracted with CH2Cl2 

(twice).  The combined organic layers were washed with brine, and dried over anhydrous MgSO4.  

The solvents were removed under vacuo, and the residue was purified by column chromatography 

on silica gel (hexane–Et2O as eluent) to give11e (0.238 g, 1.20 mmol, 51% yield). 

5-Fluoro-2-((trimethylsilyl)methyl)methyl)phenol (11e):  Yellow oil; TLC, Rf = 0.32 (hexane–

EtOAc = 10:1); IR (CHCl3) 3452, 3085, 2990, 1734, 1683, 1362, 1147, 884 cm-1; 1H NMR (CDCl3, 

400 MHz) δ 0.01 (s, 9H), 1.98 (s, 2H), 4.56 (brs, 1H) 6.48–6.56 (m, 2H), 6.85 (m, 1H); 13C NMR 

(CDCl3, 100 MHz) δ 0.3, 15.9, 106.3, 106.5, 107.6, 107.8, 130.9, 131.0; 19F NMR (CDCl3, 376 

MHz), δ –115; HRMS (FAB+) m/z calcd for [C10H15FOSi] (M) 198.0876, found 198.0877. 

 

Synthesis of 11f:28 

 
To a flame-dried flask equipped with a Soxhlet apparatus were added 11a (0.360 g, 2.00 

mmol), diisopropylamine (0.028 mL, 0.200 mmol) and CH2Cl2 (15.0 mL).  The thimble was filled 

with N-bromosuccinimide (0.356 g, 2.00 mmol).  The resulting mixture was stirred under reflux 

conditions.  After consumption of N-bromosuccinimide in the thimble, the reaction mixture was 

cooled to room temperature, and then treated with 2 M aqueous sulfuric acid.  The aqueous layers 

were extracted with CH2Cl2 (twice).  The combined organic layers were washed with brine, and 

dried over anhydrous MgSO4.  The solvents were removed under vacuo, and the residue was 

purified by column chromatography on silica gel (hexane–Et2O as eluent) to give 11f (0.394 g, 1.52 

OH SiMe3
Br

NBS (1 equiv)
iPr2NH (10 mol%)

CH2Cl2, reflux, 12 h

OH SiMe3

11a 11f
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mmol, 76% yield). 

2-Bromo-6-((trimethylsilyl)methyl)phenol (11f):  Yellow oil; TLC, Rf = 0.32 (hexane–EtOAc = 

10:1); IR (neat) 3520, 2954, 2898, 1595, 1450, 1235, 1134, 857 cm-1; 1H NMR (CDCl3, 400 MHz) 

δ 0.01 (s, 9H), 2.13 (s, 2H), 5.43 (brs, 1H), 6.65 (dt, J = 1.2, 7.8 Hz, 1H), 6.88 (d, 7.8 Hz, 1H), 7.16 

(dd, J = 1.2, 7.8 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ –1.6, 21.2, 110.3, 121.1, 127.6, 128.8, 

129.2, 149.0; HRMS (FAB+) m/z calcd for [C10H15
79BrOSi]/ [C10H15

81BrOSi] ([M]/[M+2]) 

258.0076/260.0055, found 258.0088/260.0057. 

 

 
1-((Dimethyl(phenyl)silyl)methyl)-2-naphthol (11g):  11g was prepared from 

1-methylnaphthalen-2-ol (2r) as described above for 11b.  44% yield (for 3 steps).  White solid; 

TLC, Rf = 0.52 (hexane–EtOAc = 4:1); IR (KBr) 3303, 2920, 1923, 1664, 1624, 1363, 911, 739 

cm-1; 1H NMR (CDCl3, 400 MHz) δ 0.26 (s, 6H), 2.71 (s, 2H), 4.41 (brs, 1H), 6.99 (d, J = 8.4 Hz, 

1H), 7.29–7.39 (m, 5H), 7.52–7.55 (m, 3H), 7.74–7.77 (m, 2H); 13C NMR (CDCl3, 100 MHz) δ –

2.6, 15.2, 117.7, 118.5, 122.9, 123.8, 125.6, 125.8, 128.0, 128.4, 129.3, 129.5, 132.9, 133.6, 139.0, 

149.3; HRMS (FAB+) m/z calcd for [C19H20OSi] (M) 292.1283, found 292.1288. 

 

 
4-Methyl-2-(trimethylsilyl)methyl)phenol (11h):  11h was prepared from 2,4-dimethylphenol as 

described above for 11a.  74% yield (for 3 steps).  Yellow oil; TLC, Rf = 0.63 (hexane–EtOAc = 

4:1); IR (neat) 3466, 2954, 1606, 1507, 1249, 855 cm-1; 1H NMR (CDCl3, 400 MHz) δ 0.01 (s, 9H), 

2.02 (s, 2H), 2.23 (s, 3H), 4.32 (brs, 1H), 6.62 (t, J = 4.4 Hz, 1H), 6.76 (m, 2H); 13C NMR (CDCl3, 

100 MHz) δ –1.6, 20.2, 20.6, 114.8, 125.6, 126.3, 129.7, 130.6, 150.2; HRMS (FAB+) m/z calcd 

for [C11H18OSi] (M) 194.1127, found 194.1128. 

 

 

OH

PhMe2Si

OH SiMe3
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4-(tert-Butyl)-2-((trimethylsilyl)methyl)phenol (11i):  11i was prepared from 

4-tert-butyl-2-methylphenol as described above for 11b.  65% yield (for 3 steps).  Yellow oil; 

TLC, Rf = 0.30 (hexane–EtOAc = 10:1); IR (neat) 3435, 2957, 1506, 1247, 856 cm-1; 1H NMR 

(CDCl3, 400 MHz) δ 0.02 (s, 9H), 1.27 (s, 9H), 2.05 (s, 2H), 4.35 (brs, 1H), 6.65 (d, J = 8.8 Hz, 1H), 

6.96–6.98 (m, 2H); 13C NMR (CDCl3, 100 MHz) δ –1.6, 20.4, 31.5, 33.9, 114.4, 121.8, 125.7, 

127.3, 143.2, 150.0; HRMS (FAB+) m/z calcd for [C11H18OSi] (M) 236.1596, found 236.1594. 
 

 
2-((Dimethyl(phenyl)silyl)methyl)-4-methylphenol (11j):  11j was prepared from 

2,4-dimethylphenol as described above for 11b.  61% yield (for 3 step).  White solid; TLC, Rf = 

0.34 (hexane–EtOAc = 10:1); IR (KBr) 3455, 2986, 1735, 1688, 1362, 1147, 877 cm-1; 1H NMR 

(CDCl3, 400 MHz) δ 0.32 (s, 6H), 2.23 (s, 3H), 2.27 (s, 2H), 4.22 (brs, 1H), 6.60 (d, J = 8.0 Hz, 1H), 

6.72 (s, 1H), 6.79 (d, J = 8.0 Hz, 1H), 7.38–7.40 (m, 3H), 7.53–7.54 (m, 1H); 13C NMR (CDCl3, 

100 MHz) δ –3.35, 19.7, 20.5, 115.2, 125.8 (2C), 127.4, 127.8, 129.2, 129.8, 130.8, 133.6, 133.9, 

138.7, 150.3; HRMS (FAB+) m/z calcd for [C16H20OSi] (M) 256.1283, found 256.1288. 

 

  

OH SiMe3

t-Bu

OH SiMe2Ph
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Representative Procedures for the Hydroxylative Dearomatization Reactions 

Oxidation of Nonsymmetrically Substituted 2-Alklyphenols and 2-Naphthol 11g (Method A): 

 
A mixture of powdered Oxone (0.310 g, 0.500 mmol) and potassium carbonate (0.0346 g, 

0.250 mmol) in dimethyl carbonate (3.00 mL) was vigorously stirred at room temperature for 24 h.  

To the resulting mixture were added 2a (0.0750 g, 0.500 mmol), 10c (9.00 mg, 0.0250 mmol), 

Bu4NHSO4 (17.0 mg, 0.0500 mmol) and dimethyl carbonate (2.00 mL) at 20 ºC.  The resulting 

mixture was stirred vigorously at 20 ºC.  The reaction was monitored by TLC analysis.  After 24 

h, the solids were filtered-off and washed with EtOAc.  The filtrate was washed with aqueous 

NaHSO3 and water, and the aqueous layers were extracted with EtOAc (twice).  The combined 

organic layers were washed with brine, and dried over anhydrous MgSO4.  The solvents were 

removed under vacuo, and the residue was purified by column chromatography on silica gel 

(hexane-EtOAc as eluent) to give 8a (0.0683 g, 0.205 mmol, 82% yield). 

 

Oxidation of Symmetrically Substituted Phenols and Naphthols (Method B): 

 

OH

I

SO3Na
10c (5 mol%)

Bu4NHSO4 (10 mol%)

Powdered Oxone (0.75–1 equiv)
K2CO3 (0.375–0.5 equiv)

DMC (0.1 M), 20 ºC

R2R6

R5

R4

2a–g, 2t and 2u 8a–g, 8t and 2u

O
R2

OH HO R2
O

RR

OH
R6

R5

R4

11a–g

Si

12a–f

O

OH HO

O

RR

SiSi
O

OHPhMe2Si

14g

R4

OH

I

SO3Na
10a (5 mol%)

Bu4NHSO4 (10 mol%)

Powdered Oxone (0.75–1.2 equiv)
DMC (0.1 M), 40 ºC

R2
O
R2

OH HO R2
O

R2

R4

OH

2h–l

R2OH
R2

R2

OH

2m–o 2p–s

R

8h–l

7m-s

R2 R2R4
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A mixture of 2h (0.0611 g, 0.500 mmol), powdered Oxone (0.231 g, 0.375 mmol) and 

Bu4NHSO4 (17.0 mg, 0.0500 mmol) in dimethyl carbonate (5.00 mL) was vigorously stirred at 40 

ºC in the presence of 10a (8.40 mg, 0.0250 mmol).  The reaction was monitored by TLC analysis.  

After 16 h, the reaction mixture was cooled to room temperature and the solids were filtered-off and 

washed with EtOAc.  The filtrate was washed with aqueous NaHSO3 and water, and the aqueous 

layers were extracted with EtOAc (twice).  The combined organic layers were washed with brine, 

and dried over anhydrous MgSO4.  The solvents were removed under vacuo, and the residue was 

purified by column chromatography on silica gel (hexane-EtOAc as eluent) to give 8h (0.0676 g, 

0.245 mmol, 98% yield). 

 

Oxidative Cascade Reactions to 16 (Method C): 

 
A mixture of powdered Oxone (0.310 g, 0.500 mmol) and potassium carbonate (0.0346 g, 

0.250 mmol) in dimethyl carbonate (3.00 mL) was vigorously stirred at room temperature for 24 h.  

To the resulting mixture were added methyl vinyl ketone (0.208 mL, 2.50 mmol), 10c (9.00 mg, 

0.0250 mmol) and Bu4NHSO4 (17.0 mg, 0.0500 mmol) at 20 ºC.  To the resulting mixture was 

added dropwise 11h (0.0972 g, 0.500 mmol) in dimethyl carbonate (2.00 mL) over 3 minutes.  The 

resulting mixture was stirred vigorously at 20 ºC.  The reaction was monitored by TLC analysis.  

After 3 h, the solids were filtered-off and washed with EtOAc.  The filtrate was washed with 

aqueous NaHSO3 and water, and the aqueous layers were extracted with EtOAc (twice).  The 

combined organic layers were washed with brine, and dried over anhydrous MgSO4.  The solvents 

were removed under vacuo, and the residue was purified by column chromatography on silica gel 

(hexane-EtOAc as eluent) to give 16a (0.0849 g, 0.305 mmol, 61% yield). 

 
  

OH

I

SO3Na
10c (5 mol%)

Bu4NHSO4 (10 mol%)

Powdered Oxone (1 equiv)
K2CO3 (0.5 equiv)

DMC (0.1 M), 20 ºC

O

OHR4

11h–j 16a–g

+ R
(5–15 equiv)

R

Si

Si

R4
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Oxidative Cascade Reactions to 17 (Method D): 

 
A mixture of 11h (0.0972 g, 0.500 mmol), indene (0.290 g, 2.50 mmol), powdered Oxone 

(0.310 g, 0.500 mmol), 1,1,1,3,3,3-hexafluoro-2-propanol (0. 520 mL, 5.00 mmol) and Bu4NHSO4 

(17.0 mg, 0.0500 mmol) in dimethyl carbonate (5.00 mL) was vigorously stirred at 20 ºC in the 

presence of 10c (9.00 mg, 0.0250 mmol).  The reaction was monitored by TLC analysis.  After 7 

h, the solids were filtered-off and washed with EtOAc.  The filtrate was washed with aqueous 

NaHSO3 and water, and the aqueous layers were extracted with EtOAc (twice).  The combined 

organic layers were washed with brine, and dried over anhydrous MgSO4.  The solvents were 

removed under vacuo, and the residue was purified by column chromatography on silica gel 

(hexane-EtOAc as eluent) to give 17a  (0.0628 g, 0.264 mmol, 53% yield). 

 

Characterization of Products: 

 
3,10-Dihydroxy-6,12-di-isopropyl-3,10-dimethyltricyclo[6.2.2.02,7]dodeca-5,11-diene-4,9-dione 

((±)-Biscarvacrol, 8a):13c  Method A: Oxone (1 equiv), K2CO3 (0.5 equiv), 24 h, 0.0683 g, 82% 

yield.  White solid; TLC, Rf = 0.43 (hexane–EtOAc = 1:1); 1H NMR (CDCl3, 400 MHz) δ 0.86 (d, 

J = 6.8 Hz, 3H), 0.91 (d, J = 6.8 Hz, 3H), 1.12 (t, J = 6.8 Hz, 6H), 1.23 (d, J = 6.8 Hz, 6H), 1.83 

(sep, J = 6.8 Hz, 1H), 2.48 (sep, J = 6.8 Hz, 1H), 2.61 (brs, 1H), 3.08–3.15 (m, 2H), 3.23 (d, J = 8.8 

Hz, 1H), 3.36 (dd, J = 2.4, 6.8 Hz, 1H), 4.09 (brs, 1H), 5.84 (dt, J = 1.2, 6.8 Hz, 1H), 5.96 (s, 1H); 
13C NMR (CDCl3, 100 MHz) δ 19.2, 20.0, 20.7, 22.9, 25.7, 32.2, 32.8, 33.2, 40.8, 41.8, 44.6, 55.8, 

72.7, 73.5, 119.8, 126.1, 145.5, 166.5, 201.9, 212.3. 

 

OH

11g, 11h 17a–d

+ X Y

(5 equiv)

I

SO3Na
10c (5 mol%)

Bu4NHSO4 (10 mol%)

Powdered Oxone (1 equiv)
HFIP (10 equiv)

DMC (0.1 M), 20 ºC

Si

O
XY

O

OH HO
O
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3-Isopropyl-6-methyl-1,2-quinone (9a):  Method A: Oxone (1 equiv), K2CO3 (0.5 equiv), 24 h, 

8.19 mg, 10% yield.  Red solid; TLC, Rf = 0.64 (hexane–EtOAc = 1:1); IR (CHCl3) 2897, 1761, 

1753, 1451, 1221, 877 cm-1; 1H NMR (CDCl3, 400 MHz) δ 1.07 (d, J = 6.8 Hz, 6H), 1.94 (s, 3H), 

2.92 (sep, J = 6.8 Hz, 1H), 6.64 (d, J = 6.8 Hz, 1H), 6.76 (dd, J = 1.6, 6.8 Hz, 1H); 13C NMR 

(CDCl3, 100 MHz) δ 15.2, 21.4, 27.0, 133.0, 136.2, 137.1, 147.5, 180.6, 181.5; HRMS (FAB+) m/z 

calcd for [C10H13O2] (M+H) 165.0916, found 165.0917. 

 

 
3,10-Dihydroxy-3,7,10,12-tetramethyltricyclo[6.2.2.02,7]dodeca-5,11-diene-4,9-dione (8b):13c  

Method A: Oxone (1 equiv), K2CO3 (0.5 equiv), 24 h, 0.0449 g, 65% yield.  White solid; TLC, Rf 

= 0.24 (hexane–EtOAc = 1:1); 1H NMR (CDCl3, 400 MHz) δ 1.25 (s, 3H), 1.30 (s, 3H), 1.61 (s, 

3H), 2.00 (s, 3H), 2.37 (brs, 1H), 3.15–3.17 (m, 3H), 3.32 (dd, J = 1.2, 6.8 Hz, 1H), 4.01 (brs, 1H), 

5.86 (d, J = 6.8 Hz, 1H), 6.02 (d, J = 8.4 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ 21.5, 22.4, 25.9, 

32.0, 41.1, 44.2, 44.7, 56.9, 73.0, 73.1, 124.8, 128.3, 136.5, 156.4, 201.4, 212.8. 

 

 
3,10-Dihydroxy-6,12-dimethoxy-3,10-dimethyltricyclo[6.2.2.02,7]dodeca-5,11-diene-4,9-dione 

(8c):29  Method A: Oxone (1 equiv), K2CO3 (0.5 equiv), 80 °C, 48 h, 0.0540 g, 70% yield.  White 

solid; TLC, Rf = 0.17 (hexane–EtOAc = 1:1); 1H NMR (CDCl3, 400 MHz) δ 1.30 (s, 3H), 1.33 (s, 

1H), 2.23 (brs, 1H), 3.17 (d, J = 8.8 Hz, 1H), 3.25 (dd, J = 1.6, 8.8 Hz, 1H), 3.32–3.37 (m, 2H), 

3.43 (s, 3H), 3.68 (s, 3H), 4.13 (brs, 1H), 4.84 (dd, J = 1.6, 7.2 Hz, 1H), 5.43 (s, 1H); 13C NMR 

(CDCl3, 100 MHz) δ 25.5, 32.4, 40.1, 42.1, 43.3, 55.2, 56.1, 56.4, 72.5, 73.9, 96.2, 99.6, 154.4, 

172.6, 201.0, 211.4. 
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6,12-Difluoro-3,10-Dihydroxy-3,10-dimethyltricyclo[6.2.2.02,7]dodeca-5,11-diene-4,9-dione 
(8d):  Method A: Oxone (1 equiv), K2CO3 (0.5 equiv), 24 h, 0.0441 g, 62% yield.  White solid; 

TLC, Rf = 0.25 (hexane–EtOAc = 1:1); IR (KBr) 3485, 3451, 2930, 2888, 2361, 1737, 1690, 1665 

cm-1; 1H NMR (CD3CN, 400 MHz) δ 1.26 (s, 3H), 1.34 (s, 3H), 3.19 (dd, J = 2.4, 8.8 Hz, 1H), 3.26 

(dd, J = 2.4, 8.8 Hz, 1H), 3.45 (d, J = 13 Hz, 1H), 3.61–3.62 (m, 1H), 3.83 (s, 1H), 3.98 (s, 1H), 

5.49–5.51 (m, 1H), 5.93 (d, J = 13 Hz, 1H); 13C NMR (DMSO-d6, 100 MHz) δ 25.1, 31.0, 43.7, 

43.8, 52.4, 52.6, 56.3, 72.0, 73.1, 106.4, 108.8 (d, JC–F = 11 Hz), 155.0 (d, JC–F = 282 Hz), 171.7 (d, 

JC–F = 284 Hz), 199.8 (d, JC–F = 16 Hz), 207.1; 19F NMR (CD3CN, 125 MHz) δ –104.3, –84.8; 

HRMS (FAB+) m/z calcd for [C14H15F2O4] (M+H) 285.0938, found 285.0937. 

 

 
6,12-Dibromo-3,10-dihydroxy-3,10-dimethyltricyclo[6.2.2.02,7]dodeca-5,11-diene-4,9-dione 

(8e):  Method A: Oxone (1 equiv), K2CO3 (0.5 equiv), 24 h, 0.0810 g, 80% yield.  White solid; 

TLC, Rf = 0.40 (hexane–EtOAc = 1:1); IR (KBr) 3488, 3453, 2927, 2857, 2361, 1737, 1688, 1671 

cm-1; 1H NMR (CDCl3, 400 MHz) δ 1.30 (s, 3H), 1.40 (s, 3H), 2.31 (brs, 1H), 3.20 (d, J = 8.8 Hz, 

1H), 3.51 (dd, J = 1.6, 7.2 Hz, 1H), 3.62 (dd, J = 2.8, 8.8 Hz, 1H), 3.86 (brs, 1H), 3.91 (d, J = 2.8 

Hz, 1H), 6.44 (dd, J = 1.6, 7.2 Hz, 1H), 6.67 (s, 1H); 13C NMR (CDCl3, 100 MHz) δ 25.7, 31.2, 

42.1, 46.9, 49.5, 60.9, 72.6, 73.1, 117.4, 131.7, 134.4, 144.4, 198.1, 209.3; HRMS (FAB+) m/z 

calcd for [C14H15
79Br2O4]/[C14H15

79Br81BrO4]/[C14H15
81Br2O4] ([M+H]/[M+H+2]/[M+H+4]) 

404.9332/406.9311/408.9291, found 404.9334/406.9318/408.9290. 

 

 
3,10-Dihydroxy-3,10-diisopropyl-6,12-dimethyltricyclo[6.2.2.02,7]dodeca-5,11-diene-4,9-dione 
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((±)-Bisthymol, 8f):13c  Method A: Oxone (1 equiv), K2CO3 (0.5 equiv), 24 h, 0.0548 g, 66% yield.  

White solid; TLC, Rf = 0.55 (hexane–EtOAc = 1:1); 1H NMR (CDCl3, 400 MHz) δ 0.59 (d, J = 6.4 

Hz, 3H), 0.84 (d, J = 6.4 Hz, 3H), 0.85 (d, J = 6.4Hz, 3H), 0.98 (d, J = 6.4 Hz, 3H), 1.56–1.63 (m, 

4H), 1.78 (sep, J = 6.4 Hz, 1H), 1.98 (s, 3H), 2.21 (brs, 1H), 3.10 (d, J = 7.8 Hz, 1H), 3.18 (s, 1H), 

3.26–3.32 (m, 2H), 3.79 (brs, 1H), 5.84 (d, J = 6.8 Hz, 1H), 6.00 (s, 1H); 13C NMR (CDCl3, 100 

MHz) δ 16.1, 16.3, 16.6, 16.7, 21.4, 22.1, 32.4, 37.2, 37.3, 41.9, 47.2, 57.2, 77.8, 78.2, 125.4, 126.5, 

135.8, 155.9, 201.8, 214.9. 

 

 
3,10-Dihydroxy-3,5,6,8,10,12-hexamethyltricyclo[6.2.2.02,7]dodeca-5,11-diene-4,9-dione (8g):13c  

Method A: Oxone (1 equiv), K2CO3 (0.5 equiv), 24 h, 0.0532 g, 70% yield.  Pale yellow solid; 

TLC, Rf = 0.33 (hexane–EtOAc = 1:1); 1H NMR (CDCl3, 400 MHz) δ 1.18 (s, 3H), 1.23 (s, 3H), 

1.24 (d, J = 1.6 Hz, 3H), 1.45 (d, J = 1.6 Hz, 3H), 1.82 (s, 3H), 2.00 (s, 3H), 2.22 (brs, 1H), 2.88 (d, 

J = 8.8 Hz, 1H), 2.98 (dd, J = 2.4, 8.8 Hz, 1H), 3.34 (dd, J = 2.4, 6.8 Hz, 1H), 4.14 (brs, 1H), 5.97 

(d, J = 6.8 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ 13.5, 15.1, 18.7, 23.6, 26.2, 32.0, 41.1, 44.1, 

48.8, 56.3, 71.9, 73.8, 76.7, 131.1, 132.2, 136.9, 148.4, 202.9, 213.8. 

 

 
6-Hydroxy-2,5,6-trimethylcyclohexa-2,4-dienone:13c  Method A: Oxone (1 equiv), K2CO3 (0.5 

equiv), 24 h, 0.0167 g, 22% yield.  Yellow oil; TLC, Rf = 0.60 (hexane–EtOAc = 1:1); 1H NMR 

(CDCl3, 400 MHz) δ 1.36 (s, 3H), 1.91 (s, 3H), 1.99 (s, 3H), 3.42 (brs, 1H), 5.81 (d, J = 6.0 Hz, 1H), 

6.73 (d, J = 6.0 Hz, 1H). 

 

 
3,10-Dihydroxy-3,5,8,10-tetramethyltricyclo[6.2.2.02,7]dodeca-5,11-diene-4,9-dione (8h):13c  

Method B: Oxone (0.75 equiv), 16 h, 0.0677 g, 98% yield.  White solid; TLC, Rf = 0.36 (hexane–

EtOAc = 1:1); 1H NMR (CDCl3, 400 MHz) δ 1.24 (s, 3H), 1.32 (s, 3H), 1.35 (s, 3H), 1.85 (s, 3H), 
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2.28 (brs, 1H), 2.86–2.89 (m, 1H), 3.25 (d, J = 8.4 Hz, 1H), 3.39 (d, J = 6.8 Hz, 1H), 4.01 (brs, 1H), 

5.52 (d, J = 8.4 Hz, 1H), 6.24–6.30 (m, 2H); 13C NMR (CDCl3, 100 MHz) δ 15.6, 16.4, 26.2, 31.7, 

42.6, 43.6, 44.2, 53.7, 72.9, 73.6, 133.2, 135.3, 135.7, 139.3, 203.0, 214.9. 

 

 
Tetramethyl 
6,9-dihydroxy-5,10-dioxotricyclo[6.2.2.02,7]dodeca-3,11-diene-1,4,6,9-tetracarboxylate (8i):  

Method B: Oxone (1.2 equiv), 72 h, 0.105 g, 93% yield.  Pale red solid; TLC, Rf = 0.17 (hexane–

EtOAc = 1:2); IR (KBr) 3422, 3357, 1748, 1720, 1701, 1691, 1679, 1173, 870 cm-1; 1H NMR 

(CDCl3, 400 MHz) δ 3.61 (dd, J = 1.6, 6.8 Hz, 1H), 3.70 (s, 3H), 3.71 (s, 3H), 3.78 (s, 3H), 3.92 (s, 

3H), 3.78–3.95 (m, 2H), 4.08–4.17 (m, 1H), 4.55 (brs, 1H), 6.17 (dd, J = 1.2, 8.0, 1H), 6.42 (dd, J = 

6.4, 8.4 Hz, 1H), 7.42 (d, J = 4.4 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ 38.1, 40.6, 41.0, 52.7, 

53.4, 53.7, 53.8, 63.6, 76.2, 79.2, 127.3, 131.7, 135.1, 153.8, 161.8, 167.3, 169.2, 169.5, 190.3, 

198.4; HRMS (FAB+) m/z calcd for [C20H21O12] (M+H) 453.1033, found 453.1029. 

 

 
3,10-Dihydroxy-3,5,7,8,10,11-hexamethyltricyclo[6.2.2.02,7]dodeca-5,11-diene-4,9-dione (8j):13c  

Method B: Oxone (0.75 equiv), 16 h, 0.0714 g, 94% yield.  White solid; TLC, Rf = 0.42 (hexane–

EtOAc = 1:1); 1H NMR (CDCl3, 400 MHz) δ 1.17 (s, 3H), 1.24 (s, 6H), 1.36 (s, 3H), 1.70 (s, 3H), 

1.83 (s, 3H), 2.12 (brs, 1H), 2.80 (d, J = 2.0 Hz, 1H), 3.15 (s, 1H), 3.92 (brs, 1H), 5.04 (s, 1H), 6.03 

(s, 1H); 13C NMR (CDCl3, 100 MHz) δ 12.4, 16.3, 21.4, 23.2, 25.2, 32.4, 45.3, 48.6 (2C), 57.7, 

72.2, 73.7, 127.5, 133.0, 145.0, 145.2, 202.5, 214.2.  

 

 
2,9-Diacyl-6,12-Dihydroxy-1,4,6,12-tetramethyltricyclo[6.2.2.02,7]dodeca-3,9-diene-5,11-dione 

(8k):  Method B: Oxone (0.75 equiv), 12 h, 0.0820 g, 91% yield.  White solid; TLC, Rf = 0.43 

(hexane–EtOAc = 1:1); IR (KBr) 3490, 3464, 2930, 2856, 2361, 1737, 1688, 1671 cm-1; 1H NMR 
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(CDCl3, 400 MHz) δ 1.19 (s, 3H), 1.29 (s, 3H), 1.36 (s, 3H), 1.92 (s, 3H), 2.19 (s, 3H), 2.39 (s, 3H), 

3.36 (s, 1H), 3.47 (brs, 1H), 3.75 (brs, 1H), 4.07 (t, J = 2.0 Hz, 1H), 6.24 (d, J = 2.4 Hz, 1H,), 6.58 

(s, 1H); 13C NMR (CDCl3, 100 MHz) δ 13.7, 16.7, 24.9, 25.6, 30.1, 30.6, 42.8, 49.4, 58.8, 63.8, 

71.7, 73.1, 136.8, 137.1, 141.8, 146.6, 194.1, 201.4, 209.2, 210.5; HRMS (FAB+) m/z calcd for 

[C20H26O6] (M+H) 361.1651, found 361.1652. 

 

 
Dimethyl 6,12-dihydroxy-1,4,6,12-tetramethyl-5,11-dioxotricyclo[6.2.2.02,7]dodeca-3,9- 
diene-2,9-dicarboxylate (8l):  Method B: Oxone (0.75 equiv), 12 h, 0.0892 g, 91% yield.  

White solid; TLC, Rf = 0.30 (hexane–EtOAc = 1:1); IR (KBr) 3445, 1743, 1709, 1685, 1444, 1253 

cm-1; 1H NMR (CDCl3, 400 MHz) δ 1.25 (s, 3H), 1.33 (s, 6H), 1.87 (s, 3H), 3.41 (s, 1H), 3.51 (brs, 

1H), 3.78 (s, 3H), 3.84 (s, 3H), 3.88 (s, 1H), 3.99 (brs, 1H), 6.40 (s, 1H), 6.45 (s, 1H); 13C NMR 

(CDCl3, 100 MHz) δ 13.6, 16.5, 25.7, 30.1, 44.2, 49.3, 52.4, 53.7, 58.0, 58.7, 71.7, 73.1, 135.8, 

136.0, 138.9, 142.2, 163.7, 174.2, 201.5, 208.7; HRMS (FAB+) m/z calcd for [C20H25O8] (M+H) 

393.1544, found 393.1545. 

 

 
3,10-Dihydroxy-3,10-dimethyltricyclo[6.2.2.02,7]dodeca-5,11-diene-4,9-dione (8t):30  Method 
A: Oxone (1 equiv), K2CO3 (0.5 equiv), 24 h, 0.0124 g, 20% yield.  8t was also synthesized from 

12b:  To a mixture of 12b (0.0516 g, 0.100 mmol) in THF (2.00 mL) and phosphate buffer (pH 6.6, 

1.00 mL, 1.0 M in water) was added tetrabutylammonium fluoride (0.800 mL, 0.800 mmol, 1.0 M 

in THF).  The resulting mixture was stirred at 50 ºC.  After 8 h, the reaction mixture was cooled 

to room temperature, and then the aqueous layers were extracted with EtOAc (twice).  The organic 

layers were washed with brine, and dried over anhydrous MgSO4.  The solvents were removed 

under vacuo, and the residue was purified by column chromatography on silica gel (hexane-EtOAc 

as eluent) to give 8t (0.0181 g, 0.0730 mmol, 73% yield).  White solid; TLC, Rf = 0.40 (hexane–

EtOAc = 1:1); 1H NMR (CDCl3, 400 MHz) δ 1.26 (s, 3H), 1.37 (s, 3H), 2.23 (brs, 1H), 3.24–3.35 

(m, 3H), 3.43 (d, J = 6.4 Hz, 1H), 3.95 (brs, 1H), 5.87 (m, 1H), 6.13 (dd, J = 1.2, 10 Hz, 1H), 6.33 
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(t, J = 8.0 Hz, 1H), 6.49 (dd, J = 4.0, 10 Hz, 1H); 13C NMR (CDCl3, 100 MHz), δ 26.0, 31.9, 39.8, 

42.0, 45.1, 52.2, 73.0, 73.6, 76.7, 127.6, 127.9, 136.1, 146.7, 202.0, 212.7. 

 

 
5,8-Dibromo-3,10-dihydroxy-3,10-dimethyltricyclo[6.2.2.02,7]dodeca-5,11-diene-4,9-dione (8u):  

Method B: Oxone (1 equiv), 44 h, 0.0274 g, 27% yield.  Pale yellow solid; TLC, Rf = 0.40 

(hexane–EtOAc = 1:1); IR (KBr) 3445, 1743, 1709, 1685, 1444, 1253 cm-1; 1H NMR (CDCl3, 400 

MHz) δ 1.34 (s, 3H), 1.43 (s, 3H), 2.84 (brs, 2H), 3.45–3.50 (m, 4H), 6.00 (dd, J = 1.6, 8.2 Hz, 1H), 

6.22–6.26 (m, 1H), 7.31 (d, J = 4.0 Hz, 1H); 13C NMR (CDCl3, 100 MHz), δ 26.7, 31.4, 43.3, 43.5, 

48.2, 70.3, 72.6, 74.7, 121.0, 133.8, 135.3, 145.4, 195.7, 203.8; HRMS (FAB+) m/z calcd for 

[C14H15
79Br2O4]/ [C14H15

79Br81BrO4]/[C14H15
81Br2O4] ([M+H]/[M+H+2]/[M+H+4]) 

404.9332/406.9311/408.9291, found 404.9340/406.9312/408.9301. 

 

 
2-Hydroxy-2-methylnaphthalen-1(2H)-one (7m):13c  Method B: Oxone (0.75 equiv), 16 h, 

0.0706 g, 81% yield.  Pale red solid; TLC, Rf = 0.27 (hexane–EtOAc = 1:1); 1H NMR (CDCl3, 

400 MHz) δ 1.46 (s, 3H), 3.40 (brs, 1H), 6.33 (d, J = 10 Hz, 1H), 6.49 (d, J = 10 Hz, 1H), 7.23 (d, J 

= 7.6 Hz, 1H), 7.37 (dd, J = 1.2, 7.6 Hz, 1H), 7.59 (dd, J = 1.2, 7.6 Hz, 1H), 7.98 (d, J = 7.6 Hz, 

1H); 13C NMR (CDCl3, 100 MHz) δ 28.2, 75.1, 124.0, 127.0, 127.3, 127.9, 135.0, 136.9, 137.6, 

204.0. 

 

 
4-Bromo-2-hydroxy-2-methylnaphthalen-1(2H)-one (7n):  Method B: Oxone (0.75 equiv), 12 

h, 0.0886 g, 70% yield.  Pale red solid; TLC, Rf = 0.37 (hexane–EtOAc = 4:1); IR (KBr) 3375, 

1682, 1428, 1157. 876 cm-1; 1H NMR (CDCl3, 400 MHz) δ 1.48 (s, 3H), 3.42 (brs, 1H), 6.77 (s, 

1H), 7.47 (dt, J = 4.4, 7.8 Hz, 1H), 7.71 (d, J = 4.4 Hz, 2H), 7.99 (d, J = 7.8 Hz, 1H); 13C NMR 
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(CDCl3, 100 MHz) δ 27.9, 77.0, 118.4, 127.3, 128.1, 128.2, 129.3, 135.5, 135.9, 138.2, 202.1; 

HRMS (FAB+) m/z calcd for [C11H10
79BrO2]/ [C11H10

81BrO2] ([M+H]/[M+H+2]) 

252.9859/254.9838, found 252.9869/252.9844. 

 

 
Methyl 2-hydroxy-1-oxo-1,2-dihydronaphthalene-2-carboxylate (7o):13c  Method B: Oxone 

(0.75 equiv), 35 h, 0.0927 g, 85% yield.  Pale yellow solid; TLC, Rf = 0.45 (hexane–EtOAc = 

1:1); 1H NMR (CDCl3, 400 MHz) δ 3.70 (s, 1H), 4.23 (brs, 1H), 6.13 (d, J = 9.6 Hz, 1H), 6.74 (d, J 

= 9.6 Hz, 1H), 7.28 (d, J = 7.8 Hz, 1H), 7.41 (t, J = 7.8 Hz, 1H), 7.62 (dt, J = 1.2, 7.8 Hz, 1H), 7.99 

(d, J = 7.8 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ 53.7, 77.8, 127.5, 127.8, 128.1, 128.8, 129.1, 

129.7, 135.6, 137.5, 169.6, 196.6. 

 

 
1-Hydroxy-1-methylnaphthalen-2(1H)-one (7p):30  Method B: Oxone (0.75 equiv), 12 h, 

0.0758 g, 87% yield.  Pale yellow solid; TLC, Rf = 0.52 (hexane–EtOAc = 1:1); 1H NMR (CDCl3, 

400 MHz) δ 1.56 (s, 3H), 3.70 (brs, 1H), 6.21 (d, J = 10 Hz, 1H), 7.26–7.34 (m, 2H), 7.43–7.47 (m, 

2H), 7.72 (d, J = 8.0 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ 33.1, 77.1, 122.3, 125.4, 127.8, 128.2, 

129.4, 130.6, 145.0, 145.9, 205.2. 

 

 
Methyl 1-hydroxy-2-oxo-1,2-dihydronaphthalene-1-carboxylate (7q):  Method B: Oxone 

(0.75 equiv), 19 h, 0.103 g, 94% yield.  White solid; TLC, Rf = 0.18 (hexane–EtOAc = 4:1); IR 

(KBr)  3420, 1738, 1692, 1268, 942, 866 cm-1; 1H NMR (CDCl3, 400 MHz) δ 3.66 (s, 3H), 4.50 

(brs, 1H), 6.23 (d, J = 10 Hz, 1H), 7.36–7.45 (m, 3H), 7.51 (d, J = 10 Hz, 1H), 7.61 (d, J = 7.2 Hz, 

1H); 13C NMR (CDCl3, 100 MHz) δ 53.8, 79.0, 122.9, 127.0, 129.3, 129.7, 129.8, 130.7, 137.8, 

147.3, 169.7, 197.2; HRMS (FAB+) m/z calcd for [C12H10O4] (M+H) 219.0657, found 219.0666. 
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1-Hydroxy-1,3-dimethylnaphthalen-2(1H)-one (7r):  Method B: Oxone (0.75 equiv), 12 h, 

0.0846 g, 90% yield.  Pale yellow solid; TLC, Rf = 0.64 (hexane–EtOAc = 1:1); IR (KBr) 3474, 

2973, 2945, 2919, 1650 cm-1; 1H NMR (CDCl3, 400 MHz) δ 1.52 (s, 3H), 2.04 (s, 3H), 3.71 (brs, 

1H), 7.20–7.30 (m, 3H), 7.36 (dd, J = 1.2, 7.6 Hz, 1H), 7.65 (d, J = 7.6 Hz, 1H); 13C NMR (CDCl3, 

100 MHz) δ 15.4, 33.2, 76.9, 125.2, 127.7, 128.4, 128.5, 129.4, 130.2, 142.0, 144.0, 205.8; HRMS 

(FAB+) m/z calcd for [C12H12O2] (M+H) 189.0916, found 189.0922. 

 

 
1-Hydroxy-4-isopropyl-7-methoxy-1,6-dimethylnaphthalen-2(1H)-one ((±)-Lacinilene C 
methyl ether, 7s):5d  Method B: Oxone (0.75 equiv), 16 h, 0.118 g, 91% yield.  Pale yellow 

solid; TLC, Rf = 0.44 (Hexane–EtOAc = 2:1); 1H NMR (CDCl3, 400 MHz) δ 1.26 (d, J = 6.8 Hz, 

3H), 1.28 (d, J = 6.8 Hz, 3H), 1.53 (s, 3H), 2.24 (s, 3H), 3.22 (sep, J = 6.8 Hz, 1H), 3.82 (brs, 1H), 

3.93 (s, 3H), 6.03 (s, 1H), 7.21 (s, 1H), 7.36 (s, 1H); 13C NMR (CDCl3, 100 MHz) δ 16.2, 21.9, 

22.2, 29.1, 34.0, 55.6, 76.8, 107.3, 114.7, 121.1, 125.3, 127.6, 145.5, 159.4, 164.2, 205.5. 

 

 
3,10-Dihydroxy-3,10-bis((trimethylsilyl)methyl)tricyclo[6.2.2.02,7]dodeca-5,11-diene-4,9-dione 

(12a):  Method A: Oxone (1 equiv), K2CO3 (0.5 equiv), 6 h, 0.063 g, 64% yield.  White solid; 

TLC, Rf = 0.31 (hexane–EtOAc = 4:1); IR (KBr) 3454, 3055, 2953, 1672, 1620, 1249 cm-1; 1H 

NMR (CDCl3, 400 MHz) δ 0.05 (s, 9H), 0.09 (s, 9H), 0.84 (d, J = 15 Hz, 1H), 0.97 (d, J = 15 Hz, 

1H), 0.98 (d, J = 15 Hz, 1H), 1.10 (d, J = 15 Hz, 1H), 2.12 (brs, 1H), 3.20–3.27 (m, 2H), 3.37 (dd, J 

= 1.2, 8.0 Hz, 1H), 3.55 (d, J = 7.2 Hz, 1H), 3.89 (brs, 1H), 5.84 (dt, J = 1.6, 10 Hz, 1H), 6.10 (dd, J 

= 1.2, 10 Hz, 1H), 6.24 (dd, J = 1.2, 8.0 Hz, 1H), 6.42 (dd, J = 4.0, 10 Hz, 1H); 13C NMR (CDCl3, 

100 MHz) δ 0.1, 0.3, 27.6, 34.2, 40.5, 43.2, 44.4, 51.9, 75.3, 75.4, 128.0 (2C), 136.0, 146.3, 202.0, 

214.6; HRMS (FAB+) m/z calcd for [C20H33O4Si2] (M+H) 393.1917, found 393.1921. 
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3-((Trimethylsilyl)methyl)catechol: Method C, 6 h, 0.0147 g, 15% isolated yield.  The 

generation of the corresponding quinone 13a was confirmed by in situ NMR analysis with 33% 

yield.  However, 13a could not be isolated.  This catechol was isolated after reductive work-up 

(aqueous NaHSO3, 3 h at room temperature).  Pale yellow oil; TLC, Rf = 0.22 (hexane–EtOAc = 

4:1); IR (CHCl3) 3460, 3407, 2875, 1622, 1430, 944 cm-1; 1H NMR (CDCl3, 400 MHz) δ 0.02 (s, 

9H), 2.07 (s, 2H), 4.99–5.00 (brs, 2H), 6.54 (t, J = 7.2 Hz, 1H), 6.60 (d, J = 7.2 Hz, 1H), 6.65 (d, J 

= 7.2 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ –1.6, 20.2, 111.2, 119.9, 122.2, 127.5, 140.9, 143.0; 

HRMS (FAB) m/z calcd for [C10H16O2Si] (M) 196.0920 found 196.0922. 

 

 
3,10-Dihydroxy-3,10-bis((dimethylphenylsilyl)methyl)tricyclo[6.2.2.02,7]dodeca-5,11-diene-4,9-
dione (12b):  Method A: Oxone (1 equiv), K2CO3 (0.5 equiv), 6 h, 0.0801 g, 62% yield.  White 

solid; TLC, Rf = 0.34 (hexane–EtOAc = 4:1); IR (KBr) 3153, 3055, 2977, 1733, 1684, 1558, 1541, 

1250, 1112, 907 cm-1; 1H NMR (CDCl3, 400 MHz) δ 0.37 (s, 3H), 0.39 (s, 3H), 0.40 (s, 3H), 0.42 (s, 

3H), 1.05 (d, J = 15 Hz, 1H), 1.23–1.27 (m, 3H), 2.06 (brs, 1H), 3.12–3.13 (m, 2H), 3.28 (d, J = 7.6 

Hz, 1H), 3.44 (d, J = 6.8 Hz, 1H), 3.80 (brs, 1H), 5.76 (t, J = 6.8 Hz, 1H), 5.92–5.99 (m, 2H), 6.30 

(dd, J = 4.0, 10 Hz, 1H), 7.31–7.33(m, 3H), 7.37–7.40 (m, 3H), 7.46–7.47 (m, 2H), 7.54–7.55 (m, 

2H); 13C NMR (CDCl3, 100 MHz) δ –1.5 (2C), –1.4, –1.2, 27.2, 33.5, 40.2, 42.9, 44.5, 51.8, 75.0, 

75.2, 127.7, 127.8, 127.9, 128.8, 129.1, 133.3, 133.6 (2C), 135.9, 138.9, 139.5, 146.1, 201.6, 213.9; 

HRMS (FAB+) m/z calcd for [C30H37O4Si2] (M+H) 517.2225, found 517.2223. 

 

 
3,10-Dihydroxy-3,12-diisopropyl-3,10-bis((trimethylsilyl)methyl)tricyclo[6.2.2.02,7]dodeca-5,11

-diene-4,9-dione (12c):  Method A: Oxone (1 equiv), K2CO3 (0.5 equiv), 5 h, 0.112 g, 94% yield.  
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White solid; TLC, Rf = 0.33 (hexane–EtOAc = 4:1); IR (KBr) 3469, 2959, 1719, 1681, 1249, 843 

cm-1; 1H NMR (CDCl3, 400 MHz) δ 0.02 (s, 9H), 0.09 (s, 9H), 0.75 (d, J = 16 Hz, 1H), 0.87–0.92 

(m, 8H), 1.01 (d, J = 16 Hz, 1H), 1.11 (d, J = 6.8 Hz, 3H), 1.13 (d, J = 6.8 Hz, 3H), 1.82 (sep, J = 

6.8 Hz, 1H), 2.04 (brs, 1H), 2.47 (sep, J = 6.8 Hz, 1H), 3.13–3.20 (m, 3H), 3.50 (d, J = 6.8 Hz, 1H), 

3.97 (brs, 1H), 5.76 (d, J = 6.4 Hz, 1H), 5.93 (s, 1H); 13C NMR (CDCl3, 100 MHz) δ 0.1, 0.3, 19.2, 

20.1, 20.8, 23.0, 27.6, 32.7, 33.2, 34.8, 42.2, 42.7, 43.9, 55.6, 75.1, 75.5, 120.3, 126.0, 145.6, 165.7, 

202.1, 214.4; HRMS (FAB+) m/z calcd for [C26H46O4Si2] (M+H) 477.2851, found 477.2855. 

 

 
3,10-Dihydroxy-6,11-dimethyl-3,10-bis((trimethylsilyl)methyl)tricyclo[6.2.2.02,7]dodeca-5,11-di

ene-4,9-dione (12d):  Method A: Oxone (1 equiv), K2CO3 (0.5 equiv), 5 h, 0.0757 g, 72% yield.  

White solid; TLC, Rf = 0.33 (hexane–EtOAc = 4:1); IR (KBr) 3493, 2950, 1721, 1667, 1244, 1178, 

1009, 850 cm-1; 1H NMR (CDCl3, 400 MHz) δ 0.03 (s, 9H), 0.08 (s, 9H), 0.82–1.01 (m, 4H), 1.61 

(s, 3H), 2.05 (s, 3H), 3.09 (d, J = 8.8 Hz, 1H), 3.14 (brs, 1H), 3.22 (d, J = 8.8 Hz, 1H), 3.46 (d, J = 

6.8 Hz, 1H), 3.92 (brs, 1H), 5.78 (d, J = 6.8 Hz, 1H), 5.98 (d, J = 1.2 Hz, 1H); 13C NMR (CDCl3, 

100 MHz) δ 0.1, 0.3, 21.5, 22.3, 27.5, 34.3, 42.2, 43.9, 44.8, 56.6, 74.8, 75.4, 125.2, 128.3, 155.7, 

201.5, 214.7; HRMS (FAB+) m/z calcd for [C22H37O4Si2] (M+H) 421.2225, found 421.2223. 

 

 
6,11-Difluoro-3,10-Dihydroxy-3,10-bis((trimethylsilyl)methyl)tricyclo[6.2.2.02,7]dodeca-5,11-di

ene-4,9-dione (12e):  Method A: Oxone (1 equiv), K2CO3 (0.5 equiv), 7 h, 0.0889 g, 83% yield.  

White solid; TLC, Rf = 0.30 (hexane–EtOAc = 4:1); IR (KBr) 3473, 3104, 3073, 2952, 2909, 1732, 

1689, 835 cm-1; 1H NMR (CDCl3, 400 MHz) δ 0.05 (s, 9H), 0.09 (s, 9H), 0.98–1.07 (m, 4H), 2.21 

(brs, 1H), 3.36–3.40 (m, 2H), 3.49 (dt, J = 2.4, 12 Hz, 1H), 3.58 (dd, J = 1.6, 6.0 Hz, 1H), 3.89 (brs, 

1H), 5.40 (sep, J = 2.4 Hz, 1H), 5.91 (d, J = 12 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ 0.1, 0.3, 

27.1, 34.1 (d, JC–F = 9.5 Hz), 41.0, 41.6, 42.6, 52.5, 74.8, 76.0, 105.8, 108.9 (m), 156.0 (d, JC–F = 

321 Hz), 172.2 (d, JC–F = 323 Hz), 200.3, 210.0; 19F NMR (CDCl3, 376 MHz) –101.3, –82.0; 
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HRMS (FAB+) m/z calcd for [C20H32F2O4Si2] (M+H) 429.1723, found 429.1725. 

 

 
5,8-Dibromo-3,10-dihydroxy-3,10-bis((trimethylsilyl)methyl)tricyclo[6.2.2.02,7]dodeca-5,11-die

ne-4,9-dione (12f):  Method A: Oxone (1 equiv), K2CO3 (0.5 equiv), 5 h, 0.0785 g, 57% yield.  

White solid; TLC, Rf = 0.29 (hexane–EtOAc = 4:1); IR (KBr) 3430, 3378, 1764, 1692, 1438, 1122, 

855 cm-1; 1H NMR (CDCl3, 400 MHz) δ 0.35 (s, 9H), 0.75 (s, 9H), 0.91 (d, J = 15 Hz, 1H), 1.04–

1.27 (m, 3H), 1.28 (d, J = 15 Hz, 1H), 2.35 (brs, 1H), 3.37–3.40 (m, 1H), 3.57 (d, J = 8.0 Hz, 1H), 

3.62 (d, J = 6.8 Hz, 1H), 3.8 (brs, 1H), 6.02 (d, J = 8.0 Hz, 1H), 6.16 (t, J = 8.0 Hz, 1H), 7.27 (s, 

1H); 13C NMR (CDCl3, 100 MHz) δ 0.2 (2C), 28.5, 33.7, 42.6, 44.6, 49.0, 70.4, 75.1, 76.4, 121.3, 

133.9, 135.2, 145.3, 195.6, 205.6; HRMS (FAB+) m/z calcd for 

[C20H32
79Br2O4Si2]/[C20H32

79Br81BrO4Si2] ([M+H]/[M+2+H]/ [M+4+H]) 

549.0122/551.0102/553.0081, found 549.0131/551.0106/553.0092.  

 

 
1-((Dimethyl(phenyl)silyl)methyl)-1-hydroxynaphthalen-2(1H)-one (14g):  Method A: Oxone 

(0.75 equiv), K2CO3 (0.375 equiv), 5 h, 0.140 g, 91% yield.  Pale yellow solid; TLC, Rf = 0.43 

(hexane–EtOAc = 4:1); IR (KBr) 3154, 2253, 1676, 1471, 1391, 908, 733 cm-1; 1H NMR (CDCl3, 

400 MHz) δ 0.18 (s, 3H), 0.21 (s, 3H), 1.55 (d, J = 15 Hz, 1H), 1.62 (d, J = 15 Hz, 1H), 3.66 (brs, 

1H), 5.97 (d, J = 10 Hz, 1H), 7.18–7.35 (m, 4H), 7.62 (d, J = 7.6 Hz, 1H); 13C NMR (CDCl3, 100 

MHz) δ –2.1 (2C), 35.4, 78.8, 122.6, 125.8, 127.6, 128.2, 128.9, 129.2, 130.2, 133.5, 138.3, 145.2, 

145.8, 205.1; HRMS (FAB+) m/z calcd for [C19H21O2Si] (M+H) 309.1305, found 309.1305. 

 

 

7-Acetyl-3-hydroxy-5-methyl-3-((trimethylsilyl)methyl)bicyclo[2.2.2]oct-5-en-2-one (16a):  

Method C: 11h, methyl vinyl ketone (5 equiv), 3 h, 0.0855 g, 61% yield.  White solid; TLC, Rf = 

0.33 (hexane–EtOAc = 4:1); IR (CHCl3) 3019, 1734, 1699, 1652, 1558, 1541, 1216 756 cm-1; 1H 
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NMR (CDCl3, 400 MHz) δ 0.11 (s, 9H), 0.73 (d, J = 15 Hz, 1H), 1.16 (d, J = 15 Hz, 1H), 1.62–

1.65 (m, 2H), 1.88 (s, 3H), 2.14 (s, 3H), 2.36 (m, 1H), 2.85 (brs, 1H), 2.95–3.03 (m, 1H), 3.39 (dd, 

J = 2.0, 6.0 Hz, 1H), 5.65 (d, J = 6.0 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ 0.55, 21.5, 21.9, 25.8, 

28.4, 47.9, 48.5, 49.0, 76.7, 118.0, 145.8, 206.1, 213.3; HRMS (FAB+) m/z calcd for [C15H25O3Si] 

(M+H) 281.1567, found 281.1570. 

 

 
Methyl 

8-hydroxy-5-methyl-7-oxo-8-((trimethylsilyl)methyl)bicyclo[2.2.2]oct-5-ene-2-carboxylate 
(16b):  Method C: 11h, methyl acrylate (5 equiv), 4 h, 0.0889 g, 61% yield.  White solid; TLC, 

Rf = 0.30 (hexane–EtOAc = 4:1); IR (KBr) 2954, 2253, 1732, 1699, 1558, 1457, 1250, 903, 733 

cm-1; 1H NMR (CDCl3, 400 MHz) δ 0.08 (s, 9H), 0.69 (d, J = 15 Hz, 1H), 1.16 (d, J = 15 Hz, 1H), 

1.64–1.70 (m, 1H), 1.87 (s, 3H), 2.30 (brs, 1H), 2.40 (dt, J = 2.4, 10 Hz, 1H), 2.81 (t, J = 2.4 Hz, 

1H), 2.92–2.97 (m, 1H), 3.40 (dd, J = 2.0, 6.4 Hz, 1H), 3.64 (s, 3H), 5.66 (dd, J = 2.0, 4.4 Hz, 1H); 
13C NMR (CDCl3, 100 MHz) δ 0.59, 21.7, 22.8, 25.9, 40.6, 40.9, 47.6, 47.9, 48.9, 52.2, 74.3, 76.7, 

118.2, 146.4, 173.6, 213.0; HRMS (FAB+) m/z calcd for [C15H25O4Si] (M+H) 297.1517, found 

297.1520. 

 

 
7-Acetyl-5-(tert-Butyl)-3-hydroxy-3-((trimethylsilyl)methyl)bicyclo[2.2.2]oct-5-en-2-one (16c):  

Method C: 11i, methyl vinyl ketone (5 equiv), 3 h, 0.0919 g, 57% yield.  White solid; TLC, Rf = 

0.29 (hexane–EtOAc = 4:1); IR (KBr) 3465, 1724, 1705, 1444, 961, 844 cm-1; 1H NMR (CDCl3, 

400 MHz) δ 0.13 (s, 9H), 0.79 (d, J = 15 Hz, 1H), 1.11 (s, 9H), 1.16 (d, J = 15 Hz, 1H), 1.54–1.58 

(m, 1H), 2.14 (s, 3H), 2.38–2.43 (m, 1H), 2.98–3.02 (m, 1H), 3.17 (brs, 1H), 3.46 (dd, J = 2.0, 6.4 

Hz, 1H), 5.67 (dd, J = 2.0, 6.4 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ 0.45, 23.4, 26.5, 28.4, 28.7, 

35.3, 44.7, 48.9, 49.3, 74.7, 115.1, 157.0, 205.9, 213.5; HRMS (FAB+) m/z calcd for [C18H32O3Si] 

(M+H) 323.2037, found 323.2035. 
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7-Acetyl-3-((dimethyl(phenyl)silyl)methyl)-3-hydroxy-5-methylbicyclo[2.2.2]oct-5-en-2-one 
(16d):  Method C: 11j, methyl vinyl ketone (5 equiv), 3 h, 0.0993 g, 58% yield.  White solid; 

TLC, Rf = 0.31 (hexane–EtOAc = 4:1); IR (KBr) 3458, 1711, 1691, 1392, 1231, 847 cm-1; 1H 

NMR (CDCl3, 400 MHz) δ 0.40 (s, 3H), 0.42 (s, 3H), 0.94 (d, J = 15 Hz, 1H), 1.41 (d, J = 15 Hz, 

1H), 1.51–1.57 (m, 1H), 1.76 (s, 3H), 2.11 (s, 3H), 2.20 (brs, 1H), 2.31 (m, 1H), 2.70 (d, J = 2.0 Hz, 

1H), 2.95 (dt, J = 2.0, 5.6 Hz, 1H), 3.35 (dd, J = 1.2, 6.4 Hz, 1H), 5.62 (dd, J = 1.2, 5.6 Hz, 1H), 

7.36–7.38 (m, 3H), 7.58–7.59 (m, 2H); 13C NMR (CDCl3, 100 MHz) δ –1.0, –0.9, 21.5, 22.1, 25.7, 

28.4, 48.1, 48.5, 48.8, 74.5, 76.8, 118.1, 128.1, 129.3, 133.8, 139.2, 146.0, 206.3, 212.8; HRMS 

(FAB+) m/z calcd for [C21H30O3Si] (M+H)+ 357.1880, found 357.1880. 

 

 
3-((Dimethyl(phenyl)silyl)methyl)-3-hydroxy-5-methyl-7-phenylbicyclo[2.2.2]oct-5-en-2-one 

(16e):  Method C: 11j, styrene (15 equiv), 6 h, 0.107 g, 51% yield.  White solid; TLC, Rf = 0.57 

(hexane–EtOAc = 4:1); IR (CHCl3) 3464, 2926, 2359, 1725, 1249, 1113, 833cm-1; 1H NMR 

(CDCl3, 400 MHz) δ 0.42 (s, 3H), 0.44 (s, 3H), 0.99 (d, J = 15 Hz, 1H), 1.40–1.47 (m, 2H), 1.90 (s, 

3H), 2.11 (brs, 1H), 2.62 (dt, J = 2.8, 9.6 Hz, 1H), 2.79 (d J = 2.0 Hz, 1H), 3.11 (dd, J = 2.0, 6.0 Hz, 

1H), 3.27–3.30 (t, J = 7.2 Hz, 1H), 5.65 (d, J = 6.0 Hz, 1H), 7.10 (d, J = 7.2 Hz, 1H), 7.16–7.26 (m, 

3H), 7.37–7.38 (m, 3H), 7.58–7.60 (m, 2H); 13C NMR (CDCl3, 125 MHz) δ –1.0, 0.0, 21.5, 25.8, 

28.5, 41.7, 49.0, 54.0, 74.2, 118.4, 126.5, 127.6, 128.0, 128.4, 129.4, 133.8, 139.3, 144.5, 146.0, 

213.2; HRMS (FAB+) m/z calcd for [C24H29O2Si] (M+H)+ 377.1931, found 377.1933. 

 

 
7-(4-Chlorophenyl)-3-((dimethyl(phenyl)silyl)methyl)-3-hydroxy-5-methylbicyclo[2.2.2]oct-5-e
n-2-one (16f):  Method C: 11j, 4-chlorostyrene (15 equiv), 6 h, 0.117 g, 57% yield.  White 

solid; TLC, Rf = 0.51 (hexane–EtOAc = 4:1); IR (CHCl3) 3440, 2954, 1716, 1490, 1247, 1113, 835 

cm-1; 1H NMR (CDCl3, 400 MHz) δ 0.42 (s, 3H), 0.44 (s, 3H), 0.98 (d, J = 16 Hz, 1H), 1.33–1.39 
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(m, 1H), 1.45 (d, J = 1.6 Hz), 1.89 (s, 3H), 2.10 (brs, 1H), 2.61 (dt, J = 2.8, 10 Hz, 1H), 2.78 (d J = 

2.4 Hz, 1H), 3.07 (dd, J = 1.6, 6.4 Hz, 1H), 3.24–3.28 (m, 1H), 5.63 (d, J = 6.0 Hz, 1H), 7.02 (d, J = 

8.0 Hz, 1H), 7.21 (d, J = 8.0 Hz, 2H), 7.33–7.39 (m, 3H), 7.59–7.61 (m, 2H); 13C NMR (CDCl3, 

125 MHz) δ –1.0, 0.0, 21.5, 25.8, 28.6, 41.0, 48.9, 53.8, 74.1, 118.1, 127.9, 128.0, 128.5, 128.9, 

129.2, 132.3, 133.8, 142.9, 146.3, 212.8; HRMS (FAB+) m/z calcd for 

[C24H28
35ClO2Si]/[C24H28

37ClO2Si] ([M+H]/[M+2+H]) 411.1542/413.1512, found 

411.1536/413.1512. 

 

 
3-((Dimethyl(phenyl)silyl)methyl)-3-hydroxy-5-methyl-7-(p-tolyl)bicyclo[2.2.2]oct-5-en-2-one 

(16g):  Method C: 11j, 4-methylstyrene (15 equiv), 6 h, 0.102 g, 52% yield.  White solid; TLC, 

Rf = 0.55 (hexane–EtOAc = 4:1); IR (CHCl3) 3480, 2953, 1713, 1646, 1514, 1427, 1248, 1123, 

831cm-1; 1H NMR (CDCl3, 400 MHz) δ 0.42 (s, 3H), 0.44 (s, 3H), 1.38–1.47 (m, 2H), 1.89 (s, 3H), 

2.11 (brs, 1H), 2.30 (s, 3H), 2.60 (dt, J = 2.8, 9.6 Hz, 1H), 2.79 (d, J = 2.4 Hz, 1H), 3.10 (dd, J = 1.2, 

6.4 Hz, 1H), 3.26 (m, 1H), 5.64 (d, J = 6.0 Hz, 1H), 6.99 (d, J = 8.4 Hz, 2H), 7.06 (d, J = 8.4 Hz, 

2H), 7.37–7.39 (m, 3H), 7.59–7.61 (m, 2H); 13C NMR (CDCl3, 100 MHz) δ –1.1, –1.0, 20.9, 21.5, 

25.8, 28.5, 41.2, 48.9, 54.1, 71.8, 118.4, 127.5, 128.0, 129.0, 129.2, 133.8, 136.2, 139.2, 141.4, 

145.9, 213.4; HRMS (FAB+) m/z calcd for [C25H31O2Si] (M+H)+ 391.2088, found 391.2090. 

 

 
8-Methyl-4b,10,10a,11-tetrahydroindeno[1,2-b]chromene (17a):[15]  Method D: 11h, indene (5 

equiv), 7 h, 0.0626 g, 53% yield.  Pale yellow solid; TLC, Rf = 0.77 (hexane–EtOAc = 10:1); 1H 

NMR (CDCl3, 400 MHz) δ 2.24 (s, 3H), 2.54–2.64 (m, 1H), 2.79 (dd, J = 4.8, 16 Hz, 1H), 2.91–

2.97 (m, 2H), 3.09 (dd, J = 6.4, 16 Hz, 1H), 5.49 (d, J = 6.4 Hz, 1H), 6.75 (d, J = 7.8 Hz, 1H), 6.87–

6.89 (m, 2H), 7.22–7.27 (m, 3H), 7.51 (dd, J = 2.8, 6.4 Hz, 1H); 13C NMR (CDCl3, 100 MHz) 

δ 20.6, 28.2, 37.0, 37.8, 81.7, 116.7, 123.5, 125.1, 125.3, 126.8, 127.7, 128.6, 129.3, 129.9, 142.5, 

142.6, 153.0. 
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2-Butoxy-6-methylchromane (17b):  Method D: 11h, n-butyl vinyl ether (5 equiv), 7 h, 0.0419 g, 

38% yield.  White solid; TLC, Rf = 0.78 (hexane–EtOAc = 10:1); IR (CHCl3) 2986, 2954, 1663, 

1571, 1486, 1221, 1217, 905 cm-1; 1H NMR (CDCl3, 400 MHz) δ 0.89 (t, J = 7.2 Hz, 3H), 1.32 (m, 

4H), 1.47 (d, J = 5.6 Hz, 2H), 1.96 (d, J = 13 Hz, 1H), 2.14 (d, J = 13 Hz, 1H), 2.24 (s, 3H), 3.45 

(dd, J = 2.8, 6.8 Hz, 1H), 3.65 (dd, J = 2.8, 6.8 Hz, 1H), 5.33 (q, J = 5.2, Hz, 1H), 6.76–6.81 (m, 

2H), 6.87 (d, J = 8.0 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ 13.9, 19.3, 20.2, 20.4, 20.6, 31.8, 

65.0, 99.1, 114.4, 125.2, 130.0, 130.1, 130.3, 151.9; HRMS (FAB+) m/z calcd for [C14H21O2] 

(M+H) 221.1536, found 221.1533. 

 

 
7a,12,12a,13-Tetrahydrobenzo[f]indeno[1,2-b]chromene (17c):  Method D (modified): 

Reaction was performed in the absence of HFIP.  After the oxidation of 11g was completed (12 h), 

to the resulting mixture were added indene (5 equiv) and TsOH (10 mol%), and the resulting 

mixture was stirred at 50 °C for 16 h; 0.106 g, 78% yield.  White solid; TLC, Rf = 0.75 (hexane–

EtOAc = 10:1); IR (KBr) 2977, 2964, 1621, 1581, 1577, 1285, 991 cm-1; 1H NMR (CDCl3, 400 

MHz) δ 2.94 (m, 2H), 3.04–3.16 (m, 2H), 3.36 (dd, J = 6.9, 16 Hz, 1H), 5.48 (d, J = 5.0 Hz, 1H), 

7.09 (d, J = 8.7 Hz, 1H), 7.22–7.46 (m, 3H), 7.45–7.60 (m, 3H), 7.75 (d, J = 8.2 Hz, 1H), 7.83 (d, J 

= 8.7 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ 23.1, 37.0, 37.3, 79.9, 112.7, 119.1, 121.6, 123.1, 

124.9, 125.3, 126.2, 126.8, 127.4, 128.5, 128.8, 129.1, 132.8, 142.9, 143.0, 152.2; HRMS (FAB+) 

m/z calcd for [C20H17O] (M+H) 273.1274, found 273.1277. 

 

 
3-Phenyl-2,3-dihydro-1H-benzo[f]chromene (17d):33  Method D (modified): Reaction was 

performed in the absence of HFIP.  After the oxidation of 11g was completed (12 h), to the 

resulting mixture were added styrene (5 equiv) and TsOH (10 mol%), and the resulting mixture was 

stirred at 50 °C for 16 h; 0.092 g, 71% yield.  Note-1: with original method D [w/HFIP (10 equiv), 

On-BuO

O

H

H
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styrene was added at the beginning of the reaction, 20 °C, 6 h then 40 °C, 16 h]: 17d, 35% yield; 

14g, 40% yield.  Note-2: with modified method D [w/TsOH (10 mol%), TsOH and styrene were 

added at the beginning of the reaction, 40 °C, 16 h]: 17d, <10% yield; 11g, >70% recovered.  

White solid; TLC, Rf = 0.63 (hexane–EtOAc = 10:1); 1H NMR (CDCl3, 400 MHz) δ 2.22–2.30 (m, 

1H), 2.38–2.44 (m, 1H), 3.17–3.21 (m, 2H), 5.14 (dd, J = 2.4, 10 Hz, 1H), 7.16 (d, J = 8.8 Hz, 1H), 

7.32–7.43 (m, 5H), 7.48–7.52 (m, 3H), 7.65 (d, J = 9.2 Hz, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.83 (d, J 

= 8.4 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ 21.7, 29.7, 77.5, 113.6, 119.2, 121.9, 123.3, 126.1, 

126.3, 127.8, 127.9, 128.4, 128.5, 128.6, 129.0, 133.0, 141.5, 152.6. 

 

 
7-Acetyl-3-hydroxy-3-((trimethylsilyl)methyl)bicyclo[2.2.2]oct-5-en-2-one (18a):  A mixture of 

12a (39 mg, 0.10 mmol) and methyl vinyl ketone (0.0830 mL, 1.00 mmol) in mesitylene (2.00 mL) 

was stirred at 150 ºC.  After stirring for 3 h, the resulting mixture was cooled to room temperature.  

The solvents were removed under vacuo, and the residue was purified by column chromatography 

on silica gel (hexane-EtOAc as eluent) to give 18a (0.0527 g, 0.198 mmol, 99% yield).  White 

solid; TLC, Rf = 0.32 (hexane–EtOAc = 4:1); IR (KBr) 3480, 2954, 1734, 1715, 1388, 1186, 846 

cm-1; 1H NMR (CDCl3, 400 MHz) δ 0.10 (s, 9H), 0.85 (d, J = 15 Hz, 1H), 1.10 (d, J = 15 Hz, 1H), 

1.59–1.64 (m, 1H), 2.15 (s, 3H), 2.15 (brs, 1H), 2.46 (t, J = 12 Hz, 1H), 3.01–3.09 (m, 2H), 3.7 (dd, 

J = 0.8, 6.0 Hz, 1H), 6.10 (t, J = 7.2 Hz, 1H), 6.39 (t, J = 7.2 Hz, 1H); 13C NMR (CDCl3, 100 MHz) 

δ 0.3, 22.6, 27.3, 28.4, 42.8, 48.6, 74.6, 126.1, 136.3, 206.0, 213.4; HRMS (FAB+) m/z calcd for 

[C14H24O3Si] (M+H) 267.1411 found 267.1410. 

 

 
9-Hydroxy-4-phenyl-9-(trimethylsilyl)methyl-4-azatricyclo[5.2.2.02,6]undec-10-ene-3,5,8-trione 

(18b):  A mixture of 12a (39 mg, 0.10 mmol) and N-phenylmaleimide (0.0170 g, 1.00 mmol) in 

mesitylene (2.00 mL) was stirred at 150 ºC.  After stirring for 3 h, the resulting mixture was 

cooled to room temperature.  The solvents were removed under vacuo, and the residue was 

purified by column chromatography on silica gel (hexane-EtOAc as eluent) to give 18b (0.0732 g, 

0.198 mmol, 99% yield).  White solid; TLC, Rf = 0.16 (hexane–EtOAc = 4:1); IR (CHCl3) 3441, 
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2945, 2879, 1752, 1677, 1291, 877, 756 cm-1; 1H NMR (CDCl3, 400 MHz) δ 0.15 (s, 9H), 0.87 (d, J 

= 16 Hz, 1H), 1.18 (d, J = 16 Hz, 1H), 2.35 (brs, 1H), 3.36 (dd, J = 3.2, 8.4 Hz, 1H), 3.67–3.72 (m, 

1H), 3.77–3.84 (m, 2H), 6.29 (dd, J = J = 1.6, 7.8 Hz), 6.44 (dt, J = 1.6, 7.8 Hz, 1H), 7.20 (dd, J = 

1.2, 7.8 Hz, 1H), 7.39–7.47 (m, 3H); 13C NMR (CDCl3, 100 MHz) δ 0.3, 27.3, 39.2, 42.0, 45.1, 

47.8, 73.7, 126.3, 127.5, 128.8, 129.2, 131.6, 134.6, 175.1, 177.1, 210.2; HRMS (FAB+) m/z calcd 

for [C20H24NO4Si] (M+H) 370.1469 found 370.1469. 

 

 
7-Acetyl-3-methylenebicyclo[2.2.2]oct-5-en-2-one (19):  To a solution of 18a (0.0530 g, 0.200 

mmol) in 1,2-dichloroethane (5.00 mL) was added p-toluenesulfonic acid monohydrate (3.80 mg, 

0.0200 mmol).  The resulting mixture was stirred at 50 ºC for 12 h.  The reaction mixture was 

poured into water and the aqueous layers were extracted with CH2Cl2 (twice).  The organic layers 

were washed with brine, and dried over anhydrous MgSO4.  The solvents were removed under 

vacuo, and the residue was purified by column chromatography on silica gel (hexane-EtOAc as 

eluent) to give 19 (0.0350 g, 0.200 mmol, 99% yield).  White solid; TLC, Rf = 0.17 (hexane–

EtOAc = 4:1); IR (CHCl3) 2910, 1772, 1752, 1392, 1193, 753 cm-1; 1H NMR (CDCl3, 400 MHz) 

δ 1.98–1.99 (m, 2H), 2.19 (s, 3H), 3.00 (dd, J = 1.6, 6.4 Hz, 1H), 3.57 (dd, J = 1.6, 8.0 Hz, 1H), 

3.63 (d, J = 6.4 Hz, 1H), 5.23 (s, 1H), 5.82 (s, 1H), 6.11 (dt, J = 1.2, 8.0 Hz, 1H), 6.48 (dt, J = 1.2, 

8.0 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ 28.5, 28.6, 40.1, 46.9, 50.1, 116.1, 126.2, 136.3, 141.7, 

197.4, 206.1; HRMS (FAB+) m/z calcd for [C11H13O2] (M+H) 177.0910, found 177.09. 

 

 
8-Acetylspiro[bicyclo[2.2.2]octane-2,2’-oxiran]-5-en-3-one (20):34  To a solution of 19 (0.0350 

mg, 0.200 mmol) and sodium hydroxide (0.0800mg, 2.00 mmol) in a mixture of methanol (5.00 

mL) and H2O (1.00 mL) was added 30% hydrogen peroxide (0.0210 mL, 0.200 mmol) at 0 ºC.  

After stirring for 1 h at 0 °C, the reaction mixture was diluted with brine and the aqueous layers 

were extracted with CH2Cl2 (twice). The organic layers were washed with brine, and dried over 

anhydrous Na2SO4.  The solvents were removed under vacuo, and the residue was purified by 

column chromatography on silica gel (hexane-EtOAc as eluent) to give 20 (0.0180 mg, 0.0920 

mmol, 46% yield).  White solid; TLC, Rf = 0.19 (hexane–EtOAc = 1:1); 1H NMR (CDCl3, 400 
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MHz) δ 1.91–2.07 (m, 1H), 2.21 (s, 3H), 2.32 (dt, J = 2.4, 8.0 Hz, 1H), 2.61–2.68 (m, 1H), 2.91 (d, 

J = 6.0 Hz, 1H), 3.17–3.19 (m, 2H), 3.69 (dd, J = 1.6, 8.0 Hz, 1H), 6.21 (t, J = 6.4 Hz, 1H), 6.52 (dt, 

J = 1.6, 6.4 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ 24.2, 28.4, 38.2, 47.7, 49.5, 53.1, 57.5, 126.9, 

135.0, 204.1, 205.2. 

 

 
9-Hydroxy-4-phenyl-9-(trimethylsilyl)methyl-4-azatricyclo[5.2.2.02,6]undecan-3,5,8-trione (21):  

To a solution of 18b (0.0740 mg, 0.200 mmol) in EtOH (2.00 mL) and acetic acid (2.00 mL) was 

added Pd/C (3.70 mg, 5 wt%) at room temperature.  After stirring for 16 h at room temperature 

under H2 (balloon), the resulting mixture was filtered through celite and washed with EtOAc.  The 

filtrate was concentrated in vacuo.  The residue was purified by column chromatography on silica 

gel (hexane-EtOAc as eluent) to give 21 (0.068 mg, 0.180 mmol, 92% yield).  White solid; TLC, 

Rf = 0.20 (hexane–EtOAc = 4:1); IR (KBr) 3452, 2945, 2879, 1752, 1392, 1193, 756 cm-1; 1H 

NMR (CDCl3, 400 MHz) δ 0.15 (s, 9H), 1.04 (d, J = 15 Hz, 1H), 1.19 (d, J = 15 Hz, 1H), 1.71–

2.00 (m, 4H), 2.49 (brs, 1H), 2.75 (d, J = 3.2 Hz, 1H), 2.95 (d, J = 1.6 Hz, 1H), 3.24 (m, 1H), 3.69 

(ddd, J = 1.6, 3.2, 8.4 Hz, 2H), 7.31 (dd, J = 2.0, 8.4 Hz, 2H), 7.43 (dd, J = 1.2, 8.4 Hz, 1H), 7.51 

(ddd, J = 1.2, 2.0, 8.4 Hz, 2H); 13C NMR (CDCl3, 100 MHz) δ 0.57, 17.5, 17.6, 24.3, 38.9, 39.6, 

41.3, 41.7, 126.3, 128.9, 129.3, 131.7, 175.8, 178.0, 215.6; HRMS (FAB+) m/z calcd for 

[C20H26NO4Si] (M+H) 372.1626, found 372.1628. 

 

 
4-phenyl-9-methylene-4-azatricyclo[5.2.2.02,6]undecan-3,5,8-trione (22):  To a solution of 21 

(0.068 mg, 0.180 mmol) in 1,2-dichloroethane (3.00 mL) was added p-toluenesulfonic acid 

monohydrate (3.40 mg, 0.0180 mmol).  The resulting mixture was stirred at 50 ºC for 12 h.  The 

reaction mixture was poured into water and the aqueous layers were extracted with CH2Cl2 (twice).  

The organic layers were washed with brine, and dried over anhydrous MgSO4.  The solvents were 

removed under vacuo, and the residue was purified by column chromatography on silica gel 

(hexane-EtOAc as eluent) to give (hexane-EtOAc as eluent) to give 22 (0.051 mg, 0.180 mmol, 

99% yield).  White solid; TLC, Rf = 0.13 (hexane–EtOAc = 4:1); IR (KBr) 2949, 2879, 1705, 
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1636, 1391, 1196, 750 cm-1; 1H NMR (CDCl3, 400 MHz) δ 1.78–1.97 (m, 4H), 3.08 (d, J = 2.8, Hz, 

1H), 3.22 (dd, J = 3.6, 10 Hz, 1H), 3.30 (dd, J = 3.6, 10 Hz, 1H), 3.40 (d, J = 2.8 Hz, 1H), 5.48 (s, 

1H), 6.18 (s, 1H), 7.31(d, J = 8.2 Hz, 1H), 7.44 (t, J = 7.8 Hz, 1H), 7.52 (dd, J = 7.8, 8.2 Hz, 2H); 
13C NMR (CDCl3, 100 MHz) δ 18.7, 21.0, 37.8, 40.5, 43.1, 43.5, 120.2, 126.2, 129.0, 129.4, 131.5, 

144.4, 176.0, 176.5, 198.7; HRMS (FAB+) m/z calcd for [C17H16NO3] (M+H) 282.1125, found 

282.1130. 
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