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A total of 11 grids in four families, including single- and multi-scale grids, are tested to investi-
gate the development and decay characteristics of grid-generated turbulence. Special attention has
been focused on dissipation and non-equilibrium characteristics in the decay region. A wide non-
equilibrium region is observed for fractal square grids with three and four iterations. The distributions
of the Taylor microscale λ, integral length scale Lu, and dissipation coefficient Cε show that a sim-
ple combination of large and small grids does not reproduce elongated non-equilibrium regions as
realized by the fractal square grid. On the other hand, a new kind of grid, quasi-fractal grids, in
which the region of the smaller fractal elements (N = 2–4) of the fractal square grid is replaced
by regular grids, successfully reproduce a similar flow field and non-equilibrium nature to that seen
in the fractal square grid case. This suggests that the combination of large square grid and inho-
mogeneously arranged smaller grids produces an elongated non-equilibrium region. The dissipation
coefficient Cε is better collapsed using Re0 = t0U∞/ν (where t0 is the thickness of the largest grid bar,
U∞ the inflow velocity, and ν the kinematic viscosity) as a global/inlet Reynolds number rather than
ReM = MU∞/ν (where M is the mesh size) [P. C. Valente and J. C. Vassilicos, “Universal dissipation
scaling for non-equilibrium turbulence,” Phys. Rev. Lett. 108, 214503 (2012)]. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4973416]

I. INTRODUCTION

Since the first experiments performed by Hurst and Vas-
silicos,1 turbulence generated by multi-scale grids has been
investigated both experimentally2–17 and numerically.17–24

The practical applications of fractal grids (FGs) or plates have
also been explored, including a flow meter using a fractal ori-
fice,25,26 reduction of spoiler noise,27 turbulence generators
for combustion,28,29 etc.

The most interesting and important finding may be the
existence of a non-equilibrium region in the initial stage of
turbulence kinetic energy (TKE) decay.4 Seoud and Vassili-
cos2 first showed that the “cornerstone dissipation scaling of
turbulence theory,”30 in which

Cε =
ε

u′3/Lu
=

Lu/λ

Reλ
(1)

is constant, does not hold for fractal-generated turbulence.
Here, Cε is the dissipation coefficient, ε the TKE dissipa-
tion rate, u′ the streamwise rms velocity, Lu the integral length
scale, λ the Taylor microscale, and Reλ = λu′/ν (where ν is
the kinematic viscosity) the local turbulent Reynolds num-
ber. This implies that the Richardson-Kolmogorov equilibrium
cascade does not hold.3,4,13,30 Extensive review of this subject
has been done by Vassilicos.30 Note that the non-constant value
of Cε at low Reynolds numbers (typically Reλ < 50–100)30–34

is due to the viscous effect. Our interest here is in the non-
constant value of Cε encountered at sufficiently large Reynolds

a)Author to whom correspondence should be addressed. Electronic mail:
nagata@nagoya-u.jp.

numbers. Note also that, in some flows, large and small scales
are coupled strongly, or the so-called inverse cascade is even
observed, which contradicts the Richardson-Kolmogorov cas-
cade concept (see, for example, Tsinober35 and references
therein). By defining turbulence as “an eddy-like state of
fluid motion where the inertial-vortex forces of the eddies
are larger than any other forces” (i.e., a narrow definition
of turbulence), Gibson36,37 has argued that turbulence always
starts at small scales and cascades to large scales, and this
cascade mechanism has been explained by the internal vor-
tex pairing. However, our interest in this paper is limited
to equilibrium/non-equilibrium dissipation in grid turbulence
(turbulence here being defined conventionally or broadly), and
investigating inverse cascades is beyond the scope of this paper.

Valente and Vassilicos6 (see also Vassilicos30) further
showed that in the near field of grid turbulence

Cε ∝
ReM

ReL
∝

Re1/2
M

Reλ
. (2)

Here, ReM = MU∞/ν (where M is the mesh size and U∞ is the
inflow velocity) is the mesh (or global/inlet) Reynolds num-
ber, ReL = Luu′/ν the local turbulent Reynolds number based
on Lu. This non-equilibrium nature of turbulence has also
been confirmed in subsequent experiments, for both regular
and multi-scale grids.13–15,38 A scale-by-scale energy budget
has also been measured in multi-scale12,16 and regular39 grid
turbulence. Hearst and Lavoie12 proposed that non-zero trans-
verse transport of TKE and the production due to transverse
mean velocity gradients cause an imbalance of the scale-by-
scale energy budget in the near field. Valente and Vassilicos39
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TABLE I. Geometry of the grids.

Grid FG1 FG2 FG3 FG4 RG2 RG3 RG4 CRG12 CRG15 QFG8 QFG18

L0 or M (mm) 163.8 163.8 78.8 78.8 163.8 163.8
t0 (mm) 11.7 20.1 13.4 10.1 11.7 14.5 11.7
Lr · · · 2.08 4.30 8.95 · · · 4.30 5.64 8.59 20.7
tr · · · 2.39 5.57 13.0 · · · 5.57 13.0 5.37 13.0
σ (%) 8.5 15.0 20.0 25.0 25.0 25.0 25.0
X∗ (mm) 2293 1335 463 618 2293 1850 2293
Meff (mm) 124.2 65.5 34.1 18.2 95.1 72.2 58.2 26.9 22.8 19.6 9.3

also found an imbalance between the energy transfer to small
scales and the dissipation in the non-equilibrium region and
showed that this imbalance is reflected on the small-scale
advection. They also demonstrated that the production and
transport of turbulence are large-scale phenomena that do not
affect the energy transfer to small scales. On the other hand,
Hearst and Lavoie15 suggested from the measurement of veloc-
ity derivative skewness that the residual strain from turbulence-
generating conditions is likely to lead to non-equilibrium
properties.

Despite extensive previous studies, the role of the frac-
tal elements of the fractal grid and what kind of geometry
(or grid arrangement) causes the elongated non-equilibrium
region for the fractal grids are less understood. In this study,
we design and manufacture two types of new grids, which are
basically the combinations of large and small grids, and inves-
tigate the flow field and TKE dissipation. Finally, we show that
the combinations of large square grid and inhomogeneously
arranged smaller grids produce elongated non-equilibrium
regions along the centerline.

II. EXPERIMENTS
A. Wind tunnel

The wind tunnel used was the same as that used in our
previous study.10 The cross-sectional area of the test section
was T2 = 300 × 300 mm2 with a length of 3800 mm. Center-
line statistics downstream of the fractal square grid10 were in
good agreement with previous studies1,3 that used similar grid
and were performed at the same Reynolds number based on
U∞ and the thickness of the largest grid bar t0, Re0 = t0U∞/ν.
For details about the wind tunnel, see our previous paper.10

B. Grids

A total of 11 grids in four families were tested: frac-
tal grids (FGs) with an iteration of N = 1–4, regular grids
(RGs), combined regular grids (CRGs), and quasi-fractal grids
(QFGs).

The fractal grid with N = 4 (Fig. 1(d)) was identical to
that used in our previous study.10 Its geometry is tabulated
in Table I. Here, L0 is the length of the largest grid bar (for
regular grids, this corresponds to the mesh size M); Lr (tr)
the length (thickness) ratio between the largest and smallest
grid bars; σ the blockage ratio; and Meff the effective mesh

size1 defined as Meff =
4T2

P

√
1 − σ, where P is the perimeter of

the grid. The streamwise thickness was 5 mm for all the grid
elements. More details of this grid can be found in our previous
study.10 FG1 consisted only of the largest grid element of FG4.
Likewise, FG2 consisted of the largest and the second-largest
grid elements of FG4, and FG3 was obtained by removing
the smallest grid elements from FG4. Naturally, σ differed
for each grid. FG1 was made of stainless steel. FG2 and FG3
were made from polymethyl methacrylate (PMMA) and were
produced using a laser cutter. They were suspended by a thin
(0.1-mm-diameter) piano wire. We confirmed by measuring
the wake behind the wire that the effects of the wire on the
velocity fields were negligible. FG4 was made from epoxy
resin and fabricated by rapid prototyping.

The regular grids (RG2, RG3, and RG4: Fig. 2), made of
iron, consisted of square bars and had uniform square meshes.
RG2 and RG3 were monoplane and RG4 was biplane in con-
struction. The mesh size of RG2 was equivalent to L0 for FG1–
FG4 and those of RG3 and RG4 were equivalent to that of the
second iteration of FG2–FG4. Note that the center of RG3 was
obstructed while that of RG4 was unobstructed. All regular
grids had the same σ as FG4.

The combined regular grids (CRG12 and CRG15: Fig. 3)
consisted of two “regular” grids with different mesh sizes.
The mesh size of the larger “regular” grid was equivalent to
L0 for FG1–FG4 (and also to the mesh size of RG2). The
mesh size of the smaller “regular” grid of CRG12 was equiv-
alent to the third iteration (L2) for FG4 (and therefore, to the
smallest element of FG3). Thus, Lr for CRG12 was equiva-
lent to that of FG3. The mesh size of the smaller “regular”
grid of CRG15 lay between the third (L2) and fourth (L3) ele-
ments of FG4. The thickness ratio tr of CRG12 was equivalent
to that of FG3, and that of CRG15 was equivalent to that of
FG4.

Replacing the region of smaller fractal elements
(N = 2–4) of FG4 by regular grids, we obtained the quasi-
fractal grids QFG8 and QFG18 (Fig. 4). The difference
between CRGs and QFGs is that, in CRGs, a smaller “regular”
grid covers the entire region while, in QFGs, only the regions
of smaller fractal elements are replaced by the “regular” grid.
L0 and t0 were the same as those for FG4 (and CRG12). These
grids were designed to investigate whether or not the presence
of fractals is important in creating the specific nature of fractal
grid turbulence.2,4 We call the region replaced by the smaller
“regular” grid the “shielding area,” and other (cross-shaped)
regions the “open area.” The mesh size of the smaller “regular”
grid of QFG8 was close to that of the smallest grid element
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FIG. 1. Fractal grids (FGs).

FIG. 2. Regular grids (RGs).

FIG. 3. Combined regular grids (CRGs).

(L3) of FG4, and the thickness of the smaller “regular” grid of
QFG18 was equivalent to that of the smallest grid element (t3)
of FG4. Thus, Lr for QFG8 was close to that of FG4, and tr for
QFG18 was equivalent to that of FG4 (and CRG15).

For CRGs and QFGs, the grids were monoplanar and their
streamwise thickness was 5 mm. The grids were made from
VeroWhite using a 3D printer. Both grids had the same σ as
FG4 (and RGs).

C. Measurement system and flow conditions

A constant-temperature anemometer (DANTEC Stream-
Line) with an I-type hot-wire probe (DANTEC 55P11) was

FIG. 4. Quasi fractal grids (QFGs).

used to measure instantaneous streamwise velocity. The diam-
eter of the wire was 5 µm and its length was 1.25 mm. The
probe was calibrated in the wind tunnel, and the instantaneous
streamwise velocity was calculated according to King’s law.
The sampling rate was set to 50 kHz to obtain reliable deriva-
tive quantities, e.g., TKE dissipation rate ε. A low-pass filter
was used to remove noise.34 The cutoff frequency was deter-
mined by the measured frequency spectra at each location. The
data sampling number was 5 242 880 (=5 × 220) and 13 mea-
surements were conducted at each location to reduce statistical
uncertainties.

The experiments were conducted at Re0 = 5900 and
11 400, the same as in previous studies1,3,10 except for the
RG4 grid: Re0 = 11 400 was not attainable because of the
high required wind speed U∞. For RG2, measurements at
ReM = 82 600 and 159 600 (corresponding to Re0 = 5900
and 11 400 for FG4) were added. For RG3 and RG4, mea-
surements at ReM = 82 600 (corresponding to Re0 = 5900 for
FG4) were added. The values of Re0 and ReM are listed in
Table II.

In most figures, the streamwise distance from the grid X is
normalized by the wake interaction length scale, X∗ = L2

0/t0,
which was first introduced by Mazellier and Vassilicos3 and
used in subsequent studies on both fractal and regular grids.
Figures for the regular grids (i.e., RG2, RG3, and RG4) are

TABLE II. Reynolds numbers.

Grid FG1 FG2 FG3 FG4 RG2 RG3 RG4 CRG12 CRG15 QFG8 QFG18

Re0 5 900 5 900 5 900 5 900 5 900 5 900 5 900
11 400 11 400 11 400 · · · 11 400 11 400 11 400

ReM 82 600 48 100 34 700 46 000 82 600 66 600 82 600
159 600 92 900 67 000 · · · 159 600 128 800 159 600

82 600 82 600 82 600
(Re0 = 10 100) (Re0 = 14 000) (Re0 = 10 600)

159 600
(Re0 = 19 600)
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also plotted against X/M or X/L0 following the conventional
manner.

III. RESULTS AND DISCUSSION

In Sections III A–III D, centerline statistics at Re0 = 5900
are shown because the RG4 grid cannot be tested at Re0

= 11 400. Note that we did not find any significant qualitative
difference between Re0 = 5900 and 11 400.

A. Rms velocity

Figure 5 shows the centerline rms velocity u′c normalized
by U∞. For FGs (Fig. 5(a)), u′c increases as N increases. This
is largely due to the increase in σ. However, it can be seen
that a rapid increase of u′c near the grid is already established
for FG3. On the other hand, comparing FG3 and FG4, large
u′c in the downstream region is caused by the existence of
the smallest grid element of FG4. Note that we also take into
account the increase in σ from FG3 to FG4. Looking at the
streamwise location Xpeak where u′c exhibits its peak value,
Xpeak for FG4 is closer to the origin than that for FG1. The
result agrees qualitatively with our previous direct numerical
simulation (DNS).24 However, the change in Xpeak with N is
not straightforward. A possible explanation is as follows: Xpeak

approaches the origin with an increasing number of iterations
up to N = 3 because the vortex shedding of the largest grid bar

is strengthened owing to the increase in σ. Vortex shedding
from the second and third iterations may also cause Xpeak to be
smaller.24 However, vortex shedding from the smallest grids
acts to suppress vortex shedding from the largest grid bar,
causing Xpeak to be larger. The suppression of vortex shed-
ding from the largest grid bar by the smaller grids will be
discussed later. This effect can be clearly seen for CRGs in
Fig. 5(d), where Xpeak moves significantly downstream owing
to the suppression of vortex shedding from the largest grid
bar.

Comparing FG4 and RGs (Fig. 5(b)), FG4 generates the
smallest u′c in the downstream region (when plotted against
X/X∗). Note that σ is identical for all the grids. The location
of Xpeak is around X/X∗ ∼ 0.5 for all the grids: the concept
of wake interaction3 also applies to regular grids.4 The pro-
files in the decay region are much better collapsed when X is
normalized by M or L0, as shown in Fig. 5(c).

The profiles of u′c for CRG12 and CRG15 (Fig. 5(d))
show a rapid increase near the grid, and their increase rates
become smaller at around X/X∗ = 0.2. This is clearly due to
two different wake interactions: the wake interaction of the
smaller grid first appears and the effect of the wake interac-
tion of the larger grid becomes dominant after X/X∗ > 0.2.
As mentioned above, Xpeak for CRGs is larger than that for
FG4 owing to the suppression of vortex shedding from the
largest grid bar. The profiles in the far downstream region are

FIG. 5. Downstream profiles of the rms
velocity at Re0 = 5900. (a) FGs, (b) FG4
and RGs (as a function of X/X∗), (c)
FG4 and RGs (as a function of X/M or
X/L0), (d) FG4 and CRGs (as a func-
tion of X/X∗), (e) FG4 and CRGs (as
a function of X/L0), and (f) FG4 and
QFGs.
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much better collapsed when X is normalized by L0, as shown
in Fig. 5(e), in agreement with the case for RGs. u′c in the
far downstream region has a similar magnitude to those for
FG4.

The profiles of u′c for QFG8 and QFG18 (Fig. 5(f)) show
a similar trend as that for FG4. In particular, the profile of
QFG8 is close to that of FG4.

It should be noted here that the anisotropy u′/v ′ (v ′: trans-
verse rms velocity) for the fractal square grid (FG4) and the
single square grid (FG1) have been extensively discussed in
previous studies.1,4,8,10,11,13,18,24 In general, the values of u′/v ′

for FG4 and FG1 range u′/v ′ = 1.1-1.3 in the decay region,
and these values are similar to those measured in regular grid
turbulence.13,18,34 The two-point large-scale anisotropy has
also been measured. For the fractal square grid, Discetti et
al.11 conducted particle image velocimetry (PIV) measure-
ment and calculated the longitudinal and transverse correlation
functions (as a function of the separation r), f and g, respec-
tively, and compared g with the isotropic value. Their results
show that large-scale (larger than λ) anisotropy persists over
the examined range, whereas small-scales (smaller than λ)
are approximately isotropic. For the regular grid, Valente and
Vassilicos13 measured two-point large-scale anisotropy using
two hot-wire probes. For their RG60 grid with smaller M, the

turbulence was almost isotropic for r < 2M. On the other
hand, for their RG115 grid with larger M, a larger departure
from isotropy was observed. Moreover, both Discetti et al.11

and Valente and Vassilicos13 found that the large-scale eddies
were elongated in the streamwise direction.

B. Taylor microscale

Figure 6 shows the centerline Taylor microscale λ normal-
ized by L0. Here, λ is calculated by

λ
2 =

u′2c
〈(∂uc/∂x)2〉

=

∫ kmax

kmin

E11(k1)dk1∫ kmax

kmin

k2
1E11(k1)dk1

, (3)

where kmin = 2πfmin/Uc (Uc is the centerline mean velocity)
is the lowest wavenumber which is determined from the data
number and the sampling rate, and kmax = 2πfmax/Uc is the
cutoff wavenumber.34 Here, f min and f max are the lowest and
cutoff frequencies, respectively.

For FGs (Fig. 6(a)), FG1, FG2, and FG3 show monotonic
increases in λ at 0.3 < X/X∗ < 0.8 whereas λ for FG4 is almost
constant in this region, in agreement with previous studies.1–4

FIG. 6. Downstream profiles of the
Taylor microscale at Re0 = 5900. (a)
FGs, (b) FG4 and RGs (as a function of
X/X∗), (c) FG4 and RGs (as a function
of X/M or X/L0), (d) FG4 and CRGs,
and (e) FG4 and QFGs.
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Thus, the smallest grid element of FG4 plays an important role
for constant λ in the decay region.

The profiles of λ for RGs (Fig. 6(b)) show monotonic
increases in the downstream direction. The profiles of λ appear
more collapsed when plotted against X/X∗ rather than X/M or
X/L0 (Fig. 6(c)). Here, λ ∝ X0.5,4,14,34 assuming that the virtual
origins X0 are zero,4 are drawn in Fig. 6(c) for reference. The
profiles for RGs in the decay region are well-fitted by λ∝X0.5,
whereas that for FG4 is not.

The profiles of λ for CRGs (Fig. 6(d)) show monotonic
increases at 0.3< X/X∗ as for RGs. Owing to the smaller grids
of CRGs, profiles of λ for CRGs in the near-grid region are
different from those of RGs. The profiles are also different
from that of FG4. Thus, a simple combination of large and
small grids does not generate turbulence with constant λ. In
the downstream region of 0.4 < X/X∗, the profiles for CRGs
are well-fitted by λ ∝ X0.5 (solid line).

On the other hand, the profiles of λ for QFGs (Fig. 6(e))
show good agreement with that of FG4. A comparison of λ
for CRGs and QFGs suggests that the spatial arrangement of
smaller grids (i.e., the existence of “shielding” and “open”
areas) is an important factor in reproducing the turbulence
generated by FG4.

C. Integral length scale

Figure 7 shows the centerline integral length scale Lu nor-
malized by L0. Here, Lu is calculated by the integration of the
auto-correlation coefficient over the time lag from zero to the
first zero-crossing point.

For FG (Fig. 7(a)), the effect of iteration number N on Lu

is similar to that on λ. Thus, it is suggested that the smallest
grid element of FG4 plays an important role for constant Lu

as well as constant λ in the decay region.
The profiles of Lu for RG3 and RG4 (Fig. 7(b)) show

monotonic increases in the downstream direction. Lu for RG2
increases slightly in the downstream direction, but its rate is
clearly smaller than those for RG3 and RG4. Here, Lu ∝ X0.4,
assuming Saffman turbulence34,40 and zero virtual origins
(X0 = 0), is drawn in Fig. 7(c) for reference. The profiles for
RG3 and RG4 in the decay region are well-fitted by Lu ∝ X0.4,
whereas those for FG4 and RG2 are not: the profile for RG2
is close to that of FG4. Note that the profile of λ for RG2 is
different from that of FG4. The result suggests that the devel-
opment (or slope) of Lu is not solely determined by M. One of
the possible causes affecting the streamwise development of
Lu is homogeneity/inhomogeneity (i.e., the relative size of Lu

FIG. 7. Downstream profiles of the
integral length scale at Re0 = 5900. (a)
FGs, (b) FG4 and RGs (as a function of
X/X∗), (c) FG4 and RGs (as a function
of X/M or X/L0), (d) FG4 and CRGs,
and (e) FG4 and QFGs.
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compared with the test section’s width). For RG3 and RG4, Lu

at x/M = 5 is about 1/20 of the test section’s width, whereas that
for RG2 is only about 1/10. Note that in the far-downstream
region (typically X > 50M), Kitamura et al.34 showed that
Lu ∝ (X − X0)0.4 for all grids with different M (10 mm, 20 mm,
and 25 mm with cylinder or square bars). In their experiments,
Lu at the most downstream location is less than 1/20 of the
test section’s height (and less than 1/50 of the test section’s
width).

The profiles of Lu for CRGs (Fig. 7(d)) show monotonic
increases at 0.3< X/X∗ as for RGs. Like λ, owing to the smaller
grids of CRGs, profiles of Lu for CRGs in the near-grid region
are different from those of RGs. The profiles are also dif-
ferent from that of FG4. Thus, like λ, a simple combination
of large and small grids does not generate turbulence with
constant Lu.

On the other hand, the profiles of Lu for QFGs (Fig. 7(e))
show good agreement with that for FG4.

D. Turbulent Reynolds numbers

Figure 8 shows the centerline turbulent Reynolds number
Reλ. The effects of the iteration number N on Reλ (Fig. 8(a))

are similar to those on u′c (Fig. 5(a)) because the effects of
N on λ (Fig. 6(a)) are not very significant and the streamwise
variation of λ is small.

The profiles of Reλ for FG4 and RGs (Figs. 8(b) and 8(c))
appear more collapsed when plotted against X/X∗ rather than
X/M or X/L0. Thus, it is suggested that wake interaction is
a key phenomenon determining the profile of Reλ rather than
mesh size M or L0 for a given Re0. Figure 8(c) shows that FG4
produces the largest Reλ in most decay regions when plotted
against X/M or X/L0. In particular, a comparison between FG4
and RG2 is interesting because both have the same mesh size
(M or L0) and the same σ. The different ReM for FG4 and
RG2 is a possible reason: ReM = 82 600 for FG4 (L0 is used
for the mesh size) and ReM = 48 100 for RG2. Thus, we also
plotted Reλ for RG2 at ReM = 82 600: the profile is similar to
that of FG4. Another important feature in Reλ for FG4 is its
rapid decay.1,3,4,8,10,24,30 This tendency was also confirmed for
RG2 at the same ReM .

The magnitudes of Reλ for CRGs (Fig. 8(d)) are com-
parable to that of FG4 in the far-downstream region. As con-
firmed previously, the effects of two different wake interaction
lengths due to the large and small grids are also confirmed here.

FIG. 8. Downstream profiles of the tur-
bulent Reynolds number at Re0 = 5900.
(a) FGs, (b) FG4 and RGs (as a func-
tion of X/X∗), (c) FG4 and RGs (as a
function of X/M or X/L0), (d) FG4 and
CRGs, and (e) FG4 and QFGs. For RG2,
the result for ReM = 82 600 (same ReM
as FG4 at Re0 = 5900) is also plotted in
Fig. 8(c).
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FIG. 9. Dissipation coefficient vs. X/M or X/L0.

The profiles also suggest that a simple combination of large
and small grids does not reproduce similar turbulence as that
generated by FG4, as already confirmed by the profiles of λ
and Lu. It is worth noting that CRG12 has the same L0 and t0

(and therefore the same Re0 and ReM ) as those of FG4. In addi-
tion, both have the smaller grids. Nevertheless, FG4 produces
much larger Reλ in the near-grid field compared with CRG12.

Figure 8(e) shows that the profiles of Reλ for QFG8 show
better agreement with that of FG4 compared with QFG18.
Recall that Lr for QFG8 is close to that for FG4. Thus, for
QFGs, it is suggested that Lr is more important than tr to
reproduce a similar Reλ for FG4 (for a given Re0). Note that
FG4, CRG12, QFG8, and QFG18 have the same L0 and t0 (and
therefore the same Re0 and ReM ). Among all the grids, RG2
at ReM = 82 600 and QFG8 (ReM = 82 600) produce similar
profiles for Reλ as that of FG4. However, note that the profile
of λ for RG2 is different from that of FG4. For QFG8, all
turbulence characteristics shown herein show similar profiles
to those for FG4.

E. Dissipation and non-equilibrium nature

In this subsection, dissipation and non-equilibrium char-
acteristics in the TKE decay region are investigated.

Figure 9 shows the TKE dissipation coefficient Cε plotted
against X/M or X/L0. As already found in previous studies,6,14

Cε increases near the grid and becomes nearly constant in the
far-downstream region. Note that a constant Cε region was not
observed for FGs and QFGs because of limited test section
length. Thus, there is a possibility that the non-equilibrium
regions are wider for FGs and QFGs. Note that, for RG2, RG3,
CRG12, and CRG15, Cε is almost constant, i.e., within the
equilibrium range, at the downstream location. The profiles
near the grid show the dependency on grid geometries. Note
that the continuous increase for RG4 in the far-downstream
region may be due to the low-Reynolds-number effect, as will
be confirmed in Fig. 10: Reλ in this region is too small to
attain a constant Cε .31,32 An important comparison may be
made between FG4 and QFG (see the inset of Fig. 9), as their
profiles are quite similar.

Figure 10 shows the Cε plotted against Reλ in a log-
log plot. The lines show Cε ∝Re−1

λ
. For FG4 and QFGs,

Cε ∝Re−1
λ

, as found in previous studies2,4,6,30 (see the inset
of Fig. 10). For other grids, Cε also decreases as Reλ
increases, although the slopes are somewhat smaller in
magnitude than �1. Note again that, for RG4, there may be

a low-Reynolds-number effect: as shown in much of the liter-
ature, Cε decreases as Reλ increases at low Reynolds numbers
(typically Reλ < 50–100 30–34). An important finding here is
that, for all grids, the profiles are roughly collapsed for each
Re0: Re0 is a key parameter for Cε profiles. We therefore
used Re0 instead of ReM as a global/inlet Reynolds number
in Eq. (2). Figures 11(a) and 11(b) compare Cε plotted against
Re1/2

M /Reλ and Re1/2
0 /Reλ. Figure 11(a) shows that profiles for

the regular grids (RG2, RG3, and RG4) and for multi-scale
grids are somewhat different. On the other hand, Cε is better
collapsed when plotted against Re1/2

0 /Reλ. This suggests that
Re0 is a more appropriate choice as a global/inlet Reynolds
number than ReM .

Next, we investigate the dependency of Cε on ReL for each
grid. Figure 12 shows Cε plotted against ReL in a log-log plot.
For FGs (Fig. 12(a)), Cε becomes more inversely proportional
to ReL as the iteration number N increases. For RGs, the rela-
tion Cε ∝ Re−1

L is not clearly observed for RG2 and RG3 at
Re0 = 5900. Cε for RG4 appears to be inversely proportional
to ReL, but the low-Reynolds-number effect should be taken
into account for this case. For CRGs (Fig. 12(c)), Cε scarcely
shows the relation Cε ∝ Re−1

L . On the other hand, Cε profiles
for QFGs are similar to RG4 and show a clear relationship:
Cε ∝ Re−1

L .
Figure 13 shows the relationship between Lu/λ and

Reλ. As shown in Fig. 13(a), a wide non-equilibrium region
is observed for FG3 and FG4 of the fractal square grid.
Despite the limited test section length, the result is expected
to remain unchanged for the following reason: Reλ is still
rapidly decreasing for FG4 (Fig. 8(a) for Re0 = 5900: profiles

FIG. 10. Dissipation coefficient vs. Reλ. Symbols as in Fig. 9.



015102-9 Nagata et al. Phys. Fluids 29, 015102 (2017)

FIG. 11. Dissipation coefficient vs. (a) Re1/2
M /Reλ

and (b) Re1/2
0 /Reλ.

are qualitatively similar for Re0 = 11 400, which are not shown
here), whereas the changes in Reλ are smaller for FG1 ∼ 3.
The same tendency has been confirmed for FG1 and FG4 in
our previous DNS.24 Note that the change in Reλ becomes
smaller in the far downstream region of grid turbulence
(e.g., for Saffman turbulence, which is close to regular grid

turbulence, Reλ ∝X−0.1).34 This suggests that the constant Lu/λ
region is wider to the small Reλ side for FG4 whereas that
region may not be largely extended to the small Reλ side for
FG1 ∼ 3. Recall that Reλ decreases in the downstream re-
gion. The clear relation Cε ∝Re−1

L seen only for FG3 and FG4
(Fig. 12(a)) also supports a distinct non-equilibrium region for

FIG. 12. Dissipation coefficient vs.
ReL . (a) FGs, (b) RGs, (c) CRGs, and
(d) FG4 and QFGs.
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FIG. 13. Lu/λ vs. Reλ. (a) FGs, (b) RGs,
(c) CRGs, and (d) FG4 and QFGs.

FG3 and FG4. For RGs (Fig. 13(b)), RG2 at Re0 = 5900 has
a relatively wide equilibrium region in which Lu/λ ∝ Reλ.
For RG2 and RG3 at Re0 = 11 400, the near-grid region
(large Reλ) shows a non-equilibrium nature (i.e., nearly con-
stant Lu/λ) and attains equilibrium in the far-downstream
region (small Reλ). The result is consistent with a previ-
ous study:6 however, the non-equilibrium range is not very
wide compared with that for FG4. CRGs (Fig. 13(c)) scarce-
ly show non-equilibrium nature. Again, together with the

profile of Cε in Fig. 12(c), it is found that a simple combi-
nation of large and small grids does not reproduce a wide
non-equilibrium region like that resulting from the use of the
fractal square grid (FG4). On the other hand, QFGs (Fig. 13(d))
show almost the same profile as for FG4. This suggests
that the combination of a large square grid and inhomoge-
neously arranged smaller grids (i.e., the existence of “shield-
ing” and “open” areas) produces an elongated non-equilibrium
region.

FIG. 14. Downstream variations in
one-dimensional power spectra (Re0 =
5900). (a) FG4, (b) RG2, (c) CRG15,
and (d) CRG12.
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F. Effects of multi-scale energy input

Before closing the paper, effects of multi-scale energy
input are briefly discussed. Figure 14 shows the downstream
variations in one-dimensional power spectra for Re0 = 5900.
The frequency f is normalized using t0 and U∞ (i.e., the
Strouhal number for the largest grid bar), and the spectra are
multiplied by f 5/3 (=St5/3).17 The spectra at each downstream
location are shifted vertically for clearer investigation. The
spectra for FG4 has a single peak near St ∼ 0.1 in the upstream
region of X/X∗ < 0.15. This result is consistent with previous
studies.16,17 The spectra for QFGs are similar to those for FG4,
and thus they are omitted here. The spectra for CRG15 clearly
show the two distinct peaks associated with vortex shedding
from large and small grids. For CRG12, the vortex shedding
from the small grids prevails and no clear peak associated with
vortex shedding from the large grid is apparent. The most inter-
esting consequence is that, for CRGs, vortex shedding of the
smaller grids strongly suppresses the vortex shedding of the
largest grid bar, whereas for FG4 and QFG8, vortex shedding
of the smaller grids does not strongly suppress the vortex shed-
ding of the largest grid bar. The spectra for FG4 (and QFG8,
which are not shown here) are similar to those for RG2. This
leads to the possible conclusion that when the vortex shedding
of the largest grid bar is strongly suppressed by the vortex
shedding of the smaller grids, non-equilibrium behavior may
be suppressed. Note that Cε is nearly constant in the decay
region for CRGs (see Fig. 12(c)).

IV. CONCLUSIONS

A total of 11 grids in four families, including single-
and multi-scale grids, were tested to investigate the develop-
ment and decay characteristics of grid-generated turbulence.
Special attention has been focused on dissipation and the
non-equilibrium nature in the decay region.

The main results are as follows.

1. A wide non-equilibrium region is observed for FG3 and
FG4 (with three and four iterations) of the fractal square
grid. The smallest grid elements of the fractal square grid
play an important role in generating a nearly constant
Taylor microscale λ and integral length scale Lu in the
decay region.

2. Xpeak is determined mainly by X∗ as already shown in
previous studies. The profiles of u′c in the far downstream
region are better collapsed when the streamwise distance
is normalized by M or L0.

3. A simple combination of large and small grids does
not reproduce elongated non-equilibrium regions as
observed for fractal square grids. Instead, a combi-
nation of a large square grid and inhomogeneously
arranged smaller grids (i.e., the existence of “shielding”
and “open” areas) produces elongated non-equilibrium
regions.

4. Re0 is a more appropriate choice as a global/inlet
Reynolds number than ReM , i.e., Cε ∝Re1/2

0 /Reλ (equiva-

lently, Cε ∝Re0/ReL) rather than Cε ∝Re1/2
M /Reλ (equiv-

alently Cε ∝ ReM/ReL).

Regarding our conclusion 3, comparison between FG4 (as
well as QFGs) and CRGs indeed suggests that inhomogeneity
of grid geometry causes non-equilibrium behavior. However,
although “inhomogeneous” grids yield wider spatial ranges
of non-equilibrium dissipation as shown in this paper, this
behavior does not necessarily occur as a result of the one-point
inhomogeneity that the grids may or may not impose on the
turbulent flow. In the turbulent flows produced by regular and
fractal grids, spatial turbulence inhomogeneities in the one-
point statistics do exist and cause turbulence production and
transport in the one-point energy equation.10,13 However, these
inhomogeneities do not affect the two-point energy equation
on the scales for which the inertial energy cascade occurs.39

This would suggest that the cascade mechanism of the turbu-
lence dissipation is not affected by one-point inhomogeneities.
In other words, the inhomogeneity of a two-point energy bal-
ance at the right length-scales is important, rather than the inho-
mogeneity of the one-point energy balance. In fact, DNS stud-
ies of Goto and Vassilicos41,42 showed that non-equilibrium
dissipation scaling is also present even though the interscale
energy dynamics are determined by the Lin equation, which
is not affected by single-point inhomogeneities.

Our new grid type, i.e., quasi-fractal grids (QFGs), is eas-
ier to fabricate compared to the well-established fractal square
grids while generating similar turbulent fields. This feature is
helpful in possible practical applications of fractal grids.25–29
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