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ABSTRACT

Observations of the Sun suggest that solar activities systematically create north–south hemispheric asymmetries.
For instance, the hemisphere in which sunspot activity is more active tends to switch after the early half of each
solar cycle. Svalgaard & Kamide recently pointed out that the time gaps of polar field reversal between the northern
and southern hemispheres are simply consequences of the asymmetry of sunspot activity. However, the mechanism
underlying the asymmetric feature in solar cycle activity is not yet well understood. In this paper, in order to
explain the cause of the asymmetry from the theoretical point of view, we investigate the relationship between the
dipole- and quadrupole-type components of the magnetic field in the solar cycle using the mean-field theory based
on the flux transport dynamo model. As a result, we found that there are two different attractors of the solar cycle,
in which either the north or the south polar field is first reversed, and that the flux transport dynamo model explains
well the phase-asymmetry of sunspot activity and the polar field reversal without any ad hoc source of asymmetry.
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1. INTRODUCTION

Various kinds of hemispheric asymmetry in the northern and
southern hemispheres have been observed in solar magnetic
activities, e.g., sunspot numbers, sunspot area, flares, promi-
nences, faculae, coronal brightness, and the time of polar
magnetic field reversal (see, e.g., Maunder 1890, 1904; Bab-
cock 1959; Waldmeier 1971; Roy 1977). According to
Waldmeier (1971), for instance, the phase of sunspot cycle
19 was shifted between the northern and southern hemispheres,
such that the sunspot cycle in the southern hemisphere reached
its maximum approximately one year earlier than that in the
northern hemisphere. In addition, it was reported that the polar
magnetic field reversal at one pole is delayed by one or two
years behind that at the other pole in every solar cycle
(Babcock 1959; Li 2009; Muraközy & Ludmány 2012; Shiota
et al. 2012; Svalgaard & Kamide 2013). Based on the
observation of sunspot groups during the last 12 solar cycles,
Li (2009) and Muraközy & Ludmány (2012) pointed out that
the leading hemisphere, the one in which the magnetic
activities are greater in the early half-phase of each cycle,
may switch after a period of approximately eight sunspot
cycles. These observational results imply that certain systema-
tic processes in addition to a stochastic process govern the
asymmetries of the solar cycle. However, the mechanisms
underlying this have not yet been clearly explained.

The solar magnetic field is considered to be sustained by the
dynamo action in the interior of the Sun (Parker 1955). After
helioseismology revealed the averaged distribution of the large-
scale internal velocity field, i.e., the meridional circulation and
the differential rotation (Thompson et al. 2003), the flux
transport dynamo model was proposed (Choudhuri et al. 1995;
Dikpati & Charbonneau 1999; Nandy & Choudhuri 2002;
Chatterjee et al. 2004, hereafter CNC) as a promising model to
explain certain features of solar magnetic activities, such as the
11 year cycle, the butterfly diagram, the poleward migration of
surface field, and polarity reversals of the polar field. Since the
computation of the flux transport model is not numerically
demanding, numerical simulations based on this model are
widely used as a tool to study the variation in the solar cycle.

In previous studies, several numerical models were devel-
oped to explain the asymmetric features of the solar cycle (e.g.,
DeRosa et al. 2012; Belucz & Dikpati 2013; Belucz et al. 2013;
Brun et al. 2013; Olemskoy & Kitchatinov 2013; Shetye
et al. 2015). DeRosa et al. (2012) and Brun et al. (2013)
showed that a certain degree of asymmetric modulation of the
source of the poloidal field or the meridional circulation causes
the interaction between the primary family and the secondary
family of the magnetic field and produces the time gaps in the
polar magnetic field reversals between the north and south
poles. The primary family is a dipole-type part, which is the
spherical harmonic functions of the surface magnetic field Bl

0

with l=1, 3, 5, 7,K, and the secondary family is a
quadrupole-type part, which is Bl

0 with l=2, 4, 6, 8,K.
Belucz et al. (2013) showed that the dynamo operates mostly
independently in the northern and southern hemispheres by
studying the features of the dynamo operating with the source
terms of poloidal field of different amplitudes between the
different hemispheres. Belucz & Dikpati (2013) showed that
when the amplitude or pattern of the meridional circulation
changed only for the southern hemisphere, the dynamo period,
the shape of the butterfly diagram, the strength of the polar and
toroidal fields, and the phase relations between the polar and
toroidal fields changed almost exclusively for the southern
hemisphere. Olemskoy & Kitchatinov (2013) introduced the
source term for the fluctuating poloidal field into the mean-field
dynamo model using a smoothly varying random function of
time and latitude. As a consequence, it was shown that the
fluctuations violate hemispheric symmetry of the dynamo field.
When the deviations from dipole parity are large, the model
shows weak magnetic cycles, in which the large asymmetry of
magnetic activity appears like the sunspot in grand minima.
Passos et al. (2014) also studied the origin of hemispheric
asymmetry and cycle amplitude modulation by introducing
independent stochastic fluctuations in the two hemispheres
using the mean-field dynamo model, and they demonstrated
many types of hemispheric asymmetries, including grand
minima and failed grand minima where only one hemisphere
enters a quiescent state. Shetye et al. (2015) discussed the
contribution of active-region fluxes and their hemispheric

The Astrophysical Journal, 835:84 (11pp), 2017 January 20 doi:10.3847/1538-4357/835/1/84
© 2017. The American Astronomical Society. All rights reserved.

1

mailto:kusano@nagoya-u.jp
http://dx.doi.org/10.3847/1538-4357/835/1/84
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/835/1/84&domain=pdf&date_stamp=2017-01-20
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/835/1/84&domain=pdf&date_stamp=2017-01-20


asymmetries. They introduced the asymmetric active-region
inflow effect to the meridional circulation and found that the
inflow can affect the peak amplitude of the solar cycle.
Observations by local helioseismology indicate that the
meridional motions of active regions generate inflows, which
are meridional converging flows into active regions at the solar
surface from lower and higher latitudes (Gizon & Birch 2005).

These previous studies indicate that the symmetric properties
of the dynamo are obviously affected by the asymmetric flow
or magnetic field, which is imposed ad hoc in the dynamo
equation. However, the cause of this asymmetry is still open to
question. The objective of this paper is to elucidate whether the
asymmetric properties in the solar dynamo are capable of being
spontaneously created even though the flow is symmetric with
respect to the equator. When the flow is symmetric the dynamo
equation is known to have two different types of solutions, i.e.,
the so-called dipole-type and quadrupole-type families (Jen-
nings & Weiss 1991; Nishikawa & Kusano 2008). Since these
fields have different parities of hemispheric symmetry, their
mixing might cause the asymmetries. Our study was originally
motivated by this property of the dynamo equation. Since
dynamo is a nonlinear process in which flow and magnetic field
mutually interact, it is not easy to elucidate what is the
fundamental cause of the asymmetric property. However, if
some asymmetry is created even though any external condi-
tions (e.g., flow, source terms, and diffusion) are symmetric, we
could conclude that the asymmetric property of the dynamo is
inherent in the dynamo equation. To achieve this, we
developed a standard flux transport dynamo code based on
the SURYA code (CNC 2004) and carefully analyzed the
asymmetric features of the solar magnetic activities. Finally, we
will propose that the solar cycle may spontaneously create the
hemispheric asymmetry.

2. SIMULATION MODEL

2.1. Basic Equations

We solve the axisymmetric mean-field kinematic dynamo
equations on a meridional plane of a rotating spherical shell
(   =R R r R0.55b ,  q p0 , where Rb, R , r, and θ
denote the radius of the bottom boundary, the solar radius, the
radial coordinate, and the colatitude, respectively). The shell is
rotating with an angular velocity W = Wez, where ez is a unit
vector along the rotation axis. Hereafter, ei denotes a unit vector
along the i coordinate.

Under the axisymmetric approximation, the azimuthally
averaged magnetic field ( )qB r t, , and velocity field ( )qV r,
can be decomposed into the poloidal and toroidal components,
respectively:
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in which the poloidal magnetic field ( )qB r t, ,p is described by
the toroidal (f) component of the vector potential ( )qA r t, , as

( ) [ ( ) ]q q=  ´ fB er t A r t, , , ,p . The vectors ( )q feB r t, , and
( )qv r,p are the toroidal component of magnetic field and the

poloidal component of velocity field (meridional flow),
respectively. Using Equations (1) and (2) the basic equations

for the so-called aw dynamo are
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These are derived from the magnetic induction equation in
magnetohydrodynamics (MHD), where q=s r sin , and hp and
ht are the coefficients of the net magnetic diffusivity for the
poloidal and toroidal components of the magnetic field,
respectively. In this paper, we prescribe the angular velocity
Ω, meridional flow vp, diffusivity coefficient ht, and coefficient
α in the same way as was used in CNC (2004) and Choudhuri
et al. (2005). The maximum amplitude of meridional flow
speed is 29.0 [m s−1]. The term aB on the right of Equation (4)
plays the role of the source of the poloidal magnetic field near
the solar surface due to the tilt of active regions called Joyʼs
law. This is called the Babcock–Leighton α-effect, in which the
tilted bipole reproduces the poloidal field near the solar surface
(Babcock 1961; Leighton 1969).
The previous studies (CNC 2004; Hotta & Yokoyama 2010)

showed that the dipole-type solution switches to the quadru-
pole-type solution, for example, when the diffusivity coeffi-
cient hp increases and/or the strong diffusivity layer near the
surface becomes thinner. In this paper, we focus on the
diffusivity coefficient (hSCZ) and survey the dependence on
hSCZ for 1011– -10 cm s13 2 1.

We normalize time so that the rotation period at the equator
on the surface is 25 (corresponding to the number of days)
(Thompson et al. 2003) and normalize magnetic field by the
critical field Bc, which will be explained later in detail.

2.2. Decomposition of Hemispheric Symmetry

In order to analyze the asymmetric features of the dynamo
action, we introduce the following procedure to decompose the
equations into two groups of different symmetries. In spherical
coordinates, an arbitrary scalar function ( )qy of the colatitude θ
can be uniquely decomposed into two functions of different
parities,

( ) ( ) ( ) ( )q q q= +y y y 7s a

where ( )qys is symmetric with respect to the equator and ( )qya

is antisymmetric:

( ) [ ( ) ( )]
( ) [ ( ) ( )] ( )
q q p q
q q p q

º + -
º - -

y y y

y y y

2,
2. 8

s

a

2

The Astrophysical Journal, 835:84 (11pp), 2017 January 20 Shukuya & Kusano



In the same way, an arbitrary vector ( )qY can also be uniquely
decomposed into two vectors,

( )= +Y Y Y , 9s a
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Moreover, the conversion of symmetric properties by vector
operations is prescribed (for full details, see Section III of
Nishikawa & Kusano 2008). Using the vector formula, we
decompose Equations (3) and (4) into the two different groups
of dynamo equations,
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for Ba and As, if velocities vp and the rotation Ω are symmetric.
These equations clearly indicate that the symmetric component
of the vector equations is constructed only with Bs and Aa and
the antisymmetric component is constructed only with Ba and
As. Therefore, these components are mutually independent as
long as the velocity is symmetric. The symmetric and
antisymmetric components of the magnetic field correspond
to the so-called quadrupole-type and dipole-type families,
respectively (Jennings & Weiss 1991; Nishikawa &
Kusano 2008). These would couple with each other if and
only if the antisymmetric velocity field exists.

We numerically solved Equations (11)–(14) for
q p< <0 2, although they are identical to Equations (3)

and (4) for q p< <0 , in order to avoid the incorrect mixing
between the two families in the solution of Equations (3) and
(4) due to numerical noise. In our calculations, although the
coordinate θ is defined only between 0 and p 2, the magnetic
field in the northern and southern hemispheres is easily
reproduced by +B Bs a and -B Bs a, respectively, and thus
the simulation box covers the entire sphere.

The numerical algorithm was the same as in the previous
study (CNC 2004), and we used the alternating direction
implicit (ADI) method. We handled the diffusion terms through
a centered-difference scheme and the advection terms through
the Lax–Wendroff scheme. The grid numbers were 141 for
both   R r R0.55 and  q p0 2. The numerical

convergence was checked with runs using twofold-greater grid
numbers.

2.3. Boundary Conditions

The boundary conditions are as follows. On the rotation axis
(q = 0), we have

( )= =A B0, 0. 15

The bottom boundary ( )=r Rb condition is

( )= =A B0, 0. 16

At the top boundary ( )=r R , we impose the condition
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in which A matches smoothly to an exterior potential field
solution (Dikpati & Choudhuri 1994). At the equator
( )q p= 2 , the symmetric component satisfies

( )
q

=
¶
¶
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and the antisymmetric component satisfies

( )= =
q
¶
¶

A B0, 0. 19s a

2.4. The Magnetic Buoyancy Effect

Magnetic buoyancy may cause a strong toroidal magnetic
field to erupt to the upper region. Helioseismology has revealed
that there is a region named the tachocline at the base of the
convection zone, which has large shear of the angular rotation.
It is thought that the tachocline generates the toroidal magnetic
field more efficiently than other regions, and the magnetic
buoyancy occurs mainly there. Therefore, we implemented the
magnetic buoyancy effect by the following procedure. First, we
convert Bs and Ba to the toroidal field B, and search for the
place where B exceeds a critical value, Bc, above the bottom of
the convection zone ( =r R0.71 ) every [ ]t = 10 days .
Second, if the toroidal field is larger than Bc, we move half
of the magnetic flux at this position to just below the solar
surface at the same latitude based on the method developed by
Nandy & Choudhuri (2001). Finally, we redefine Bs and Ba.

3. RESULTS

3.1. Phase Relations between the Symmetric and Antisymmetric
Components

We show the result of our simulation in Figure 1, which
describes the time evolution of the radial magnetic field for the
symmetric and antisymmetric components at the north pole.
These cyclic variations correspond to the Hale cycle, which is
the solar magnetic cycle with an average duration of 22 years.
The initial condition is given by the combination of symmetric
and antisymmetric components, which are premade by the
preceding calculations. In this case, the amplitudes and phases
for each component are initially the same. We found that their
phases were gradually shifted during the first five cycles. Then,
the phase difference is fixed so that the symmetric component
precedes the antisymmetric component by about a quarter
period (~90°).
To investigate how the phase difference depends on the

initial condition, we performed the calculations for 22 different
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simulations in which the initial phase difference yD was varied
within the range  y-  D 180 180 , by varying ys with
respect to ya. The values ys and ya are the phases for the
symmetric and antisymmetric components and are defined
using the following equation:

( ) ( )y = =-
⎛
⎝⎜

⎞
⎠⎟

B

dB dt
i s atan , , . 20i

r
i

r
i

1

Figure 2 shows the time evolution of yD for the various
simulations. The results indicate that the phase differences for
the initial yD below 0 to - 180 fall into yD = - 90 and
those for the initial yD above 0 to 180 fall into yD = 90 .
This implies that the phase relations between the two

components have only two attractors ( yD = 90 and
yD = - 90 , respectively) and that one of them is always

achieved depending on the initial conditions of yD . The two
attractors may occupy a half-area of parameter space for yD .

3.2. Cyclic Behaviors of Magnetic Field in Each Attractor

Figures 3 and 4 show the time evolutions of the magnetic
field for several cycles after falling into each attractor with
yD = 90 and yD = - 90 , respectively, to inspect behaviors

within a cycle. The dashed lines in the top panels show the total
counts of grids where the toroidal magnetic field exceeds the
critical intensity for the magnetic buoyancy effect. The counts
represent the sunspot activity. The solid lines indicate the count

Figure 1. Time evolution of the radial magnetic fields Br for the symmetric (Bs, solid line) and antisymmetric (Ba, dashed line) components at the north pole. The
initial conditions of the amplitude and phase for each component are the same value in this case, where h = ´2.6 10SCZ

12 cm2 s−1.

Figure 2. Time evolution of the phase difference yD for the 22 different runs of various initial conditions within the range  y-  D 180 180 .
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Figure 3. Time evolution of the magnetic field after falling into the attractor for yD = 90 . Top panel: (dashed line) the total number of grids where the toroidal
magnetic field exceeds the critical intensity for the magnetic buoyancy effect; (solid line) the difference in grid number for magnetic buoyancy effects operating
between the northern and southern hemispheres. Second panel: the grid number of magnetic buoyancy in the northern (solid line) and southern (dashed line)
hemispheres. Third panel: the time evolution of the radial magnetic field Br at the north pole Br

Nor (solid line) and at the south pole Br
Sou (dashed line). Fourth panel: the

time evolution of the radial magnetic field Br of the symmetric (solid line) and antisymmetric (dashed line) components at the north pole as in Figure 1. Bottom
contour maps: the contour of the vector potential A at the times corresponding to the vertical dashed lines in the top three panels. The solid and dashed contours
represent magnetic field lines directed by arrows. The portion bounded by a thick line corresponds to the simulation box. The contours of potential field outside of the
simulation box are also plotted.
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difference between the northern and southern hemispheres. The
value is positive when the activity is higher in the northern
hemisphere and negative when it is higher in the southern

hemisphere, as shown in the second panel, which indicates the
time evolution of the number of grids exceeding the critical
buoyancy in the northern (solid line) and southern (dashed line)

Figure 4. Time evolutions of the magnetic field after falling into the attractor for yD = - 90 . The descriptions for each panel and the contour maps are the same as
those in Figure 3.
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hemispheres, respectively. The third panel shows the time
evolution of the radial magnetic field Br at the poles: the
northern field Br

Nor is indicated by the solid line and the
southern field Br

Sou by the dashed line. The fourth panel shows
the time evolution of the radial magnetic field Br of the
symmetric (solid line) and antisymmetric (dashed line)
components at the north pole, as in Figure 1. The contour
maps at the bottom of each figure show the contour of the
vector potential A at the times corresponding to the vertical
dashed lines in the top three panels. The solid and dashed
contours represent the magnetic field lines directed by arrows.

The cycle activity observed in Figure 3 is summarized as
follows:

1. Cycle from t=17 to [ ]30 years . First, if we focus on a
cycle from t=17 to [ ]30 years , we see that the sunspot
activity in the northern hemisphere is higher than that in
the southern hemisphere in the first half of this period
(t=17– [ ]23 years ), while the southern hemisphere is
more active in the second half. This feature is repeated in
every cycle in this case. Second, focusing on the second
panel and the bottom contour maps, the poloidal
magnetic field at [ ]=t 17 years has a dipole-type
configuration, in which the north pole has a positive
field and the south pole has a negative field. Then, the
magnetic field at the north pole reverses at around

[ ]=t 22 years , and the poloidal magnetic field changes to
the quadrupole-type configuration, as seen in the contour
map at [ ]=t 23 years . This quadrupole-type configura-
tion persists until the magnetic field at the south pole
reverses at around [ ]=t 26 years .

2. Cycle from t=30 to [ ]42 years . Then the dipole-type
configuration, in which the polarity is opposite to that at

[ ]=t 17 years , reappears. After the magnetic field at the
north pole reverses at around [ ]=t 33 years , it switches
to the quadrupole-type configuration again, and after the
magnetic field at the south pole reverses at around

[ ]=t 37 years , the dipole-type configuration whose
polarity is the same as at [ ]=t 17 years recovers.

These results clearly indicate that the magnetic field Br

always reverses at the north pole first, and the polarity reversal
at the south pole follows. On the other hand, in the attractor for
yD = - 90 , the sunspot activity in the southern hemisphere is

higher than that in the northern hemisphere in the first half of
the cycle, and the polarity reversal at the south pole always
precedes that at the north pole, as seen in Figure 4.
Based on the results above, we can conclude that the flux

transport dynamo solution spontaneously generates the asym-
metric behavior of the solar cycle, in which the polar field is
reversed for the hemisphere that is the more active in the early
phase of the cycle.

3.3. Dependence on the Magnetic Reynolds Number Rm

We also analyzed the dependence of dynamo activity on the
magnetic Reynolds number Rm defined as

( )

h
=R

V R
. 21m

0

SCZ

Here, the typical values were used for the solar radius R and
the speed difference of differential rotation between the equator
( )q = 90 and polar area ( )q = 10 , = ´ -V 1.759 10 m s0

3 1.
We investigated the dependence on Rm by changing hSCZ.
The long-term evolution of the amplitude ratio defined as

( )c =
-

+

B B

B B
, 22r

s
r
a

r
s

r
a

,max ,max

,max ,max

is plotted in Figure 5, where Br
s
,max and Br

a
,max are the

maximum values of the radial magnetic field at the north pole
in one sunspot cycle for the symmetric and antisymmetric
components, respectively. We performed the simulations for
various Rm values, in which the initial condition consists of the
two components having the same amplitude, i.e., c = 0

Figure 5. Time evolution of the magnetic ratio χ at different Rm values. (A) Rm=7.65×103, (B) Rm=6.80×103, (C) Rm=6.12×103, (D) Rm=6.09×103,
(E) Rm=6.06×103, (F) Rm=6.03×103, (G) Rm=5.97×103, (H) Rm=5.83×103, (I) Rm=5.56×103, and (J) Rm=5.10×103, respectively.
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initially. Figure 5 shows that the ratio χ gradually changes to
different states. When > ´R 6.06 10m

3, χ increases, while it
decreases for < ´R 6.06 10m

3. This means that the final
solution is switched from antisymmetric to symmetric at

» ´R 6.06 10m
3, as plotted in Figure 6, which shows the

relationship between Rm and χ at t = 15,000 [years]. The
critical resistivities hp and ht corresponding to

= ´R 6.06 10m
3 are 2.02×1012 [cm2 s−1] and 0.04×1012

[cm2 s−1], respectively.
Chatterjee et al. (2004) explored a two-dimensional kine-

matic solar dynamo model in a full sphere and concluded that
the dipolar mode is preferred when certain reasonable

conditions are satisfied. Thereafter, Yeates et al. (2008)
revealed that the nature of the dynamo changes from
advection-dominated to diffusion-dominated for different
relative choices of turbulent diffusivity and flow speed (i.e.,
Reynolds number). Hotta & Yokoyama (2010) also investi-
gated the dependence of the solar magnetic parity between the
hemispheres on the turbulent diffusivity and the meridional
flow by means of an axisymmetric kinematic dynamo model,
and they showed that the stronger diffusivity near the surface is
more likely to cause the magnetic field to be a dipole. These
results are qualitatively consistent with our result.
Figure 7 shows that the ratio χ is also related to the lag time

Dtlag between the polar field reversals at the north and south

Figure 6. Relation between the magnetic Reynolds number Rm and the ratio χ. The dots represent the data points where we implemented the simulation.

Figure 7. Relationship between the lag time Dtlag and the ratio χ. The dots represent the data points where we implemented the simulation.
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poles. When c = -1, the antisymmetric component governs
the solution, and the polar fields are reversed simultaneously at
both poles (D =t 0lag ). However, the lag time Dtlag increases
with χ up to a half-period cycle when c = 0. Finally, when
c = 1, the symmetric component dominates and the lag time
Dtlag reaches the cycle period. This means that the reversal
again occurs simultaneously at the two poles.

According to DeRosa et al. (2012), the secondary family of
magnetic field (corresponding to the symmetric component)
attains amplitudes of about 25% of the primary family
(corresponding to the antisymmetric component) according to
the observation. This may correspond to about c = -0.6, and
Figure 7 indicates that the lag time Dtlag for this is

[ ]D »t 1.7 yearslag . This result is almost consistent with the
observation of polar field reversal mentioned by Babcock
(1959) and Svalgaard & Kamide (2013).

4. DISCUSSION

Newton & Milsom (1955), Waldmeier (1971), Li (2009),
and Muraközy & Ludmány (2012) derived various indices for
the degree of phase lag in the solar magnetic cycle between the
northern and southern hemispheres, using the observational
data of sunspot number, the number of sunspot groups, and the
area of sunspots. They used these indices to investigate the
variation of the phase lag. As summarized in Table 1, these
results showed that the leading hemisphere in the solar cycle
tends to be maintained for several cycles, and also that it
switched to the other hemisphere, e.g., on cycles 11/12, 15/16,
and 19/20. Therefore, they suggested that a 4+4 cycle period
might exist for the phase lag of the hemispheric cycles.

The observation that the leading hemisphere tends to be
maintained is consistent with our result for the two attractors of
the solar cycle, in which either the northern or southern
hemisphere leads the cycle. However, our simulation cannot
explain the periodic switch of the leading hemisphere because,
if the cycle falls into an attractor, the solution will never escape
from there.

For the attractors, the cycle periods of the dipole- and
quadrupole-type components coincide and the lag between

their phases is locked. In the kinematic dynamo model,
however, the two different components have different eigen-
values corresponding to the cycle period. This indicates that
some nonlinear effects, which couple the different components,
are needed to make the attractors. In our model, only the
magnetic buoyancy effect plays this role. In the solar
convection zone, however, it is likely that more complicated
nonlinear effects work to modulate the cycle period (Cameron
et al. 2014).
Although it is beyond the scope of this paper to determine

what causes the transition between the attractors of solar cycles,
let us discuss what kind of modulation might be consistent with
the observed properties. Here, we assume the following: the
fundamental features of the attractor are sustained; the two
components, Bs and Ba, have a common cycle frequency ω;
and the phase lag is fixed at p 2:

( ) ( )w p= +B M tsin 2 , 23s s

( ) ( )w=B M tsin . 24a a

On the other hand, we introduce the competitive modulation of
a four-cycle period between the two components,

( ) ( )m w=M tsin 4 , 25s

( )= -M M1 , 26a s

where μ is the amplitude of modulation. In fact, Nishikawa &
Kusano (2008) revealed that the dipole-type component
weakens when the quadrupole-type component grows in their
long-term MHD simulation of a quickly rotating spherical shell
dynamo. The competitive relationship in Equation (26) is a
simple model for this competitive relationship between the two
components.
Some results for the modulated cycle are shown in Figure 8,

where the primary cycle p w and the modulation amplitude μ
are assumed to be [ ]10 years and 0.25, respectively. In this
figure, the upper panel shows the evolution of magnetic activity
in the northern and southern hemispheres, and the lower panel
indicates the amplitude of the symmetric and antisymmetric
components. It shows that the leading hemisphere switches

Table 1
Leading Hemisphere for each Sunspot Cycle in the Past 180 Years

Cycle No. Newton & Milsom (1955) Waldmeier (1971) Waldmeier (1971) Li (2009) Li (2009) Muraközy & Ludmány (2012)
(S) (D) (Group) (Area)

8 S L L L L L
9 N L L L L L
10 S S S L L L
11 S S S L L L
12 N N N N N N
13 N N N N N N
14 N N N N Same N
15 N N N N N N
16 S S S N Same S
17 S S S S Same S
18 S S S S S S
19 L S S S S S
20 L N N N N N
21 L L L N N N
22 L L L N N N
23 L L L N N N

Note. “N” indicates that the northern hemisphere led the cycle and “S” indicates that the southern hemisphere did. “Same” represents cases where phase lag hardly
existed.
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every four cycles, because the sign of the symmetric
component Ms is reversed. Though this mathematical experi-
ment is too simple to simulate the real solar cycle, it implies
that some possibility exists that the variability of the symmetric
component might cause the transition of attractors.

5. CONCLUSIONS

In order to investigate the mechanism of the phase
asymmetry of the solar cycle between the different hemi-
spheres, we performed dynamo simulations based on the flux
transport dynamo model. Our simulation code was devised to
precisely calculate the hemispheric symmetricity based on the
SURYA code (CNC 2004). As a result, we have shown that the
flux transport dynamo model explains the phase asymmetry
well. Thus, the phase asymmetry is an inherent property of the
cyclic dynamo solutions, and it appears without any ad hoc
source of asymmetry in the magnetic field and velocity (e.g.,
the differential rotation and the meridional circulation). The
dynamo solutions of the solar cycle have two attractors, in
which the phases of the quadrupole-type and dipole-type
components differ by yD =  90 . When yD = 90
( yD = - 90 ), the cycle of the northern (southern) hemisphere
leads the cycle of the other hemisphere. The lag time of the
phases between the different hemispheres, Dtlag, is determined
by the amplitude ratio of dipole and quadrupole components χ.
The ratio χ of the attractors depends on the magnetic Reynolds
number Rm for the solar convection zone. Within the range

 ´ ´R3.71 10 1.02 10m
3 4, the dynamo switches from

the dipole-dominated solution to the quadrupole-dominated
solution.

Our results are consistent with the observation that the
leading hemisphere in the solar cycle tends to persist for several
cycles. However, our model cannot explain the observation that
the leading hemisphere switches about every four cycles nor

the amplitude asymmetry of each solar cycle between the
northern and southern hemispheres. Although the switch of the
leading hemisphere may be understood as the transition from
one attractor to the other, it is still elusive what kind of
nonlinear effects may cause this transition. In order to elucidate
this issue, we need to develop a more sophisticated model that
can handle the feedback effect of the dynamo field.

Our simulation code was devised based on the solar dynamo
code SURYA developed by professor A. R. Choudhuri and his
co-researchers at the Indian Institute of Science, Bangalore.
This work was supported by a Grant-in-Aid for the Japan
Society for the Promotion of Science (JSPS) Fellows (Grant
No.: 26-4779) and MEXT/JSPS KAKENHI 15H05816,
25287051, and 25247014. D.S. was supported by research
fellowships from JSPS for young scientists and from Nagoya
University program “Leadership Development Program for
Space Exploration and Research” for leading graduate schools.
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