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Abstract—In many engineering problems, including those re-
lated to robotics, optimization of the control policy for multi-
ple conflicting criteria is required. However, this can be very
challenging because of the existence of noise, which may be
input dependent or heteroscedastic, and restrictions regarding
the number of evaluations owing to the costliness of the exper-
iments in terms of time and/or money. This paper presents a
multiobjective optimization algorithm for expensive-to-evaluate
noisy functions for robotics. We present a method for model
selection between heteroscedastic and standard homoscedastic
Gaussian process regression techniques to create suitable surro-
gate functions from noisy samples, and to find the point to be
observed at the next step. This algorithm is compared against an
existing multiobjective optimization algorithm, and then used to
optimize the speed and head stability of the sidewinding gait of
a snake robot.

Index Terms—Learning and adaptive systems, multiobjective
optimization, response surface method

I. INTRODUCTION

THE optimization of multiple conflicting objectives, or
multiobjective optimization (MOO), is commonly used

for problems in many fields, including engineering [1], eco-
nomics and finance [2]. In robotics, trade-offs between lo-
comotion speed and energy efficiency appear very often.
Other examples include maximizing the stability of a camera
mounted on the head of a snake robot and its locomotion
speed [3], maximization of the speed and stability of a
quadruped robot [4], and the minimization of energy con-
sumption and torque change in humanoid robots [5]. For such
problems, one solution is to introduce a set of scalars that
expresses relative weights, or preferences, among objectives.
The MOO problem can then be converted into a single-
objective optimization problem by aggregating the multiple
objectives into a single one using an aggregation method, such
as linear combination or Tchebycheff aggregation.

If the user does not have a clear preference among the
objectives, the better option would be to find the entire set of
the ‘best’ trade-off solutions, those which cannot be improved
in any objective without becoming worse in at least one other
objective. These solutions are called noninferior or Pareto
optimal (Fig. 1). In addition, if a preference is given after
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generating the Pareto set, we can seek a compromise solution
from the approximate Pareto set at hand.

In cases where the analytic form of the objective functions
and the mathematical model of the system are available,
the problem may be solved by searching for points that
satisfy the Karush–Kuhn–Tucker condition [6], or by solving
the Hamilton–Jacobi–Bellman equation [7]. Another popular
approach is to use evolutionary algorithms (EAs) [8], because
they enable solutions to be searched for in multiple directions
simultaneously. If samples are cheap and the parameter and
objective spaces are very high dimensional, EAs are an effec-
tive MOO algorithm.

However, in some robotic and other engineering problems,
objective functions are accessible only through experiments
and EA-based algorithms are therefore hard to apply. The
challenges in these cases are twofold: first, since the obser-
vations are costly in terms of time and/or money, the number
of observations must be severely limited; and second, noise in
the observations makes it difficult to extract useful information
from the samples. There are only a few, if any, methods
that can be used in such cases; This likely prevents robotic
researchers from using MOO methods.

One promising strategy for expensive MOO is the response
surface method (RSM). In this type of algorithm, surrogate
functions are constructed to fit the samples. These surrogates
are then used, in place of the unknown true objective functions,
to plan efficient experiments by balancing exploration and
exploitation. In [9], the authors used RSM to design the path
of a mobile robot to monitor environments intelligently by
making use of noisy samples, and to this end, proposed an ex-
tension of the upper confidence bound. A detailed explanation
of RSM for single-objective optimization can be found in [10].
The efficient global optimization algorithm [11], an RSM-
based single-objective optimization method, is extended to
multiobjective optimization based on the aggregation method
in [12], [13]. Emmerich et al. [14] suggested using response
surfaces to assist EAs, and proposed the expected improvement
in hypervolume (EIHV) as the ranking criterion. In [15],
they applied a similar approach to [14], but used the lower
confidence bound of the improvement. In [16], the input to be
evaluated on the next step is planned using different metrics,
including approximate EIHV, and selecting four or five points
in each step. In [17], the authors proposed using expected
maximin fitness improvement, whose analytical form was also
given for the 2-input case. In [18], another statistical measure
based on the theory of random closed sets is proposed.

In terms of dealing with noise, most of the existing MOO
methods have been evaluated for noiseless observations as
in [12]. In the EA community, Teich [19] introduced the con-
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cept of probability of dominance into a well-known EA-based
MOO, the strength Pareto evolutionary algorithm (SPEA) [20],
to make it robust to noise. Büche et al. [21] also extended
SPEA to be robust to noise and outliers, and implemented it in
optimizing the combustion process of a gas turbine. However,
these methods cannot be used for expensive optimization as
they require a considerable number of samples. Eskandari
et al. [22] proposed the stochastic Pareto genetic algorithm,
which is an extension of FastPGA [23], an EA for expensive
MOO. However, their method also depends on empirical
means and variances that require multiple evaluations for each
input, which is not suitable for the optimization of expensive
objectives. Fieldsend et al. [24] proposed the rolling tide
evolutionary algorithm, which can handle noise that varies
in time or space; however, this method requires too many
evaluations to be used in robotic experiments.

In the single-objective optimization of robots, the prob-
lem of noise has been addressed using RSM with Gaussian
process (GP) regression [25], modeling uncertainty induced
by observation noise [26]-[28]. Zuluaga et al. [29] proposed
using GP regression, and the response surface to determine
whether a point is Pareto optimal. Independently from this,
Tesch et al. [3] proposed using EIHV [14], [30] calculated
based on the results of GP regression. Noiseless numerical
examples exhibited the superiority of using EIHV over the
aggregation function-based method proposed in [12]. How-
ever, the performance remained insufficient for noisy robotic
experiments using a snake robot, and the authors had to take
a mean of five runs per input to get a reliable result. One
possible reason, aside from the overly large noise variance,
is that the occurrence of homoscedastic noise (i.e., input-
independent noise) was assumed in their work. As is verified
later in this paper, the noise in robotic experiments is often not
homoscedastic, and neglecting this sometimes results in poor
function estimation. If the properties of the noise are known
a priori, this knowledge may be able to be coded into the
kernel function of the GP regression model. However, since
our target is the optimization of expensive functions, we cannot
expect accurate prior knowledge. Therefore, we need a more
flexible framework. Other possible factors may include the
existence of non-Gaussian noise, and the difference in the rate
of change of the true objective functions (non-stationarity).
There is some literature [31], [32] that deals with the non-
stationarity problem; however, dealing with this problem is
out of the scope of this paper.

To take input-dependent noise into account, heteroscedastic
GP regression should be used in RSM. However, this kind of
regression presents a difficult challenge because there is no
analytical solution, and has been discussed extensively in the
machine learning community [33], [34]. Among the available
methods, we chose to use variational heteroscedastic Gaussian
process (VHGP) regression [35] as it gives a reasonable result
with a relatively small computation. VHGP regression has
already been used for RSM in the context of single-objective
optimization of a robot [36], but to our knowledge, we are the
first to use this in MOO. In [32], treed GP regression is used
to make the model more flexible. Although this method would
be applicable to problems with heteroscedastic noise with rel-

Fig. 1. Pareto-optimal points in objective function space in the case of bi-
objective maximization. Points denoted by a black × mark are dominated by
points with a red circle.

atively small calculation cost, some information would be lost
by partitioning the search space into subregions, and training
an independent GP regressor on each of them. Therefore, it
would be better if we can do without partitioning the search
area, in the case where the number of experiments are strictly
restricted. Also, note that there are other ways to deal with
the difficulty of noise that is not modeled as homoscedastic
Gaussian noise. In [37], the authors introduce a hyperprior on
a hyperparameter of the kernel function. This can attenuate
the effect of unmodeled noise and outliers. In [32], [38], the
authors use Student’s t distribution, which is known to be more
robust to outliers than the Gaussian distribution.

In this paper we propose a MOO method for expensive noisy
objectives, particularly those with input-dependent noise. This
method uses two GP regression methods to make surrogate
functions and plan the best experiment based on EIHV. These
GP regression methods enable us to make good surrogates
from the data with input-dependent noise; however, the cal-
culation of EIHV and model selection between these two are
problematic, because in the heteroscedastic case, the predictive
density is not Gaussian and is therefore analytically intractable.
In this paper, the approximation of EIHV with reasonable
calculation cost, and a novel method to determine which
regression method to use at every step are also discussed.
The effectiveness of the method is shown by numerical tests
and robotic experiments. The contents of this paper partially
appeared in [39]. Compared with our previous paper, this
work includes further numerical verification of the EIHV
approximation, the lack of which was the primary weak
point in [39]. Moreover, additional numerical verifications
are included, which make the efficacy and limitations of the
proposed method clear. We also conduct new sets of robotic
experiments with a different robot to show the efficacy of the
method in actual robotic problems.

The remainder of this paper is organized as follows. In
Section II, the algorithm is explained in detail. In Section III
and IV, numerical and experimental validations are provided.
Section V concludes the paper.
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II. PROPOSED ALGORITHM

The problem we focus on in this paper is formulated as
follows:

maximize
x

f(x)

sub. to xi ∈ [ximin, ximax]
(1)

The objective function f is a vector-valued function, each of
whose elements corresponds to one objective. We assume that
on the observation of f , observation noise exists, whose level
may vary according to the input x. We further assume that the
number of observations of f is severely limited, given that this
method requires significant time and/or money to observe its
value, as is often the case with robotic experiments. Although
constraints are important in optimization, we do not consider
any constraints other than that the input vector should be in
a box region. Taking constraints into consideration is one of
our directions for future work.

The proposed algorithm is shown in Algorithm 1. Lines 9
and 14 are the primary contributions of this paper.

In Line 2, experimental planning for initial evaluations is
made through a Latin hypercube [40], which is suitable for
GP regression as suggested in [11]. Note that because GP
regression is conducted for each objective independent of
others, the choice of a suitable experimental design method
does not depend on the number of objectives. In Line 8, to
make the algorithm robust to observation noise which may
be heteroscedastic, we use both standard GP regression and
heteroscedastic GP regression. For the heteroscedastic case, we
use VHGP regression [35]. This method seeks the maximum
of the lower bound of the marginal likelihood instead of the
marginal likelihood itself, which is analytically intractable in
the heteroscedastic setup.

However, the difficulty of calculating the marginal like-
lihood causes another problem, because it is usually used
not only to tune hyperparameters, but also to select among
different types of kernel functions (models). In this paper, we
propose a novel model selection method based on leave-one-
out (LOO) cross validation (Line 9) for deciding which GP –
standard or heteroscedastic – to use. This method is especially
efficient in cases where the sample size is small (less than
about 40). In addition, because the resultant predictive distribu-
tion in the heteroscedastic case is not Gaussian, EIHV used at
Line 14 also does not have any closed form if heteroscedastic
regression is selected. Although the approximation can be
calculated by Gauss–Hermite quadrature when the number of
objectives is small, this is computationally very expensive and
can make the procedure prohibitively slow. In this paper, an
alternative approximation that is computationally much less
expensive is proposed in Section II-B.

The lines 11–13 mean that the procedure is terminated if
the maximum of EIHV becomes less than 100ε % of the
current hypervolume, where ε � 1 is a user-given positive
value. It is important to note that because the goodness of
the model is not taken into consideration in the calculation of
EIHV, this can lead to premature termination in cases where
the model is poor but confident in its prediction, especially at
the beginning of the optimization. Nonetheless, we found this

Algorithm 1 Proposed Algorithm
1: Given

Ni: the number of initial sample points
Nm: the maximum number of experiments
f : the vector-valued objective function evaluated

through expensive experiments/simulations
ε: a small positive constant
X : set of inputs at which f is evaluated
Y : set of observed objective function values
ref: the user-defined reference for hypervolume (HV)

2: X ← {x1,x2, · · · ,xNi}: use Latin hypercube design
3: for k = 1 to Ni do
4: y← f(xk)
5: Y ← {Y,y}
6: end for
7: for j = 1 to Nm −Ni do
8: Perform regression (Section II-A)
9: Model selection between Standard GP and VHGP mod-

els (Section II-C)
10: Search for max EIHV (Section II-A)
11: if maxEIHV < εHV then
12: return X,Y
13: end if
14: xnew ← argmaxxEIHV(x|ref, Y ) (Section II-B)
15: y← f(xnew)
16: X ← {X,xnew}, Y ← {Y,y}
17: end for
18: return X,Y

to be a very rare occurrence, and we in fact did not observe
it in our numerical/experimental tests.

After making another observation, add the result to the data
set (Line 16) and, if the budget has not been completely con-
sumed, go back to Line 8. The return can be the approximated
Pareto set and Pareto front, instead of the whole set of inputs
and outputs.

In Section II-A, VHGP used in Line 8, and 10, which is used
to handle heteroscedastic noise in samples, is explained. Line
14 is explained in Section II-B, and Line 9 in Section II-C.

A. Regression Method

In this research, VHGP regression [35] and standard GP
regression is used. In this subsection, we review both of the re-
gression methods. The tuning of hyperparameters corresponds
to Line 8 of Algorithm 1, and the calculation of the predictive
distribution (5), (10) and (11) to Line 10. As a surrogate
function, the mean of the predictive distribution is used.

1) Standard Gaussian Process Regression [25]: Here we
briefly review standard, i.e., homoscedastic, GP regression.

Consider the case where we are trying to fit the data D =
{(x1, y1), · · · , (xN , yN)} by a function f . The input vector
space is assumed to be a subset of RD, the output space is R,
and y and f are defined as the vectors whose ith components
are yi and fi = f(xi), respectively. In standard GP regression,
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we assume the following:

y = f(x) + ε

f(x) ∼ GP(m(x), kf (x,x
′))

ε ∼ N (0, σ2
n),

(2)

where x ∼ P means that a random variable x is taken from
a distribution (or a stochastic process) P ; ε is a noise term
assumed to be taken independently from the same Gaussian
distribution regardless of the input x; and kf is a user-
defined kernel function that expresses our prior knowledge
of the latent function. The mean function m(x) is set to be
m(x) ≡ 0 to make the following calculation concise; however,
in real applications, this will also be used to code our prior
knowledge.

One of the most frequently used kernel functions is the
squared exponential kernel (SE kernel, Gaussian kernel):

kf (xi,xj) = σ2
f exp

{
−1

2
(xi − xj)

TM(xi − xj)

}
, (3)

where M = diag(l−2
1 , · · · , l−2

D ). Parameters σn, σf and
li (i = 1, · · · , D) are called the hyperparameters and should
be tuned based on the samples.

To tune the hyperparameters, we maximize the marginal
likelihood or evidence:

p(y) =

∫
p(y|f)p(f)df =

∫
N (y|f , σ2

nI)N (f |0,K)df ,

(4)
where I is the identity matrix of dimension N , and K is a
kernel matrix whose (i, j) component is k(xi, xj). In the
standard setting, the marginal likelihood and its gradient can
be calculated analytically.

Once the hyperparameters are determined through the
method of maximum marginal likelihood, then the predictive
distribution of y∗ at an unknown point x∗ is

y∗|x∗ ∼ N (kT
∗ (K + σ2

nI)
−1y, k∗∗ − kT

∗ (K + σ2
nI)

−1k∗)
(5)

where k∗ = [k(x1,x∗) · · · k(xN ,x∗)]T and k∗∗ = k(x∗,x∗).
2) Variational Heteroscedastic Gaussian Process Regres-

sion [35]: Consider the case with input-dependent noise:

y = f(x) + ε(x)

f(x) ∼ GP(m(x), kf (x,x
′))

ε(x) ∼ N (0, eg(x))

g(x) ∼ GP(μ0, kg(x,x
′)),

(6)

where f is the latent objective function, g is the latent log noise
variance, and kf and kg are user-defined kernel functions that
express our prior knowledge of latent functions, defined in the
same manner as in standard GP regression. The main point of
this modeling is that it assumes that the noise level must also
be determined by a GP. If the noise is not dependent on the
input x and it can be written as ε(x) = ε (const.), then this
model is the same as that of standard GP regression. In the

heteroscedastic case, the marginal likelihood:

p(y) =

∫∫
p(y|f ,g)p(f |g)p(g)dfdg

=

∫∫
N (y|f , diag(eg1 , · · · , egn))

×N (f |0,Kf )N (g|μ01,Kg)dfdg, (7)

which indicates that our confidence in our regression is not
analytically tractable, making it difficult to tune the hyper-
parameters. To optimize the hyperparameters in this case,
VHGP regression maximizes the variational lower bound on
the marginal likelihood instead of marginal likelihood, with
respect to the variational parameters and the hyperparameters.

Define a function F as follows:

F (q(f), q(g)) = log p(y) −KL(q(f)q(g)‖p(f ,g|y)), (8)

where q(f) and q(g) are the variational probability densities,
and KL(·‖·) is the Kullback–Leibler (KL) divergence. Because
KL divergence is non-negative, F gives the lower bound of
the logarithm of the marginal likelihood p(y). Therefore, we
maximize F instead of the marginal likelihood. To obtain the
maximization of F , the dependency on q(f) can be eliminated
by assuming that q(g) is fixed, and using the variational
principle as the first step. This results in the optimal q(f) as
a function of q(g), and by substituting it back into F , F is
transformed into what is called the marginalized variational
bound:

F (q(g)) = logZ(q(g))−KL(q(g)‖p(g)), (9)

where Z(q(g)) is the normalizing constant of the optimal
q(f). This bound can be computed in closed form if q(g)
is restricted to be q(g) = N (g|μ,Σ). Furthermore, it can
be shown that from the stationary equations ∂F/∂μ = 0 and
∂F/∂Σ = 0, μ and Σ reduce to be a function of a common n-
by-n diagonal matrix Λ. Therefore, F needs to be maximized
with respect to these n parameters, i.e., the diagonal elements
of Λ. Simultaneously, F can be maximized with respect to the
model hyperparameters. These optimizations can be solved by,
for example, the conjugate gradient method.

From the maximization of the lower bound of the marginal
likelihood, a variational predictive density will be obtained:

q(y∗|x∗) =
∫∫

p(y∗|g∗, f∗)q(f∗|x∗)q(g∗|x∗)df∗dg∗

=

∫
N (y∗|a∗, c2∗ + eg∗)N (g∗|μ∗, σ2

∗)dg∗, (10)

where a∗, c∗, μ∗ and σ∗ are determined by the kernel function,
the new input x∗, and the training dataD. Note that, though the
predictive distributions of f∗ and g∗ are Gaussian, the resultant
predictive distribution of y∗ is not Gaussian and is analytically
intractable. However, the mean and variance can be computed
analytically:

Eq[y∗|x∗,D] = a∗, Vq[y∗|x∗,D] = c2∗ + eμ∗+σ2
∗/2. (11)



IEEE TRANSACTIONS ON ROBOTICS 5

Input

O
u
t
p
u
t

E
I

Probability to
Outperform

Current Best
Current Best

Input for Next
Experiment

Fig. 2. A surrogate function (thick line) interpolating the sampled points of an
unknown underlying function with estimated uncertainty (three sigma interval)
shown in the gray area, and the expected improvement for single-objective
maximization (thick dashed line).

B. Expected Improvement in Hypervolume

Expected Improvement (EI) is a popular statistical measure
to make an efficient experimental plan for the next step, which
automatically balances the trade-off between exploration and
exploitation without requiring a tuning parameter. To define
EI, we first have to define the improvement.

In the single-objective case, the improvement at x with the
value y is the increase in the maximum sampled target value.
The expectation of improvement is

EI(x) =

∫ ∞

max(Ỹ )

(y −max(Ỹ ))p(y|x)dy, (12)

where Ỹ is the set of sampled target values. Figure 2 illustrates
the concept of expected improvement. The dark colored area
represents the probability for the sample at the point to give
a better result than the current best one. Since EI not only
considers the probability that this point is better but also by
how much, the point with the highest probability to outperform
the current best point does not always have the highest EI
value. In general, between two points with equal predictive
mean, higher predictive variance implies higher EI, and two
points with equal predictive variance, higher predictive mean
implies higher EI. In this figure, the rightmost peak of the
EI corresponds to its maximum, and therefore the input that
attains this will be used for the next experiment. In the case
where the predictive distribution p(y) is Gaussian, the analytic
form of EI can be obtained [11].

In MOO, because the solution is not a single point but a
whole Pareto set of points, the improvement must capture the
change in the quality of this set. One metric that expresses the
quality of the set of solutions is the set’s hypervolume [41].
This is the volume in objective space that is Pareto-dominated
by at least one point in the Pareto subset of the set in question,
at the same time dominating a user-defined reference point,
which basically defines the lower bounds of objective values.

Let HV (A) be the hypervolume of a set A; the improve-
ment in the case where the output of m objective functions is
y ∈ R

m can then be defined as

I(y) = HV (Ỹ ∪ y)−HV (Ỹ ). (13)

If the predictive density is Gaussian, the closed form of the
EIHV is given by Emmerich et al. [30]. In the case where the
predictive density is expressed as (10), the EIHV will be

EI(x) =

∫∫
I(y)p(y|g,x)p(g|x)dydg

=

∫
EI(x|g)p(g|x)dg, (14)

where

EI(x|g) =
∫

I(y)p(y|g,x)dy

=

∫
I(y)N (y|a,Σ)dy. (15)

Σ = diag(c21 + eg1 , · · · , c2m + egm),

where ck and gk correspond to the kth objective. For EI(x|g),
the closed form derived in [30] can be used, and because
p(g|x) is a Gaussian density function, EI(x) can be calcu-
lated numerically by Gauss–Hermite quadrature if the number
of objectives m is small. However, even with the closed
form [30], the calculation of EIHV is still time consuming,
and the following approximation of EIHV gives equivalent or
better results with much less computation, as will be shown
by numerical examples in Section III-E2:

ĒI(x) =

∫
I(y)N (y|a, Σ̄)dy, (16)

where

Σ̄ = diag(c21 + eμ1+σ2
1/2, · · · , c2m + eμm+σ2

m/2). (17)

This is given by approximating the predictive density (10)
by a Gaussian distribution with the same mean and variance
as the true density calculated in (11), and can be calculated
by the formula in [30]. In the limit of σ → 0 (i.e., in the
limit of no uncertainty in noise variance), (16) tends to be
identical to (14). Therefore, (16) is expected to give a good
approximation in the case where σ is small compared with
|μ|. Note that the value of EIHV itself is not so important for
our purpose because we need only the maximizer of EIHV
and not EIHV itself. Although this approximation may not be
as accurate as Gauss–Hermite quadrature, numerical examples
in Section III-E2 show that the discrepancy becomes small at
the neighbor of the maximum of EIHV, which implies that
this approximation is sufficient for experiment planning.

C. Model Selection

Because in most cases we have little prior knowledge of
the objective functions, we have to choose the best prior
distribution or model from multiple candidates. In particular,
selection between the standard GP model and the HGP model
is important. As the HGP model is more complex, it is more
likely to overfit than the standard GP model. The problem is
not only that the HGP model is more prone to overfitting, but
also that this model sometimes results in a more problematic
kind of overfitting. There are two kinds of overfitting, the
second of which is specific to HGP regression.
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Fig. 3. Two types of overfitting. The crosses are samples, the solid lines are
mean functions, and the colored areas show 2-σ intervals.

(i) The predictive mean is flat, except the vicinity of the
points on which the samples are drawn, and the predic-
tive variance becomes small only around the sampled
points.

(ii) The predictive mean is flat even around the sampled
points, and the predictive variance is large around the
sampled points.

In Fig. 3, we show typical examples of both kinds of over-
fitting. The crosses are samples, the solid lines are predictive
mean functions, and the colored areas illustrate predictive 2-σ
intervals. Both types of overfitting cause the algorithm to be
inefficient, but the second type is more difficult to resolve. In
the second type of overfitting, any variation from the mean is
attributed to the noise by adjusting the noise variance. This
leads to large EIHV values around sampled points, rather
than unevaluated regions, and leads to dense, non-informative
experiments at a few fixed points. The standard GP model
is free from the second type of overfitting, although it is
sometimes too simple to explain the data when used alone.
Therefore, it is essential for our method to select between the
standard GP model and the HGP model, to make it useful for
black-box objective functions.

However, selection between homoscedastic and het-
eroscedastic models is quite challenging because of the lack
of common analytically tractable metrics between these two
models. In the standard GP regression setting, marginal like-
lihood can serve as a model selection metric, but in the het-
eroscedastic case it is not analytically tractable. The variational
lower bound is also not a valid alternative for model selection
between homoscedastic and heteroscedastic models because
it is necessarily smaller than the marginal likelihood for the
heteroscedastic model (though it is equal to the marginal
likelihood for the homoscedastic model). To overcome this
difficulty, we propose using LOO validation. Instead, we could
use Monte Carlo (MC) to calculate the marginal likelihood
and choose the model with the largest marginal likelihood;
however, as shown in Section III, it is generally difficult to
obtain good results by MC calculation. The details on MC
calculation are provided in the appendix.

Note that both of the ordinary squared form of cross
validation error and the standardized residual proposed by
Jones et al. [11] are not suitable for our application if used
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Fig. 4. Typical four patterns for regression in leave-one-out cross-validation.
The red point marked by ∗ is the point that is not used in the regression, the
blue line is the surrogate function, and the 3σ region is shown by the colored
area. (a) Both ai and pi are small. (b) ai is small but pi is large. (c) ai is
large but pi is small. (d) Both ai and pi are large.

alone. As the accuracies of both predictions of the mean and
the uncertainty are equally important, we need a metric that
has the properties of both indicators, and that is normalized in
some sense not to put too much stress on only one of them.

The proposed LOO method will choose the better model
between a VHGP model and a standard GP model in the
following manner. Choose a point xi that will serve as a test
point and perform the regression without it. Let ŷi\i be the
predicted function value at the training point xi, evaluated
without using the data of point xi. Similarly, σ̂i\i is the
standard deviation (standard GP) or the mean of it (VHGP) at
point xi, evaluated without using xi. Let ai and pi be defined
as follows.

ai =
|ŷi\i − yi|

σ̂i\i
, pi = |ŷi\i − yi|, (18)

where | · | is absolute value, yi is the sampled value at xi.
ai is the absolute value of the standardized cross-validated
residual proposed in [11] and corresponds to the accuracy
of the regression: If the regression is successful, ai may
typically be less than about 3 (the sampled point is in the
3σ interval of the prediction). pi indicates how close the
prediction is to the real value. These relations are illustrated
in Fig. 4. These indicators are calculated both for standard
GP regression (expressed by superscript ‘std’) and VHGP
regression (expressed by superscript ‘vh’), and the sum of their
ratio is taken:

r
(std)
i =

a
(std)
i

a
(vh)
i

+
p
(std)
i

p
(vh)
i

, r
(vh)
i =

a
(vh)
i

a
(std)
i

+
p
(vh)
i

p
(std)
i

. (19)

If
∑n

i=1 r
(std)
i ≤

∑n
i=1 r

(vh)
i , standard GP regression will fit

better than VHGP regression.
The computation requires that both the GP and HGP regres-

sions are proportional to O(N3). Therefore, LOO will require
O(N4) calculations. However, note that in theory, LOO can
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easily be parallelized, and this will reduce the calculation
time considerably. Regarding the calculation needed to find
the maximizer of EIHV, it depends heavily on the properties
of the constructed surrogate functions.

Another metric that would be suitable is the log pseudo-
likelihood [25], which is defined as follows:

LLOO =

n∑
i=1

log p(yi|y−i, θ), (20)

where y−i is the targets except number i. In homoscedastic
regression, θ corresponds to f , and in heteroscedastic regres-
sion to the pair of f and g. The model that has larger LLOO, or
equivalently, smaller − logLLOO should be selected. Although
it requires numerical integration of (10) in our case, the
computational burden is comparable to our proposed metric.
Detailed examination on this metric compared to ours is left
to our future work, but empirically, these two metrics results
in similar performances.

Note that some authors [38], [42] suggest that the problem
of overfitting can be attenuated by restricting the intervals of
hyperparameters. Although an implementation of this kind of
restriction would make our method more robust, its verification
is beyond the scope of this paper.

III. NUMERICAL TESTS

To test the efficacy of our method, we ran some numerical
calculations using known 2-input-2-output functions: MAT, T3,
T4 and T6, whose true hypervolumes are shown in Table I. The
test function MAT was proposed in our previous research [3].
We modified the T3-T6 functions that appeared in [43] from
30-input-2-output functions into 2-input-2-output functions,
and also into maximization problems instead of minimizations.
T5 was omitted from those proposed in [43], given that it is a
binary function and was out of the scope of this manuscript.
In addition, as a higher order example, we use the T3 function
again, but with 10-dimensional inputs. We also added noise
on observations with known variance. In the test, we did
not implement Lines 11-13 of Algorithm 1, but this process
consumed the entire budget in every trial. However, in practice,
both would be used to prevent extra experiments of less
significance. We observed that for the optimization of the
function MAT through the proposed method, max(EIHV )
became smaller than 0.01HV within 35 iterations in more
than 75 % of trials, which means that in most of the trials, the
algorithm converged before the number of iterations reached
the maximum, and could be stopped earlier if we also used
Lines 11-13.

In this test, we only used 2-input-2-output functions for
simplicity. Our method also works in higher dimensional input
problems, although this will require more function evaluations
than 2-input cases. In future work, we will strive to elucidate
the relationship between the required number of experiments
and the dimensionality of the input space.

In this section, we first describe the test functions, and
then the additive noise. The performance metric for comparing
MOO methods is explained in Section III-C. Settings that
are commonly used throughout the section are explained in
Section III-D, and the results are shown in Section III-E.
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Fig. 5. Graph of the test function MAT

A. Test Functions

1) Test function MAT: The first test function used in this
research is the one proposed in [3], which is defined as:

f1(x) = f1(x1, x2) = B(x1, 2 + 0.5x2)/20,

f2(x) = f2(x1, x2) = B(0.4x1, 5 + 0.1x2)/10,
(21)

where the domain is [0, 10] × [0, 10], and B(x1, x2) is the
Branin function [44]. The reference point for hypervolume
calculation is taken to be [0, 0]. The graphs of the functions
are shown in Fig. 5.

2) Test function T3: The test function T3 used in this
research is defined as follows:

f1(x1, x2, ..., xD) = −x1

f2(x1, x2, ..., xD) = −g
{
1−

√
−f1/g + f1 sin(−10πf1)/g

}

g(x2, x3, ..., xD) = 1 + 9

D∑
i=2

xi/(D − 1)

(22)

where D is the dimensionality of the search space. The domain
is [0, 1]D. The graphs of the functions in the 2-D case are
shown in Fig. 6. The reference point for the hypervolume
calculation is taken to be [−1,−10]. Note that the Pareto front
and the true hypervolume are invariant to D.

3) Test function T4: The test function T4 used in this
research is defined as follows:

f1(x1, x2) = −x1

f2(x1, x2) = −g
(
1−

√
−f1/g

)
g(x2) = 11 + x2

2 − 10 cos(4πx2)

(23)

The domain is [0, 1] × [−5, 5]. The graphs of the functions
are shown in Fig. 7. The reference point for hypervolume
calculation is taken to be [−1,−45].

TABLE I
TRUE HYPERVOLUME

MAT T3 T4 T6
True HV 5.1013 10.0444 44.6667 6.7989
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Fig. 6. Graph of the test function T3
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4) Test function T6: The test function T6 used in this
research is defined as follows:

f1(x1, x2) = −1 + exp(−4x1) sin
6(6πx1)

f2(x1, x2) = −g
{
1− (f1/g)

2
}

g(x2) = 1 + 9x
1
4
2

(24)

The domain is [0, 1] × [0, 1]. The graphs of the functions
are shown in Fig. 8. The reference point for hypervolume
calculation is taken to be [−1,−10].

B. Additive Noise

We tested with two kinds of Gaussian noise; the first
was homoscedastic with variance r(x) = σ̄2

n(= const.),
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Fig. 8. Graph of the test function T6

and the second was heteroscedastic with variance r(x) =
{σn(sin(‖x‖) + 1)/2}2.

C. Performance Metric

For the selection metric of the optimization method, the
hypervolume indicator [41] was used. This is a common
unary indicator that has been examined closely [45]. We
calculated the true noiseless function values at the points
of the resultant approximated Pareto set. The hypervolume
was calculated based on these true function values, instead of
the sampled values, because hypervolume calculated based on
noisy samples can be under- or overestimated. Note that the
number of points in the approximated Pareto set varies from
trial to trial, and is not constant. We ran 60 trials for each
setting and calculated the empirical median, 25th percentile,
and 75th percentile of the hypervolume. In the tests, the
approximated Pareto front is generated from the evaluated
points. However, note that it is suggested that constructing
the approximated Pareto front from surrogate functions would
give a better approximation than constructing it only from
evaluations [46]. Therefore, the performance shown in what
follows can be understood as a lower limit.

If there is no noise on the observations, the hypervolume
will increase monotonically as the number of observations gets
larger. However, in our case, because the algorithm plans the
experiments and returns the approximated Pareto set based on
the noisy samples, the corresponding estimated hypervolume
can decrease.

D. Common Settings

To solve the maximization problem of EIHV, we chose to
first calculate EIHV at densely sampled points, and then used
the maximizer among these points as the starting point of
the gradient method. Of course, other kinds of maximization
methods, like a gradient method with random restart, or some
EAs, are applicable.

Regarding the initial settings of the hyperparameters, we set
all of the initial values of the hyperparameters at 1 for standard
homoscedastic GP regression. For heteroscedastic regression,
we used the result of homoscedastic regression to set the initial
hyperparameter values.

All numerical tests were repeated 60 times to make the
results statistically reliable. To illustrate the results, hypervol-
umes were plotted against the number of evaluations (Figs. 9,
12-22). Because the distribution of hypervolumes after a fixed
number of evaluations is skewed, we used the median and
the 25th/75th percentiles instead of the mean and standard
deviation, respectively. Thick lines refer to the median, and
the colored areas refer to the region between the 25th and
75th percentiles.

E. Results

1) Need for Model Selection between Two Kinds of GPs:
First, to show the need for the model selection discussed in
Section II-C, we compare the performances of two cases: (i)
standard GP regression only (existing method [3]) and (ii)
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(a) 5 initial evaluations (b) 15 initial evaluations

Fig. 9. Comparison between (i) the existing method (std. GP regression only)
and (ii) the method using VHGP regression only. The test function is MAT
(hypervolume: 5.1013).

VHGP regression only. The tests were performed with two
different settings for the number of initial points: 5 and 15.
The test function MAT was used, and homoscedastic noise
(σ̄n = 0.15) was added to observations. A maximum of 40
evaluations were performed for each trial. The results are
shown in Fig. 9.

In the case with 5 initial evaluations, the existing method
(standard GP regression only) clearly outperforms the other
(VHGP regression only). This is because the VHGP model is
more complex than the standard GP model, and tends to overfit
to the small size data. In the case with 15 initial points, both
methods work equally well.

The problem is that, in real problems, the necessary number
of initial evaluations for VHGP regression is likely unknown,
and this in turn shows the need for model selection between
standard GP and VHGP. We show in the following that through
the model selection methods proposed in Section II-C, the
results will be at least as good as, and in many cases better
than, the best of methods (i) and (ii).

2) Comparison between two EI calculations, (14) and (16):
In this test, we compared the performances of the two calcula-
tions of EIHV in the case of VHGP regression: Gauss–Hermite
quadrature (14) and Gaussian approximation of the predictive
density (16). Here, only VHGP regression was used and not
standard GP regression.

The tests were done for MAT with two kinds of additive
noise: homoscedastic noise with σ̄n = 0.15, and sinus noise
with σn = 0.2, as explained in Section III-B. The number of
initial evaluations was set as 15. For Gauss–Hermite quadra-
ture, 9 (3× 3) nodes were used, which gave enough precision
for EIHV calculation.

Figs. 10 and 11 show axis-aligned slices of the negative
log EIHV surface after 40 evaluations as calculated by each
method, and the corresponding slices of the discrepancy.
The planes shown are selected to go through the point with
maximum error. It can be seen that the discrepancy becomes
large at the maxima of the negative log EIHV, and at the points
with small negative log EIHV, the discrepancy becomes small.
Because we need the minimizer of the negative log EIHV
(maximizer of the EIHV), the approximation (16) is considered
appropriate for our purpose, though it can be inaccurate in the
area that we are not interested in. Additionally, we observed
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Fig. 10. Slices of the negative log EIHV surface calculated by Gauss–
Hermite quadrature (14) and Gaussian approximation (16) ((a), (b)), and their
difference ((c), (d)). The slices are axis-aligned ((a) and (c) with x2 = 2.0202
and (b) and (d) with x1 = 3.9394), and go through the point with maximum
discrepancy between the methods. Homoscedastic noise (σ̄n=0.15) is used.

that σ∗ in (10) are very small compared with |μ∗|; in fact,
σ∗/|μ∗| is around 10−5 − 10−10 at the minimizer of the
negative log EIHV, which verifies the use of the approximation
(16).

Hypervolumes were plotted against the number of evalua-
tions in Fig. 12, and Fig. 13(a) shows the time consumption
for each step in the case with sinus noise. The total time
required for one trial was the integral of the curve, which was
about 6 hours where Gauss–Hermite quadrature was used, and
about 44 minutes in the other case. From these results, it can
be seen that the calculation of EIHV through Gauss–Hermite
quadrature is very time consuming given the insignificant
improvements in accuracy.

Because our goal is to find the solution set with as few
evaluations as possible and not to reduce the calculation cost, a
method that requires a great amount of calculation can be used
as long as it contributes to reducing the number of necessary
observations. However, because the time-consuming calcula-
tion (14) did not reduce the required number of samples,
we concluded that the approximation (16) should be applied
instead.

3) Comparison between two model selection methods: For
selecting between standard GP and VHGP, two methods are
compared: LOO as explained in Section II-C, and numerical
calculation of marginal likelihood by MC. See the Appendix
for details on MC calculation. MAT was used as the test
function. The results are shown in Fig. 14, and time required
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Fig. 11. Slices of the negative log EIHV surface calculated by Gauss–
Hermite quadrature (14) and Gaussian approximation (16) ((a), (b)), and their
difference ((c), (d)). The slices are axis-aligned with x1 = 7.7778 ((a), (c))
and x2 = 1.5152 ((b), (d)). Sinus noise (σn=0.2) is used.

(a) Homoscedastic noise (σ̄n =
0.15)

(b) Sinusoidal noise (σn = 0.2)

Fig. 12. Comparison between two metric calculations: (14) and its approxi-
mation (16). Because we use 15 initial evaluations, the graphs begin with 16
evaluations. The test function is MAT (hypervolume: 5.1013).

for each step of the procedure is shown in Fig. 13(b).
From Fig. 14 and 13(b), it can be seen that the performance

is slightly better if LOO is used, but required time is also less
with LOO if there are less than about 40 points. The poorer
performance of MC is attributed to the limited precision of the
calculation of marginal likelihood. Because precision through
MC is proportional to the square root of the sample size, it is
difficult to precisely calculate the marginal likelihood, which
is typically much smaller than 1. Moreover, we usually use the
logarithm of marginal likelihood, which amplifies the error as
follows:

log(p+Δp)− log(p) ≈ Δp/p > Δp, (25)

(a) Simplified EI vs Complete EI (b) LOO vs MC

Fig. 13. Time needed to complete one step of the procedure.

(a) Homoscedastic noise (σ̄n =
0.15)

(b) Sinusoidal noise (σn = 0.2)

Fig. 14. Comparison between LOO and MC as the model selection method.
The number of initial evaluations is 15. The test function is MAT (hypervol-
ume: 5.1013).

where p < 1 is the marginal likelihood. Therefore, we need
several hundred times more samples to get 10 times more
precise estimation. However, as can be seen from Fig. 13(b),
calculation time for LOO grows faster than that for MC and
will be much slower if there are many more evaluations.

4) Comparison among three methods (2-D search space):
Finally, the performance of the proposed method was tested
against that of the existing method and the method that only
uses VHGP regression. In this test, all 4 test functions were
used to check the class of problems for which the proposed
method works efficiently. The number of initial experiments
was 15 for MAT, 20 for T3 (2-D) and T4, and 40 for T6. The
results for MAT are shown in Fig. 15 and 16, T3 in Fig. 17
and 18, T4 in Fig. 19 and 20, and T6 in Fig. 21 and 22. It can
be seen that except for T6, the proposed method outperforms
the other two, or at least performs equally well.

For T6, the proposed method is outperformed by the existing
method in the case where the noise is homoscedastic, but
in the other cases, it works at least as well as the others.
In this case, the method using VHGP regression exclusively
performs worse than the other two, even in the existence
of heteroscedastic noise. This is a somewhat counterintuitive
result because VHGP regression seemed appropriate for fitting
samples wherein the noise level is actually a function of input
and should therefore provide a good surrogate. One possible
explanation is that VHGP regression has too much complexity
in its noise model to fit the samples of size 40 or so from T6,
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(a) Homoscedastic noise (σ̄n =
0.15)

(b) Sinusoidal noise (σn = 0.2)

Fig. 15. Comparison between the proposed method (model selection) and
the existing method (std. GP regression only) [3]. The number of initial
evaluations is 15. The test function is MAT (hypervolume: 5.1013).

(a) Homoscedastic noise (σ̄n =
0.15)

(b) Sinusoidal noise (σn = 0.2)

Fig. 16. Comparison between the proposed method (model selection) and
the method that uses VHGP regression only. The test function is MAT
(hypervolume: 5.1013).

overfitting the change for the latent function because of the
noise. This can lead to a much flatter surrogate surface than
the true latent function. For the case of homoscedastic noise,
the proposed method is inferior to the existing method. This
can be seen as a failure of our model selection method, but we
note that a similar trend is observed, even when we used the
maximization of the marginal likelihood calculated by MC.

5) 10-D tests: For this test, the 10-D version of the T3
function, i.e. T3 with D = 10 in (22), is optimized. In each
trial, 50 initial points and 100 points in total are sampled. The
additive noise is the same for the 2-D case of T3. The results
are shown in Fig. 23. From the figures, it can be seen that
both the existing method and the proposed method perform
well, in that within only a small number of experiments, the
hypervolumes get larger compared with their initial values.
However, our proposed method outperforms the existing one
in terms of final values.

IV. EXPERIMENTS

We conducted robotic experiments with a snake robot,
which moves via sidewinding locomotion. The objective func-
tions were set to be the speed and the stability of the robot
head. Here, head stability is roughly inversely proportional to
the amount of head motion, which is very important when

(a) Homoscedastic noise (σ̄n =
0.1)

(b) Sinusoidal noise (σn = 0.2)

Fig. 17. Comparison between the proposed method and the existing
method [3]. The number of initial evaluations is 20. Test function is T3
(hypervolume: 10.0444).

(a) Homoscedastic noise (σ̄n =
0.1)

(b) Sinusoidal noise (σn = 0.2)

Fig. 18. Comparison between the proposed method and the method that uses
VHGP regression only. Test function is T3 (hypervolume: 10.0444).

operating the robot. Again, in the experiments we did not
implement Lines 11-13 of the Algorithm 1.

The snake robot is often controlled by motions with a finite
dimensional constrained control trajectory subspace (the same
as the gait model described in [47]), which is defined as
follows:

α(n, t) =

{
βeven +Aeven sin(θ), n = even,

βodd +Aodd sin(θ + δ), n = odd,
(26)

θ = (ωsn+ ωtt) ,

where α(n, t) is the nth joint angle at time t. This can be seen
as an extension of the serpenoid curve [48] which models
the shape of a real snake well. There are 7 free parameters
(βs, As, δ, ωs and ωt), and by tuning these parameters, we
can command the snake to move via many kinds of motions,
including slithering, sidewinding, and rolling in an arc.

Snake robots are expected to be useful for many applica-
tions, including pipe inspections and urban search and rescue
operations. In practice, the operator would have to rely on the
camera image from the camera mounted on the head, which
makes it challenging to operate the robot from a distance.
Although a method that would provide information about the
state of the robot based on the virtual chassis [49] has been
proposed, it remains difficult to operate the robot if the camera
is mounted on a shaky base. At the same time, it would be
advantageous to move the robot faster, which will amplify
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(a) Homoscedastic noise (σ̄n =
0.2)

(b) Sinusoidal noise (σn = 0.25)

Fig. 19. Comparison between the proposed method and the existing
method [3]. The number of initial evaluations is 20. Test function is T4
(hypervolume: 44.6667).

(a) Homoscedastic noise (σ̄n =
0.2)

(b) Sinusoidal noise (σn = 0.25)

Fig. 20. Comparison between the proposed method and the method that uses
VHGP regression only. Test function is T4 (hypervolume: 44.6667).

the movement of the head camera. Therefore, we chose two
objective functions as follows.

1) The speed: the net displacement of the head after run-
ning the snake for 15 seconds.

2) The head stability: the stability of the image from the
camera mounted on the head of the snake.

For head stability, we put an acceleration sensor on the head,
and calculated the level of vibration as follows. Let a(t) be the
read of acceleration sensor, then the head stability is defined
as

(Head Stability) = −
∫ T

0

‖a(t)− E[a(t)]‖2dt, (27)

where E[a(t)] is the mean of a(t) during one run.
Although it is not clear only from the above definitions

whether there is a trade-off between the 2 objectives, the
proposed method, along with other MOO methods, can be
used for cases where the objectives do not actually conflict.
Therefore, if there is no reason to deny the existence of conflict
between objectives, it is better to turn to MOO.

The consideration of heteroscedasticity in the robotic exper-
iments is verified later in this subsection through another set
of experiments, but essentially, it is appropriate considering
that the larger the movement, the greater the noise level.

In these experiments, the model was restricted to the
sidewinding parameter space as defined in [47] (the phase

(a) Homoscedastic noise (σ̄n =
0.1)

(b) Sinusoidal noise (σn = 0.1)

Fig. 21. Comparison between the proposed method and the existing
method [3]. The number of initial evaluations is 40. Test function is T6
(hypervolume: 6.7989).

(a) Homoscedastic noise (σ̄n =
0.1)

(b) Sinusoidal noise (σn = 0.1)

Fig. 22. Comparison between the proposed method and the method that uses
VHGP regression only. Test function is T6 (hypervolume: 6.7989).

shift δ is fixed as π/4, the offsets βs as 0, ωs = 3π/16,
and ωt = 3π/5), and we introduced an additional phase shift
φ for the head module:

α(1, t) = Aodd sin(θ + δ + φ). (28)

The ratio between Aodd and Aeven was also fixed as
Aodd/Aeven = 3/8. The parameters that should be optimized
are the amplitude Aodd and the phase shift φ. The domains of
the parameters were set as Aodd ∈ [0.23, 1] and φ ∈ [0, 2π].

The first 20 evaluations were planned for initialization

(a) Homoscedastic noise (σ̄n =
0.1)

(b) Heteroscedastic noise (σn =
0.2)

Fig. 23. Comparison between the proposed method and the existing method.
Test function is T3 with 10-D input (hypervolume: 10.0444).
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Fig. 24. Snake robot

through Latin hypercube design and the 20 subsequent eval-
uations were selected using the proposed method; the same
procedure was also performed for the existing method. The
initial samples were shared by both methods, and in total,
10 sets of experiments were conducted for each method.
Figs. 25(a) and 25(b) show the resulting Pareto fronts for the
proposed method and the existing method [3], respectively,
for both of which we used the same initial evaluations. By
comparing the points that are the best in terms of speed,
it is clear that the proposed method found solutions better
(i.e., faster) than the existing method. The proposed method
outperforms the other in terms of stability.

Figure 26 shows the response surfaces used in planning for
the 40th experiment with the proposed method. The crosses are
the samples, and the color shows the variance of the predictive
density. In Fig. 26 (c) and (d), the variance is shown as color
maps, from which it can be seen that the uncertainty is not
uniform across the domain.

Figure 27 shows the plot of the hypervolumes. The thick
lines represent the median, and the colored area shows the
region between the 25th and 75th percentiles. Though com-
parison between hypervolumes is generally difficult because
of the lack of knowledge of the true objective functions, it is
clear from this figure that the proposed method outperforms
the existing method. In Fig 27, we also show the median of 5
random searches as a dotted line. Note that we omit the error
band for random search to keep the figure from becoming
cluttered. From this, it is clear that both the existing and
proposed methods are much more efficient than the random
search.

To verify the consideration of heteroscedasticity, we con-
ducted another set of experiments. We chose 3 inputs:
x1 = [0.7177, 0.3569], x2 = [0.5634, 0.0538], and x3 =
[0.3767, 0.5500], and evaluated the head stability for each. We
took 5 samples for each input, which are shown in Table II.
Each row corresponds to an input, and the last column shows
the empirical standard deviation, which is the square root
of the unbiased estimator of noise variances. It can be seen
that there are large differences in the standard deviations.
For example, the standard deviation for x1 is more than 10
times larger than that for x3. In fact, the null hypothesis, that
the variances between these two sets of samples are equal,
is rejected by a two-sample F-test with a 1 % significance
level. These results clearly show that the noise is actually
heteroscedastic in this robotic example.

V. CONCLUSIONS

In this paper we proposed a Pareto optimization method
that can be used for the optimization of expensive noisy
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(b) Existing method

Fig. 25. Resulting Pareto front in the case of (a) the proposed method and (b)
the existing method [3] after 25, 30, 35, and 40 evaluations. Observed data
are shown in × marks and the circles are the elements in the Pareto front.

functions. By selecting between standard and heteroscedastic
GPs using LOO, the performance of the proposed method
becomes better than our previous method not only in the
presence of heteroscedastic noise, but also in the case of
homoscedastic noise. A model selection method that can be
used to select between standard GP and heteroscedastic GP by
LOO was also proposed. This method often results in better

TABLE II
OBSERVED VALUE OF THE HEAD STABILITY

Samp.1 Samp.2 Samp.3 Samp.4 Samp.5 st. dev.
x1 19.0062 15.2082 22.6125 16.6942 17.4333 2.8252
x2 10.4526 9.4061 9.8783 9.6554 11.5510 0.8542
x3 7.0852 6.9981 6.4631 6.8942 7.1128 0.2644
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Fig. 26. Example of response surface of head stability and speed after 39
experiments, which was used to plan the 40th experiment. The color shows the
variance of the predictive distribution. (c) and (d) show the variance as color
maps, from which the non-uniformity of the uncertainty can be ascertained.

Fig. 27. Hypervolume indicator calculated from the experimental results

results with less computation than the numerical calculation
of marginal likelihood by MC sampling.

In this research, we only used EIHV and did not com-
pare with other potentially powerful alternative metrics, such
as probability of improvement or upper confidence bound.
Comparison between these methods in single-objective op-
timization in robotics can be found in [28], but for the
multiobjective case it remains to be done. Another direction
of future research will include extending our method to be
able to deal with changing environments. Since every single
observation in one environment will give some information
about the performance in all the other environments, in partic-
ular for similar environments, it will be possible to accelerate
the optimization procedure by using the results from other
environments. Our method will be useful in the case where

the function evaluation is expensive and the noise cannot be
neglected; however, it is not so efficient if the dimensionality
of the search space is very large, as is the case for hyper-
redundant robots. Constructing an efficient MOO method that
can be used for high-dimensional noisy objectives is another
possible topic for future work.

APPENDIX
The marginal likelihood is calculated as follows:

p(y) =

∫
p(y|f ,g)p(f)p(g)dfdg, (29)

where p(y|f ,g) is the likelihood function, and p(f) and p(g)
are the prior density functions. Given that the priors are
Gaussian, it is easy to draw samples from p(f) and p(g).
Let the samples from the prior densities be f (i) and g(i)

where i = 1, ...,M . Then, the approximation of the marginal
likelihood p̂(y) can be obtained

p̂(y) =
1

M

M∑
i=1

p(y|f (i),g(i)). (30)

We use M ∈ [2 × 105, 1 × 106] points, where the exact
number differs according to the convergence of the calculation.
Although it is well known that in some cases this simple
approximation can be inaccurate, it is easy to implement
and gives reasonable results in our cases. Other much more
sophisticated methods using Markov chain Monte Carlo, such
as those proposed in [50],[51], can also be used. However,
we found that, although they reduce the calculation time, they
make no significant difference in hypervolume from the basic
calculation (30). We also note that it is often the case that the
sampling used in MCMC calculation is ill-conditioned, and the
calculation becomes unreliable. In some cases, it even fails in
drawing samples, in which cases naive MC also fails to return
meaningful results.
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[21] D. Büche, P. Stoll, R. Dornberger, and P. Koumoutsakos, “Multiobjective
Evolutionary Algorithm for the Optimization of Noisy Combustion
Processes,” IEEE Trans. Syst. Man Cybern. C, vol. 32, no.4, pp. 460–
473, Nov. 2002.

[22] H. Eskandari, and C.D. Geiger, “Evolutionary multiobjective optimiza-
tion in noisy problem environments,” J. Heuristics, vol. 15, no. 6, pp.
559–595, Dec. 2009.

[23] H. Eskandari, and C.D. Geiger, “A fast Pareto Genetic Algorithm Ap-
proach for Solving Expensive Multiobjective Optimization Problems,”
J. Heuristics, vol. 14, no. 3, pp. 203–241, Jun. 2008.

[24] J. E. Fieldsend, and R. M. Everson, “The Rolling Tide Evolutionary Al-
gorithm: A Multiobjective Optimizer for Noisy Optimization Problems,”
IEEE Trans. Evol. Comput., vol. 19, no. 1, pp. 103–117, Feb. 2015.

[25] C.E. Rasmussen and C.K.I. Williams, Gaussian Processes for Machine
Learning, Cambridge, MA, USA: The MIT Press, 2006,

[26] D. Lizotte, T. Wang, M. Bowling, and D. Schuurmans, “Automatic Gait
Optimization with Gaussian Process Regression,” in Proc. Int. Joint
Conf. Artificial Intell., Hyderabad, India, 2007, pp. 944–949.

[27] M. Tesch, J. Schneider, and H. Choset, “Using Response Surfaces and
Expected Improvement to Optimize Snake Robot Gait Parameters,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., San Francisco, CA, 2011,
pp. 1069–1074.

[28] R. Calandra, A. Seyfarth, J. Peters, and M.P. Deisenroth, “Bayesian
Optimization for Learning Gaits under Uncertainty,” Ann. Math. Artif.
Intell., vol. 76, pp. 5–23, 2016.

[29] M. Zuluaga, A. Krause, G. Sergent, and M. Püschel, “Active Learning
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