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Abstract

In the tropics, moist convection is prominent during the year. Organized convective
systems (cloud clusters) are constantly generated and brings a large amount of precipita-
tion. The primary energy source of atmospheric motion is the latent heating from orga-
nized convection, which drives large-scale disturbances (equatorial waves). A large-scale
equatorial wave coupled with convection (clouds and precipitation) is known as a convec-
tively coupled equatorial wave (CCEW).

The present study focuses on the quasi-2-day waves which are the most fundamental
element of the hierarchy of CCEWs. The 2-day waves are large-scale atmospheric distur-
bances moving westward near the equator with a period of about 2 days. Their dynamics
is explained by that of the convectively coupled westward inertia-gravity wave (WIG
wave). The relationship between moist convection and large-scale dynamics of the waves
is examined by using satellite and reanalysis data. Convective peaks of the 2-day wave are
detected by WIG filtering of infrared brightness temperature data, and various global data
are composited around the peaks to extract the statistical properties. The present study
consists of two parts as summarized as follows.

In the first part of the present study, the interaction between moist convection and
large-scale dynamics is examined in the thermodynamic context. The thermodynamic
properties of 2-day wave are analyzed using moist static energy (MSE), which is nearly
conserved in moist adiabatic process. The column-integrated MSE budget is useful to
diagnose MSE recharge-discharge process at work in association with the wave activity.
Net change of the column MSE is explained by MSE advection due to a large-scale cir-
culation and diabatic fluxes (radiative and surface heat fluxes). The recharge-discharge
process of 2-day waves is investigated by calculating the budget terms from reanalysis
data. MSE increases before the buildup of deep convection (recharge process) and de-
creases during and after the convection (discharge process). MSE variability is mainly
dominated by the advection term, while radiative heating and surface heat fluxes make
only a minimal contribution. The advection term is further separated into the horizon-
tal (zonal and meridional) and vertical components. The horizontal advection is roughly
in phase with the MSE tendency and is mainly accounted for by the zonal advection,
where the amplitude of zonal advection is nearly the same as that of vertical advection.
An increase of negative vertical advection associated with deep convection is remarkable,
while that of positive vertical advection due to shallow convection is relatively smaller
in amplitude. The advection terms are further separated into the mean and perturbation
fields of wind and MSE to investigate the causes of variability of MSE advection. Verti-
cal advection is found to be mainly dominated by a large-scale vertical motion of 2-day
wave. Advection by the mean zonal wind across the perturbation MSE gradient gives
the largest contribution to zonal advection, while this term plays little role in driving the
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recharge-discharge process. As the easterly (westerly) mean wind becomes stronger, the
amplitude of zonal advection is more larger (smaller) with that of vertical advection be-
ing nearly unchanged. From these results, it is suggested that MSE recharge-discharge
process during the active phase of 2-day wave is mainly driven by the vertical advection
due to the large-scale vertical motion. This result is qualitatively consistent with existing
theoretical models of CCEW. To examine the relationship between large-scale circula-
tion and convective intensity, normalize gross moist stability (NGMS) is adopted from
the previous studies, defined as the ratio of MSE vertical advection to moisture vertical
advection. NGMS decreases to 0 before deep convection. According to the development
of deep convection, NGMS increases and reaches its maximum after the convective peak.
This result is consistent with the previous study indicating that the temporal variability of
NGMS is more prominent for the waves with short time scale such as 2-day waves.

As described above, the large-scale vertical motion plays an important role in modu-
lating the thermodynamic properties of the 2-day wave. It is known that the large-scale
dynamical field is well explained by a few vertical modes (congestus, deep, and stratiform
modes). The deep mode (the first baroclinic mode) has a single-signed structure. The con-
gestus and stratiform modes (the second and third baroclinic modes) have a dipole-like
structure. Each dry vertical mode propagates fast but is known to be slowed down when
coupled with convection. Hence, it is required to examine the role of the vertical modes
to understand the propagation dynamics of 2-day waves, in particular the mechanisms
controlling the phase speed.

In the second part of the present study, the slowing down mechanism of 2-day waves is
examined focusing on the phase speed of vertical modes associated with the wave dynam-
ics. Vertical mode transform analysis shows that the large-scale dynamical field of 2-day
waves is well represented by the superposition of the first four modes. This result is qual-
itatively consistent with the known multi-mode model consisting of congestus, deep, and
stratiform modes. Phase speed of moist vertical modes is estimated by using their mode
transform coefficient, showing that different modes propagate at a similar phase speed. It
is suggested that the 2-day waves are only weakly dispersive. In the theoretical model, a
slowdown of the first mode is explained by a reduction of effective static stability (Se) due
to latent heating, which is known as the effective stability mechanism. The present study,
based on a simple theoretical consideration, derives a diagnostic equation to evaluate the
relationship between a degree of reduction ofSe and that of equivalent depth of vertical
mode. The degree of reduction ofSe is estimated as a degree of partial cancellation of
aiabatic cooling due to upward motion by latent heating (αn). The decrease inSe becomes
larger in the lower mode than in the higher mode, partially explaining the weak disper-
siveness of the moist vertical modes. The relationship betweenSe and reduced equivalent
depth is examined for each vertical mode by using the above diagnostic equation. In the
first mode, as expected from the theoretical model, the shallow equivalent depth is quali-
tatively explained by the reduction ofSe. In the higher modes, however, discrepancy from
the theoretical prediction becomes large, implying that the effective stability mechanism
alone is not sufficient to explain the slowdown of those modes. This discrepancy remains
even with the Doppler effect considered. The discrepancy may be associated with un-
certainties in the estimation ofαn, whereαn is assumed to be a time-independent and
vertically uniform by design. Theses assumptions are valid for the first mode, while in
need of improvements for the higher modes.



Chapter 1

Introduction

1.1 Background

1.1.1 Tropical climatology

The tropics are a region of largest solar radiation of the earth, where high tropospheric
temperature and humidity are observed during the year. The tropics play an important
role to maintain the global energy balance. Figure1.1shows the energy balance at the top
of the atmosphere (TOA). Absorbed solar radiation is largest in the tropics and smaller
in the higher latitude. Outgoing longwave radiation (OLR) is lowest in the polar regions,
and . The net radiation at TOA, sum of solar radiation and OLR, is positive in the tropics
and negative in the higher latitudes. Since the annual-mean net flux at TOA is balanced
by a transport of horizontal energy flux, the net radiative heating (cooling) is transported
poleward (equatorward) by the flux of energy in the atmosphere and the ocean, which
leads to a reduction of temperature gradient.

The solar energy absorbed by the land-sea surface warms the tropical atmosphere,
where deep cumulus clouds with cloud top height near the tropopause frequently arise
(Fig. 1.2). This is consistent with that OLR is slightly lower in the tropics than in the
subtropics due to the deep cloudiness (Fig.1.1). Figure1.2 illustrates the trimodal struc-
ture of tropical convection found byJohnson et al.(1999): shallow cumulus, cumulus
congestus, and deep cumulus. These clouds are known to be associated with precipitation
activity in the tropics. Figure1.3 shows horizontal distribution of the precipitation cli-
matology obtained from the Tropical Rainfall Measuring Mission (TRMM) Precipitation
Radar (PR). The strong precipitation is observed in the Indo-Pacific warm pool region,
Maritime Continent, and Amazon. The elongate precipitation area near the equator is
called the intertropical convergence zone (ITCZ), where the low-level wind converges
into the region (Fig.1.4a) and the air is rising (Fig.1.4b). Horizontal distributions of pre-
cipitation and sea surface temperature (SST) roughly resembles each other (Fig.1.4c,d).
It is well known that precipitation monotonically increase with respect to SST up to about
27-29◦C, while the monotonic relationship fails beyond the threshold (e.g.,Graham and
Barnett1987; Waliser et al.1993; Zhang1993).
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Fig. 1.1: Annual-mean absorbed solar radiation, OLR, and net radiation averaged around latitude
circles. FromHartmann(2015).

Fig. 1.2: A schematic of north-south slice through the tropical atmosphere. FromJohnson et al.
(1999).
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Fig. 1.3: The PR total rain based on a 2.5◦ grid averages for 1998-2000. FromSchumacher and
Houze Jr(2003).

Fig. 1.4: (a) 2000-01 surface convergence from QuikSCAT with contours of 2× 10−6 s−1, (b)
1998-2001 ERA-40 pressure velocity, (c) GPCP precipitation, and (d) ERA-40 SST.
FromBack and Bretherton(2009).
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Fig. 1.5: A schematic of Hadley circulation. A rising blanch in the tropics corresponds to ITCZ.
From http://www.goes-r.gov.

1.1.2 Tropical dynamics

The tropical cumulus convection is known to affect the large-scale atmospheric cir-
culation in the tropics through various processes. Figure1.5 is a schematic of Hadley
circulation that transports energy to the subtropics. ITCZ corresponds to the rising branch
of the Hadley circulation. Active convection on the maritime continent affect the Walker
circulation in zonal direction.

In middle and high latitudes, the atmospheric motion is well explained by a quasi-
geostrophic theory, where the pressure gradient force is balanced by the Coriolis force
over a range of synoptic-scale length. The primary energy source for the motion (e.g.,
baroclinic instability wave) is the zonal available potential energy associated with the
meridional temperature gradient. Latent heat release and radiative heating are secondary
contributors to the energy source. Hence, the energy is transported to the higher latitude
by the barotropic instability wave.

In the tropics, on the other hand, horizontal temperature gradient is small due to a
small Coriolis effect (e.g.,Sobel2002). Owing to the small temperature gradient, as
well as the small Coriolis effect, the quasi-geostrophic theory is not suitable to explain
a synoptic-scale disturbance in the tropics. The primary energy source for the motion
is latent heat release due to precipitation associated with convective cloud system. The
convective systems observed in the tropics are well organized in a wide range from meso-
scale to synoptic-scale. The diabatic heating by the synoptic-scale convective systems
has a strong influence on tropical circulation (e.g., Hardley/Walker circulation) and may
excite equatorial waves with a large-scale circulation (e.g.,Matsuno1966; Gill 1980)
which play a role to redistribute a large energy input of solar radiation. Hence, it is
important to clarify the characteristics of the synoptic-scale disturbances in the tropical
atmosphere to better understand the global circulations of the atmosphere.
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1.2 Convectively coupled equatorial waves

1.2.1 Physical characteristics of CCEWs

It is well known that organized convective cloud systems (cloud clusters) are fre-
quently observed in the tropics. They have meso- to synoptic-scale time period and struc-
ture. A longitude-time cross section of infrared temperature reveals that the convective
cloud systems propagate in various directions (Fig.1.6). These systems are often as-
sociated with the convectively coupled equatorial waves (CCEWs) and the intraseasonal
oscillation which control the precipitation variability in the tropics and have a large im-
pact on the global circulation in the atmosphere. The horizontal structures and dispersion
characteristics of CCEWs are qualitatively explained by the dry equatorial waves, Kelvin,
equatorial Rossby, mixed Rossby-gravity, and inertiogravity waves, derived from shal-
low water equations linearized in equatorialβ plain byMatsuno(1966) (see section1.3).
However, the physical characteristics of the CCEWs are more complicated than expected
from shallow water theory because of their moist processes. A understanding of CCEWs
still remains a challenging problem in the atmospheric science.

Fig. 1.6: A longitude-time cross section of infrared temperature (IR) lower than 208 K for De-
cember 1992. IR data at each longitude are averaged in meridional band between 0◦ and
10◦. The colors are the number of pixels colder tha 208 K. Red colored area corresponds
to convective active area. Vectors are 850 mb total wind. FromChen et al.(1996).
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Fig. 1.7: The antisymmetric and symmetric OLR power divided by the red-noise background.
Thin lines are the dispersion relationships of equatorial waves for the equivalent depths
of 8, 12, 25, 50, and 90 m (Matsuno1966). Thick boxes are the filters to identify the
waves. FromWheeler and Kiladis(1999).

Based on various satellite observational data, it is revealed that the power spectrum
of tropical convection, using cloudiness, precipitation, and column water vapor, is well
explained by the theoretical dispersion relation of the waves with an equivalent depth of
about 12-50 m (Takayabu1994a; Wheeler and Kiladis1999; Wheeler et al.2000; Roundy
and Frank2004; Kiladis et al.2009; Yasunaga and Mapes2012, and many others). Figure
1.7 shows that the power spectrum of CCEWs peaks around the dispersion curves with
the equivalent depth of 12, 25, and 50 m. It is indicated that the CCEWs have a slower
phase speed (or shallower equivalent depth) than their dry counterparts. For example, the
equivalent depth of 12-50 m is much shallower than that of the first vertical mode (∼ 200
m). While the shallow equivalent depth of 12-50 m is widely observed among various
CCEWs, what decreases the equivalent depth has yet to be clarified. As will be described
in section1.2.3, the slowdown of the waves is considered to be related to the coupling
between convection and the wave dynamics. It is also well known that CCEWs have a
self similarity among different space-time scales (e.g,Kiladis et al.2009): 1) dynamical
fields (e.g., winds and geopotential) represent a baroclinic structure where the anomalies
vertically tilts with hight. 2) Temperature field has a boomerang-like structure. 3) The
convective life cycle consists of distinct developing stages associated with progress in the
representative cloud types from shallow cumuli to deep convective and stratiform clouds.
4) Column moisture increases in the lower to middle troposphere preceding convective
peak of CCEWs. The above features are also seen in Madden-Julian Oscillation (MJO)
which is a synoptic-scale disturbance moving eastward with a period of about 30-90 days
at a speed of∼ 5 ms−1 (e.g.,Madden and Julian19711972).
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1.2.2 Wave-convection coupling mechanism of CCEWs:
vertical modes and tropospheric moisture

To better understand the physical characteristics of CCEWs, it is important to exam-
ine a mechanism of the interaction between convection and a large-scale motion of the
waves. The wave-convection coupling mechanism of CCEWs has been proposed in dif-
ferent ways (see good review inWheeler et al.2000; Straub and Kiladis2003; Kiladis
et al.2009). In past 15 years, theoretical models of the coupling mechanism have been
developed with focus on multiple vertical modes having different heating profile (Mapes
2000; Majda and Shefter2001; Majda et al.2004; Khouider and Majda2006a; Kuang
2008b). Figure 1.8 shows idealized structure functions of vertical modes for vertical
velocity (Fig. 1.8a) and heating rate (Fig.1.8b). The first baroclinic mode (or deep con-
vective mode) has a single-sign structure and the second baroclinic mode (or stratiform
mode) has a dipole-like structure. The shallow convective mode has a single peak be-
tween the boundary layer and the lower troposphere. As will be mentioned in section1.4,
the higher mode has faster phase speed. These modes are sometimes used to explain the
coupling mechanisms as shown below.

(a) (b)

Fig. 1.8: (a) Idealized structure functions of vertical velocity for the fist baroclininc, the second
baroclinic, and shallow modes. FromMasunaga and L’Ecuyer(2014). (b) Idealized
structure functions of heating rate for stratiform, deep convective, and shallow convective
modes. FromSchumacher et al.(2004).

A “stratiform instability” mechanism is originally proposed byMapes(2000), where a
lower tropospheric cooling by the second baroclinic mode decreases convective inhibition
(CIN) and could give rise to an unstable growth working together with upper-tropospheric
heating in stratiform precipitation (Fig.1.9). The vertical mode with shallower equivalent
depth (e.g., the second mode) is considered to set slower phase speed (see section1.2.3for
more detail).Kuang(2008b) proposed the “moisture stratiform instability” mechanism
that relies on a moisture increase in the middle troposphere preceding deep convection as
a driver of CCEWs, where shallow updraft due to the higher mode (e.g., congestus mode)
increases the tropospheric moisture (Fig.1.10).
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Fig. 1.9: A schematic of stratiform instability mechanism. FromMapes(2000)

Fig. 1.10: A schematic of moisture stratiform instability mechanism. FromKuang(2008b)
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The concept of the possible coordination of the multiple vertical modes has been ex-
tensively explored in the literature in the context of CCEWs. The vertically tilted top-
heavy structure is captured by the superposition of a few baroclinic modes (Straub and
Kiladis 2003; Haertel and Kiladis2004; Peters and Bretherton2006; Tulich et al.2007;
Tulich and Mapes2008; Haertel et al.2008; Kuang2008a; Tulich and Kiladis2012). For
example, dynamical fields of 2-day waves produced by a linear model are well repro-
duced by the first and second baroclininc modes (Fig.1.11). Shallow circulation due to
the second mode could moisten the middle troposphere, which may trigger the subsequent
deep convection (Kuang2008b; Peters and Bretherton2006; Haertel et al.2008). Some
theoretical studies have suggested that the second mode is a response to the first mode
(Frierson2007; Raymond and Fuchs2007).

Fig. 1.11: A longitude-pressure cross section of 2-day wave produced by a linear model at−6
h for (a) a superposition of the first and second modes, (b) the first mode, and (c) the
second mode. Positive (negative) heating rate are shaded by dark (light) color. Positive
(negative) temperature perturbation is contoured with solid (dash) lines with interval of
0.1 C. Arrow denotes vertical and zonal wind. FromHaertel and Kiladis(2004)
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Fig. 1.12: A schematic of MSE profile (left) and vertical velocity profiles (middle and right). The
leftward (rightward) allows denote wind divergence (convergence). A bottom-heavy
(top-heavy) profile of vertical velocity is connected with net MSE import (export) in
the column. FromInoue and Back(2015b)

The moisture stratiform instability mechanism emphasizes an importance of tropo-
spheric moisture in the coupling mechanism, which is consistent with observational facts
that tropical deep convection is closely linked to tropospheric moisture (Sherwood1999;
Bretherton et al.2004; Peters and Neelin2006; Holloway and Neelin2009; Neelin et al.
2009; Masunaga2012b). It is also known from observational investigations that a mois-
ture increase in the middle troposphere plays a key role in convective development of
CCEWs and MJO (Benedict and Randall2007; Kiladis et al.2009). Although the re-
lationship between the moistening in the troposphere and convective amplification is a
chicken-and-egg problem, tropospheric moisture is considered to be a key for the cou-
pling mechanism.

In line with the above observational investigations, recent theoretical models of CCEWs
and MJO have examined the thermodynamic process by using moist static energy (MSE)
nearly conserved in moist adiabatic process (Neelin and Yu1994; Sobel et al.2001; Peters
and Bretherton2006; Fuchs and Raymond2007; Kuang2008b; Maloney2009; Raymond
et al. 2009; Maloney et al.2010; Andersen and Kuang2012; Kiranmayi and Maloney
2011; Kim et al.2014; Hannah and Maloney2014; Benedict et al.2014; Inoue and Back
2015a, and many others). The budget equation of vertical integrated MSE is a useful
tool to diagnose the relationship between tropical convection and the large-scale circu-
lation (e.g.,Back and Bretherton2006; Inoue and Back2015ab). Figure 1.12 shows
that MSE recharge-discharge process changes with the large-scale vertical motion pro-
file during convective life cycle. The recharge (discharge) process due to a bottom-heavy
(top-heavy)ω-profile is related to the amplification (dissipation) of convection. Assuming
temperature anomaly is negligible small in the tropics (e.g.,Sobel et al.2001), variation
of column MSE is nearly identical to that of column moisture. Equatorial disturbances
destabilized by the moisture increase in the troposphere, associated with bottom-heavy
profile of vertical velocity, are often called a “moisture mode”. A series of recent investi-
gations have discussed the MJO dynamics in terms of the moisture mode (Neelin and Yu
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1994; Raymond et al.2009; Sobel et al.2001; Fuchs and Raymond2007; Kuang2008b).

1.2.3 Mechanism of slowdown of CCEWs

As described in section1.2.1, CCEWs have shallower equivalent depth (or slower
phase speed) than the dry counterpart. Different lines of theory have been proposed to
explain the slowdown of phase speed. One of the well-established ideas explains the sup-
pressed phase speed in terms of the reduced static stability (Neelin and Held1987; Neelin
and Yu1994; Emanuel et al.1994; Tian and Ramanathan2003; Sobel and Bretherton
2003; Frierson et al.2004; Raymond et al.2009). This approach emphasizes the promi-
nent role of the first baroclinic mode (deep convective mode). Adiabatic cooling due to
strong upward motion is partially canceled out by diabatic heating due to the release of
latent heat. The cancellation effectively reduces static stability in the atmosphere, leading
to a slower phase speed than the dry first mode (∼ 50 ms−1). The effective static stability
is sometimes related to the gross moist stability (GMS), which was originally introduced
by Neelin and Held(1987). It has been proposed that the square of the phase speed is
proportional to GMS (Neelin and Yu1994; Emanuel et al.1994; Tian and Ramanathan
2003; Frierson et al.2004) or the normalized GMS (NGMS) (Sobel and Bretherton2003;
Raymond et al.2009). Another school of theory discusses the stratiform instability mech-
anism (Mapes2000; Majda and Shefter2001; Majda et al.2004; Khouider and Majda
2006a; Kuang2008b), which focuses on the roles of the second baroclinic mode or the
stratiform mode as a key ingredient of instability as mentioned above. The second mode
is considered to make CCEWs propagate at a similar phase speed as the dry second mode
(∼ 25 ms−1). It should be noted that the reduced static stability mechanism does not nec-
essarily contradict the stratiform instability: a slowdown of the first mode may be caused
by a reduction of static stability, whereas the second mode could concurrently play an
independent role. Hence, a comprehensive theoretical framework including these two
theories is needed to better understand mechanism of the slowdown of CCEWs.

1.2.4 Quasi-2-day wave

A quasi-2-day wave is a synoptic-scale disturbance in the tropical atmosphere, which
is accompanied by organized cloud clusters propagating westward with a period of about
two days (Takayabu1994ab; Takayabu et al.1996; Chen et al.1996; Chen and Houze
1997; Haertel and Johnson1998; Haertel and Kiladis2004; Haertel et al.2008) (Fig.
1.13). The disturbance is often associated with the active phase of the MJO (Nakazawa
1988; Chen et al.1996; Clayson et al.2002) (Fig. 1.14). The 2-day waves have been an-
alyzed using sounding observations in Tropical Ocean and Global Atmosphere Coupled
Ocean-Atmosphere Response Experiment (TOGA-COARE) intensive operative period
(IOP) during the period from November 1992 to February 1993 (e.g.,Takayabu et al.
1996; Haertel and Johnson1998; Haertel and Kiladis2004; Haertel et al.2008). Al-
though the observational area and period is limited, high-resolution COARE soundings
have revealed the prominent features of quasi-2-day waves. First, COARE 2-day wave
has a propagation speed of about 10-30 ms−1 and a zonal wavelength of about 1,000-
4,000 km. Second, the dynamical fields represent a vertically tilted top-heavy structure.
The tilting structure is common among various CCEWs and MJO (e.g.,Kiladis et al.
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2009). Third, the temperature anomaly shows a boomerang-like structure. Fourth, the
waves have distinct developing stages in their life cycle, which are associated with dif-
ferent cloud types: a shallow convective, deep convective, and stratiform clouds. These
stages are common to CCEWs, MJO, and mesoscale convective systems (e.g.,Houze
2004; Kikuchi and Takayabu2004; Mapes et al.2006).

Fig. 1.13: A schematic of convective developing stages in quasi-2-day wave. FromTakayabu et al.
(1996).

It is argued that the dynamics of the 2-day waves are explained byn = 1 convec-
tively coupled westward inertia gravity (WIG) wave (Takayabu1994b; Takayabu et al.
1996; Haertel and Johnson1998; Wheeler and Kiladis1999; Wheeler et al.2000; Haer-
tel and Kiladis2004; Haertel et al.2008; Kiladis et al.2009; Tulich and Kiladis2012;
Sumi and Masunaga2016). The dry WIG wave, not coupled with convection, is one of
the equatorial waves derived from the shallow water equation linearized in equatorialβ
plain byMatsuno(1966). The above studies have shown that the horizontal structure of
2-day waves is qualitatively consistent with that of WIG waves. WIG filtering of cloudi-
ness further shows that the WIG wave is most prominently occurred in the Indo-Pacific
Ocean region (e.g.,Wheeler and Kiladis1999; Kiladis et al.2009; Tulich and Kiladis
2012; Sumi and Masunaga2016), while the WIG filters are designed in slightly different
ways. As shown in Fig.1.7, spectrum signal of the WIG waves peaks along the the-
oretical dispersion curves with an equivalent depth of about 12-50 m (Takayabu1994a;
Wheeler and Kiladis1999; Wheeler et al.2000; Roundy and Frank2004; Kiladis et al.
2009; Yasunaga and Mapes2012). This means that convectively coupled WIG wave has
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Fig. 1.14: Hierarchical structure of intraseasonal variations. FromNakazawa(1988).

a shallower equivalent depth (or slower phase speed) than the dry counterpart.
Despite recent theoretical improvements (see section1.2.2), the couping mechanisms

of 2-day waves have been less examined, in the light of both the multiple vertical modes
and the tropospheric moisture, than that of the other CCEWs and MJO. As a few excep-
tions (e.g.,Haertel and Kiladis2004; Haertel et al.2008), the dynamical fields in 2-day
waves are analyzed by using the multiple mode model whose basic states are given by
COARE soundings.Haertel and Kiladis(2004) showed, for 2-day waves produced by a
linear primitive equation model, that their dynamical structures are well reproduced by a
superposition of the first and second baroclinic modes.Haertel et al.(2008) also showed
that the dynamical fields of COARE 2-day waves are explained by a superposition of the
first three baroclinic modes and that shallow updraft due to the higher modes contributes to
an increase of tropospheric moisture preceding deep convection. These results are roughly
consistent with stratiform instability mechanism (e.g.,Mapes2000) or moisture stratiform
instability mechanism(e.g.,Kuang2008b). The relationship between tropospheric mois-
ture and strong convection in COARE 2-day waves is further examined by using budget
equation of column MSE, suggesting that MSE variability is mainly regulated by a large-
scale vertical motion of the waves (Inoue and Back2015a). This is nearly consistent
with MSE recharge-discharge process predicted by multi-mode model (e.g.,Peters and
Bretherton2006). Cross spectral analysis showed a significant coherence between pre-
cipitation and mid-tropospheric divergence in WIG waves, suggesting an importance of
the second mode to the wave dynamics (Yasunaga and Mapes2012; Yasunaga and Mapes
2014). It is also showed that precipitation is significantly (less) correlated with moisture
in the lower (middle) troposphere, implying that stratiform instability mechanism would
be more adequately than moisture stratiform instability in WIG waves.

Although the above studies confirmed multi-modes structure in 2-day wave dynam-
ics, more observational investigations are still required to reveal the coupling mechanism.
This study examine the coupling mechanism of 2-day waves in terms of tropospheric
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moisture and vertical modes. In chapter3, the relationship between tropospheric mois-
ture and a large-scale dynamics of 2-day waves is analyzed by using budget equation of
column MSE. In chapter4, the dynamical structure and propagation dynamics are ana-
lyzed by using vertical mode decomposition technique.

1.3 Theoretical background: equatorial waves

In this section, the dispersion relationships and horizontal structure of dry equatorial
waves are summarized following shallow water theory inMatsuno(1966). In section
1.3.1, governing equations are briefly summarized. In sections1.3.2and1.3.3, dispersion
relationships and horizontal structure of the waves are derived from eigen-value equation
by analogy with Schroedinger equation for a simple harmonic oscillator.

1.3.1 Model and basic equations

We consider shallow water system with the depth of the undisturbed layer of homo-
geneous incompressible fluid in Fig.1.15. Hereh is the small deviation of the elevation
of the top surface, andH is the mean value of the top surface. In the tropical atmosphere,
shallow water approximation is good for representing the wave motion with synoptic-
scale zonal wave length (Lx ≪ H).

Fig. 1.15: Schematic picture of shallow water system.H is a mean value of the elevation of the
top surface,h is the small deviation of the mean, andLx is the zonal wave length.

The equations of motion and the mass conservation in the shallow water system are
written as follows (see section6.1for more detail):

∂u

∂t
− fv + g

∂h

∂x
= 0

∂v

∂t
+ fu+ g

∂h

∂y
= 0

∂h

∂t
+H(

∂u

∂x
+
∂v

∂y
) = 0

(1.1)
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wheref is Coriolis parameter andg is the acceleration of gravity. Here, we assume that
Coriolis parameterf is linearly proportional to the latitude (β-plane approximation):

f = βy (1.2)

whereβ is Rossby parameter and assumed to be constant. We rewrite Eqs. (1.1) by using
the geopotential heightϕ = gz.

∂u

∂t
− βyv +

∂ϕ

∂x
= 0

∂v

∂t
+ βyu+

∂ϕ

∂y
= 0

∂ϕ

∂t
+ c2(

∂u

∂x
+
∂v

∂y
) = 0

(1.3)

wherec =
√
gH is the velocity of pure gravity waves. By taking the units of time and

length as follows [
T
]
= (1/cβ)1/2[

L
]
= (c/β)1/2

(1.4)

Eqs. (1.1) are transformed into non-dimensional form;

∂u

∂t
− yv +

∂ϕ

∂x
= 0

∂v

∂t
+ yu+

∂ϕ

∂y
= 0

∂ϕ

∂t
+
∂u

∂x
+
∂v

∂y
= 0

(1.5)

1.3.2 Dispersion relations of equatorial waves

Assume that all solutions in Eqs. (1.5) have the factorei(ωt+kx), u(x, y, t)
v(x, y, t)
ϕ(x, y, t)

 =

 û(y)
v̂(y)

ϕ̂(y)

 ei(ωt+kx) (1.6)

whereω is frequency andk is zonal wave number. Substituting Eqs. (1.6) into (1.5) yields

iωu− yv + ikϕ = 0

iωv + yu+
dϕ

dy
= 0

iωϕ+ iku+
dv

dy
= 0

(1.7)

Herey-dependent valuableŝu,v̂, andϕ̂ are replaced byu, v, andϕ, respectively for sim-
plicity. Eliminatingu andϕ, we finally obtain the equation tov as follows;(

d2

dy2
− y2

)
v =

(
ω2 − k2 +

k

ω

)
v (1.8)
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Since the wave is trapped near the equator (y ∼ 0), the boundary condition is

v → 0; when y → ±∞ (1.9)

Eq. (1.8) with boundary condition Eq. (1.9) poses an eigen-value problem, which is
just the same as Schroedinger equation for a simple harmonic oscillator. The boundary
condition (1.9) is satisfied only when the constant(ω2 − k2 + k/ω) is equal to an odd
integer:

ω2 − k2 +
k

ω
= 2n+ 1 (n = 0, 1, 2, · · · ) (1.10)

The solution of Eq. (1.8) is expressed as;

v(y) = Ae−
1
2
y2Hn(y) (1.11)

whereA is standard orthogonal coefficient andHn(y) is the Hermite polynomial of the
n-th order.

Now, the dispersion relations of equatorial waves are derived. Since Eq. (1.10) is a
cubic equation toω, we have tree roots whenn andk are specified. We consider three
cases (n ≥ 1, n = 0, andn = −1) as shown below.

(i) n ≥ 1

Eq. (1.10) is rewritten as;

ω2

k2
+

1

kω
=
k2 + 2n+ 1

k2
(1.12)

The approximate values of three roots ofω for very largek, are given as;

ω1,2 ∼ ±
√
k2 + 2n+ 1 (for ω ≫ k)

ω3 ∼
k

k2 + 2n+ 1
(for ω ≪ k)

(1.13)

ω1,2 are identified as the frequency of inertia-gravity wave, andω3 is that of Rossby wave.
Their phase speeds are expressed as;

c1,2 ∼ ±cg

√
1 +

1

k2
β

cg
(2n+ 1)

c3 ∼
β

k2 + β
cg
(2n+ 1)

(1.14)

wherecg is the velocity of pure gravity wave.

(ii) n = 0

Puttingn = 0 in Eq. (1.10) gives

(ω − k)(ω2 + kω − 1) = 0 (1.15)
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Three roots of Eq. (1.15) is

ω =


−k

2
−

√
1 +

(
k
2

)2
< 0

−k
2
+
√

1 +
(
k
2

)2
> 0

k > 0

(1.16)

Notice that Rossby wave has lower frequency than inertia gravity (IG) wave. Comparing

ω = k andω = −k/2 +
√

1 + (k/2)2 yields

k (Rossby) < −k
2
+

√
1 +

(
k

2

)2

(IG) (k ≤ 1/
√
2)

k (IG) > −k
2
+

√
1 +

(
k

2

)2

(Rossby) (k ≥ 1/
√
2)

(1.17)

Thenω is classified as follows;

ω1 = −k
2
−

√
1 +

(
k

2

)2

ω2 =

{
−k

2
+
√
1 +

(
k
2

)2
(for k ≤ 1/

√
2)

k (for k ≥ 1/
√
2)

ω3 =

{
k (for k ≤ 1/

√
2)

−k
2
+
√
1 +

(
k
2

)2
(for k ≥ 1/

√
2)

(1.18)

whereω1 is identified as the frequency of eastward IG wave,ω2 is that of westward IG
wave, andω3 is that of Rossby wave. Here we should notice thatω = k should be rejected,
becauseu andϕ are infinitely diverges (see Eqs. (1.23)). Therefore,ω is reclassified as
follows;

ω1 = −k
2
−

√
1 +

(
k

2

)2

(Eastward IG)

ω2 =

 −k
2
+
√

1 +
(
k
2

)2
(for k ≤ 1/

√
2) (Westward IG)

−k
2
+
√

1 +
(
k
2

)2
(for k ≥ 1/

√
2) (Rossby)

(1.19)

whereω1 is the frequency of eastward IG wave andω2 is that of mixed Rossby-gravity
wave.

(iii) n = −1

We consider solution which is not included in Eq. (1.10). Notice that Eq. (1.10) was
obtained by reducing the original simultaneous Eq. (1.5) to the equation forv only. There
can exist a solution which has no merdional velocity. Puttingv = 0 in Eq. (1.5) yields

iωu+ ikϕ = 0

yu+
dϕ

dy
= 0

iωϕ+ iku = 0

(1.20)
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Fig. 1.16: Dispersion curves for equatorial waves derived inMatsuno(1966). FromKiladis et al.
(2009).

By using the first and the third equations in Eqs. (1.20), the solutions only exist when

(ω − k)(ω + k) = 0 (1.21)

Then the solutions are obtains are as follows;

ϕ = u = Ce−y2/2 for ω = −k
ϕ = −u = Cey

2/2 for ω = k
(1.22)

Since the lower one dose not satisfy the boundary condition Eq. (1.9), it is rejected. The
upper solutionω = −k is obtained if we putn = −1 in Eq. (1.10), which is identified as
the frequency of Kelvin wave.

The dispersion curves for equatorial waves are shown in Fig.1.16. The wave number
(k∗ = k(

√
(gH)/β)1/2) and frequency (ω∗ = ω/(β

√
(gH))1/2) are non-dimensional val-

ues (see Eq. (1.4)). Westward (eastward) propagating waves are in the region of negative
(positive) wave number. The Kelvin wave is labeled asn = −1 as described above.

1.3.3 Horizontal structure of equatorial waves

In section1.3.2, eigenvalue (ωnl) of Eq. (1.8) is obtained. In this section, the eigen-
functions are derived as shown below. From Eq. (1.7), u andϕ are expressed as follows:

u =
1

i(ω2 − k2)

(
ωyv + k

dv

dy

)
ϕ =

1

−i(ω2 − k2)

(
kyv + ω

dv

dy

) (1.23)



27

Using Eq. (1.11) and the recurrence formulas for Hermite’s polynomials

dHn(ξ)

dξ
= 2nHn−1(ξ)

Hn+1(ξ) = 2ξHn(ξ)− 2nHn−1(ξ)

(1.24)

eigenfunctions ofu andϕ are written as follows:

u = A
e−y2/2

i(ω2 − k2)

(
1

2
(ω − k)Hn+1 + n(ω + k)Hn−1

)
v = A

e−y2/2

i(ω2 − k2)

(
1

2
(ω − k)Hn+1 − n(ω + k)Hn−1

) (1.25)

Hence eigenfunctions for eigenvalueωnl are written as: u
v
ϕ


nl

=

 i(ω2
nl − k2)ψn

n(ωnl − k)ψn−1 +
1
2
(ωnl − k)ψn+1

−n(ωnl − k)ψn−1 +
1
2
(ωnl − k)ψn+1

 (1.26)

where

ψn = e−
1
2
y2Hn(y) (1.27)

and subscriptsn andl denote meridional mode number and the three roots of Eq. (1.15),
respectively. Ifn is an odd (even) number,v is an odd (even) function andu andϕ are even
(odd) functions with respect toy. The eignefunctions of equatorial waves are summarized
as follows:
(i) n ≥ 1  u

v
ϕ


nl

=

 i(ω2
nl − k2)ψn

n(ωnl − k)ψn−1 +
1
2
(ωnl − k)ψn+1

−n(ωnl − k)ψn−1 +
1
2
(ωnl − k)ψn+1

 (1.28)

(ii) n = 0  u
v
ϕ


0l

=

 2i(ω0l + k)ψ0

ψ1

ψ1

 (1.29)

(iii) n = −1  u
v
ϕ


−1

=

 0
ψ0

ψ0

 (1.30)

Figure1.17shows horizontal structure ofn = 1 WIG wave. Sincen is an odd number,
v is an odd function andu andϕ are even functions with respect toy, that is, the dynamical
filed is symmetric to the equator.
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Fig. 1.17: Horizontal structure ofn = 1 WIG wave derived inMatsuno(1966). Vector repre-
sents horizontal wind(u, v). Shading (hatching) represents convergence (divergence).
Contours are geopotentialϕ. FromKiladis et al.(2009).

1.4 Theoretical background: vertical mode transform

SW theory (see section1.3) describes the zonal propagation of equatorial waves,
where the depth of the stable layer of fluid (H) determines the phase speed and the spatial
scale of equatorial waves. Here, primitive equations linearized about a basic state of rest
are considered to describe the motion of the three dimensional atmosphere (Fulton and
Schubert1985). By separating the variables, the primitive equations are divided into the
equations of horizontal structure and the equation of vertical structure (eigenvalue equa-
tion). Since the horizontal structure equations are identical to the SW equations, the mean
depth of the former is called equivalent depth. The vertical structure functions (vertical
modes) and the equivalent depth of the waves are calculated by solving the eigenvalue
equation (section1.4.1-1.4.3). The differential method solving the eigenvalue equation is
also summarized in sections2.2.6, 6.3, and6.5.

1.4.1 Governing equations

The primitive equations are used to describe the motion of atmospheric disturbance.
First, the primitive equations on aβ-plane are linearized about a basic state of rest. Sec-
ond, the boundary conditions are determined to solve the equations.
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Linearization of the primitive equations

Consider the motions of a compressible atmosphere in hydrostatic balance (primitive
equations system). The primitive equations on aβ-plane are written as;

∂u

∂t
− βyv +

∂ϕ

∂x
= 0 (1.31)

∂v

∂t
− βyu+

∂ϕ

∂y
= 0 (1.32)

∂ϕ

∂p
+
RT

p
= 0 (1.33)

cp
∂T

∂t
− cpSω = Q (1.34)

∂u

∂x
+
∂v

∂y
+
∂ω

∂p
= 0 (1.35)

whereT is temperature,R is gas constant of dry air,cp is specific heat at constant pressure,
andQ is heating roughly equal to the apparent heat source inYanai et al.(1973). S is the
static stability parameter for the isobaric system

S =
RT

cPP
− ∂T

∂p
= −T

θ

∂θ

∂p
(1.36)

whereθ is potential temperatureθ = T (p0/p)
R/Cp. Eqs. (1.31) and (1.32) are the momen-

tum equations, Eq. (1.33) is hydrostatic equation, Eq. (1.34) is thermodynamic equation,
and Eq. (1.31) is continuity equation.

The primitive equations are linearized about the motionless hydrostatic basic state (T̄
andϕ̄). The variables are separated into a basic state of rest ()̄, whereū = v̄ = ω̄ = 0,
and perturbation from the basic state (′).

u = u′

v = v′

ω = ω′

ϕ = ϕ̄+ ϕ′

T = T̄ + T ′

Q = Q′

(1.37)

Substituting Eqs. (1.37) into (1.31 )-(1.35) yields the primitive equations on aβ-plane
linearized about a basic state of rest:

∂u′

∂t
− βyv′ +

∂ϕ′

∂x
= 0 (1.38)

∂v′

∂t
− βyu′ +

∂ϕ′

∂y
= 0 (1.39)

∂ϕ′

∂p
+
RT ′

p
= 0 (1.40)

cp
∂T ′

∂t
− cpS̄ω

′ = Q′ (1.41)

∂u′

∂x
+
∂v′

∂y
+
∂ω′

∂p
= 0 (1.42)
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whereS̄ = RT̄/cPP − ∂T̄ /∂p is static stability of a basic state.

Boundary conditions

To obtain desecrate modes, the atmosphere is taken to be vertically bounded at the
top boundary (pt) and the bottom boundary (pb). We use the upper rigid-lid boundary
condition, where the vertical p-velocityω is required to vanish at the top boundary and
the actual vertical velocityw is required to vanish at the bottom boundary.

ω = 0 at p = pt (1.43)

w = 0 at p = pb (1.44)

Using the hydrostatic equation∂z/∂p = −1/(ρg), whereρ is th density of the gas, Eq.
(1.44) is rewritten as

w =
∂z

∂t
+V·∇z − ω

1

ρg
= 0 (1.45)

Multiplying the both side of Eq. (1.45) by g and replacinggz for ϕ yield

∂ϕ

∂t
+V·∇ϕ− ω

RT

p
= 0 (1.46)

Substituting Eqs. (1.37) into (1.43) and (1.46), we obtain the boundary conditions lin-
earized about the basic state of rest:

ω′ = 0 at p = pt (1.47)
∂ϕ′

∂t
− ω′RT̄

p
= 0 at p = pb (1.48)

1.4.2 Simplified governing equations and the vertical differential op-
erator

In this section, the vertical differential operator is introduced to simplify the governing
equations. Now, we rewriteu′ → u, v′ → v, ω′ → ω, ϕ′ → ϕ, T ′ → T,Q′ → Q, and
S̄ → S in Eqs. (1.38)-(1.42) and (1.47)-(1.48). EliminatingT andω between (1.40)-
(1.42) yields

L̂

{
∂ϕ

∂t

}
+
∂u

∂x
+
∂v

∂y
=

∂

∂p

(
Q

Scp

)
(1.49)

whereL̂ is the vertical differential operator and operates to the functionf(p) as follows:

L̂
{
f(p)

}
= − ∂

∂p

p

SR

∂

∂p
f(p) (1.50)

Let us denote the rhs of Eq. (1.49) as “forced divergence”D.

D =
∂

∂p

1

SR

R

cp
Q

= − ∂

∂p

p

SR

∂

∂p

(
∂Φ

∂t

)
= L̂

{
∂Φ

∂t

}
(1.51)
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where we define the “forced geopotential”Φ as

R

cp
Q = −p ∂

∂p

(
∂Φ

∂t

)
(1.52)

Eq. (1.49) is rewritten by using Eq. (1.51) as

L̂

{
∂ϕ

∂t
− ∂Φ

∂t

}
= −

(
∂u

∂x
+
∂v

∂y

)
(1.53)

The only vertical derivatives in the governing equations, Eqs. (1.38), (1.39), and (1.53),
appear in the term̂L

{
∂ϕ/∂t− ∂Φ/∂t

}
.

EliminatingT between Eqs. (1.40) and (1.41) yields

ω =
1

RS
p
∂

∂p

(
∂Φ

∂t
− ∂ϕ

∂t

)
(1.54)

Substituting Eqs. (1.54) into (1.47) and (1.48), we obtain the boundary conditions:

p
∂

∂p

(
∂Φ

∂t
− ∂ϕ

∂t

)
= 0 at p = pt (1.55)

p
∂

∂p

(
∂Φ

∂t
− ∂ϕ

∂t

)
+
p2σ

RT̄

(
∂Φ

∂t
− ∂ϕ

∂t

)
= 0 at p = pb (1.56)

whereσ = SR/p. Assuming∂Φ/∂t = 0 atp = pb, we obtainine Eq. (1.56).

1.4.3 The vertical mode transform

First, we define vertical inner product and vertical mode transform. Second, we derive
the vertical mode in the governing equations, which is the eigenfunction of the vertical
differential operator̂L.

Vertical inner product

We define the vertical inner product⟨A|B⟩ for any functionsA andB of pressurep:

⟨A|B⟩ = 1

pb − pt

∫ pb

pt

ABdp (1.57)

Consider an integral transform of the form

Ân = ⟨A|hn⟩ =
1

pb − pt

∫ pb

pt

Ahndp (1.58)

where the kernelhn(p) of the transform is the vertical structure function of a vertical
mode andÂn is the mode transform coefficient. Here,hn(p) consists of a normalized
orthogonal system:

⟨hm|hn⟩ =
1

pB − pT

∫ pB

pT

hmhndp = δmn (1.59)



32

whereδmn is Kronecher delta.
VariableA is expressed as a superposition of the vertical modes.

A =
∞∑
n=0

An =
∞∑
n=0

Ânhn (1.60)

whereAn = Ânhn is the mode transform component and̂An is the mode transform
coefficient. A contribution ratio of the n-th mode (Pn) is defined as

Pn =

⟨
A2

n

⟩⟨
A2

⟩ =
Â2

n∑∞
n=0 Â

2
n

. (1.61)

Eigenvalue equation

Derive the vertical modeshn in the governing equations. By usinghn, the mode
transform components ofu, v, ϕ, andD are expressed as follows;

un(x, y, p, t)
vn(x, y, p, t)
ϕn(x, y, p, t)
Dn(x, y, p, t)

 =


ûn(x, y, t)
v̂n(x, y, t)

ϕ̂n(x, y, t)

D̂n(x, y, t)

hn(p) (1.62)

The vertical mode is derived from Eq. (1.53) since the vertical derivatives in the governing
equations only appear in the lhs of Eq. (1.53). LettingF = (∂ϕ/∂t− ∂Φ/∂t), we rewrite
Eq. (1.53) as

L̂F = −
(
∂u

∂x
+
∂v

∂y

)
(1.63)

Multiplying both side of Eq. (1.63) by hn from the right and calculating the vertical inner
product becomes

⟨L̂F |hn⟩ = −
(
∂ûn
∂x

+
∂v̂n
∂y

)
(1.64)

The kernelhn of the transform is to be chosen so that

⟨L̂F |hn⟩ = λn⟨F |hn⟩ (1.65)

with λn a constant. The lhs of Eq. (1.65) is calculated as

⟨L̂F |hn⟩ =
1

pb − pt

∫ pb

pt

(L̂F )hndp

=
1

pb − pt

∫ pb

pt

(
− ∂

∂p

1

σ

∂F

∂p

)
hndp

=
−1

pb − pt

[
1

σ

∂F

∂p
hn

]pb
pt

+
1

pb − pt

∫ pb

pt

1

σ

∂F

∂p

∂hn
∂p

dp

=
−1

pb − pt

[
1

σ

∂F

∂p
hn

]pb
pt

+
1

pb − pt

[
1

σ
F
∂hn
∂p

]pb
pt

− 1

pb − pt

∫ pb

pt

F
∂

∂p

1

σ

∂hn
∂p

dp

=
1

pb − pt

[
1

σ
F
∂hn
∂p

− 1

σ

∂F

∂p
hn

]pb
pt

+ ⟨F |L̂hn⟩ (1.66)
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Eq. (1.66) is equal to the rhs of Eq. (1.65), if we suppose the followings;

L̂hn = λnhn (1.67)[
1

σ
F
∂hn
∂p

− 1

σ

∂F

∂p
hn

]pb
pt

= 0 (1.68)

Eq. (1.67) is the eigenvalue equation andhn andλn denotes the eigenfunction and eigen-
value, respectively. Notice thatλn = 1/c2n (cn : phase speed). Substituting Eqs. (1.67)
into (1.66), we obtain⟨L̂F |hn⟩ = ⟨F |L̂†hn⟩ = ⟨F |L̂hn⟩, which indicates that̂L is a
Hermitian operator (̂L† = L̂).

Substituting Eqs. (1.55)-(1.56) into (1.68), we obtain the boundary conditions forhn:(
P
∂hn
∂p

)
pb

+

(
p2σ

RT̄
hn

)
pb

= 0 at p = pb (1.69)(
P
∂hn
∂p

)
pt

= 0 at p = pt (1.70)

Applying the vertical transform to the governing equations Eqs. (1.38)-(1.39) and (1.53)
results in

∂ûn
∂t

− βyv̂n +
∂ϕ̂n

∂x
= 0 (1.71)

∂v̂n
∂t

− βyûn +
∂ϕ̂n

∂y
= 0 (1.72)(

∂ϕ̂n

∂t
− D̂n

)
= − 1

λn

(
∂ûn
∂x

+
∂v̂n
∂y

)
(1.73)

whereD̂n = ∂Φ̂n/∂t.

Vertical mode transform components of the other variables

The mode transform components ofu, v, ϕ, andD are expressed as in Eq. (1.62).
That ofT , ω, andQ are also written by using the vertical modehn (see section6.2 for
more detail).

Tn = − 1

R
ϕ̂n

∂hn
∂lnp

(1.74)

ωn = −
(
∂ûn
∂x

+
∂v̂n
∂y

)∫ p

pt

hndp (1.75)

Qn = −ScpD̂n

∫ p

pt

hndp (1.76)
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1.5 Outline of the thesis

This study focuses on quasi-2-day waves which are the most fundamental element of
the hierarchy of CCEWs. Our ultimate goal is proposing a comprehensive frame work to
understand the wave-convection coupling mechanism of various CCEWs. In the present
study, the coupling mechanism of quasi-2-day waves is examined by utilizing satellite and
reanalysis data. The first and second parts of this study are summarized in chapter3 and
chapter4, respectively.

In chapter2, data and methodology used in the following analysis (chapter3 and
chapter4) are summarized. The 2-day waves are detected by WIG filtering of brightness
temperature data since they are nearly identical to convectively coupled WIG waves.

In chapter3, the interaction between convection and the wave dynamics is examined in
the thermodynamic context. Following recent investigations, moist static energy (MSE)
which is nearly conserved in moist adiabatic process is used to examine the thermody-
namic process during the active phase of the 2-day waves. Budget equation of vertically
integrated MSE tell us about MSE recharge-discharge process associated with the wave
dynamics. Further, the normalized gross moist stability (NGMS) is adopted to discuss the
relationship between the large-scale circulation and convective intensity.

In chapter4, the interaction between convection and the wave dynamics is examined in
the vertical mode perspective. The large-scale fields of the 2-day waves are decomposed
by a few vertical modes calculated from a mean temperature profile of reanalysis data.
Phase speed of vertical modes is evaluated using the mode transform coefficients. The
mechanism of slowdown of the vertical modes is examined in terms of effective static
stability which is reduced by the latent heating of convective systems. Using a simple
diagnostic equation, the relationship between the effective static stability and the slow
phase speed is investigated for each vertical mode.

In chapter5, a summary of the above analyses is presented.



Chapter 2

Data and Methodology

2.1 Data description

This study analysis 10-yrs (2000-2009) of satellite and reanalysis data as shown below.
The analysis area is the whole tropical region between10◦N and10◦S over oceans. All
satellite data are projected onto a0.25◦ grid.

2.1.1 Satellite data

IR data

IR brightness temperature (TBB) data is used to identify convective peaks of quasi-
2-day waves (see sec. 2b). TBB data is obtained from Global-merged IR Brightness
Temperature Data (mergedIR) Ver. 6 byJanowiak et al.(2001). The mergedIR is a high-
resolution gridded global data in which Geostationary Operational Environmental Satel-
lite (GOES)-8/10, Meteorological Satellite (METEOSAT)-7/5 and Geostationary Meteo-
rological Satellite (GMS) are combined. The spatial coverage is between60◦N and60◦S.
The horizontal resolution is about0.0364◦ and temporal resolution is 30 min. Owing to
the high temporal resolution of mergedIR, we could construct a composite time series
with a time increment of 30 min (see section2.2.4for more detail).

TRMM PR2A25 data

The precipitation data in tropical ocean area is obtained from Tropical Rainfall Mea-
suring Mission (TRMM) data product. TRMM satellite is launched in November 1997
and ended in April 2015. It is a sun-asynchronous satellite orbiting with an inclination
angle of about35◦ and carrying the Precipitation Rader (PR) which estimates vertical
profile of precipitation. The horizontal and vertical resolutions of PR are about 4 km and
250 m, respectively. The near surface precipitation data in PR2A25 Level 2 Ver. 6 (Iguchi
et al.2000) is used to analyze variance in precipitation of 2-day waves.

35
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2.1.2 Reanalysis data

ERA-Interim

To analyze the environmental fields accompanied with 2-day waves, we use ERA-
Interim data which is one of European Center for Medium-Range Weather Forecasts
(ECMWF)’s reanalysis data (Simmons et al.2007). The horizontal resolution is1.5◦

and the total number of pressure levels is 38 with non-uniform pressure interval. The
temporal resolution is 6 and 12 hours for three and two dimensional data, respectively.
ERA-Interim variables utilized in this work are summarized as follows. 1) the 3D vari-
ables; geopotantial heightϕ, temperatureT , specific humidityq, horizontal wind velocity
VVV = (u, v), and pressure velocityω. 2) the 2D variables; surface sensible heat fluxSH,
surface latent heat fluxLH, surface short wave fluxSWs, short wave flux at the top of
the atmosphere (TOA)SWt, surface long wave fluxLWs, and long wave flux at TOA
LWt. The analysis area is the whole tropical region between10◦N and10◦S over oceans
as selected with the ERAI sea-land flag.

2.2 Methodology

2.2.1 Spectral analysis

Space-time power spectrum of the high-resolution TBB data (mergedIR) is computed
in a similar manner to that used by previous studies (e.g.,Wheeler and Kiladis1999).
The procedure is briefly summarized here. First, raw TBB data are averaged over the
meridional band between10◦N and10◦S. Then, a longitude-time cross section of the area
averaged TBB is constructed for every 2 yr between 2000 and 2009. Missing data are
filled in by linear interpolation over time. Second, the mean and the linear components
at each longitude are removed to obtain anomalous TBB. Third, the longitude-time cross
section of the anomaly is divided into 80-day segments that consecutively overlap each
other by 40 days. Therefore, a frequency resolutionf is 0.0125 (1/80) cycle per day
(cpd). Finally, fast Fourier transform (FFT) is performed to compute the power spectrum
of anomalous TBB for each segment. Here, a split cosine bell tapering function is applied
to each segment to avoid spectral leakage. The power spectrum are averaged over 10 yr
between 2000 and 2009.

Figure 2.1 shows the power spectrum normalized by the background spectrum in
wavenumber-frequency domain. The background spectrum is computed by smoothing
many times the raw spectrum with a 1-2-1 filter in frequency only. The degree of freedom
(DOF) is estimated about 91 (∼ 2×365×10/80). Shading begins at a value of 1.3, which
is significant at the 95% level with 91 DOF in a chi-squared test. The spectral signals of
TBB in Fig. 2.1are consistent with those of OLR, precipitation, and precipitable water in
previous studies (e.g.,Takayabu1994a; Wheeler and Kiladis1999; Wheeler et al.2000;
Roundy and Frank2004; Masunaga et al.2006; Kiladis et al.2009; Yasunaga and Mapes
2012, and many others).
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Fig. 2.1: The raw power spectrum normalized by the background spectrum (shade) in wave
number-frequency (cycle par day; cpd) domain. A negative (positive) wave number
means westward (eastward) mode. Shading begins at a value of 1.3, which is signifi-
cant at the 95 % level with 91 degrees of freedom (DOF). The colored lines represent
the dispersion relationships of various equatorial waves for different equivalent depth of
5 m (blue) and 100 m (red); inertia gravity wave (n = 1), Rossby wave (n = 1), mixed
Rossby wave (n = 0), and Kelvin wave(n = −1). The large black frame represents the
WIG filter used in this study, includingk=1-24 andhe = 5-100 m.

2.2.2 Filtering analysis

Filtering analysis is performed to isolate individual CCEWs (e.g.,Wheeler and Ki-
ladis1999), where the filtering boxes are defined in the wavenumber-frequency domain
based on the dispersion curves of dry equatorial waves derived byMatsuno(1966). This
approach is applied to the present study with some minor modifications as described be-
low.

In the present study, convective peak of a quasi-2-day wave is identified by filtering
TBB. It is assumed that convectively coupled WIG wave is a practical indicator of 2-day
wave. First, a longitude-time cross section of TBB averaged over meridional band (10◦N-
10◦S) is constructed for every 2 years between 2000 and 2009. Missing data are filled in
by linear interpolation over time, and then the mean and the linear components at each lon-
gitude are removed. Second, we apply fast Fourier transform to the time series of anoma-
lous TBB by utilizing a split cosine bell tapering function to avoid spectral leakage. Third,
WIG filter (the filter design is described below) is applied to a wavenumber-frequency do-
main to isolate individual WIG wave. Finally, the filtered TBB is transformed back to the
longitude-time domain.

WIG filter is often defined as a wavenumber-frequency domain bounded by two dis-
persion curves of WIG wave, includingk = 1 − 14 andhe = 12 − 50 m (e.g.,Wheeler
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Fig. 2.2: A longitude-time cross section of (a) raw TBB, (b) WIG filtered TBB, and (c) WIG
filtered TBB and WIG peaks (black dot). In (c), the area surrounded by a black box in
(b) is displayed in large size. The longitudinal band is between60◦E and120◦W. The
time period is between 2004/12/31 and 2005/1/31.

and Kiladis1999). In the present study, WIG filter used in chapter3 is defined as a
somewhat broader region includingk = 1 − 24 andhe = 5 − 100 m (black box in Fig.
2.1). It is confirmed that the filter includes the prominent WIG signals (k ∼ 1 − 15 and
f ∼ 0.4 − 0.8) in Fig. 2.1. Some recent studies have reported that the spectral signal
of WIG waves extends over a wider region in the higher frequencies and wave numbers
(Tulich and Kiladis2012; Kikuchi 2014). Based on TRMM 3B42 precipitation product,
Tulich and Kiladis(2012) shows that the significant signal of westward disturbances is
seen up to zonal wavelength of about 500 km and period of about 8 h, corresponding to
the meso-alpha scale. Such a small and fast disturbances are excluded in this study to
avoid their contamination to the WIG filtering. The TD signals (e.g.,Kiladis et al.2006)
may appear below the lower boundary of the WIG filter nearf = 0.2 − 0.4. However,
TD-type disturbances are unlikely to have significant influence on this analysis. Finally,
the same filter defined inWheeler and Kiladis(1999) is tested to verify the justification
for the filter in this study. The following results are insensitive to the difference in the
filter design (not shown here).

Figure2.2 is the longitude-time cross section during the period between December
2004 and January 2005 for an example to show how the filtering works. Unfiltered TBB
(Fig. 2.2a) shows that a synoptic-scale envelope of active convection is prominent be-
tween the Indian Ocean (IO) and western Pacific Ocean (WP), while 2-day disturbances
are only barely discernible. Westward propagating 2-day waves are clearly captured in the
WIG filtered TBB (Fig.2.2b), particularly striking in the western Pacific between140◦E
and180◦ .

In chapter4, we further define five sub-filters with different equivalent depth in order
to isolate the waves moving at different phase speed (Fig.2.3). The sub-filters are denoted
by h5/15, h15/25, h25/35, h35/45, and h45/55 in the order of increasing equivalent depths.
For the filter h5/15, the upper and bottom boundaries are set athe = 5 m andhe = 15
m, respectively. A range of wave numberk = 1 − 14 is common among the sub-filters.
Yasunaga and Mapes(2014) separates the faster and slower components of CCEW by
using two filtering box with different equivalent depth, where region includinghe = 20−



39

Fig. 2.3: Five sub-filters with different equivalent depth which are used in chapter4. See more
description in section2.2.2.

25 m is excluded to reduce the cross contamination from other components. As the five
filters defined above are adjacent each other, any contamination could be occurred. It is
noted, however, that WIG waves with different phase speed are isolated well as shown in
section4.2.

2.2.3 Definition of the peak of WIG wave

A convective peak of WIG waves (hereafter WIG peak) is detected by using a longitude-
time cross section of filtered TBB. First, the standard deviation(SD) of filtered TBB
is computed from the longitude-time cross section with the sample number of about
50457600 (∼ 2 × 365 × 48 × 360◦/0.25◦) for each 2 yr. Second, zonal local minima
of filtered TBB are searched at each time by moving a searching box, with a zonal length
of 20◦, in zonal zonal direction. Only a minimum locating at the center of the searching
box is picked up to ignore noisy fluctuations. Third, the local minima colder than−2 SD
are defined as the longitudinal location of convective peaks of WIG waves (WIG peak).
This threshold is used to prevent the composite wave structures from being contaminated
by irrelevant background convective signals. Finally, the longitude of the convective peak
is defined as a meridional local minimum of raw TBB between10◦N and10◦S.

The total number of WIG peaks is 355491 in 10 yr between 2000 and 2009. Figure
2.2c shows that the peaks (black dot) distribute along the WIG ridges where the zonal
minimum of filtered TBB are colder than−2 SD. Robust wave signals with active con-
vection are likely to be captured, while relatively weak and noisy signals are excluded.
Figure 2.4 shows the geographic distribution of WIG peaks. The waves are most fre-
quently observed in the Indo-Pacific Ocean region and Africa, as shown in the previous
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Fig. 2.4: Geographic distribution of WIG peaks detected by the method in section2.2.3. The total
peak number is 355,491.

works. It is noted that only peaks in the ocean are used in the composite analysis.

2.2.4 Composite analysis

The composite analysis is performed to investigate observational features of WIG
waves. It should be noted that there exists a technical problem as described below. The
WIG wave accompanies with an individual convective event with a period from a few
hours to one day. Such a fast evolution process is unable to be tracked continuously by
orbiting satellite and reanalysis data due to their coarse temporal sampling. For example,
daily observational frequencies are four times (6 hourly) and less than two times in reanal-
ysis data and low-Earth-orbiting(LEO) satellite data, respectively. To avoid this technical
problem,Masunaga(2012a) proposed a new composite technique to statistically construct
fast temporal variations in the atmosphere. In his technique, two LEO satellite datasets
with different observational time are combined, where the time axis is defined as their ob-
servational time difference: the composite base points are detected by using TRMM data
and the other LEO data are composited around them (see Fig. 2 inMasunaga2012a).
A huge number of the base points are needed to construct a statistically continuous time
series because individual base points only provide discrete snapshots due to a coarse time
resolution of the composited data.

A similar technique is applied to the present study. First, the peak of WIG wave,
identified from filtering TBB data (mergedIR), is defined as a base point of composite.
Second, a long time period of satellite and reanalysis data are composited around the base
point to obtain the statistical continuous time series. The composite time is the obser-
vational time difference between mergedIR and the composited data, which is sorted by
0.5-hourly bins. This high temporal resolution of the composite filed is achieved because
the base points are identified by 0.5-hourly merged IR data. As definition, the composite
time 0 h corresponds to the timing when the WIG wave has the minimal TBB.

2.2.5 Radon transform

Phase speed of CCEW is often calculated as a regression coefficient of the peaks
of anomalies in a longitude-time domain (e.g.,Wheeler et al.2000). Radon transform
(RT) method has been sometimes used to evaluate propagation speeds of CCEWs and
organized cloud systems (Yang et al.2007b; Dias and Pauluis2011; Dias et al.2012).
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Fig. 2.5: A longitude-time cross section of anomalous brightness temperature. Solid (dashed)
lines denote positive (negative) anomalies. The energy of the projected data has a max-
imum amplitude at angleθ⊥ perpendicular to the ridges and troughs. The wave propa-
gates at the direction of angleθ⊥ + 90◦. FromYang et al.(2007b).

The RT, a method described as “a more objective way to obtain phase speed” byYang
et al.(2007b), is adopted in the present study to estimate propagation speeds of the WIG
waves and the moist vertical modes. It should be noted that the obtained speed is not so
sensitive to differences in the evaluation methods (not shown here).

We briefly summarize the procedure here (see appendix inYang et al.(2007b) for
more details). The anomalous field of longitude-time domain(x, t) is projected along a
line at angleθ with respect to the x axis (Fig.2.5). Equation of RT is written as follows:

P (x′, θ) =

∫
y′
f(x, y)dy′ (2.1)

where (
x′

y′

)
=

(
cosθ sinθ
−sinθ cosθ

)(
x
y

)
(2.2)

When the line at angleθ is perpendicular to the ridges and troughs of the wave in the
course of varyingθ from 0◦ to 180◦, the energy of the projected data would have a max-
imum amplitude;P (x′, θ) has a maximum variance (

∑
x′ P 2(x′, θ) is maximized atθ⊥).

With this angle denoted byθ⊥, the angle perpendicular to the projection angle (θ⊥ + 90◦)
gives the wave propagation direction in the longitude-time domain. The phase speed is
calculated as the slope of the propagation direction;

c ∼ ∆x× 100× 1000

∆y × 3600

1

tan(θ⊥ + 90◦)
(2.3)



42

wherec is phase speed [ms−1], ∆x and∆y are resolution of space and time, respectively.
As will be shown in chapter4, ∆x = 0.25◦ and∆y = 0.5 h in Fig. 4.1a.

2.2.6 Vertical mode

Numerical methods to calculate normal modes in the atmosphere have been proposed
in different ways (Kasahara and Puri1981; Dias et al.1983; Fulton and Schubert1985).
This study adopts the method proposed inFulton and Schubert(1985) where the vertical
modes are derived from primitive equation system in pressure coordinate (see section
1.4 for more detail). This method has been widely used in observational and theoretical
investigations of CCEWs and meso-scale convective systems (Mapes and Houze Jr1995;
Mapes1998; Haertel and Johnson1998; Haertel and Kiladis2004; Khouider and Majda
2006b; Tulich et al.2007; Tulich and Mapes2008; Haertel et al.2008; Kuang2008a;
Tulich and Mapes2010; Tulich and Kiladis2012).

The vertical mode is obtained by solving a discrete eigenvalue equation (Eq. (1.67));

− ∂

∂p

p

S̄R

∂

∂p
hn(p) = c2nhn(p) (2.4)

whereS̄ = RT̄/pcp − ∂T̄ /∂p is static stability of basic state (over bar denotes temporal
and area average),hn(p) is a normalized structure function of then-th dry vertical mode,
andcn is the phase speed. Note thathn(p) consists of a normalized orthogonal system.
Eq. (2.4) is solved by applying rigid upper boundary condition. To compute numerical
solutions of the vertical modes, we rewrite the eigenvalue equation, the boundary condi-
tion, and the normalized condition in a finite difference form. First, pressure coordinate
is represented in a discrete form. Second, the eigenvalue equation and the boundary con-
dition are represented in a finite difference form, where the eigenfunction is written in a
matrix form. Third, the normalized condition in a difference form is descried.

Pressure coordinate in a discrete form

Figure2.6shows a pressure coordinate with(M + 1) layers in a discrete form. Each
of the layers has a uniform thickness of△p and is labeled by an integer indexk (k =
0, . . . ,M ). The k-th layer is placed between two pressure levelsp = pk−1/2 andp =
pk+1/2, and is centered atp = pk. The index of the upper and bottom boundaries are
k = −1/2 andk =M +1/2, respectively. In this analysis,pt = 100 hPa,pb = 1000 hPa,
△p = 25 hPa, andM = 35.

Eigenvalue equation, boundary condition, and normalized condition

The eigenvalue equation and boundary conditions are summarized as follows;

− ∂

∂p
µ
∂

∂p
hn = λnhn(

∂hn
∂p

)
pt

= 0(
∂hn
∂p

)
pb

+

(
Shn
T̄

)
pb

= 0

(2.5)
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whereµ = p/SR. Let us denotehn(pk) andµn(pk+1/2) ashn,k andµn,k+1/2, respectively
(Fig. 2.7). The latter is the mean values ofµ between pressure levelsk andk + 1. The
discrete form of Eqs. (2.5) is given as follows (see section6.3and6.5):

−
µk−1/2hn,k−1 −

(
µk−1/2 + µk+1/2

)
hn,k + µk+1/2hn,k+1

△p2
= λnhn,k (2.6)

hn,−1 = hn,0 (2.7)

hn,M+1 = bhn,M (2.8)

whereb = (1− a)/(1 + a) anda = △p
(
S/T̄

)
M+1/2

.
Substituting Eqs. (2.7) into (2.6) for k = 0 eliminateshn,−1 from (2.6). Substituting

Eqs. (2.8) into (2.6) for k = M eliminateshn,M+1 from (2.6). Simplifying Eq. (2.6) for
k = 0, ...,M , we obtain the eigenvalue equation in a matrix form:

L̂hn = λMhn (2.9)

whereL̂ is a difference operator matrix:

L̂ =



µ1/2
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−
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
and the eigenfunctionhn is written as

hn =
(
hn,0, hn,1, · · · , hn,k, · · · , hn,M−1, hn,M

)t
L̂ is a tridiagonal matrix and also identifies with a Hermitian matrix as described in sec.
1.4.3. Solving Eq. (2.9), we obtain(M + 1) eigenfunctionshn and(M + 1) eigenvalues
λn. The normalized condition in the difference form is given by

1

(M + 1)△p

M∑
k=0

h2n,k△p = 1 (2.10)
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Fig. 2.6: Pressure coordinate with(M + 1) layers betweenpT andpB. The layers are uniformly
separated with a thickness of△p. The center ofk-th layer is at levelp = pk and is
labeled by integer indexk (black solid lines:k = 0, ...,M ). Thek-th layer is placed
between two pressure levels,p = pk−1/2 andp = pk+1/2, labeled by semi-integer index
(blue dashed lines). The index of the upper and bottom boundaries arek = −1/2 and
k = M + 1/2, respectively.



45

Fig. 2.7: Same as Fig.2.6, but for discrete representation ofhn andµ. µk+1/2 denotes the mean
value ofµ between the levelsk andk + 1. u, v, ϕ, ω, T,Q
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(a) (b)

Fig. 2.8: Structure functions of the first four baroclinic modes for (a)hn and (b) omega. Different
color denote different modes.

Vertical modes calculated from ERAI data

In this study, we selectpt = 100 hPa andpb = 1000 hPa following previous studies
(e.g.,Haertel et al.2008; Tulich and Kiladis2012). The pressure coordinate between
pt andpb is divided into 36 layers with a uniform thickness of 25 hPa. Therefore, total
number of vertical modes is 36 (n = 0 ∼ 35). ERAI variables in pressure coordinate
(betweenpt andpb) are also vertically interpolated with uniformly spacing (25 hPa) by
cubic spline interpolation.̄T is calculated as a temporal-domain averaged temperature of
ERAI data between10◦N and10◦S in 10 yrs (2000-2009). The profile is insensitive to
regional and temporal differences (not shown here).

Figure2.8ashows the structure function of the first four baroclinic modes calculated
in this study. Then-th mode has then nodes. Figure2.8bshows the structure function of
ω calculated from Eq. (6.30). The lower mode has faster phase speed (deeper equivalent
depth). For the first four modes, the phase speeds are 52, 27, 20, and 15 ms−1. The
equivalent depth (Hn = c2n/g) are 274, 75, 39, and 23 m. The phase speed and equivalent
depth are almost consistent with that calculated with the same boundary condition in
previous studies. For example,Tulich and Kiladis(2012) using ERA-Interim data showed
that phase speeds of the first four modes are 51, 22, 18, and 14 ms−1. Haertel et al.(2008)
using TOGA-COARE data shows that phase speeds of the first tree modes are 52, 26, and
19 ms−1. It is also confirmed that pressure levels of the peaks and nodes of each vertical
mode are roughly consistent with that in the previous studies.



Chapter 3

Thermodynamic process of quasi-2-day
wave

3.1 Goal of this chapter

In this chapter, the relationship between convection and 2-day wave dynamics is ex-
amined. Following recent investigations (see section1.2.2), budget equation of column
MSE is applied to the composite WIG waves, where the budget terms are calculated from
ERAI data. MSE recharge-discharge process is discussed comparing with that in multi-
mode model. The goal of this chapter is to reveal a role of tropospheric moisture in the
coupling mechanism.

3.2 Gross features of composite WIG waves

In this section, the horizontal structure and propagation character of the composite
WIG waves are described. Figure3.1shows the horizontal structure of anomalous TBB,
precipitation, geopotential height, and horizontal wind during a sequence of WIG phases.
Anomalies represent the deviation from the temporal mean over± 48 hour in the com-
posite time series, which are computed by subtracting the mean from the value at each
grid point in Fig. 3.1. The computing method of anomaly is similar to that used in the
previous studies (Takayabu et al.1996; Benedict and Randall2007). Shade and arrows in
Fig. 3.1 are plotted only where statistically significant at the 95% level as tested by the
Student’s t-test.

The area with a negative TBB anomaly (convective active area) has a zonal scale of
about 1000 km (Fig.3.1a). Therefore, the zonal wavelength of the composite WIG wave
is estimated about 2000 km, corresponding to that of COARE 2-day wave (Takayabu
1994b; Takayabu et al.1996; Haertel and Johnson1998; Haertel and Kiladis2004). The
convective envelope moves westward with a period of about 2 days and has a minimum
TBB around 0 hour by definition. The propagation speed of the composite WIG waves is
estimated to be about 17 ms−1 given that the convective active area moves over about30◦

in 48 hours, which is nearly consistent with that of COARE-2-day waves (10-30 ms−1)
as mentioned in section3.4.3. The TBB minimum lags the precipitation maximum by a
few hours, which is consistent with the previous studies (Takayabu et al.1996; Haertel
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Fig. 3.1: 12-hourly snapshots of the horizontal structure of the composite WIG waves; (a) anoma-
lous TBB, (b) anomalous precipitation, (c) anomalous geopotential height (shade) and
horizontal wind (vector) at 200 hPa. Negative anomaly of TBB is represented by contour
in (a) and (b). Anomalies are computed by subtracting time mean value during± 48
hour in the composite time series form the values at each grid point. Shades and arrows
indicate significant regions at the 95% level. The horizontal axis is a relative longitude
between−20◦ and+20◦. The vertical axis is latitude between10◦N and10◦S. Time
increase downward from−24 hr to +24 hr with a time increment of 12 hour.

and Johnson1998; Haertel and Kiladis2004). The somewhat noisy distribution of precip-
itation anomaly (Fig.3.1b) is likely to result from the small sample size of PR2A25 data,
because TRMM satellite has less than twice daily observations at the same location. The
synoptic-scale structure of geopotential height and wind at 200 hPa is roughly identical
to that of the theoreticaln = 1 WIG waves derived byMatsuno(1966) in that divergence
and convergence are on the left and right, respectively, of the low pressure field (Fig.
1.17). The negative TBB anomaly is almost in quadrature with the geopotential height
and is in phase with the wind divergence field.

The convective center of the composite WIG waves is shifted away from the equator
to around5◦N (Fig. 3.1a). This could result from the effect of ITCZ, which is located
near the equator (Indian Ocean; IO) and off the equator around7◦N (Pacific Ocean). In
fact, the WIG convective center appears around7◦N in WP and around0◦ in IO (not
shown). The horizontal structure of geopotential height and wind is offset to the north
of the equator (Fig.3.1c), while that of theoreticaln = 1 WIG is equatorial symmetric,
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probably due to the same reason as mentioned above.
The horizontal and vertical structures are nearly identical between the Indian and Pa-

cific Oceans (not shown here). A secondary difference is that a maximum hight of con-
vection is lower in the east Pacific than in the indo-west Pacific, which could be explained
by the regional difference of the tropical large-scale circulation (e.g.,Back and Bretherton
(2006)).

3.3 MSE budget analysis

3.3.1 Budget analysis

In this section, thermodynamic process of 2-day waves is examined by using moist
static energy (MSE) which is nearly conserved in moist adiabatic processes (see section
1.2.2). MSE is defined as

m = s+ Lq (3.1)

wherem is MSE,s = ϕ+ cpT is dry static energy (DSE),L is the latent heat of conden-
sation (2.5×106 J/kg), andcp is dry air heat capacity at constant pressure (1004 J/K/kg).
The budget of MSE is expressed as (see more description in section6.6)

∂tm = −VVV · ∇m− ω∂pm+QR + ∂p(s
′ω′) + ∂p(Lq

′ω′) (3.2)

where MSE eddy term is sum of radiative heatingQR and eddy transports of latent heat
flux ∂p(q′ω′) and sensible heat flux∂p(s′ω′). The budget of column-integrated MSE is
expressed as

⟨∂tm⟩ = −⟨VVV · ∇m⟩ − ⟨ω∂pm⟩+ ⟨QR⟩+ SH + LH (3.3)

Here, angle brackets denotes mass-weighted vertical integration from the top of the atmo-
sphere (pt) to the surface pressure (ps):

⟨A⟩ = 1

g

∫ ps

pt

Adp (3.4)

whereps = 1000 hPa andpt = 100 hPa. The lhs of Eq. (3.3) is the MSE tendency term.
The first and second terms on the rhs of Eq. (3.3) represent horizontal MSE advection
(HADV) and vertical MSE advection (VADV), respectively. The other terms are the MSE
source terms.⟨QR⟩ is column integrated radiative heating and calculated as the difference
in net radiative flux between the surface and top of the atmosphere:

⟨QR⟩ = SWt ↓ −SWt ↑ −SWs ↓ +SWs ↑ −LWt ↑ −LWs ↓ +LWs ↑ (3.5)

where the variables are defined in section2.1.2and upward (downward) arrow represent
upward (downward) flux. LH and SH represent latent and sensible heat flux at surface
pressure, respectively. These fluxes at TOA are 0, whereω is assumed to be vanished. The
budget equation of column MSE tells us the MSE recharge-discharge process associated
with the large-scale circulation.
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(b)

Fig. 3.2: (a) Composite time series of integrated MSE budget terms. The MSE tendency (black),
total MSE advection (red), surface flux (green), radiative heating (blue), and the budget
residual (purple). The residual is computed by subtracting the right hand side form the
left hand side of the budget equation. (b) Same as in Fig.3.2a, but for zonal (red),
meridional (green), and vertical (blue) MSE advection.

Figure3.2ashows the composite time series of the integrated MSE budget terms. The
tendency term has a maximum of 100 Wm−2 before the WIG peak (∼ -15 hr) and a mini-
mum of -100 Wm−2 after the peak (∼ +5 hr). This suggests that MSE increase (recharge
process) and MSE decrease (discharge process) occur before and after deep convection,
respectively. Variation in the total MSE advection term (HADV+VADV) is responsible
for that in the tendency term. The advection increases MSE import in the column before
deep convection and approaches its maximum of 0 around -15 hr. It increases MSE ex-
port as convection develops and reaches its minimum after the WIG peak. On the other
hand, MSE source terms are almost unchanged during the active convection: Radiative
and surface fluxes stay nearly constant at−60Wm−2 (LW=−180Wm−2 and SW=120
Wm−2) and +130Wm−2 (SH=20Wm−2 and LH=110Wm−2), respectively. The bud-
get residual is calculated by subtracting the rhs form the lhs in Eq. (3.3). It is roughly
in phase with the tendency term and the amplitude is smaller, which may be attributed
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to uncertainties of reanalysis data, including 1) the convection and cloud parameteriza-
tions used in the data assimilation and 2) the coarse spatiotemporal resolution. Although
the budget analysis using ERA-Interim data is not closed, the MSE recharge-discharge
process of WIG wave is mainly regulated by the MSE advection.

Total advection is separated into the horizontal and vertical components (Fig.3.2b).
A striking increase in negative VADV occurs around WIG peak within± 12 hr. This may
correspond to an increase in MSE export due to the strong ascent with deep convection
(the first baroclinic mode). HADV is further separated in to the zonal and meridional
components (−VVV · ∇m = −u∂xm− v∂ym). Zonal advection shows a striking variability
and is nearly in phase with the tendency term. It increases MSE import before deep con-
vection and MSE export as convection develops. On the other hand, meridional advcetion
has a small amplitude.

3.3.2 Vertical structure of the budget terms

Figure3.3 shows the time-pressure cross section of the budget terms in Eq. (3.2),
where positive and negative anomalies correspond to MSE import and export, respec-
tively. The tendency term has a vertically tilted structure with a maximum amplitude
around 750 hPa before deep convection, which is consistent with a large variation in
MSE in the lower troposphere (not shown here). HADV is nearly in phase with the ten-
dency term at each pressure level and mainly explained by zonal component. Meridional
component is negligibly small as expected from Fig.3.2b (not shown here). The am-
plitude of VADV is large during the evolution of intense convection (± 12 hr), which is
nearly comparable to that of HADV. Before WIG peak, a positive anomaly emerges in the
lower troposphere under a negative anomaly from the middle to upper troposphere. This
means that MSE increase (decrease) due to a strong ascent occurs in the lower (upper)
half of the troposphere. After WIG peak, updraft is decreased in the upper troposphere
and downdraft is strengthened in the lower troposphere due to an enhancement of anvil
cloud. Therefore, a decrease of ascent in the upper troposphere weakens the negative
VADV (positive anomaly) and an increase of decent in the lower troposphere enhances
the negative VADV (negative anomaly). See section6.7 for the relationship between a
large-scale vertical motion and signs of VADV.

MSE eddy term in Eq. (3.2) is rewritten as follows:

Q1 −Q2 = QR + ∂p(s
′ω′) + ∂p(Lq

′ω′) (3.6)

whereQ1 is the apparent heating source andQ2 is moisture sink. MSE eddy transport
−∂p(s′ω′)−∂p(Lq′ω′) is unresolved in a spatial resolution of reanalysis data. The vertical
profile ofQR is not provided in ERA-interim data. Hence, MSE eddy term (Q1 − Q2)
is calculated by subtracting the total advection term from the tendency term (Yanai et al.
1973). In Fig. 3.3, the eddy term is out of phase with VADV and shows a prominent
contribution to the budget, which is absent by definition in the column integrated terms.
The large amplitude may be attributed to the MSE eddy transport term rather than the
radiative heating term since the former usually exceeds the latter in the region where
deep vertical motion exists (Yanai et al.1973). In fact, Masunaga and L’Ecuyer(2014)
estimated the MSE eddy transport and radiative heating from satellite data, showing that
the former is much larger than the later during tropical convection with the time scale of
about 1∼2 days.
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Fig. 3.3: Longitude-pressure cross sections of anomalies of the MSE budget terms (m2 s−3). (a)
MSE tendency, (b) horizontal MSE advection, (c) vertical MSE advection, and (d)Q1−
Q2. Anomalies are computed by subtracting the time mean value during± 48 hour in the
composite time series form the values at each pressure level. Shades represent significant
regions at the 95% level.

3.3.3 Decomposition of advection terms

The advection terms are further separated by decomposing variables into a time mean
and perturbation from the mean. The background is defined as the 10-yr-averaged 6-
hourly climatology of ERA-Interim data, a 365-day long time series of global maps. The
zonal advection is separated into the four components:

−u∂xm = −u′∂xm̄− u′∂xm
′ − ū∂xm

′ − ū∂xm̄ (3.7)

where the variableA is expressed asA = Ā + A′, and the overbar and the prime denote
the background and perturbation, respectively. The meridional and vertical advection
terms are decomposed in the same way. Following results are insensitive to the different
definition of the background.

Figure3.4shows the composite time series of the decomposed advection terms. The
background components (−ū∂xm̄, −v̄∂ym̄, and−ω̄∂pm̄) contribute to a small and steady
MSE export. Advection by the mean wind across the perturbation MSE gradient−ū∂xm′

gives a large contribution to the zonal advection, while−v̄∂ym′ and−v̄∂ym′ are nearly
0. The leading term of the meridional advection is−v′∂ym′. The contributions from
−u′∂xm′ and−ω′∂xm

′ are non-negligible but small, indicating that the perturbation winds
weakly act againstm′. Vertical advection is mainly dominated by the advection byω′
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Fig. 3.4: Same as Fig.3.2a, but for the MSE advection separated by the background and perturba-
tion fields. (top) zonal, (middle) meridional, and (bottom) vertical MSE advection. The
colored lines correspond to the labeled components in the figure.

across the mean MSE gradient−ω′∂pm̄. This is consistent with the previous studies
suggesting that the large-scale vertical motion associated with the wave dynamics is re-
sponsible for the variability in the vertical advection.

Figure 3.5 shows snapshots of the longitude-time cross section of zonal wind and
MSE zonal gradient which are decomposed into the mean and perturbation components.
Each snapshot represents individual developing stages in WIG waves: an early stage of
convection (-24 h), maximum of the MSE tendency (-15 h), near-precipitation maximum
(-5 h), minimum of the MSE tendency (+5 h), and a decaying stage of convection (+10
h). The term∂xm̄ is positive (negative) to the west (east) of the composite center. This
may result from a fact that a convective peak of WIG wave is most frequently observed
in the pacific warm pool region where the mean MSE has a maximum in zonal direction.
Amplitude of ∂xm′ is larger than that of∂xm̄. The ū is easterly everywhere from the
surface to the tropopause and slower than the propagation speed of WIG wave (∼ 17
m/s). Amplitude ofu′ is large near the tropopause, which is a well-known feature of
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WIG waves. Figure3.6shows the longitude-pressure cross sections of decomposed zonal
advection components. As expected from Fig.3.5, the contribution from−ū∂xm′ is more
prominent than the other components. A dipole-like structure of−ū∂xm′ with positive
and negative anomalies is explained by a superposition of∂xm

′ andū shown in Fig.3.5.
The positive advection due to−ū∂xm′ leads to MSE increase (recharge) to the west

of the region with a positive MSE anomaly (m′). The MSE recharge to the west of con-
vection might be important to determine the propagating direction of 2-day waves. It has
been known that most of the observed 2-day waves prefer to propagate westward rather
than eastward. It is also shown that spectral signal of convectively coupled eastward in-
ertia gravity waves is less prominent than the WIG waves. However, it is unreliable that
the term−ū∂xm′ is responsible for the propagation of WIG waves. We discuss the role
of the zonal advection more carefully in the next section.

  -24 hr            -15 hr                       -5 hr       +5 hr           + 10 hr

Fig. 3.5: Snapshots of the longitude-pressure cross section of MSE zonal gradient (ms−2) and
zonal wind (ms−1). From the above line,∂xm̄，∂xm

′，ū, andu′. The horizontal and
vertical axis represent relative longitude and pressure, respectively. Time increase to the
right (−24,−15,−5, +5, +10 hr).
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       -24 hr             -15 hr                  -5 hr                     +5 hr          + 10 hr

Fig. 3.6: Same as Fig.3.5, but for the four components of zonal MSE advection decomposed by
the background and perturbation fields. From above,−u′∂xm̄，−ū∂xm̄，−u|′∂xm

′，
−ū∂xm

′, and−u∂xm (m2 s−3).
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3.3.4 Zonal wind effect

To examine the possible roles of the background zonal wind on the MSE budget, a
barotropic flowūb is defined as a pressure averagedū in the lower troposphere, where the
tendnecy and advection terms show striking variabilities (Fig.3.3). ūb is expressed as

ūb =
1

∆p

∫ pB

pA

ūdp (3.8)

wherepA = 800 hPa,pB = 700 hPa, and∆p = pA − pB. Then, the base points of
composite (WIG peaks) are sorted into five categories by the barotropic flow at the points
as summarized in Table3.1. The base point in the category with the lower (higher) number
corresponds to the stronger easterly (westerly) flow. Each of C1-C4 includes about 20 %-
25 % and C5 includes about 8 %.

Figure3.7shows the composite time series of the anomalous tendency and advection
terms for the different barotropic flow. The anomaly is the deviation from the temporal
mean over±48 hr during the composite time series. Whenever the background barotropic
flow is easterly (C1-C3) or westerly (C4-C5), the tendency and HADV are in phase with
each other. As the barotropic easterly flow becomes stronger, their amplitudes become
larger due to−ū∂xm′. In the easterly flow,−ū∂xm′ and−u′∂xm′ are in phase with
each other (see Fig.3.4), leading to a large amplitude of HADV (e.g, C1 in Fig.3.7).
Although−u′∂xm′ is identical to that in the easterly flow, it is out of phase with−ū∂xm′

in the westerly flow (not shown), canceling each other out in HADV (e.g, C5 in Fig.3.7).
On the other hand, VADV is insensitive to the direction and magnitude of the background
wind speed. This implies that MSE recharge-discharge process of the wave dynamics is
mainly dominated by the vertical advection due to the large-scale vertical motion.

The coherence of−ū∂xm′ with the MSE tendency implies that this term is largely left
unconsumed during a passage of the WIG wave and thus is not critical of two-day wave
dynamics. As̄u is slower than the wave propagation speed of about17 ms−1, the term
−ū∂xm′ brings an MSE anomaly from the near-side of the WIG peak itself. Under the
easterly background, this results in a positive MSE advection because the near-side lies
ahead of the convective peak where the lower troposphere is moist. When the background
is westerly, in contrast, the horizontal MSE advection feels a dry anomaly behind the wave
peak and counteracts the moistening due to the wave itself, which is primarily regulated
by the vertical advection.

Table 3.1: Category of barotropic flow between 700 and 800 hPa.

category ūb [m/s] percentile
C1 ∼ -5.7 ∼ 26
C2 -5.4∼ -3.0 26∼ 52
C3 -2.7∼ 0.0 52∼ 72
C4 0.3∼ 3.9 72∼ 92
C5 4.2∼ 92∼ 100
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Fig. 3.7: Same as Fig.3.5, but for (a) the tendency, (b) horizontal MSE advection, and (c) vertical
MSE advection. The WIG peaks are categorized by the background barotropic flow
between 700 and 800 hPa (see Table. 1). C1 (blue), C2 (purple), and C3 (green) represent
easterly, and C4 (red) and C5 (yellow) represent westerly.

3.3.5 Gross moist stability

As described above, it is shown that MSE recharge-discharge process in WIG waves is
dominated by the vertical advetion associated with the large-scale circulation. Here, Gross
Moist Stability (GMS) is adopted to investigate the relationship between moist convection
and the large-scale wave dynamics.Neelin and Held(1987) first introduced GMS as a tool
to simplify the relationship between moist convection and large atmospheric circulations.
In their two dimensional model, GMS was a time invariant parameter and was meaningful
only when GMS is positive because otherwise the system would be unstable and time
dependent.

Recently, GMS has been tested in much broader contexts including the so-called nor-
malized GMS (NGMS) (Raymond and Fuchs2007; Raymond et al.2009; Sessions et al.
2010; Kuang 2011; Hannah and Maloney2011; Andersen and Kuang2012; Benedict
et al. 2014; Sobel et al.2014). For example,Raymond et al.(2009) defined NGMS as
“the ratio of net lateral outflow of MSE from an atmosphereic column to some measure of



58

Fig. 3.8: Same as in Fig.3.2a, but for (a) vertical MSE advection (blue) and vertical moisture
advection (black), (b) normalized GMS.

convective intensity within the column”. The sign and magnitude of NGMS are a measure
to characterize how convective heating and large-scale dynamics work together. Utilizing
the definition of NGMS inRaymond et al.(2009), we examine the roles of convection in
the large-scale dynamics associated with WIG waves. NGMS is defined as

NGMS = −
−
⟨
ω ∂m

∂p

⟩
−
⟨
ω ∂Lq

∂p

⟩ (3.9)

where the denominator and numerator are the column integrated vertical advection of
moisture and MSE, respectively. The numerator, unlikeRaymond et al.(2009), only
includes VADV, since a large amplitude of HADV due to the advection⟨−ū∂m′/∂x⟩ is
not responsible for the recharge-discharge process.

Figure3.8a shows the composite time series of the denominator and numerator in Eq.
(3.9). Since the numerator sometimes approaches the noise level close to zero, the noise
is smoothed out by applying a± 6h moving average. The following result is insensitive
to the smoothing. The moisture import due to the vertical advection increases before deep
convection and peaks around precipitation maximum of WIG wave. The recharge of MSE
(decrease in VDAV) occurs during and after the deep convection.

NGMS in Fig. 3.8b is estimated from the advection terms in Fig.3.8a. It decreases
gradually before deep convection and approaches 0 around -20 h when VADV is nearly 0.
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Fig. 3.9: The snapshots of zonal distribution of precipitation and GMS. Solid lines represent total
(black), convective (red), and stratiform (blue) rainfall rate. Dotted line represents nor-
malized GMS. The horizontal axis is the relative longitude between−20◦ and +20◦. The
time increases from top to bottom (−24,−15,−5, +5, +10 hr).

Then, it increases during and after the deep convection, and arrives its maximum 0.2 after
the WIG peak around +6 h. The time evolution of NGMS during active phase of WIG
wave is nearly consistent with that of meso-scale tropical convections with a time scale
of about 1-2 days (see Fig. 3 inMasunaga and L’Ecuyer2014). Masunaga and L’Ecuyer
(2014) calculated the similar composite time series of NGMS from satellite observations
of tropical convection, varying with time on an hourly to daily time scale for the hori-
zontal scale of about 100 km. Although their analysis was not targeted on any particular
wave mode, NGMS decreases toward 0 before deep convection and increases following
convection development, closely resembling Fig.3.8b. Moisture and MSE convergence
are largely controlled by vertical advection inMasunaga and L’Ecuyer(2014). The large
contribution of VADV might be because the horizontal scale of the convection in their
analysis is much smaller than that in the composite WIG waves (Fig.3.1). Also, it is
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possible that the contribution of the second baroclinic mode is underestimated in ERAI
data. In section3.4, we will discuss again why the contribution of the second mode is
smaller in this study than in previous studies (Haertel et al.2008; Inoue and Back2015a).

Figure3.9 shows the zonal distribution of precipitation and NGMS. The area of ac-
tive precipitation with the zonal scale of about 1000 km moves westwards as expected
from Fig. 3.1. Convective rainfall peaks a few hours earlier than stratiform rainfall in±
5 hours, which is a well-known property of tropospheric mesoscale convective systems
(e.g.,Houze2004). NGMS has a significantly high value to the east of the precipita-
tion peak. NGMS has a lower value to the west of the peak, in which VADV closes to 0.
This might suggest that an area favorable (unfavorable) for the development of convection
emerges to the west (east) of the convective envelope.

3.4 Discussion

3.4.1 Comparison with the other CCEWs and MJO

In convectively coupled gravity waves, HADV is known to be less important than
VADV to controlling a MSE recharge-discharge process.Peters and Bretherton(2006),
based on Cloud Resolving Model, showed that VADV is dominant over HADV in the
Kelvin wave. Haertel et al.(2008) andInoue and Back(2015a) showed that a column
MSE is mainly controlled by VADV in COARE 2-day waves (WIG waves). The results
in this chapter also supports the previous studies, indicating that VADV plays a primary
role in maintaining the thermodynamic process. However, HADV in Fig.3.2bis larger
than that in COARE 2-day wave (Inoue and Back2015a). This discrepancy could be
explained by the difference of the background zonal wind. In the present study,−ū∂xm′

and−u′∂xm′ are in phase due to background easterly wind (see Fig.3.4), leading to an
emphasize of HADV. Meanwhile, the background zonal wind is strong westerly in the
lower troposphere during TOGA COARE IOP (e.g.,Chen et al.1996; Ciesielski et al.
1997). HADV in COARE 2-day wave could be weakened because−ū∂xm′ and−u′∂xm′

are in opposite phase under the background westerly.
In MJO, both VADV and HADV are responsible for the MSE recharge-discharge pro-

cess. HADV could play an important role in the eastward propagation mechanism of the
MJO (Maloney2009; Maloney et al.2010; Kiranmayi and Maloney2011; Benedict et al.
2014; Kim et al. 2014; Sobel et al.2014). As noted in the previous paragraph, an im-
portance of HADV is small in the WIG wave and Kelvin wave. This corresponds to the
result inInoue and Back(2015a) showing that a relative contribution of HADV increases
as the time scale of the disturbance grows to intraseasonal scales. There are some differ-
ences in the thermodynamic process of the MJO compared to the WIG wave. First, MSE
source terms have the same amplitude as the MSE advection and play an important role
in regulating a column MSE. Also, radiative and surface fluxes fluctuate larger as the time
scale of the disturbance get longer (e.g.,Inoue and Back2015a). Second, the meridional
advection has a striking variability during the MJO propagation. Third, the perturbation
wind (u′ andv′), associated with the wave kinetics, causes equal or larger MSE advection
than the background wind (ū and v̄). Meanwhile, eddy MSE advection (−u′∂xm′ and
−v′∂ym′) stay small in WIG waves. This difference may be because the variation of en-
vironmental fields change with the spatio-temporal scale of CCEWs (Kiladis et al.2009).
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For example, the amplitude ofu′ in WIG is about ten percent of that in MJO (Benedict
and Randall2007; Haertel et al.2008; Kiladis et al.2009).

3.4.2 Comparison with 2 mode model

Previous studies suggest that MSE recharge-discharge processes in CCEWs are well
captured by the multi-mode model (e.g.,Peters and Bretherton2006; Haertel et al.2008).
The shallow vertical motion with the second baroclinic mode causes a positive VADV
preceding deep convection (MSE recharge process). The strong vertical motion associated
with the first baroclinic mode causes a negative VADV (MSE discharge process). After
the convective peak, the descending motion in the lower troposphere and the ascending
motion in the upper troposphere with the second mode cause a negative VADV (MSE
discharge process).

In this study, a negative VADV around a WIG peak might be explained by the first
mode (Fig. 3.2b). A positive VADV with the second mode is not visually evident, al-
though a slight vertical tilt provides a hint of the second mode (Fig.3.3). It is implied that
the framework of multi-mode model could be applied to the composite WIG waves. This
is qualitatively consistent with the previous studies which emphasized the multi-mode
structure in the 2-day wave dynamics (Haertel and Kiladis2004; Haertel et al.2008;
Kuang2008b; Tulich and Kiladis2012; Yasunaga and Mapes2012; Yasunaga and Mapes
2014) (see section3.4.3).

The lack of a clear signature of shallow moistening by the congestus mode might be
a unique feature of WIG waves, or possibly due to the technical limitation in reproducing
shallow updraft in reanalysis data. It could be difficult for reanalysis data to resolve a rapid
variation associated with shallow circulation due to the coarse resolution. Despite of an
obscure contribution of the second mode, this study hardly deny a primary importance of
the second baroclinic mode in the wave dynamics. It would be beneficial elsewhere to
test carefully to what extent a pre-moistening of the second mode is important in the WIG
wave dynamics in comparison with the vertical mode decomposition technique used in
recent investigations (Handlos and Back2014; Masunaga and L’Ecuyer2014).

3.4.3 Propagation characteristics of 2-day waves

Previous studies based on ground and satellite measurements showed that most of the
convective systems accompanied with 2-day waves move westward (Takayabu1994b;
Takayabu et al.1996; Chen and Houze1997; Haertel and Johnson1998; Haertel and
Kiladis 2004). It is outside the scope of this study to explore the origins of westward
propagation because the 2-day wave is currently extracted by a WIG filter and by de-
sign moves westward. Nevertheless, a brief discussion on the selection of propagation
direction in the general context might be beneficial.

Here, the propagation dynamics is examined in terms of thermodynamic process. As
the low (high) NGMS area exists to the west (east) of pre-existing convection, new con-
vection prefers to arise to the west of the pre-existing convection. Hence, a synoptic-scale
convective system accompanied with the WIG wave could move westward. This dy-
namics mainly depend on the generic properties of inertio-gravity waves, and the same
dynamics with opposite signs would presumably help convection move eastward when
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coupled with the eastward inertia gravity (EIG) waves.
As shown in section3.3.4, the present analysis presents no clear evidence that the

background state plays roles in breaking the east-west symmetry in the propagation di-
rection and phase speed of 2-day waves. Meanwhile, a further analysis is needed to dis-
cuss the relationship between the wave propagation dynamics and the background wind
(Stechmann and Majda2009; Tulich and Kiladis2012). For example,Tulich and Kiladis
(2012) based on Weather Research and Forecast (WRF) model indicated that the zonal
wind shear in the lower troposphere is important to westward propagation of 2-day wave.
Key parameters responsible for the propagation characteristics of 2-day waves will be
addressed to more depth in future.

It is expected that phase speed of CCEWs is affected by the moist process and var-
ious aspects in the tropical atmosphere (see section1.2.3and ). Previous studies have
discussed in various aspect about the WIG phase speed which is slower than the theoreti-
cally expected one. In the vertical mode perspective,Haertel and Kiladis(2004) showed
that the shallow equivalent depth could result from a superposition of the first and sec-
ond baroclinic modes. Based on a cross spectral analysis,Yasunaga and Mapes(2012)
andYasunaga and Mapes(2014) showed that the fast and slow WIG waves have differ-
ent moist process.Takayabu(1994b) reported Doppler shifting by the background zonal
wind in WIG waves and showed that the equivalent depth is 20 m. Furthermore,Dias
and Kiladis(2014) showed that the equivalent depth of CCEWs is uniform (∼ 25 m) be-
tween the different climatological regions if the Doppler shifting is considered. It is still
unclear, however, how the phase speed of the WIG wave is modified by the background
zonal wind and the moist process. To approach the above problem, in chapter4, we will
calculate the baroclinic mode by using ERAI data and examine their modifications to the
phase speed.

3.5 Summary

Following recent investigations indicating a prominent role of moistening in the tro-
posphere on the coupling mechanism, the present study examines the thermodynamic
process of quasi 2-day waves by using moist static energy. The budget equation of col-
umn MSE tells us MSE recharge-discharge process associated with the wave dynamics.
The 2-day waves are detected by WIG filtering of brightness temperature (mergedIR). The
budget terms calculated from the reanalysis data (ERAI) are composited around the WIG
peaks to create statistically continuous time series. The horizontal dynamic structure of
composite WIG waves is confirmed to be overall as expected from previous studies.

MSE variability during active phase of WIG waves is mainly dominated by MSE ad-
vection term. Meanwhile, surface fluxes and radiative heating bring about nearly constant
MSE import and export, respectively, and hardly contribute the MSE variability through-
out the evolution. An enhancement of negative vertical advection decreases column MSE
around WIG peak, plausibly resulting from deep convection (or the first baroclinic mode).
Zonal MSE advection causes a significant MSE increase and a decrease before and after
deep convection, respectively, overwhelming vertical advection in magnitude. The zonal
advection is mainly dominated by−ū∂xm′, while the term should be considered sepa-
rately to the MSE recharge-discharge process. It is implied that vertical advection rather
than horizontal advection modulates the thermodynamic process in the WIG waves. This
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result is qualitatively consistent with the previous studies suggesting that the recharge-
discharge process in convectively coupled gravity waves (e.g., WIG waves and Kelvin
waves) is regulated by a large-scale vertical circulation (Peters and Bretherton2006;
Haertel et al.2008; Inoue and Back2015a). A slight contribution of the second baro-
clinic mode in this study might result from the technical limitation in reproducing shallow
updraft in reanalysis data.

NGMS is used to examine the relationship between the large-scale circulation of the
waves and convective intensity. Before deep convection, NGMS gradually decreases from
a positive value to a significant small positive value near 0. According to the development
of deep convection, NGMS increases and reaches its maximum after the WIG peak. It is
suggested that the low (high) NGMS leads to (lags) deep convection. In the convective
envelope associated with WIG waves, new convection is allowed to develop to the west
of the pre-existing convection where NGMS decreases toward zero. These results are
nearly consistent with previous studies showing that the temporal variability of NGMS is
prominent for the disturbances with a time scale of about 2-days (Masunaga and L’Ecuyer
2014; Inoue and Back2015a).

The results obtained in this chapter are nearly consistent with the previous investiga-
tions based on multi-mode theory, although the second baroclinic mode is invisible in this
analysis. Ongoing work is testing carefully to what extent a pre-moistening of the second
mode works in the WIG wave dynamics. In the next chapter, the coupling mechanism of
2-day waves is examined in the light of vertical modes.



Chapter 4

Vertical mode and effective stability of
quasi-2-day wave

4.1 Goal of this chapter

As shown in chapter3, a large-scale vertical motion plays an important role in mod-
ulating the thermodynamic properties of the composite WIG waves. It is known that the
large-scale dynamical fields of the wave are separated into a few vertical modes with dif-
ferent vertical wave length. The vertically tilted and top-heavy structure is explained by
a superposition of a few vertical modes, which is qualitatively consistent with the wave
dynamics produced by multi-mode models.

Vertical modes associated with the wave dynamics would be slowed down when cou-
pled with convection. In the multi-mode models, the phase speed of different vertical
modes is not likely to significantly disagree among them since otherwise the wave would
necessarily be heavily dispersive and would not propagate over a long distance. However,
it remains unclear as to how different vertical modes can have a common phase speed
constituting a coherent wave packet without being immediately dispersed out. It is not
obvious whether the dispersiveness of the wave is small, because propagation dynamics
of CCEWs (e.g., phase speed and propagating direction) would be modulated by various
factors in the tropical atmosphere. Previous studies have suggested that the wave propa-
gation would be affected by environmental fields (e.g., mean wind) as well as moist con-
vective processes (Wheeler et al.2000; Straub and Kiladis2002; Yang et al.20032007a;
Roundy2008; Dias and Pauluis2009; Kiladis et al.2009; Stechmann and Majda2009;
Dias and Pauluis2011; Dias and Kiladis2014; Yasunaga and Mapes2014). Although the
dispersiveness of the waves has yet to be discussed deeply in the above studies, it may be
also related to the propagation dynamics of the waves. To better understand this relation-
ship, we need to examine what determines a degree of slowdown of the vertical modes.
Majda and Shefter(2001) showed using two mode model that the relative contribution of
the second mode to the first mode is larger in the slower wave, implying that the second
mode is important to regulate the slowdown of the modes as predicted by stratiform insta-
bility mechanism.Yasunaga and Mapes(2014) also indicates that the ratio of stratiform
precipitation to convective precipitation is large in the slower wave. More observational
evidence is required to examine the mechanism of slowdown of vertical modes.

In this chapter, the slowdown mechanism of 2-day waves is explored by using vertical
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mode decomposition technique. The ultimate goal is to provide a theoretical framework
to explain the slowness of CCEWs in light of both the effective stability and multiple
vertical modes.

4.2 Phase speed of composite WIG wave

In chapter4, WIG waves with different phase speed are detected from five sub-filters
with different equivalent depth (see section2.2.2for filter definition). The phase speed
of composite WIG waves is calculated by the radon transform of anomalous TBB (see
section2.2.5 for details). Figure4.1ashows the longitude-time diagram of anomalous
TBB composited around the WIG peaks identified by the h25/15 filter. A convectively
active area with a negative anomaly is shown to propagate westward over a period of
about 2 days. By using the RT method, the anomalies are projected onto a line at angleθ
from 0◦ to 180◦. Figure4.1bshows that variance of the transformed TBB is normalized
by its maximum value atθ = 59◦, indicating that the wave propagate at a direction of
θ+90◦ = 149◦. The slope of the black line in Fig.4.1ais estimated to be the phase speed
of 21 ms−1.

(a) (b)

Fig. 4.1: (a) A longitude-time diagram of anomalous TBB [k] for WIG wave identified with filter
h25/15. A slop of black line represents the phase speed of about 21 m/s. (b) Standardize
variance of transformed TBB in Fig.4.1awith respect to the projection angleθ + 90◦.
The curve is maximized at149◦ (black thin line).

For the waves identified using different WIG filters, the phase speeds are calculated
by applying the RT method to both the anomalous TBB and precipitation (Fig.4.2). The
phase speed of TBB (black circle) agrees well with that of precipitation (blue circle).
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Fig. 4.2: Phase speed of composite WIG wave. Black and blue circle represents the phase speed
estimated by RT of anomalous TBB and anomalous precipitation, respectively.

Therefore, it is suggested that the estimated phase speeds are insensitive to the difference
in physical parameters (cloud or precipitation) or in observational sampling approaches
(mergedIR or TRMM PR). The range of phase speeds (15-28 ms−1) is consistent with
that found in previous studies (10-30 ms−1). A WIG filter with a deeper (shallower)
equivalent depth results in a faster (slower) wave as expected, supporting the robustness
of the RT method for use in the present application.

4.3 Vertical mode transform

4.3.1 Vertical mode transform

In this section, we analyze the vertical modes associated with the composite WIG
wave. Figure4.3 shows a time-pressure cross section of the mode transform component
ωn for the first four baroclinic modes, whereωn is calculated by substitutinghn in the
continuity equation (see Fig.2.8b). A strong updraft, with a single-sign structure due
to the first mode, develops around 0 h and reaches a maximum of around 500 hPa in the
middle troposphere at−3 h (Fig. 4.3a). The amplitude of the first mode is the largest
among the first four modes. Although the higher modes have smaller amplitudes, their
contribution to the wave dynamics is not negligible. The second and third modes are
almost in phase with each other and exhibit a dipole-like structure with opposite signs in
the lower and upper half of the troposphere (Fig.4.3b,c). The second and third modes,
with a peak around∼ +6 h, is roughly quadrature with the first mode. The time lag
between the modes is estimated to be about 10 h. The negative peak of the third mode
in the lower troposphere represents a shallow updraft preceding deep convection. Such
dipole-like structures lagging or preceding the first mode are consistent with the stratiform
mode or the congestus mode, respectively. The fourth mode (Fig.4.3d) is almost in phase
with the first mode, which might provide a modest modulation to the first mode.
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Fig. 4.3: A time-pressure cross section of pressure velocity [Pa/s] of composite WIG wave iden-
tified with filter h25/15: (a)ω1, (b) ω2, (c) ω3, (d) ω4, (e) a superposition ofωn from
n = 1 to n = 4, and (f) compositeω. A negative and positive value denotes upward and
downward motion, respectively.

The superposition of the first four vertical modes reproduces a vertically tilted and top-
heavy structure (Fig.4.3e), which is qualitatively consistent with the observed one (Fig.
4.3f). Although not shown here, it is confirmed that the first four modes are sufficient to
capture the various dynamical fields (u, v, D, ϕ, andQ). Additional higher modes are
needed to reproduce a boomerang-like structure in the temperature field as reported in
previous studies (Haertel and Kiladis2004; Haertel et al.2008; Kuang2008a; Tulich and
Kiladis 2012), which is outside the scope of the present work. It is also confirmed that the
above results are true for both the slower and the faster waves (not shown here).

4.3.2 Phase speed of the vertical mode

Phase speeds of moist vertical modes are examined below. The mode transform com-
ponentAn is written asAn = ÂnΩn, where the mode transform coefficientÂn(x, y, t)
depends on both the horizontal location and time, and the structure functionΩn(p) de-
pends only on pressure. Because the horizontal propagation of the moist mode is char-
acterized byÂn, the phase speed is calculated by RT ofÂn. Figure4.4 shows that the
ûn = ⟨u|hn⟩ anomaly moves westward over a period of about 2 days in a longitude-time
domain. Shades of red and blue represents westerly and easterly zonal wind anomaly
at surface, respectively. The surface wind converges (diverges) for the first and fourth
modes (the second and third modes) around WIG peak, which corresponds to the upward
(downward) motion shown in Fig.4.3.
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Fig. 4.4: A longitude-time diagram of mode transform coefficient of zonal windûn for the first
four vertical modes. A slope of black line corresponds to phase speed of vertical mode,
which is estimated by RT of̂un. Red line is the same as black line in Fig.4.1a.
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Fig. 4.5: Phase speed of moist vertical mode estimated by usingûn in Fig. 4.4 for n = 1 (red),
n = 2 (blue),n = 3 (green), andn = 4 (yellow). Phase speed estimated form TBB
(Black) and precipitation (gray) are the same as that in Fig.4.2.

Phase speed of the moist mode, calculated by RT ofûn, corresponds to the slope of
the black line in Fig.4.4. The phase speed of̂un is roughly equal to the phase speed
of the wave (TBB and precipitation) and is faster for larger equivalent depths (Fig.4.5).
It is noted thatun itself is not filtered but is simply composited against the filtered TBB
peaks, so the agreement in the phase speed is not by design. The phase speed of the dry
first mode is, in theory, a few times faster than that of the higher modes, whereas different
moist modes have a similar phase speed among themselves. Such a non-dispersive nature
of moist vertical modes holds for both the slower and faster waves. It is also emphasized
that the above results are verified for other parameters, including geopotential, horizontal
wind divergence, and heating rate (not shown here).

4.4 Effective static stability

4.4.1 Definition ofαn

In section4.3.2, it was shown that different moist vertical modes propagate at a similar
phase speed, more slowly than the dry counterparts. To reveal the slowdown mechanism
of each mode, we investigate the relationship between a reduced equivalent depth and a
reduced static stability that the mode feels.

First, we consider the relationship between static stability (S) and effective static sta-
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bility (Se). For a fixed vertical mode, the thermodynamic equation is written as follows:

∂tTn = Sωn +Qn (4.1)

HereSωn represents adiabatic heating (cooling) due to ascent (descent), andQn repre-
sents the diabatic source, including latent and radiative heating terms. Assume thatQn is
expressed as

Qn ∼ −αnSωn (4.2)

whereαn is a positive constant representing the degree of cancellation between adiabatic
heating (cooling) and diabatic cooling (heating) (e.g.,Kiladis et al.2009). Substituting
Eq. (4.2) in (4.1) yields:

∂tTn ∼ Seωn (4.3)

whereSe is defined as

Se = (1− αn)S. (4.4)

It is suggested that0 < αn < 1 sinceSe is considered to be positive.
Second, we consider the relationship between static stability and equivalent depth of

the vertical mode. Here, the equivalent depths of the dry vertical mode and that of the
moist vertical mode are denoted byHn andHe, respectively. In shallow water system
with a constant Brant vaisalla frequency (N ),Hn is written as

Hn =
N2

g

(
m2

z,n +
1

4h2

) (4.5)

whereg is the gravitational acceleration,h is the scale height, andmz,n is the vertical
wave number (e.g.,Wheeler et al.2000). Hn is a function ofmz,n andS (∝ N2). For a
fixed vertical mode (constantmz,n), Hn is proportional toS. Assuming that shallowHe

of the moist mode is also proportional to reduced static stability (Se), we obtain

He

Hn

∼ Se

S
. (4.6)

From Eq. (4.6), it is indicated that the degree of reduction of equivalent depth is connected
to that of static stability. It should be noted thatHn andHe can not be exactly expressed
in a simple form as shown in Eq. (4.5) since static stability depends on the height in the
real atmosphere. This effect, however, is neglected here since the vertical variability in
the stability stays small except near the surface and tropopause.

Combining Eqs. (4.6) and (4.4), the theoretical expectation ofαn is derived as

αn ∼ α̃n = 1− He

Hn

(4.7)

whereα̃n is a monotonical decrease function ofHe with an increment of−1/Hn. Eq.
(4.7) is a useful tool to investigate the relationship between the shallow equivalent depth
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Fig. 4.6: α̃n vsHe for the first four modes.He is changed from 3 to 36 m with an interval of 3 m.

and reduced static stability. Figure4.6showsα̃n within a range ofHe between 3 and 36
m. The value of̃αn decreases more steeply in the higher mode owing to the shallower
Hn. Eq. (4.7) confirms that, for a givenn, αn approaches unity, i.e., the effective static
stability decreases withHe and hence with the phase speed as argued in the literature.
Another implication of Eq. (4.7) is that the higher mode has a smallerαn when different
moist modes have a commonHe. It follows that adiabatic heating cancels diabatic cooling
more weakly in a higher mode for non-dispersive waves (e.g., Eq. (4.2)). In fact, Fig.4.5
suggests that different moist modes have a common phase speed (or equivalent depth).

However, it is not obvious if Eq. (4.7) holds for each vertical mode.Haertel and
Kiladis (2004) suggested, for the first and second modes in 2-day waves produced by a
linear primitive equation model, that a degree of reduction of the equivalent depth depends
on that of static stability.Haertel et al.(2008) also showed thatα1 is larger thanα2 and
α3 in COARE-2-day waves, which is roughly consistent withHaertel and Kiladis(2004).
More observational evidence is needed to verify Eq. (4.7). Therefore, we estimateαn in
section4.4.2and discuss the validity of Eq. (4.7) in section4.5.

4.4.2 Estimating ofαn

Nowαn is calculated according to Eq. (4.2). The mode transform componentsωn and
Qn are written as (see Eqs. (1.76) and (1.76))

ωn = −∇ · V̂n
∫ p

pt

hndp (4.8)

Qn = D̂nS

∫ p

pt

hndp (4.9)
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Fig. 4.7: A scatter plot of∇ · V̂n andD̂n between± 24 hr. for the first four modes. Different
colors represent different phase speed.

where∇ · V̂n andD̂n are the mode transform coefficients of horizontal wind divergence
∇·Vn and forced divergenceD, respectively. In this study,Q is calculated as the apparent
heat source (Yanai et al.1973). Substituting Eqs. (4.8) and (4.9) in (4.2) gives

αn = − Qn

Sωn

=
D̂n

∇ · V̂n
(4.10)

It is implied from Eq. (4.10) thatαn may be evaluated from the nominator and dominator
of the rhs. Figure4.7 is the scatterplot of∇ · V̂n vs D̂n for the slower and faster waves.
These two quantities are distributed tightly around a linear line in the first and fourth
modes (Fig.4.7a,d). Meanwhile, they are more scattered for the second and third modes
(Fig. 4.7b,c). In the present study,αn is calculated as the least square coefficient between
D̂n and∇ · V̂n. Figure4.8showsαn for the first four modes. The values of the estimated
αn is positive and smaller than 1 as expected, except in the fourth mode (Fig.4.8). In the
slowest wave, with a phase speed of 15 ms−1 (the h15/5 filter),α1 = 0.96, α2 = 0.85,
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Fig. 4.8: αn calculated as a least square coefficient between∇ · V̂n andD̂n in Fig. 4.7. Different
color denotes different mode.

andα3 = 0.75. This is roughly consistent withHaertel and Kiladis(2004) who shows
thatα1 = 0.95 andα2 = 0.75 in 2-day waves with a phase speed of 16 ms−1. In Haertel
and Kiladis(2004), αn is estimated as a ratio betweenQn andSωn at a pressure of the
maximum variances. It is noted that the value ofαn is not so sensitive to the method of
estimation (not shown here). Ifαn is larger than 1,Se orHe may have a negative value.
Because of this apparent error in the estimate ofαn, the fourth mode is excluded in the
following discussion by using Eq. (4.7).

Figure4.8 illustrates howαn differs among different equivalent depths. First,αn is
smaller in the higher mode (α1 > α2 > α3), implying that different moist modes have a
commonHe or phase speed (Fig.4.5). Second, the slower wave has a largerαn. These
results could suggest that Eq. (4.7) qualitatively holds regardless of the wave speed. It is
postulated thatαn decreases with an equivalent depth at a rate of−1/Hn. However,αn

for a given vertical mode appears not to decrease with the equivalent depth as sharply as
expected from Eq. (4.7). This issue is investigated further in the next section.

The curve ofαn is slightly bent in the faster waves. For example,α1 (α2) increases
with an equivalent depth between h35/25 and h55/45 (h45/35 and h55/45). The bend in
the curves may have resulted from uncertainties in the estimatedαn. Both ∇ · V̂n and
D̂n have smaller amplitudes of variability in the faster waves than in the slower waves
(Fig. 4.7), indicating that the WIG filter with higher equivalent depth identifies relatively
weaker convective peaks of the WIG waves. Therefore, the composite fields may be less
robust in the faster waves, leading to the larger uncertainties of the estimatedαn.
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4.5 Discussion

4.5.1 The Doppler effects

The equivalent depth of CCEWs is modified by the Doppler effect due to the ambient
flow (e.g.,Yang et al.2003). For example, the equivalent depth of the WIG waves, ob-
served during December-February in the southern hemisphere, is estimated to be about 20
m when considering the Doppler effect of the mean westerly flow at 850 hPa (Takayabu
1994b). Further, the spectral peak of the WIG waves is shown to be weakly affected by
the Doppler shifting due to the mean barotropic flow, where the equivalent depth of 25 m
is obtained (Dias and Kiladis2014).

In the present study, the equivalent depth of the composite WIG waves is estimated
by taking into account the Doppler effect due to mean zonal flow into the dispersion
curves. The mean zonal wind̄u is defined as the time mean (± 48 h) of composite zonal
wind at the composite center. Figure4.9 shows the vertical profile of̄u for the slower
and faster WIG waves. The mean wind is easterly in the whole troposphere, and the
profile is insensitive to the difference in the wave speed, suggesting that 2-day waves are
sampled from a relatively uniform background condition regardless of their propagation
characteristics.

Fig. 4.9: Vertical profile of mean zonal wind̄u [m/s]. The mean zonal wind̄u is defined as a time
mean (± 48 hr) of composite zonal wind at a composite center. Different color represents
different phase speed of WIG wave.
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Fig. 4.10: A schematic of dispersion curves of WIG wave considering Doppler effect by a mean
zonal flow.f ′ (dashed curves) andf (black solid curve) denote frequency excluding and
including Doppler effect, respectively. Blue (red) dashed curve represents dispersion
curve under mean easterly (westerly) flow.

Figure4.10shows how dispersion curve of WIG wave is shifted by considering Doppler
effect by mean zonal wind. As the wave number (k) is negative in the westward wave,
the frequency (f ) decreases by the easterly flow (e.g.,f − kū). Hence, the equivalent
depth becomes shallower as easterly flow gets stronger. To assess the Doppler shift, we
choose three mean zonal flows at different pressure levels:ū at 850 hPa (U850), ū at 200
hPa (U200), and the pressure averagedū from 850 to 200 hPa (Uave). As seen in Fig.4.9,
the mean zonal flow and the phase speed do not show any significant correlation (Table.
4.1). Therefore, it is suggested that mean zonal flow would have little influence on the
wave speed. This result is consistent withYasunaga and Mapes(2014) and shows that
background wind has little effect on the propagation speed of WIG waves.

Table 4.1: Phase speed and mean flow for each WIG wave identified with different WIG filter.

filter c [m s−1] U850 [m s−1] Uave [m s−1] U200 [m s−1]
h15/5 15 2.0 3.2 4.5
h25/15 21 1.7 2.8 4.2
h35/25 23 1.7 2.6 4.4
h45/35 26 1.7 2.9 4.9
h55/45 28 2.0 3.2 4.8
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Table 4.2: Zonal wave numberk, frequencyf [cpd], and equivalent depthHe [m].

filter k f(U0) f(U850) f(Uave) f(U200) He(U0) He(U850) He(Uave) He(U200)
h15/5 13.89 0.50 0.43 0.39 0.54 14.8 10.0 7.60 5.40
h25/15 9.92 0.50 0.46 0.43 0.40 22.0 17.2 14.2 11.0
h35/25 10.35 0.57 0.53 0.51 0.46 31.0 24.8 22.0 16.6
h45/35 10.12 0.63 0.59 0.56 0.51 42.2 34.8 30.2 23.2
h55/45 10.20 0.69 0.64 0.61 0.57 52.2 42.6 27.4 31.0

Table4.2 summarizedHe(U) estimates by considering the Doppler effect due to the
mean flows. Note thatHe(U0) denotesHe estimated by considering no Doppler effect
(ū = 0). The equivalent depth of the composite WIG wave is always shallower than
that of the upper boundary of the WIG filter. As expected theoretically, it is implied that
He(U) becomes shallower due to the strong easterly flow and that the slower wave has a
shallowerHe(U).

4.5.2 αn versusα̃n

It is suggested from Eq. (4.7) that the reduced equivalent depth of the moist vertical
mode can be explained by reduced static stability. To see if Eq. (4.7) holds,αn in Fig. 4.8
is compared with̃αn. Here,α̃n is estimated usingHe(U) in Table4.2, and it is expressed
asα̃n(U). The relationship betweenαn (black line) and̃αn(U) (blue line) is shown for the
first three vertical modes in Fig.4.11. Blue square, circle, triangle, and diamond marks
resemblẽαn(ū0), α̃n(ū850), α̃n(ū200), andα̃n(ūave), respectively.

First, α1 and α̃1(U) are compared. The value ofα1 is almost identical to that of
α̃1(U850) in the slower wave (h15/5-h35/25), whereα1 changes withH1 nearly at the rate
of ∼ −1/H1. Meanwhile,α1 is no longer consistent with̃α1(U850) for larger equivalent
depths (h45/35-h55/45). Second,α2 andα̃2(U) are compared. The value ofα2 is nearly
identical to that of̃α2(ū850) in the slower wave (h15/5-h25/15), where a decreasing rate
of α2 is roughly close to that of̃α2 (= −1/H2). However,α2 decreases with increasing
H2 more modestly thañα2 in the wave speed with a range of 21 to 28 ms−1 (h25/15-
h55/45). Finally, we compareα3 andα̃3(U). It is clearly shown that a decreasing rate of
α3 never agrees with that of̃α3 (= −1/H3). The value ofα3 in the slowest wave (h15/5)
is roughly equal to that of̃α3(U850). For the second and third vertical modes, Eq. (4.7)
hardly explains the actual values ofαn with the possible exception that Eq. (4.7) could
be barely applicable to the slower wave with a range of 15 to 21 ms−1 (h15/5-h25/15). In
the next section, we will further discuss the discrepancy betweenαn andα̃n.
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Fig. 4.11:αn (black) vsα̃n (blue) for the first three modes: (top)n = 1, (middle)n = 2, and
(bottom)n = 3.
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4.5.3 The reduced stability mechanism

The mechanism of slowdown of the WIG wave is discussed in terms of both the ef-
fective stability mechanism and the vertical mode perspectives (see section1.2.3). The
effective stability mechanism explains the slower phase speed of the first vertical mode
by a reduced stability due to the latent heat release (e.g.,Emanuel et al.1994). This is ap-
proximately expressed by Eq. (4.7), claiming that reduced equivalent depth is connected
with reduced static stability. It is implied from Eq. (4.7) that a higher vertical mode
should have a higher effective static stability (a lowerαn) so the wave as whole is heavily
dispersive.

It is not intuitively obvious how the effective stability mechanism explains the slow-
down of the higher modes. To address the question, the relationship between a reduction
in equivalent depth and that in static stability is examined in section4.5.2by comparing
αn andα̃n. The main findings are summarized as follows. First,αn is roughly identical
to α̃n(U850) in the slower waves, especially for the first vertical mode. Second, a decreas-
ing rate ofα1 as a function of equivalent depth is quantitatively consistent with that of
α̃1(U850)(= −1/H1) in the slower waves. For the second and third modes,αn decreases
more modestly thañαn(U850)(= −1/Hn). Therefore, it is confirmed that Eq. (4.7) may
hold for the lowest vertical modes but fails to predictαn for higher modes. This does not
contradict previous studies (Haertel and Kiladis2004; Haertel et al.2008).

There are a variety of possible explanations for the discrepancy betweenαn andα̃n.
First, the estimation ofαn has its own uncertainties. As expressed in Eq. (4.10), αn is
evaluated as the least square coefficient betweenD̂n and∇ · V̂n (Fig. 4.7). While D̂n and
∇ · V̂n are almost linearly changed with each other for the first mode, the ratio ofD̂n to
∇ · V̂n changes with time for the second and third modes. Therefore, it is considered that
the errors inαn, estimated as a time-independent parameter, should be larger in the higher
modes than in the first mode. The time dependency ofα2 andα3 should be included to
estimateαn more adequately. It is, however, beyond the scope of the present study to
discuss to what extent such a modification improves the estimation ofαn. Second,αn is,
by definition, a vertical uniform parameter, but this property is readily justifiable only for
the first mode. In Eq. (4.2), αn represents the degree of cancellation between adiabatic
heating (cooling) and diabatic cooling (heating) due to ascent (decent). In the literature,
the effective stability has been introduced to explain the large-scale motion involving deep
convection (the first mode) (e.g.,Neelin and Held1987; Yano and Emanuel1991; Neelin
and Yu1994; Emanuel et al.1994), where the atmosphere is assumed to be in a state of
precipitation to ignore the descending area with no precipitation (Emanuel et al.1994).
This is because the formulation of the effective stability is further complicated by the
inclusion of a descending area. As shown in Fig.4.3, the vertical profiles ofωn andQn

have a multi-pole structure for the second and higher modes, for which it is physically
impossible to define vertically uniformαn. We estimate the degree of the reduction in
static stability (Se/S) by simply assuming a constantαn (Eq. (4.2)), where the ascending
and descending motions are not treated separately. Such simplicity might have a non-
trivial influence on the estimation ofα2 or α3.
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4.6 Summary

In this chapter, the slowdown mechanism of quasi-2-day waves is examined using
satellite and reanalysis data. The 2-day waves with different phase speed are identified
by WIG filtering of TBB, where the wave speeds are separated by adopting WIG sub-
filters with different equivalent depths within a range from 5 to 55 m. ERAI data are
composited around the convective peaks of WIG waves to analyze the large-scale fields
associated with the waves. The composite fields are further decomposed by the vertical
modes calculated with the mean temperature profile (ERAI) in the tropical region between
10◦N and10◦S.

It is shown that the large-scale dynamical fields of WIG waves are explained largely
by a superposition of the first four baroclinic modes. The resulting vertically tilted, top-
heavy structure is consistent with the multi-mode structure, including the deep, congestus,
and stratiform modes (e.g.,Mapes2000; Haertel et al.2008). The phase speeds of moist
vertical modes is estimated by Radon transform of the mode coefficient in the longitude-
time domain. The moist vertical modes are slowed down compared to its dry counterpart,
while different vertical modes have similar phase speeds, so the wave is only weakly
dispersive. The above results are insensitive to the difference in the filter design.

In the effective stability mechanism, the slower phase speed of the first mode is at-
tributed to the reduction of effective stability. It is not obvious, however, if the slowdown
of the higher modes is also explained by a similar framework. The effective stability in-
creases with the equivalent depth as expected from the non-dispersive nature, but the rate
of increase is not as steep as theoretically predicted. This disagreement is partially rec-
onciled particularly for the lowest modes when the Doppler effect is taken into account,
but fails to account for higher modes. The reasons include the limitation in the estimation
method and physical robustness of the effective stability for the higher vertical modes.
Further investigations of these outstanding issues should be addressed in future studies.



Chapter 5

Summary

The present study investigates physical properties of quasi-2-day waves by using satel-
lite and reanalysis data to better understand the interaction between moist convection and
a large-scale circulation in the tropical atmosphere.

In chapter3, thermodynamic properties of 2-day waves are examined using moist
static energy (MSE) which is nearly conserves in moist adiabatic process. Vertically
integrated MSE budget equation is used for investigating MSE recharge-discharge pro-
cess of the waves. The budget terms are calculated from reanalysis data and composited
around the convective peaks of the waves. Column MSE increases before deep convec-
tion (recharge process) and decreases as convection develops (discharge process). Vari-
ability of column MSE is mainly dominated by advection term. Meanwhile, surface heat
fluxes and radiative heating terms scarcely change with time during wave development,
and hardly contribute to the MSE change. A prominent zonal advection by mean zonal
wind is found to exist and significantly contributes to horizontal advection, while this
term should be considered not to be closely relevant to the wave dynamics. Instead, the
recharge-discharge process is mainly regulated by vertical MSE advection. The vertical
advection decreases MSE around the convective peak, plausibly resulting from the first
baroclinic mode associated with deep convection. An increase of positive vertical ad-
vection due to shallow convection has a relatively smaller amplitude than expected from
previous studies. The above result, however, is qualitatively consistent with theoreti-
cal models explaining the recharge-discharge process by a large-scale vertical circulation.
The normalized gross moist stability (NGMS) is used to examine the relationship between
large-scale circulation and convective intensity. NGMS decrease to 0 before deep convec-
tion. According to the development of deep convection, NGMS increases and reaches its
maximum after the convective peak. The lower NGMS seems to be related to amplifica-
tion of deep convection. This result is consistent with the previous study indicating that
temporal variability of NGMS is more prominent for the waves with short time scale such
as 2-day waves.

In chapter4, slow down mechanism of 2-day waves is examined focusing on a slow-
down of vertical modes associated with the wave dynamics. It is shown, using a vertical
mode transform technique, that the large-scale fields of 2-day waves are explained by
a superposition of first four baroclinic modes. The resulting vertically tilted, top-heavy
structure is consistent with the multi-mode model, including the deep, congestus, and
stratiform modes. The phase speeds of moist vertical modes are slower than their dry
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counterparts, while different modes have similar slow phase speed, suggesting that the
wave is only weakly dispersive. In the effective stability mechanism, a slowdown of the
first mode is explained by a reduction of effective static stability due to the latent heat
release. In the present study, the mechanism of slowdown of each vertical modes is inves-
tigated from estimating effective static stability individually for each mode. The effective
static stability is evaluated by defining the degree of cancellation between diabatic heating
and adiabatic cooling. The cancellation is larger (smaller) in the first mode (the higher
modes), leading to smaller (larger) effective static stability. This is qualitatively as ex-
pected for the weak dispersiveness of the moist vertical modes. The relationship between
effective static stability and reduced equivalent depth is examined for each vertical modes.
In the first mode, as expected from the theoretical model, the shallow equivalent depth is
qualitatively explained by effective static stability. In the higher modes, however, discrep-
ancy from the theoretical prediction becomes large, implying that the effective stability
mechanism may be inappropriate to explain the slowdown of the higher modes.

This discrepancy remains even with the Doppler effect considered. The discrepancy
may be associated with uncertainties in the estimation ofαn, whereαn is assumed to be a
time-independent and vertically uniform by design. The above assumptions are valid for
the first mode with a single-signed structure as proposed in the reduced stability model.
Meanwhile, some modifications would be needed for the higher modes, since their dipole-
like structure makes the assumptions more complicated: upward and downward motions
occur simultaneously at different hight, affecting inhomogeneously the effective static
stability. Applying the reduced stability to the higher mode should be dealt with carefully
in the future analysis. Finally, it should be noted again that the two theoretical models for
the phase speed of CCEWs, the reduced stability model and multi-mode model, are not
mutually exclusive to each other. It is possible that the two theories may work together
for determining the phase speed, while a further investigation in this direction is beyond
the scope of the present study. The physical factors controlling the phase speed will be
examined in more depth in the future.



Chapter 6

Supplement to theoretical background

6.1 Shallow water equations

In this section, we derive the equations of motion and mass continuity in shallow water
system (see section1.3.1). The equation of motion in 3D is written as:

Dvvv

Dt
= −1

ρ
∇p− fkkk × vvv − gkkk +FFF (6.1)

wheret is time, vvv = (u, v, w) is the tree-dimensional velocity of a parcel of air,ρ is
the density of the air,p is pressure of the atmosphere,f is Coriolis parameter,g is the
acceleration of gravity,kkk is unit vector in thez direction, andFFF is frictional acceleration.
∇ = (∂/∂x, ∂/∂y, ∂/∂z) is differential operator. The first and second terms in the rhs
in Eq. (6.1) are the pressure gradient force and Coriolis force, respectively. The Coriolis
parameterf is written as:

f = 2Ωsinθ (6.2)

whereΩ is the angular speed of the earth’s rotation andθ is latitude. Taylor expansion of
f around angularθ0 is written as

f ∼ 2Ω (sinθ0 + cosθ0(θ − θ0) + · · · ) (6.3)

∼ f0 + βy (6.4)

wheref0 = 2Ωsinθ0, β = 2Ωcosθ0/R, andR is the earth’s radios. Note thaty ∼
R(θ − θ0).

We neglectFFF, Eq. (6.1) is written inx, y, andz components.

∂u

∂t
= −1

ρ

∂p

∂x
+ fv (6.5)

∂v

∂t
= −1

ρ

∂p

∂y
− fu (6.6)

∂w

∂t
= −1

ρ

∂p

∂z
− g (6.7)

We assume the hydrostatic balance in thez direction

∂ϕ

∂p
= −1

ρ
(6.8)
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whereϕ = gz is geopotential. The pressure gradient force in thex andy direction is
rewritten as;1

−1

ρ

∂p

∂x
= −∂ϕ

∂x
(6.9)

−1

ρ

∂p

∂y
= −∂ϕ

∂y
(6.10)

Substituting Eqs. (6.8)-(6.10) into (6.7), we finally obtain

∂u

∂t
= −∂ϕ

∂x
+ fv (6.11)

∂v

∂t
= −∂ϕ

∂y
− fu (6.12)

∂ϕ

∂p
= −1

ρ
(6.13)

Continuity equation in incompress fluid is expressed as;

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (6.14)

By integrating Eq. (6.14) by z from 0 toz, and usingw(z) = dz/dt, we obtain(
∂u

∂x
+
∂v

∂y

)
z +

dz

dt
= 0 (6.15)

Averaging Eqs. (6.13) and (6.15) over the horizontal area, and applying the Reynolds
averaging technique, we obtain

∂u′

∂t
= −∂ϕ

′

∂x
+ fv′ (6.16)

∂v′

∂t
= −∂ϕ

′

∂y
− fu′ (6.17)(

∂u′

∂x
+
∂v′

∂y

)
z̄ +

dz′

dt
= 0 (6.18)

1Pressure gradient force in thex direction (PGFx) is expressed as;

PGFx = −1

ρ

(
∂p

∂x

)
Using Maxwell’s rule and the hydrostaic equation, the pressure gradient in thex direction is written as(

∂p

∂x

)
z

= −
(
∂p

∂z

)
x

(
∂z

∂x

)
p

= ρ

(
∂ϕ

∂x

)
p

Eq. (6.9) is rewritten as;

−1

ρ

(
∂p

∂x

)
= −

(
∂ϕ

∂x

)
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where the bar denotes the horizontal average and the prime denotes the deviation from the
average.

Now we consider shallow water system. Substitutingbarz = H andz′ = h into Eqs.
(6.18), we finally obtain the equations of motion and mass conservation in the shallow
water system as follows.

∂u′

∂t
= −g∂h

∂x
+ fv′ (6.19)

∂v′

∂t
= −g∂h

∂y
− fu′ (6.20)(

∂u′

∂x
+
∂v′

∂y

)
H +

dh

dt
= 0 (6.21)

6.2 Vertical mode transform of temperature, pressure ve-
locity, and heating rate

6.2.1 Temperature

From the hydrostatic equation (Eq. (1.40), temperature is written as

T = − 1

R

∂ϕ

∂ln p
(6.22)

The temperature is expressed in a discrete form as follows;

T =
∞∑
n=0

Tn (6.23)

whereTn is then-th mode transform component of temperature. HereTn andϕn are
written as

Tn = T̂nψn

ϕn = ϕ̂nhn
(6.24)

whereψn is the structure function of temperature. Substituting Eqs. (6.24) into (6.22)
yields

Tn = − 1

R
ϕ̂n

∂hn
∂ln p

(6.25)

Hereψn (dimensionless) and̂Tn ([K]) are written as

ψn = an
∂hn
∂ln p

T̂n = − 1

R
ϕ̂n

1

an

(6.26)

Normalize coefficientan (dimensionless) is calculated from the orthogonal condition
(⟨ψn|ψn⟩ = 1).



85

6.2.2 Pressure velocity

From the continuity equation (Eq. (1.42), pressure velocity is written as

ω(p) = −
∫ p

pt

(
∂u

∂x
+
∂v

∂y

)
dp (6.27)

,whereω(pt) = 0. The pressure velocity is expressed in a discrete form as follows;

ω =
∞∑
n=0

ωn (6.28)

whereωn is then-th mode transform component of pressure velocity. Here,ωn, un, and
vn are written as

ωn = ω̂nψn

un = ûnhn

vn = v̂nhn

(6.29)

whereψn is structure function of pressure velocity. Substituting Eqs. (6.29) into (6.27)
yields

ωn = −
(
∂ûn
∂x

+
∂v̂n
∂y

)∫ p

pt

hndp (6.30)

Thenψn (dimensionless) and̂ωn ([pa/s]) are written as

ψn = an

∫ p

pt

hndp

ω̂n = − 1

an

(
∂ûn
∂x

+
∂v̂n
∂y

) (6.31)

Normalize coefficientan ([1/pa]) is calculated from the orthogonal condition (⟨ψn|ψn⟩ =
1)

6.2.3 Heating rate

From the definition of forced divergence (Eq. (1.51)),

D =
∂

∂p

(
Q

Scp

)
(6.32)

Integrating both sides of Eq. (6.32) yields(
Q

Scp

)
p

=

(
Q

Scp

)
pt

+

∫ p

pt

Ddp (6.33)

Using the thermodynamic equation ((Eq. (1.41)), we obtain(
Q

Scp

)
pt

=

(
1

S

∂T

∂t
− ω

)
pt

= 0 (6.34)
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,where we use the followings:

ω(pt) = 0 (6.35)(
∂T

∂t

)
pt

∝
(
∂hn
∂p

)
pt

= 0 (6.36)

Finally,Q is written as

Q = −Scp
∫ p

pt

Ddp (6.37)

The heating rate is expressed in a discrete form as follows;

Q =
∞∑
n=0

Qn (6.38)

Then-th mode transform component of heating rateQn and forced divergenceDn are
written as

Qn = Q̂nψn

Dn = D̂nhn
(6.39)

whereψn is structure function of heating rate. Substituting Eqs. (6.39) into (6.37) yields

Qn = −ScpDn

∫ p

pt

hndp (6.40)

Thenψn (dimensionless) and̂Qn ([K/s]) are written as

ψn = anS

∫ p

pt

hndp

Q̂n =
1

an
cpDn

(6.41)

Normalize coefficientan ([1/K]) is calculated from the orthogonal condition (⟨ψn|ψn⟩ =
1)

6.3 Eigenvalue equation in discrete form

As described in section1.4, the vertical modes are obtained by solving the eigenvalue
equation (Eq. (2.5))

− ∂

∂p
µ
∂

∂p
hn = λnhn (6.42)

In this study, Eq. (6.42) is expressed in discrete form. The left hand side of Eq. (6.42) is
rewritten as

∂

∂p
µ
∂

∂p
hn =

∂µ

∂p

∂hn
∂p

+ µ
∂2hn
∂p2

(6.43)



87

As shown in Fig.2.7, µ andhn are defined at the pressure level labeled with integer index
k. Then,∂µ/∂p and∂hn/∂p are defined at the pressure level labeled with semi-integer
indexk + 1/2. (

∂µ

∂p

)
k+1/2

=
µk+1 − µk

△p
(6.44)(

∂hn
∂p

)
k+1/2

=
hn,k+1 − nn,k

△p
(6.45)

Also, ∂2hn/∂p2 is defined at pressure level labeled with integer indexk and expressed as
follows in the second order approximation.(

∂2hn
∂p2

)
k

=
hn,k−1 − 2hn,k + hn,k+1

△p2
(6.46)

Consider Eq. (6.43) at the pressure levelk:(
∂

∂p
µ
∂

∂p
hn

)
k

=

⟨
∂µ

∂p

∂hn
∂p

⟩p

k

+ µk

(
∂2hn
∂p2

)
k

(6.47)

The first term of the rhs of Eq. (6.47) is defined as follows (see appendix inDurran
(1999))⟨
∂µ

∂p

∂hn
∂p

⟩p

k

=
1

2

{(
∂µ

∂p

∂hn
∂p

)
k+1/2

+

(
∂µ

∂p

∂hn
∂p

)
k−1/2

}
=

(
µk+1 − µk

)(
hn,k+1 − hn,k

)
+
(
µk − µk−1

)(
hn,k − hn,k−1

)
2△p2

=

(
hn,k+1 − hn,k

)
µk+1 −

(
hn,k+1 − 2hn,k + hn,k

)
µk −

(
hn,k − hn,k−1

)
µk−1

2△p2
(6.48)

The second term of the rhs of Eq. (6.47) is written as(
µ
∂2hn
∂p2

)
k

= µk
hn,k−1 − 2hn,k + hn,k+1

△p2
(6.49)

Substituting Eqs. (6.48) and (6.49) into (6.47) yields(
∂

∂p
µ
∂

∂p
hn

)
k

= − 1

2△p2

{(
µk+1 + µk

)
hn,k+1 −

(
µk+1 + 2µk + µk−1

)
hn,k +

(
µk + µk−1

)
hn,k−1

}
= − 1

△p2

{
µk+1/2hn,k+1 −

(
µk+1/2 + µk−1/2

)
hn,k + µk−1/2hn,k−1

}
(6.50)

whereµk+1/2 andµk−1/2 are defined as follows.

µk+1/2 =
1

2

(
µk+1 + µk

)
(6.51)

µk−1/2 =
1

2

(
µk + µk−1

)
(6.52)
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6.4 Boundary conditions in discrete form

The boundary conditions (Eq. (2.5)) are written as(
∂hn
∂p

)
pt

= 0 (6.53)(
∂hn
∂p

)
pb

+

(
Shn
T̄

)
pb

= 0 (6.54)

wherept andpb locate at the pressure levelk = −1/2 andk = M + 1/2, respectively.
In this section Eqs. (6.53) and (6.54) are expressed in discrete form. The upper boundary
condition (Eq. (6.53)) in the difference form is expressed as(

∂hn
∂p

)
−1/2

=
hn,0 − hn,−1

△p
= 0 (6.55)

,which indicateshn,−1 = hn,0. The bottom boundary condition (Eq. (6.54)) in the discrete
form is (

∂hn
∂p

)
M+1/2

+

(
S

T̄

)
M+1/2

hn,M+1/2 = 0 (6.56)

where (
∂hn
∂p

)
M+1/2

=
hn,M+1 − hn,M

△p

hn,M+1/2 =
hn,M+1 − hn,M

2

(6.57)

Substituting Eqs. (6.57) into (6.56) yields

hn,M+1 =
1− a/2

1 + a/2
hn,M (6.58)

where

a = △p
(
S

T̄

)
M+1/2

(6.59)

The boundary conditions in discrete form are summarized as follows:

hn,−1 = hn,0 (6.60)

hn,M+1 =
1− a/2

1 + a/2
hn,M (6.61)

6.5 Temperature, pressure velocity, and heating rate in
discrete from

6.5.1 Temperature

From Eq. (6.25), Tn is written as

Tn = − ϕ̂n

R

∂hn
∂ln p

(6.62)
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Now Tn at the pressure levelk is denoted byTn,k.

Tn,k = − ϕ̂n

R
pk

⟨
∂hn
∂p

⟩p

k

= − ϕ̂n

R
pk

1

2

{(
∂hn
∂p

)
k+1/2

+

(
∂hn
∂p

)
k−1/2

}
= − ϕ̂n

R
pk

1

2△p
(
hn,k+1 − hn,k + hn,k − hn,k−1

)
= − ϕ̂n

R

pk
2△p

(
hn,k+1 − hn,k−1

)
(6.63)

Tn,k (k = 0, · · · ,M ) is written as follows.

Tn,0 = − ϕ̂n

R

p0
2△p

(
hn,1 − hn,−1

)
= − ϕ̂n

R

p0
2△p

(
hn,1 − hn,0

)
Tn,1 = − ϕ̂n

R

p1
2△p

(
hn,2 − hn,0

)
...

Tn,M−1 = − ϕ̂n

R

pM−1

2△p
(
hn,M − hn,M−2

)
Tn,M = − ϕ̂n

R

pM
2△p

(
hn,M+1 − hn,M−1

)
= − ϕ̂n

R

pM
2△p

(
bhn,M − hn,M−1

)
(6.64)

whereb = (1− a/2)/(1 + a/2) anda = △p(S/T̄ )pB.

6.5.2 Pressure velocity

From Eq. (6.30), ωn is written as

ωn = −∇ · V̂n

∫ p

pt

hndp (6.65)

where

∇ · V̂n =

(
∂ûn
∂x

+
∂v̂n
∂y

)
(6.66)

Now ωn at the pressure levelk is denoted byωn,k.

ωn,k = −∇ · V̂n

⟨∫ p

pt

hndp

⟩p

k

(6.67)
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The rhs of Eq. (6.67) is expressed as⟨∫ p

pt

hndp

⟩p

k

=
1

2

{(∫ p

pt

hndp

)
k+1/2

+

(∫ p

pt

hndp

)
k−1/2

}
=

1

2

{∫ pk+1/2

p−1/2

hndp+

∫ pk−1/2

p−1/2

hndp

}

=
1

2

{ k∑
i=0

hn,i△p+
k−1∑
i=0

hn,i△p
}

=
1

2
hn,k△p+

k−1∑
i=0

hn,i△p (6.68)

ωn,k (k = 0, · · · ,M ) is written as follows.

ωn,0 = −∇ · V̂n
1

2
hn,0△p

ωn,1 = −∇ · V̂n

(
1

2
hn,1 + hn,0

)
△p

ωn,2 = −∇ · V̂n

(
1

2
hn,2 +

1∑
i=0

hn,i

)
△p

...

ωn,M = −∇ · V̂n

(
1

2
hn,M +

M−1∑
i=0

hn,i

)
△p (6.69)

6.5.3 Heating rate

From Eq. (6.40),Qn is written as

Qn = −cpD̂nS

∫ p

pt

hndp (6.70)

NowQn at the pressure levelk is denoted byQn,k.

Qn,k = −cpD̂nSk

⟨∫ p

pt

hndp

⟩p

k

(6.71)

Qn,k (k = 0, · · · ,M ) is written as follows.

Qn,0 = −cpD̂nS0
1

2
hn,0△p

Qn,1 = −cpD̂nS1

(
1

2
hn,1 + hn,0

)
△p

Qn,2 = −cpD̂nS2

(
1

2
hn,2 +

1∑
i=0

hn,i

)
△p

...

Qn,M = −cpD̂nSM

(
1

2
hn,M +

M−1∑
i=0

hn,i

)
△p (6.72)
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6.6 Budget equations of DSE, moisture, and MSE

In this section, derivation of the budget equations of dry static energy, moisture, and
moist static energy is summarized followingYanai et al.(1973). Dry static energy (DSE)
is conserved in dry adiabtaic process and defined as

s = ϕ+ cpT (6.73)

wheres is DSE,ϕ = gz is geopotential,T is temperature, andcp is dry air heat capacity
at constant pressure (1004 J/K/kg).

Budget equations of DSE and moisture are expressed as:

Ds̄

Dt
=

∂s̄

∂t
+∇ · svvv + ∂sω

∂p
= QR + L(c̄− ē) (6.74)

DLq

Dt
=

∂Lq

∂t
+∇ · Lqvvv + ∂Lqω

∂p
= −L(c̄− ē) (6.75)

whereQR is radiative heating rate,L is the latent heat of condensation (2.5×106 J/kg),q
is water vapor mixing ratio,c is the rate of condensation, e is the rate of re-evaporation
of cloud droplets, and over bar represents a horizontal average. Averaging Eqs. (6.74)
and (6.75) over the horizontal area, and applying the Reynolds averaging technique (e.g.,
AB = ĀB̄ + A′B′) and the continuity equation

∇ · vvv + ∂ω̄

∂p
= 0 (6.76)

we obtain

∂s̄

∂t
+ v̄vv · ∇s̄+ ω̄

∂s̄

∂p
= QR + L(c̄− ē)−∇ · s′vvv′ − ∂s′ω′

∂p
(6.77)

∂L̄q

∂t
+ v̄vv · ∇L̄q + ω̄

∂L̄q

∂p
= −L(c̄− ē)−∇ · Lq′vvv′ − ∂Lq′ω′

∂p
(6.78)

where the prime denotes the deviation from the horizontal average. Ignoring the horizon-
tal eddy terms∇ · s′vvv′ and∇ · Lq′vvv′, we finally obtain

∂s̄

∂t
+ v̄vv · ∇s̄+ ω̄

∂s̄

∂p
= QR + L(c̄− ē)− ∂s′ω′

∂p
(6.79)

∂L̄q

∂t
+ v̄vv · ∇L̄q + ω̄

∂L̄q

∂p
= −L(c̄− ē)− ∂Lq′ω′

∂p
(6.80)

The rhs of Eqs. (6.79) and (6.80) are rewritten as

Q1 = QR + L(c̄− ē)− ∂s′ω′

∂p
(6.81)

Q2 = −L(c̄− ē)− ∂Lq′ω′

∂p
(6.82)
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whereQ1 andQ2 denote the apparent heat source and the apparent moisture sink, respec-
tively. Combining Eqs. (6.79) and (6.80) yields the budget equation of moist static energy
(MSE) which is nearly conserved in moist adiabatic process:

∂m̄

∂t
+ v̄vv · ∇m̄+ ω̄

∂m̄

∂p
= Q1 −Q2 (6.83)

wherem = s+ Lq is MSE. The rhs in Eq. (6.83) is rewritten as

Q1 −Q2 = QR − ∂m′ω′

∂p
(6.84)

where the second term in the rhs in Eq. (6.84) is vertical eddy transport of MSE which
is a measure of the activity of cumulus convection. Hereafter, the over bar is omitted for
simplicity.

A mass-weighted vertical integration⟨A⟩ is defined as

⟨A⟩ = 1

g

∫ ps

pt

Adp (6.85)

whereg is gravitational accretion,pT is pressure at top of the atmosphere, andps is surface
pressure. From Eqs. (6.79) and (6.80), the budget equations of vertical integrated DSE
and moisture are written as

∂⟨s⟩
∂t

+ ⟨vvv · ∇s⟩+ ⟨ω∂s
∂p

⟩ = ⟨QR⟩+ LP + SH (6.86)

∂⟨Lq⟩
∂t

+ ⟨vvv · ∇Lq⟩+ ⟨ω∂Lq
∂p

⟩ = −LP + LH (6.87)

whereP = ⟨L(c − e)⟩ is precipitation,SH = −⟨∂s′ω′/∂p⟩ is surface sensible heat
flux, andLH = −⟨∂Lq′ω′/∂p⟩ is surface latent heat flux (evaporation). Combining Eqs.
(6.86) and (6.87) gives

∂⟨m⟩
∂t

+ ⟨vvv · ∇m⟩+ ⟨ω∂m
∂p

⟩ = ⟨QR⟩+ SH + LH (6.88)

The budget equation of vertical integrated MSE is also obtained by mass-weighted vertical
integration of Eq. (6.84). Therefore, it is confirmed that

⟨Q1 −Q2⟩ = ⟨QR⟩+ SH + LH (6.89)

6.7 Vertical MSE advection and a large-scale circulation

Figure6.1shows a schematic picture of vertical MSE advection associated with shal-
low, deep, and stratiform modes (e.g.,Peters and Bretherton2006; Back and Bretherton
2006; Inoue and Back2015ab; Handlos and Back2014; Masunaga and L’Ecuyer2014).
A sign of the vertical advection is changed by that of pressure velocity and that of MSE
gradient.

For example, we consider the deep mode. Sinceω = ∆p/∆t is negative in the up-
ward motion,∆p is negative (denoted by upward arrow). Then∆m = (∂m)/(∂p)∆p is
negative (positive) in the lower half of the troposphere (the upper half of the troposphere).
Since the vertical advection−ω(∂m)/(∂p) has an opposite sign to∆m, positive and neg-
ative advection occur in the the lower and upper half of the troposphere, respectively.
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(a) shallow mode (b) deep mode

(c) stratiform mode

Fig. 6.1: Schematic picture of vertical MSE advection for the large-scale circulation (blue line) of
(a) shallow mode, (b) deep mode, and (c) stratiform mode. Gray curve represents MSE
profile in the tropics.
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