
This is the peer reviewed version of the following article: Y. Andoh, N. Yoshii, A. Yamada, and 
S. Okazaki, “Evaluation of atomic pressure in the multiple time‐step integration algorithm”, 
Journal of Computational Chemistry, 38(10), 704-713 (2017), which has been published in 
final form at https://doi.org/10.1002/jcc.24731.  
 
This article may be used for non-commercial purposes in accordance with Wiley Terms and 
Conditions for Use of Self-Archived Versions. 



Evaluation of atomic pressure in the multiple time-step
integration algorithm

Yoshimichi Andoh∗, Noriyuki Yoshii†, Atsushi Yamada‡, Susumu Okazaki§¶

December 28, 2016

Abstract

In molecular dynamics (MD) calculations, reduction in calculation time per MD
loop is essential. A multiple time-step (MTS) integration algorithm, the RESPA
(Tuckerman, M.E.; Berne, B.J.; J. Chem. Phys. 1992, 97 , 1990-2001), enables re-
ductions in calculation time by decreasing the frequency of time-consuming long-range
interaction calculations. However, the RESPA MTS algorithm involves uncertainties
in evaluating the atomic interaction-based pressure (i.e., atomic pressure) of systems
with and without holonomic constraints. It is not clear which intermediate forces and
constraint forces in the MTS integration procedure should be used to calculate the
atomic pressure. In this article, we propose a series of equations to evaluate the atomic
pressure in the RESPA MTS integration procedure on the basis of its equivalence to
the Velocity-Verlet integration procedure with a single time step (STS). The equations
guarantee time-reversibility even for the system with holonomic constrants. Further,
we generalize the equations to both (i) arbitrary number of inner time steps and (ii)
arbitrary number of force components (RESPA levels). The atomic pressure calcu-
lated by our equations with the MTS integration shows excellent agreement with the
reference value with the STS, whereas pressures calculated using the conventional ad
hoc equations deviated from it. Our equations can be extended straightforwardly to
the MTS integration algorithm for the isothermal NV T and isothermal–isobaric NPT
ensembles.
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For molecular dynamics calculations, a series of equations to evaluate the atomic pressure
in the RESPA multiple time-step (MTS) integration procedure are proposed on the basis of
its equivalence to the Velocity-Verlet integration procedure with a single time step (STS).
The atomic pressure calculated by our equations with the MTS integration shows excellent
agreement with the reference value with the STS, whereas pressures calculated using the
conventional ad hoc equations deviated from it.

2



1 INTRODUCTION

In molecular dynamics (MD) calculations, reduction of the computation time per MD step

with accuracy of the calculations unchanged has been required widely in the field. One

promising approach to this is an implementation of the multiple time-step (MTS) integration

algorithm to solve Newton’s equations of motion numerically for each atom. The basic idea

of the MTS integration is as follows1: Forces acting on atom j, fj, are decomposed into fast

and slowly varying components, f fast
j and f slow

j , respectively. Two kinds of time step, δt and

∆t, are then used to solve the equation of motion, where δt = ∆t/n with a number of inner

time steps n. f slow
j is evaluated only once per one MD loop, whereas f fast

j is evaluated n

times. Therefore, the calculation time of f slow
j , which is typically the long-range Coulombic

force in the reciprocal space treated by the Ewald method2 or that from multipole interaction

in the fast multipole method (FMM)3, can be reduced by a factor of n. When an MD code

is parallelized by the Message Passing Interface (MPI), the time for MPI communications

relating to the above long-range force calculation can also be saved by the MTS integration.

The most sophisticated algorithm for MTS integration is the reversible reference system

propagator algorithms (RESPA).4–7 In RESPA, the time evolution of coordinate and veloc-

ity of atom j, rj(t) and vj(t), respectively, are described by the time evolution operator

(propagator) exp(iLt), where L is the Liouville operator and i =
√
−1 is the imaginary unit.

For a Hamiltonian system composed of N atoms, iL can be written as:4

iL =
N∑

j=1

vj ·
∂

∂rj

+
N∑

j=1

fj

mj

· ∂

∂vj

. (1)

Let the first and the second terms in Eq. (1) be iL1 and iL2, then the Trotter expansion

gives:

exp(iL∆t) = exp

(
iL2

∆t

2

)
exp(iL1∆t)

(
iL2

∆t

2

)
+ O(∆t3), (2)

which corresponds to the well-known velocity–Verlet integration algorithm1 with a single

time step (STS) ∆t. Here, magnitude of ∆t is determined by the time scale of the fastest

varying component of fj.

In the MTS integration by RESPA, fj is composed of the fast and slowly varying com-

ponents, f fast
j and f slow

j , respectively. Then, iL2 = iLfast
2 + iLslow

2 , and Eq. (2) is factorized
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into4

exp(iL∆t) ≈ exp

(
iLslow

2

∆t

2

)
×

[
exp

(
iLfast

2

δt

2

)
exp(iL1δt) exp

(
iLfast

2

δt

2

)]n

exp

(
iLslow

2

∆t

2

)
. (3)

where the propagators exp(iLfast
2 δt/2) exp(iL1δt) exp(iLfast

2 δt/2) at the inner position work

every step of δt, while exp(iLslow
2 ∆t/2)s at the outermost sides work only once every n steps

of δt. Thus, the cost for the calculation of f slow
j can be reduced by 1/n. ∆t and δt are chosen

according to the time scales of f slow
j and f fast

j , respectively. With an appropriate choice of

n, MTSs given by Eq. (3) generates trajectories in which the Hamiltonian of the particle

system is preserved at the same level as the trajectories generated by Eq. (2) with the single

time step δt.

However, MTS integration algorithm involves uncertainty in evaluating the atom-based

pressure (i.e., the atomic pressure) of the system. It is not clear which intermediate force

that appears in the MTS procedure should be used to calculate the atomic pressure in the

MD step. In this paper, we propose an analytical solution for this problem. We obtained a

series of equations for the evaluation of atomic pressure which should be used in the RESPA

MTS integration algorithm, on the basis of the equivalence to the velocity–Verlet method in

the STS calculations. We show that MTS MD runs with holonomic constraints give proper

values of the atomic pressure when they are evaluated by our equations. The new equations

were generalized to the arbitrary number of inner time steps n for the calculation of the

fast varying force(s) and arbitrary number of force components (RESPA levels) lRESPA of

fj. Our equations can be applied straightforwardly to RESPA for canonical ensembles and

isothermal–isobaric ensembles.5–7
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2 METHODOLOGY

In this sections, we derive a series of equations to calculate the atomic pressure for the RESPA

MTS integration algorithm. First, in Section 2.1, the discretized equations of motion without

holonomic constraints are shown to explain our basic strategy. Here, the number of inner

time steps n of the fast force in Eq. (3) was set to be 2 for simplicity, and fj is decomposed

into two components, f fast
j and f slow

j (i.e., lRESPA=2). The net force F with which the

atomic virial should be calculated is obtained on the basis of the equivalence to the velocity–

Verlet integration algorithm with a STS. Second, in Section 2.2, the net constraint force G

is obtained to calculate atomic pressure from the holonomic constraints. In Appendices D

and E in the Supporting Information, the generalized descriptions are shown for the atomic

pressure produced by the net forces and net constraint forces for an arbitrary number of inner

time steps n for the fast varying force(s) and for an arbitrary number of force components

lRESPA with different associated time scales.

2.1 Multiple time-step integration without holonomic constraints

The discretized equations generated by the STS propagator in Eq. (2) are given as:

vj

(
t +

∆t

2

)
= vj(t) +

∆t

2

fj(t)

mj

(4a)

rj(t + ∆t) = rj(t) + ∆t vj

(
t +

∆t

2

)
(4b)

vj(t + ∆t) = vj

(
t +

∆t

2

)
+

∆t

2

fj(t + ∆t)

mj

, (4c)

where we assume that there are no holonomic constraints in the system. A schematic figure

of the time evolutions of rj and vj by eq. (4) is depicted in Fig.1A. By substituting Eq. (4a)

into Eqs. (4b) and (4c), we have:

rj(∆t) = rj(0) + ∆t vj(0) +
∆t2

2

fj(0)

mj

(5a)

vj(∆t) = vj(0) +
∆t

2

fj(0) + fj(∆t)

mj

, (5b)

respectively, where the reference time t is set to be 0 just for simplicity. We named these

two equations “two-step update process”. We can use them to evaluate the instantaneous
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atomic pressure P of the system as:

P (0) =
1

3V

[
N∑

i=1

mjv
2
j (0) +

N∑
i=1

rj(0) · fj(0)

]
, (6)

or:

P (∆t) =
1

3V

[
N∑

i=1

mjv
2
j (∆t) +

N∑
i=1

rj(∆t) · fj(∆t)

]
. (7)

The first terms in the brackets in Eqs. (6) and (7) are the kinetic part of atomic pressure, and

the second terms are the virial parts, which stem from interatomic interactions. Equations

(6) and (7) are the same as each other except for time and used to calculate time average of

P in the calculations without constraints. However, as discussed later, where constrains are

involved, these two are used in different ways.

In contrast, the MTS propagator in Eq. (3) with n = 2 (∆t = 2δt), for example, gives

the following discretized equations:

v

(
δt

2

)
= v(0) +

δt

2

f fast(0) + 2f slow(0)

m
(8a)

r(δt) = r(0) + δt v

(
δt

2

)
(8b)

v(δt) = v

(
δt

2

)
+

δt

2

f fast(δt)

m
(8c)

v

(
3δt

2

)
= v(δt) +

δt

2

f fast(δt)

m
(8d)

r(∆t) = r(2δt) = r(δt) + δt v

(
3δt

2

)
(8e)

v(∆t) = v(2δt) = v

(
3δt

2

)
+

δt

2

f fast(∆t) + 2f slow(∆t)

m
, (8f)

where, for simplicity, subscript j is not shown, and the force f is decomposed into two

components f fast and f slow (lRESPA=2). A schematic figure of the time evolutions of rj and

vj by the discretized eq.(8) is presented in Fig.1B.

As for the STS integration in Eq. (4), there is only one choice of timing to evaluate

P , that is, at t = 0 which is equivalent to t = ∆t, since combination of rj and vj at an

intermediate time t = t + ∆t
2

is nonphysical. In contrast, as for the MTS integration in

Eq. (8), an additional choice of timing to evaluate P at t = δt might be possible formally.

However, the trajectories at intermediate times are not based on the total atomic forces,
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and thus do not reflect correct physical behavior. We should evaluate the atomic pressure

at t = 0, equivalently t = ∆t, even for the MTS integrations, too.

To obtain the proper expression for the atomic pressure in the MTS procedure, the basic

strategy in the present study is (i) to generate a set of discretized equations of motion such as

Eqs. (8a)–(8f) from the time evolution operator, (ii) to derive equations for a two-step update

process with ∆t in the same way as that in Eq. (5), and (iii) to obtain an instantaneous

atomic pressure for the system as will be shown later in Eq. (11).

An example for the case of n=2 is as follows. First, in the same way as the case of Eq.

(4) and (5), Eq. (8) can be simplified by the substitution and can be reduced to

r(∆t) = r(0) + ∆tv(0) +
∆t2

2

F (0)

m
(9a)

v(∆t) = v(0) +
∆t

2

F (0) + F (∆t)

m
, (9b)

where we define the “net forces” F (0) and F (∆t) at t = 0 and ∆t, respectively, to be

F (0) =
f fast(0) + f fast(δt)

2
+ f slow(0) (10a)

F (∆t) =
f fast(δt) + f fast(∆t)

2
+ f slow(∆t), (10b)

respectively. F (0) and F (∆t) are composed of f fast and f slow at various intermediate times.

It should be noted that the update of r(0) and v(0) by these F (0) and F (∆t) formally

using the STS equation for ∆t given by Eq. (9) presents the same trajectory as the update

following Eqs. (8). Therefore, one reasonable choice for the description of the instantaneous

atomic pressure of the system should be

P (0) =
1

3V

[∑
mv2(0) +

∑
r(0) · F (0)

]
(11a)

P (∆t) =
1

3V

[∑
mv2(∆t) +

∑
r(∆t) · F (∆t)

]
. (11b)

in accordance with Eqs.(6) and (7).

Eqs. (11) can be obtained in a different way by decomposing propagator for the isothermal–

isobaric ensemble with a MTS proposed by Tuckerman et al.6 as is discussed in Appendix

A in the Supporting Information.
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Furthermore, equation (11) is essentially different from the conventional ad hoc estimation

of P (0) and P (∆t), where the pressures are calculated as

P adhoc1(0) =
1

3V

[∑
mv2(0) +

∑
r(0) · {f fast(0) + 2f slow(0)}

]
(12a)

P adhoc1(∆t) =
1

3V

[∑
mv2(∆t) +

∑
r(∆t) · {f fast(∆t) + 2f slow(∆t)}

]
, (12b)

respectively. The prefactors 2 of f slow(0) and f slow(∆t) may result from the force expressions

in Eqs.(8a) and (8f). P adhoc1(0) and P adhoc1(∆t) are evaluated only from the information of

v, r, and f at t = 0 and ∆t, respectively.

Another conventional ad hoc method is a simple averaging of instantaneous atomic pres-

sures at every intermediate time in the MTS procedure8,9. If the number of inner time steps

for the fast varying force n is two, then ad hoc equations for the pressures are

P adhoc2(0) =
1

3V

[
1

2

(∑
mv2(0) +

∑
mv2(δt)

)
+

1

2

(∑
r(0) · {f fast(0) + f slow(0)} +

∑
r(δt) · {f fast(δt) + f slow(0)}

)]
(13a)

P adhoc2(∆t) =
1

3V

[
1

2

(∑
mv2(δt) +

∑
mv2(∆t)

)
+

1

2

(∑
r(δt) · {f fast(δt) + f slow(0)} +

∑
r(∆t) · {f fast(∆t) + f slow(∆t)}

)]
.

(13b)

Note that f slow(∆t) is yet not calculated at t = δt. Thus, r(δt)·{f fast(δt)+f slow(0)} appears.

When n = 2 in the Eq. (3), these equations are almost the same as Eqs. (11) together with

Eqs. (10).

It is also interesting to note that Eqs.(11) together with Eqs.(10) present time-reversibility

for the trajectories. That is, when t=0 and ∆t are interchanged, these equations remain

unchanged, whereas Eqs.(13) do not.

A practical implementation of Eq. (11) for the two-body interatomic potential is shown

in Appendix B in the Supporting Information.
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2.2 Multiple time-step integration with holonomic constraints

We assume that the system includes K holonomic constraints described by

gk = (rl − rm)2 − d2
lm = 0, k = 1, ..., K, (14)

where dlm is an interatomic distance to be constrained between the two atoms l and m.

The STS velocity–Verlet integration algorithm with the SHAKE10 and RATTLE11 methods

gives:

v

(
∆t

2

)
= v(0) +

∆t

2

f(0) + gSHAKE(0)

m
(15a)

r(∆t) = r(0) + ∆t v

(
∆t

2

)
(15b)

v(∆t) = v

(
∆t

2

)
+

∆t

2

f(∆t) + gRATTLE(∆t)

m
, (15c)

or equivalently:

r(∆t) = r(0) + ∆t v(0) +
∆t2

2

f(0) + gSHAKE(0)

m
(16a)

v(∆t) = v(0) +
∆t

2

[
f(0) + gSHAKE(0)

m
+

f(∆t) + gRATTLE(∆t)

m

]
, (16b)

where gSHAKE(0) and gRATTLE(∆t) are the constraint forces at t = 0 for the SHAKE and at

t = ∆t for the RATTLE. According to Eqs. (6) and (7), an instantaneous atomic pressure

of the system with holonomic constraints is:

P (0) =
1

3V

[∑
mv2(0) +

∑
r(0) · {f(0) + gSHAKE(0)}

]
, (17a)

P (∆t) =
1

3V

[∑
mv2(∆t) +

∑
r(∆t) · {f(∆t) + gRATTLE(∆t)}

]
. (17b)

In contrast, with the holonomic constraints, the propagator Eq. (3) with n = 2 (i.e.,
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∆t = 2δt), for example, generates the discretized equations of motion as follows

v

(
δt

2

)
= v(0) +

δt

2

f fast(0) + 2f slow(0) + gSHAKE(0)

m
(18a)

r(δt) = r(0) + δt v

(
δt

2

)
(18b)

v(δt) = v

(
δt

2

)
+

δt

2

f fast(δt) + gRATTLE(δt)

m
(18c)

v

(
3δt

2

)
= v(δt) +

δt

2

f fast(δt) + gSHAKE(δt)

m
(18d)

r(∆t) = r(δt) + δt v

(
3δt

2

)
(18e)

v(∆t) = v

(
3δt

2

)
+

δt

2

f fast(∆t) + 2f slow(∆t) + gRATTLE(∆t)

m
. (18f)

In Eq. (18), the SHAKE and RATTLE procedures are performed according to the XI-

RESPA expansion of the time evolution operator, taking into account their applicability to

the NPT ensemble5.

Similar to Eq. (15), Eq. (18) can also be simplified by the substitution and can be

rewritten as

r(∆t) = r(0) + ∆tv(0) +
∆t2

2

F (0) + GSHAKE(0)

m
(19a)

v(∆t) = v(0) +
∆t

2

[
F (0) + GSHAKE(0)

m
+

F (∆t) + GRATTLE(∆t)

m

]
, (19b)

where the net constraint forces GSHAKE(0) and GRATTLE(∆t) at t = 0 for the SHAKE and

at t = ∆t for the RATTLE are defined by:

GSHAKE(0) =
gSHAKE(0)

2
+

gSHAKE(δt) + gRATTLE(δt)

4
(20a)

GRATTLE(∆t) =
gSHAKE(δt) + gRATTLE(δt)

4
+

gRATTLE(∆t)

2
, (20b)

respectively. Equation (19) indicates that the STS update of r(0) and v(0) by F (0) +

GSHAKE(0) and F (∆t)+GRATTLE(∆t), respectively, is formally equivalent to the MTS update

of r(0) and v(0) by Eq. (18). Thus, one promising choice for the instantaneous atomic

pressure of the system should be

P (0) =
1

3V

[∑
mv2(0) +

∑
r(0) · {F (0) + GSHAKE(0)}

]
(21a)

P (∆t) =
1

3V

[∑
mv2(∆t) +

∑
r(∆t) · {F (∆t) + GRATTLE(∆t)}

]
. (21b)
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Eqs. (21) can be also obtain in a different way by decomposing the propagator for the

isothermal–isobaric (NPT ) ensemble with a MTS in the same manner as in the Appendix

A in the Supporting Information.

These two equations are essentially different from the conventional ad hoc equations to

calculate the atomic pressure using v, r, f , and g at t = 0 and ∆t

P adhoc1(0) =
1

3V

[∑
mv2(0) +

∑
r(0) · {f fast(0) + 2f slow(0) + gSHAKE(0)}

]
(22a)

P adhoc1(∆t) =
1

3V

[∑
mv2(∆t) +

∑
r(∆t) · {f fast(∆t) + 2f slow(∆t) + gRATTLE(∆t)}

]
,

(22b)

and from the ad hoc simple average of instantaneous atomic pressures at every intermediate

time in the MTS procedure8,9

P adhoc2(0) =
1

3V

[
1

2

(∑
mv2(0) +

∑
mv2(δt)

)
+

1

2

(∑
r(0) · {f fast(0) + f slow(0) + gSHAKE(0)}

+
∑

r(δt) · {f fast(δt) + f slow(0) + gSHAKE(δt)}
)]

(23)

for the SHAKE and

P adhoc2(∆t) =
1

3V

[
1

2

(∑
mv2(δt) +

∑
mv2(∆t)

)
+

1

2

(∑
r(δt) · {f fast(δt) + f slow(0) + gRATTLE(δt)}

+
∑

r(∆t) · {f fast(∆t) + f slow(∆t) + gRATTLE(∆t)
)]

(24)

for the RATTLE.

Again, it is interesting to note that Eqs.(21) together with Eqs.(10) and (20) are time-

reversible in time. It is shown that the velocity-Velret algorithm combined with the SHAKE

and RATTLE methods is symplectic and time-reversible if the iteration is carried to con-

vergence12. As numerically shown later in Table 3 and 4, the constraint forces by the

SHAKE and RATTLE are symmetric in time, too. Thus, when t=0 and ∆t are inter-

changed, these equations remain unchanged. In contrast, Eqs.(23) and (24) does not have

such time-reversible symmetric nature.
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As shown later in Table 1, difference between Eq. (21) and Eqs. (23) and (24) causes a

difference in the time-averaged atomic pressure. Difference between Eq. (21) and Eq. (22)

causes larger difference in the time-averaged atomic pressure. An example of Fortran coding

of Eq. (21) is shown in Appendix C in the Supporting Information.

Furthermore, we also derived the generalized equations for the net forces and the net

constraint forces for an arbitrary number of inner time steps n and an arbitrary number of

force components lRESPA for the total force fj chosen. Consequently, the generalized net

forces:

F (0) =
1

n2

[
n−1∑
k=0

k∑
j=0

f fast(jδt) +
n−1∑
k=1

k∑
j=1

f fast(jδt)

]
+ f slow(0) (25a)

F (∆t) =
1

n

[
n−1∑
j=0

f fast(jδt) +
n∑

j=1

f fast(jδt)

]
+ f slow(0) + f slow(∆t) − F (0) (25b)

and, the generalized net constraint forces:

GSHAKE(0) =
1

n2

[
n−1∑
k=0

k∑
j=0

gSHAKE(jδt) +
n−1∑
k=1

k∑
j=1

gRATTLE(jδt)

]
(26a)

GRATTLE(∆t) =
1

n

[
n−1∑
j=0

gSHAKE(jδt) +
n∑

j=1

gRATTLE(jδt)

]
− GSHAKE(0) (26b)

can be obtained as a function of n (see appendix D and E in the Supporting Information).

On the other hand, the net forces and net constraint forces generalized to lRESPA are obtained

by introducing intermediate generalized net forces hierarchically. An example for the case

of lRESPA = 3 is described in Appendix D in the Supporting Information.

3 CALCULATIONS

We have carried out a series of MD calculations to demonstrate that the expressions for the

atomic pressures given in the present study based on the net forces and net constraint forces

is proper for the system with holonomic constraints for the cases lRESPA = 2 with n = 2, and

lRESPA = 3 with n1 = 4 and n2 = 2.

We performed two kinds of MD runs in the canonical ensemble, reference runs and test

runs. For the reference runs, the STS integration scheme was adopted to update atomic
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coordinates and velocities using the total forces, which gives the correct time-averaged atomic

pressure for the system. For the test runs, the MTS integration scheme was adopted for the

multistage update of atomic coordinates and velocities based on the decomposed forces. The

resultant pressures were compared with the reference ones.

3.1 System

Three different systems were prepared in a cubic cell with three-dimensional periodic bound-

ary condition. The first one contains water molecules only (WAT), while the second one con-

tains ethanol molecules only (ETH). The third one contains protein self-assembly poliovirus

capsid, lipid, ions, and water molecules (PV), identical to our previous work13.

In the system WAT, three distance constraints (O–H, O–H, and H–H) were imposed on

the water molecules to form a rigid body. In the system ETH, C–H and O–H distances

were constrained, whereas other intramolecular degrees of freedom, stretchings, bendings,

and dihedral rotations, were flexible. In the system PV, the water molecules were treated

as rigid body in the same manner as the system WAT, and the distances of all chemical

bonds relevant to hydrogen atom were constrained, keeping other intramolecular degrees of

freedom flexible. The system WAT consists of 6510 water molecules and the system ETH

has 1331 ethanol molecules. In the system PV, the capsid is composed of 240 viral proteins

(60 each of VP1, VP2, VP3, and VP4) and 60 sphingosine lipid pocket factors, while an

electrolyte solution contains 10652 ions and 1884218 water molecules. Thus, total number of

atoms N was 19530 for the system WAT, 11979 for the system ETH, and about 6.5 million

for the system PV.

To distinguish between the reference and demonstration runs, subscripts were added to

the system notation. For example, WATref , and ETHmts represent the reference run for

the system WAT with a STS and the demonstration runs for the system ETH with MTS,

respectively.

13



3.2 MD calculations

The modified TIP3P (mTIP3P14,15) model commonly used in the CHARMM was adopted

for water. For ethanol, the all-atom CHARMM potential was adopted, where all parameters

were taken from the standard CHARMM topology and parameter files registered as RESI

ETOH. For proteins and electrolytes, the CHARMM2216 with CMAP17 and ion parameters

in the standard CHARMM files was used, while the CHARMM2718 was used for sphingosine.

The Lennard-Jones (LJ) interaction was cut off at 1.2 nm without the long-range correction

for potential energy and pressure. The Coulomb interaction was calculated by the particle-

mesh Ewald (PME) method19 with the damping parameter α = 3.20 nm−1 for WAT and

ETH. The space grid for the FFT was made 64×64×64. For system PV, it was calculated by

the FMM3 with the spherical harmonic expansion up to the fourth order, and the interaction

with the multipole moments of the entire MD simulation cell in the periodic boundary

condition was calculated using the Ewald method for multipoles20. We emphasize that our

conclusions do not depend on molecular species, choice of the potential model, calculation

method for the Coulomb interaction used in the test calculations, or whether the LJ long-

range correction is taken into account or not.

The equations of motion were solved using STS RESPA for the reference runs, and

with MTSs for the test runs. In the test runs, the total atomic forces fj were decomposed

into fast forces f fast
j , intermediate forces f intermed

j , and slow forces f slow
j . The f fast

j is from

intramolecular interactions. For system WAT, these interactions were not taken into account.

The f intermed
j is from the LJ and Coulomb interactions in the real space within the cutoff

radius for the PME method and in the pairwize additive part for the FMM. The f slow
j is from

the Coulomb interaction in the reciprocal space for the PME method and that by multipoles

for the FMM.

The distance constraints were imposed using the SHAKE/RATTLE methods10,11 with

tolerance of 10−8. The P-SHAKE and P-RATTLE algorithms21, which give the same calcu-

lation accuracy as the standard SHAKE and RATTLE methods were adopted. All calcula-

tions were performed using the MODYLAS,22 in which subroutines to calculate the atomic

pressure of the system at t = ∆t given by Eq. (21b) are implemented.
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First, for the system WAT and ETH, the preliminary STS MD runs were carried out

for 10 ns under the constant NPT condition with P = 1.0 atm and T = 298.15 K to

estimate a thermally equilibrated volume of the system 〈VMD〉. The time step, ∆t, was 2 fs

for WAT and 0.5 fs for ETH, according to the time scale of fastest varying force component

in the system under consideration, f intermed
j for WAT and f fast

j for ETH. For the system PV,

〈VMD〉 was obtained from the result of our previous study13: Thermally equilibrated system

was obtained by 200 ns MD calculation under constant NPT calculation with P=1 atm and

T = 310.15 K, where 〈VMD〉 was obtained over the last 100 ns run. In the MD run13, multiple

time steps of ∆T=4 fs with lRESPA=3, n1=4, and n2=2 (i.e. δt=0.5 fs and ∆t=2.0 fs) in

Eq. (A31) in the Appendix D was adopted. Because it is computationally too expensive

to calculate 〈VMD〉 based on the constant NPT MD calculation with a STS of 0.5 fs for a

6.5 million atoms system, 〈VMD〉 obtained by the MTS NPT run was used in the following

discussion. P and T were controlled by the Andersen barostat23 and the Nosé–Hoover chain

thermostat24–26 to their target values. The time constants of the thermostat and barostat

were 0.5 ps and 1.0 ps, respectively.

Next, for the system WAT and ETH, the reference MD runs with a STS and test runs

with MTSs were carried out for 20 ns under the constant NV T condition with V = 〈VMD〉

and T = 298.15 K. For the system PV, calculation time length was over 5 ns with V = 〈VMD〉

and T=310.15 K. In these runs, T was controlled by the Nosé–Hoover chain thermostat with

the time constant 0.5 ps. The propagators of the thermostat were located at the outermost

position in accordance with the XO-RESPA.5 We chose NV T ensemble instead of NV E

ensemble because we found that the initial velocities strongly influence the accuracy of the

calculated atomic pressure 〈PMD〉, in the NV E ensemble.

In the reference MD runs, the STS ∆t was 2 fs for WATref and 0.5 fs for ETHref and

PVref . In the test MD runs, the MTSs were as follows. For WATmts with lRESPA=2 and

n=2, δt and ∆t were 2 fs, and 4 fs, respectively. For ETHmts and PVmts with lRESPA=3,

n1=4, and n2=2 in Eq. (A31) in the Appendix D, δt, ∆t, and ∆T were 0.5 fs, 2 fs, and 4 fs,

respectively.
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4 RESULTS

The value of 〈VMD〉1/3 averaged over the 10 ns preliminary NPT runs was 5.7792±0.0001 nm

for the system WAT, 5.0503 ± 0.0005 nm for ETH, and that averaged over the 100 ns run

was 39.996 ± 0.001 nm for the system PV. Errors are defined as the standard deviation of

block average over each 2 ns interval. The density of the system 〈ρMD〉 was 1.0090 ± 0.0001

g cm−3 for WAT, which corresponds well with that obtained in a previous MD study with

the mTIP3P water model15 (1.009 g cm−3) under the same thermodynamic and calculation

conditions.

Figure 2 shows block average of pressures 〈PMD〉i for the reference and test runs in the

NV T ensemble. The averaged atomic pressure 〈PMD〉 over the entire simulation time (20 ns

for WAT and ETH, 5 ns for PV) in the thermal equilibrium are listed in Table 1.

Agreement of the resultant pressures in the test runs with those in the reference runs

depends much on the equations adopted for the pressure calculation. As clearly shown in

Table 1, our equations showed excellent agreement with the reference values for the system

WAT and ETH. The calculated 〈PMD〉 based on our equation (21) was 1±1 atm for WATmts,

and 1 ± 3 atm for ETHmts, which agree well with 1 ± 1 atm for WATref and 0 ± 2 atm for

ETHref , respectively. It was −0.4 ± 0.3 for PVmts, which a little deviated from −4.6 ± 0.4

for PVref . This small deviation might stem from a shortage of average time length of 5 ns

with a STS. However, it should be noted that difference in 〈PMD〉 between PVmts and PVref

is much smaller than that calculated by the ad hoc equations.

The ad hoc simple average equation (24) tends to overestimate the atomic pressure. For

WATmts with n = 2 and lRESPA = 2, 〈P adhoc2
MD 〉 = 3 ± 2 atm. Agreement is worse for ETHmts

and PVmts with n1 = 4, n2 = 2 and lRESPA = 3; that is, 〈P adhoc2
MD 〉 = 6± 2 atm for the former

and 10.5 ± 0.2 atm for the latter, respectively.

Further, the pressure based on the ad hoc equation (22) greatly underestimated the

pressure regardless of the choice of n and lRESPA; 〈P adhoc1
MD 〉 = −29 ± 1 atm for WATmts,

−5830 ± 9 atm for ETHmts, and −159 ± 2 atm for PVmts. These large deviations indicate

that the ad hoc equations (24) and (22) are not appropriate to evaluate the atomic pressure

of the system.
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5 DISCUSSION

In order to investigate the mechanism that the equations (21) only provides the atomic

pressures corresponding well to their reference values, we decomposed the averaged atomic

pressure into contributions from each terms. The decompositions were done for the systems

WATref and ETHref .

First, Table 2 lists decomposed contributions of each terms in the equations (6) and (7)

to 〈PMD(0)〉 and 〈PMD(∆t)〉 with a STS. In these cases, large positive values of kinetic terms

〈
P

mv2(j∆t)
3V

〉 and virial terms from interatomic potential functions 〈
P

r(j∆t)·f(j∆t)
3V

〉 are can-

celled by the virial terms from constraint forces 〈
P

r(j∆t)·fSHAKE(j∆t)
3V

〉 and 〈
P

r(j∆t)·fRATTLE(j∆t)
3V

〉

with large negative values, which results in 〈PMD(0)〉=〈PMD(∆t)〉=1 atm.

In Contrast, Table 3 and 4 list decomposed contributions of each terms in the equation

(21b) to 〈PMD(∆t)〉 with a MTS. Note that superscript fast in f fast in Eqs.(10b), (22b) and

(24) are replaced by superscript intermed in the following discussion for WATmts. The results

for 〈PMD(0)〉 are shown in Table S1 and S2 in the Supporting Information. In these tables,

we also listed weight factors of the weighted-average of 〈PMD(∆t)〉 for each term, wkinetic(j),

wfast(j), wintermed(j), wslow(j), wSHAKE(j) and wRATTLE(j). That is,

〈PMD(∆t)〉 =
∑

j

wkinetic(j)

〈∑
mv2(jδt)

3V

〉
+

∑
j

wfast(j)

〈∑
r(∆t) · f fast(jδt)

3V

〉
+

∑
j

wintermed(j)

〈∑
r(∆t) · f intermed(jδt)

3V

〉
+

∑
j

wslow(j)

〈∑
r(∆t) · f slow(jδt)

3V

〉
+

∑
j

(
wSHAKE(j)

〈∑
r(∆t) · gSHAKE(jδt)

3V

〉
+ wRATTLE(j)

〈∑
r(∆t) · gRATTLE(jδt)

3V

〉)
(27)

The values of w(j) for WATmts are determined by the equation (21b) together with the

eqs.(10b) and (20b). Those for ETHmts are determined by factorizing eqs.(A38b) and (A39b)

in the Appendix D with given n1 and n2. Note that a summation of w(j) over j is 1 for each

term, and that
∑

j(w
SHAKE(j) + wRATTLE(j)) = 1 for constraint force terms.

The weighted-averages of 〈PMD(∆t)〉 with these w(j) correspond well to their reference

values with a STS as shown in Table 1. The same conclusion is obtained for 〈PMD(0)〉 (see
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Table S1 and S2 in the Supporting Information).

On the other hand, weight factors for the ad hoc equations are shown in Table 5. For

the ad hoc simple average based on eq.(24), all weight factors have a value of 0.5. Then,

the weighted-averaged values of the slowly varying force term and constraint force term are

coincidentally equivalent to those based on the eq. (21b). However, the weighted-averaged

values of the kinetic term and fast varying force term are slightly but evidently different from

those based on eq. (21b). These differences result in deviation of the estimated pressure

from its reference value with a STS.

Phenomenologically, it might be better to change weight factors for these terms to 1
2
, 0,

and 1
2

for j = 0, 1, and 2, respectively, to obtain an agreement of the weighted-averaged

pressure value with its reference value. However, in general, such adjustments can not be

made in advance. For example, in the case of ETHmts shown in table 4 with lRESPA = 3,

n1 = 4, and n2 = 2, it is almost impossible to find proper w(j) for each term beforehand.

For the case of the ad hoc average based on eq.(22b), weight factors has a value of 1

except for slowly varying force term. Large negative deviation of the estimated pressure

from its reference value results from the factor 2 of the slowly varying force term. However,

it is also impossible to adjust these weight factors, because the average based on eq.(22b) is

ad hoc.

Therefore, our equation (21) with the generalized net forces and the net constraint forces

present excellent evaluation for the atomic pressure when Newton’s equations of motion are

numerically solved by the RESPA integration method with MTSs.

Further, it is interesting to note that Eqs. (21) with net forces, F (0) and F (∆t), and

net constraint forces, GSHAKE(0) and GRATTLE(∆t), have time-reversibile symmetric nature.

As is shown in Table 3 and Table S1 for the case of n=2 and lRESPA = 2, and in Table 4

and Table S2 for the case of n1=4, n2=2 and lRESPA = 3, time averages and weight factors

are symmetric in time. Functional form of F (0) and F (∆t), together with GSHAKE(0) and

GRATTLE(∆t), are unchanged when the direction of time evolution is reversed for any n and

lRESPA. This time-reversible symmetric structure of the equations might be important for the

agreement of the calculated atomic pressure values with MTSs with their reference values.

It should be noted that, when NV T and NV E ensembles are adopted for the MD calcula-
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tions, trajectories generated by RESPA with MTSs are the same irrespective of the pressure

calculation . That is, the physical properties remain unchanged except for the pressure even

when the ad hoc estimations are used. However, the MD calculations are usually carried out

in the NPT ensemble. In this case, the correct calculation for the pressure is essential in

the reliability of the MD calculations.
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6 CONCLUSIONS

We proposed a series of equations for the calculation of atomic pressures on the basis of the

net forces and net constraint forces when the RESPA MTS integration algorithm is used in

the MD calculations. Further, we have generalized the formulas of these net forces and net

constraint forces for the arbitrary number of inner time steps n and force components lRESPA.

We examined the validity of our descriptions by carrying out a series of MD calculations for

water, ethanol, and protein assembly in electrolyte solution. The averaged atomic pressures

based on our equations agreed well with the value obtained from the reference MD runs with

the STS, although the pressures based on ad hoc equations showed systematic deviation

from the reference values.

In recent large-scale MD calculations handling more than, for example, 106 atoms, the

RESPA MTS integration becomes essential in order to reduce the calculation time of the

long-range forces and MPI communications related to the long-range force calculations when

MD codes are parallelized by the MPI. Then, the present description can be a basis of the

pressure calculation in those large-scale MD calculations.
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Figure 1: A schematic figure for the time evolutions of rj and vj following eq.(4) (panel A),

and eq.(8) (panel B).

Figure 2: Block average of pressure 〈PMD〉i over 2 ns long interval for system WAT (panel

A) and ETH (panel B), and that over 1 ns long interval for system PV (panel C). Open

circles: reference run with a STS; closed diamonds: test run for equation (21) with MTSs;

cross marks: test run for the ad hoc equation (24) with MTSs; and open triangles: test run

for the ad hoc equation (22) with MTSs. In every panel, the dotted line shows 1 atm as a

guide.
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Table 1: The calculated pressure 〈PMD〉 from the 20 ns reference runs and test runs in NV T

ensemble. A STS of ∆t = 2.0 fs was used for WATref , and ∆t = 0.5 fs for ETHref and PVref .

MTSs of δt = 2.0 fs and ∆t = 4.0 fs were used for WATmts, and the values δt = 0.5 fs,

∆t = 2.0 fs, and ∆T = 4.0 fs for ETHmts and PVmts. The errors represent the standard

deviation among ten 2 ns long block averages for the system WAT and ETH, and five 1 ns

interval averages for the system PV.

Ref. present work ad hoc (24) ad hoc (22b)

WAT 1 ± 1 1 ± 1 3 ± 2 −29 ± 1

ETH 1 ± 2 1 ± 3 6 ± 2 −5830 ± 9

PV −4.6 ± 0.4 −0.4 ± 0.3 10.5 ± 0.2 −159 ± 2
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Table 2: Contributions of each terms in the equations (6) and (7) to 〈PMD(0)〉 and 〈PMD(∆t)〉

with a STS, where f = f fast + f intermed + f slow. Contributions from three types of forces are

separately shown. Each value has an unit of atm. Long hyphens in the table indicate that

the value can not be logically calculated.

WAT ETH

j 0 1 0 1

〈
P

mv2(j∆t)
3V

〉
2740.2 2740.2 2938.0 2938.0

〈
P

r(j∆t)·f fast(j∆t)
3V

〉
– – 400.2 400.2

〈
P

r(j∆t)·f intermed(j∆t)
3V

〉
19832.9 19832.9 2599.5 2599.5

〈
P

r(j∆t)·f slow(j∆t)
3V

〉
-132.2 -132.2 -269.1 -269.1

〈
P

r(j∆t)·gSHAKE(j∆t)
3V

〉
-22440.2 – -5667.4 –

〈
P

r(j∆t)·gRATTLE(j∆t)
3V

〉
– -22440.2 – -5667.4
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Table 3: Contributions of each term in the equation (21b) to 〈PMD(∆t)〉 for WATmts. Each

value has an unit of atm. Long hyphens in the table indicate that the value can not be

logically calculated in the MTS procedure.

j 0 1 2

〈
P

mv2(jδt)
3V

〉
2740.3 2743.5 2740.3

wkinetic(j) 0 0 1

〈
P

r(∆t)·f intermed(jδt)
3V

〉
19830.2 19827.8 19830.2

wintermed(j) 0 1
2

1
2

〈
P

r(∆t)·f slow(jδt)
3V

〉
-132.5 – -132.5

wslow(j) 0 0 1

〈
P

r(∆t)·gSHAKE(jδt)
3V

〉
-22333.7 -22537.8 –

wSHAKE(j) 0 1
4

0

〈
P

r(∆t)·gRATTLE(jδt)
3V

〉
– -22537.8 -22333.7

wRATTLE 0 1
4

1
2
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Table 4: Contributions of each terms to 〈PMD(∆t)〉 for ETHmts. Each value has an unit of

atm. Long hyphens in the table indicate that the value can not be logically calculated in

the MTS procedure.

j 0 1 2 3 4 5 6 7 8〈
P

mv2(jδt)
3V

〉
2938.3 2944.4 2944.7 2944.6 2939.3 2944.6 2944.7 2944.4 2938.3

wkinetic(j) 0 0 0 0 0 0 0 0 1〈
P

r(∆t)·f fast(jδt)
3V

〉
388.7 396.2 400.5 401.7 399.8 401.7 400.5 396.2 388.7

wfast(j) 0 1
32

1
16

3
32

1
8

5
32

3
16

7
32

1
8〈

P

r(∆t)·f intermed(jδt)
3V

〉
2598.7 – – – 2598.7 – – – 2598.7

wintermed(j) 0 0 0 0 1
2 0 0 0 1

2〈
P

r(∆t)·f slow(jδt)
3V

〉
-269.3 – – – – – – – -269.3

wslow(j) 0 0 0 0 0 0 0 0 1〈
P

r(∆t)·gSHAKE(jδt)
3V

〉
-17400.7 -1668.7 -1668.3 -1668.3 -17906.7 -1668.7 -1668.3 -1668.2 –

wSHAKE(j) 0 1
64

1
32

3
64

1
16

5
64

3
32

7
64 0〈

P

r(∆t)·gRATTLE(jδt)
3V

〉
– -1668.2 -1668.2 -1668.7 -17906.6 -1668.3 -1668.3 -1668.7 -17400.7

wRATLTLE(j) 0 1
64

1
32

3
64

1
16

5
64

3
32

7
64

1
8
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Table 5: Weight factors according to the ad hoc equations (22b) and (24) to calculate P (∆t)

for WATmts. Long hyphens in the table indicate that the term is not considered in averaging

procedure.

j 0 1 2〈
P

mv2(jδt)
3V

〉
wkinetic

adhoc(24)(j) – 1
2

1
2

wkinetic
adhoc(22b)(j) – – 1〈

P

r(∆t)·f intermed(jδt)
3V

〉
wintermed

adhoc(24)(j) – 1
2

1
2

wintermed
adhoc(22b)(j) – – 1〈

P

r(∆t)·f slow(jδt)
3V

〉
wslow

adhoc(24)(j)
1
2

– 1
2

wslow
adhoc(22b)(j) – – 2〈

P

r(∆t)·gSHAKE(jδt)
3V

〉
wSHAKE

adhoc(24)(j) – – –

wSHAKE
adhoc(22b)(j) – – –〈

P

r(∆t)·gRATTLE(jδt)
3V

〉
wRATTLE

adhoc(24)(j) – 1
2

1
2

wRATTLE
adhoc(22b)(j) – – 1
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