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 16 

We propose an estimation method of sensitivity coefficients of core neutronics parameters 17 

based on a multi-level reduced order modeling approach. The idea is to use lower-level 18 

models to identify the dominant input parameter variations, constrained to the so-called active 19 

subspace, which are employed to determine the sensitivity coefficients of the core neutronic 20 

parameters. In our implementation, the lower-level model is represented by 2D assembly 21 

calculations, which are employed in the preparation of the few-group cross-sections for 22 

core-wide calculations. The active subspace basis is estimated using the singular value 23 

decomposition of sensitivity matrices of assembly neutronics parameters. In numerical 24 
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verification calculation, sensitivity coefficients of core characteristics for a typical three-loop 1 

PWR equilibrium-cycle are estimated using the proposed method and the direct method. 2 

Comparison of these two results shows that the proposed method well reproduces the results 3 

obtained by the direct method with lower calculation costs. Through the verification 4 

calculations, applicability of the proposed method to practical light water reactor analysis is 5 

confirmed. 6 

 7 
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1. Introduction 11 

 For safe and efficient operation of nuclear reactors, it is important to quantify and 12 

reduce the uncertainty of core neutronics parameters predicted by numerical core analysis. 13 

The sensitivity coefficients of the core neutronics to cross section data are used for 14 

uncertainty quantification based on error propagation, cross section adjustment method, and a 15 

method to identify nuclear data for which further improvements are required to reduce 16 

uncertainties of target integral neutronics parameters [1-3]. Therefore, it is important to 17 

evaluate the sensitivity coefficients of core neutronics parameters in core analysis.  18 

There are two conventional sensitivity estimation methods, i.e., the forward-based 19 

approach and the adjoint-based approach. The forward-based approach, which requires a 20 

perturbed calculation for each input parameter, can utilizes existing core analysis codes 21 

without major modifications. However, this approach would be impractical due to the large 22 

number of input parameters (e.g., fine-group microscopic cross sections). For this reason, the 23 

adjoint-based approach i.e., generalized perturbation theory (GPT) and depletion perturbation 24 

theory (DPT) are utilized to reduce the calculation costs [4, 5]. In their ideal application to the 25 

evaluation of first-order derivatives, a single adjoint model evaluation is required for every 26 
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response of interest, and independently of the number of model parameters. This property 1 

makes adjoint-based methods the most efficient when few responses are required and only 2 

first-order variations are the most dominant. In practice, however, the application of the 3 

adjoint-based approach to light water reactor (LWR) analysis is difficult due to complexity 4 

and non-linear effects in core analysis, e.g., lattice-core two-step calculation, non-linear effect 5 

represented by thermal-hydraulics feedback, and the large number of core responses. Thus, an 6 

efficient estimation method for sensitivity coefficients without the adjoint-based approach is 7 

highly desirable. 8 

To address these challenges, reduced order modeling (ROM)-based methods have 9 

been investigated by previous works to reduce the computational burden of sensitivity 10 

coefficients evaluations when neither forward nor adjoint-based methods is found practical 11 

[6-11]. The idea is to perform a physics-based reduction of the input parameter space and/or 12 

the response space. The reduction implies that not all input parameter variations are important, 13 

i.e., they do not contribute to the evaluation of sensitivity coefficients. Unlike traditional 14 

screening approaches, which eliminates parameters that are considered unimportant based on 15 

expert judgement or a one-at-a-time sensitivity analysis, ROM employs the physics model to 16 

identify the important parameter variations using range finding algorithm. 17 

In our current implementation, we focus on the use of singular value decomposition 18 

(SVD) as a range finding algorithm. SVD identifies an active subspace (AS) in the input 19 

parameter space, whose size is much smaller than the dimension of the input parameter space. 20 

With this, the cost of forward-based sensitivity coefficient evaluation can be significantly 21 

reduced. The premise here is that all parameter variations that are orthogonal to the AS 22 

produce negligible variations in the responses of interest, i.e., core neutronic parameters.  23 

Earlier work has explored the ROM application to core neutronics calculations. For 24 

example, researchers have shown that the size of the AS for assembly and core-wide 25 

calculations is extremely small [8,12]. Abdo, et. al., [9-11] has employed a multi-level ROM 26 
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(MLROM) approach to approximate the AS using a lower-level model. In this work, we 1 

employ a similar approach, where AS is constructed using the sensitivity coefficients of the 2 

assembly calculations to identify the dominant parameter variations for core-wide calculations. 3 

The errors resulting from this approximation have been bounded by rigorous metrics in earlier 4 

work [13]. Instead of repeating these results, we employ a numerical verification test to assess 5 

the quality of the approximated AS. 6 

In our implementation, the AS will be determined by executing assembly calculations 7 

only once in advance of core calculations. Once determined, the AS can be reused for various 8 

cores loaded with the assemblies that are employed to obtain the AS. If new assembly designs 9 

are introduced, one can expand the AS by appending the sensitivity coefficients to the AS 10 

basis. In earlier work, Abdo [13] has shown that this idea could be helpful in determining the 11 

minimum number of assembly calculations required to properly cover the AS.  12 

In Section 2, outline of ROM and AS in estimation of sensitivity coefficients is 13 

described. In Section 3, theory of the proposed method to obtain an AS basis using assembly 14 

calculations is discussed. Decomposition of a core sensitivity matrix by assembly sensitivity 15 

matrices and the application of assembly calculations with coarse calculation condition are 16 

described. In Section 4, comparison of the results of present and direct methods are provided. 17 

Finally, concluding remarks are summarized in Section 5. 18 

 19 

2. Reduced order modeling of input parameters 20 

 Firstly, let us consider N input parameters Nσσσ ,,, 21   and M core neutronics 21 

parameters MRRR ,, 21  (which are calculated using Nσσσ ,,, 21  ). Variation of i-th 22 

neutronics parameters iR∆  due to the perturbation of input parameters ( Nσσσ ∆∆∆ ,,, 21  ) 23 

is approximately expressed as follows based on the first order approximation of the Taylor 24 

expansion: 25 
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where ijG  is a sensitivity coefficients of iR  to jσ  ( jiR σ∂∂≡ ). The matrix expression of 2 

Equation (1) is given by: 3 
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It is noted that σ∆  is an N-dimensional column vector, R


∆  is an M-dimensional column 10 

vector, G is an M-by-N matrix, and σddRi  is an N-dimensional row vector. 11 

 The j-th column vector jG


 of the matrix G can be obtained by the direct perturbation 12 

method (using forward calculations) as follows: 13 
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where the scalar jσ∆  is the amount of variation for the j-th input parameter and the vector 15 

je  is the unit vector whose j-th element is 1 and all the other elements are zero. In the direct 16 

approach, the matrix G is obtained by evaluation of the Equation (7) for all input parameters. 17 

Thus, the required number of forward calculations to estimate the sensitivity coefficients is 18 

proportional to the number of input parameters. 19 

 Next, SVD of the matrix G is performed as follows [14]: 20 

 TUDVG = , (8) 21 
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where, 1 

U : M-by-M unitary matrix, 2 

V : N-by-N unitary matrix, 3 

D : M-by-N diagonal matrix with singular values ( 021 ≥≥≥≥ Mddd  ). 4 

Furthermore, the smaller singular values than r-th largest singular value are neglected as 5 

follows: 6 

 011 ≈≈≈>≥≥ + Mrr dddd  . (9) 7 

Assuming Equation (9), Equation (8) is rewritten as follows: 8 

 T
rrr VDUG = , (10) 9 

where, 10 

Ur : M-by-r unitary matrix, 11 

Vr : N-by-r unitary matrix,  12 

Dr : r-by-r diagonal matrix which have r singular values 021 >≥≥≥ rddd   as 13 

diagonal elements. 14 

Therefore, when Equation (9) is established, the matrix G can be decomposed with the 15 

appropriate N-dimensional orthonormal vectors as follows: 16 

 T
rFVG = , (11) 17 

where, the matrix F is M-by-r matrix and rrr
T

r ×= IVV  (r-by-r identity matrix). It is noted 18 

that the columns of Vr are the subspace basis spanned by the row vectors of G. By 19 

substituting Equation (11) into Equation (2), the following expression are obtained: 20 

 σ


∆=∆ T
rR FV . (12) 21 

 By transforming variation of input parameters as ασ


∆=∆ rV , the following 22 

expression can be derived since rrr
T

r ×= IVV : 23 

 α


∆=∆ FR , (13) 24 

where the vector α


∆  is an r-dimensional vector whose elements are expansion coefficients 25 

of σ∆ . As obvious from Equation (13), the j-th column vector jF


 of the matrix F can be 26 
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obtained by varying only the j-th element of α


∆ . In such case, the variation of input 1 

parameters is expressed as jj v
 ασ ∆=∆  (the vector jv  is the j-th column vector of the 2 

matrix Vr), thus jF


 is obtained as follows: 3 
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where the scalar jα∆  is the amount of variation for the j-th element of α


∆ . 5 

The number of column of matrix F is r. Therefore, matrix F is obtained by r forward 6 

calculations. Then, matrix G is obtained by Equation (11). Consequently, matrix G is 7 

obtained by r forward calculations using the orthonormal expansion. Namely, the degree of 8 

freedom (DOF) of the input parameters for sensitivity estimation is reduced from N (i.e., the 9 

original dimension) to r (i.e., the dimension of the subspace spanned by orthonormal column 10 

basis Vr). The ROM is achieved by expansion of the input parameters in such a subspace 11 

spanned by the columns of Vr. and the columns Vr is an AS basis in the proposed method. 12 

When r << N, required number of core calculations can be drastically reduced.  13 

 14 

3. Utilization of assembly calculation 15 

3.1. Decomposition of Sensitivity matrix of core characteristics 16 

The simplest method to obtain an AS basis corresponding to core neutronics 17 

parameters is utilization of the core sensitivity matrix: SVD is performed to the core 18 

sensitivity matrix, then AS basis is obtained as the columns of Vr. The AS basis obtained by 19 

this method can accurately reproduce the relation of Equation (11). However, this method is 20 

meaningless since this method requires the core sensitivity matrix, which is the target matrix. 21 

Therefore, an MLROM approach is used to obtain an AS basis using the sensitivity matrix of 22 

the assembly neutronics parameters. 23 

Firstly, it is assumed that the variation of the core neutronics parameters is caused by 24 

the variation of the assembly neutronics parameters, e.g., the homogenized multi-group 25 
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macroscopic corss sections. When a core calculation is performed using the macroscopic 1 

cross sections obtained by assembly calculations, this assumption is considered to be natural 2 

and straightforward. With this assumption, the sensitivity coefficients can be expanded by L 3 

assembly neutronics parameters kΣ  as follows: 4 
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and the matrix expression of Equation (15) is: 6 

 21GGG = , (16) 7 

where 1G  and 2G  are the sensitivity matrix of the core neutronics parameters to the 8 

assembly neutronics parameters ( kiR Σ∂∂≡ ) and the sensitivity matrix of the assembly 9 

neutronics parameters to the input parameters ( jk σ∂Σ∂≡ ), respectively. 2G  can be 10 

obtained by the assembly calculations. After the evaluation of 2G , the SVD is performed as 11 

follows: 12 

 T
rrr VDUG =2 . (17) 13 

When Equation (9) holds true for the singular values of 2G , then rU , rV , and rD  become 14 

an L-by-r unitary matrix, an N-by-r unitary matrix, and an r-by-r diagonal matrix, 15 

respectively. Then, the Equation (16) is rewritten as follows: 16 

 T
rrr VDUGG 1= . (18) 17 

The matrix rr DUG1  is an M-by-r matrix and rV  is an N-by-r matrix whose 18 

columns are orthonormal basis. These are corresponding to the matrices F and Vr in the 19 

Equation (11). In forward calculations, N assembly calculations are required to obtain 2G  20 

and an AS basis is constructed using Equation (17). Then r core analysis (i.e., r assembly 21 

calculations + r core calculations) are required to estimation of the sensitivity matrix of core 22 

neutronics parameters using the obtained AS basis from assembly calculation results. Namely, 23 

in this approach, N + r assembly calculations and r core calculations are required to estimate 24 

the sensitivity matrix of the parameters of a certain core. This implies that the required 25 
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number of core calculations is reduced from N to r. The decomposition of Equation (16) 1 

would hold true for the cores if the same set of assemblies are loaded. Thus, once the 2G  is 2 

obtained, the calculation cost to estimate core sensitivity matrix would be reduced for cores 3 

loaded with same fuel assemblies. 4 

The proposed method assumes that the sensitivity matrix of core neutronics 5 

parameters can be decomposed as Equation (16). When Equation (16) holds true, Equation 6 

(18), which is obtained by the decomposition of the sensitivity matrix of the assembly 7 

neutronics parameters, is equivalent to Equation (11). Namely, the AS basis for the assembly 8 

neutronics parameters is equivalent to that of the core neutronics parameters in such a case. 9 

However, by the assembly calculations, various assembly neutronics parameters would be 10 

obtained for various state points (e.g., burnup points, void fraction, fuel temperature). Validity 11 

and accuracy of Equation (16) would significantly depends on the choice of assembly 12 

neutronics parameters (Σ ). Thus, Σ  should be carefully chosen to make Equation (16) valid. 13 

 14 

3.2. Application of approximate assembly calculation 15 

As mentioned in the previous section, the number of assembly calculations is not 16 

reduced in the ROM-approach using the sensitivity matrix of the assembly neutronics 17 

parameters; N + r assembly calculations are still necessary. The assembly neutronics 18 

parameters are tabulated for various conditions (state-points) e.g., burnup, fuel temperature, 19 

moderator temperature, void fraction, boron concentration, and control rod insertion/removal. 20 

When type of branch calculations is increased and/or the fine state points are taken into 21 

account, the calculation cost of the assembly calculations would be increased. In a typical 22 

LWR core analysis, calculation cost of the assembly calculations is not negligible, thus the 23 

approach proposed in the previous section would not significantly improve the efficiency of 24 

sensitivity estimation of the core neutronics parameters.  25 
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Thus, in this study, we use an AS estimation method using approximate values Σ~  of 1 

assembly neutronics parameters obtained by approximate assembly calculations employing 2 

the coarse tabulation condition (e.g., coarse burnup steps) instead of the neutronics parameters 3 

evaluated with the original fine conditions [15]. 4 

Figure 1 shows image of burnup dependence of the assembly neutronics parameters. 5 

In Figure 1, the solid line and the dotted line represent the assembly neutronics parameters 6 

obtained with non-perturbed input parameters and perturbed input parameters, respectively. In 7 

addition, the solid arrow and dotted arrow represent the direction and amount of the 8 

perturbation at the fine and coarse burnup point, respectively. Each arrow corresponds to the 9 

sensitivity vector (i.e., the row vector of the sensitivity matrix) of the assembly neutronics 10 

parameters to the input parameters, though Figure 1 is a two-dimensional plot in which the 11 

axis of input parameters is not explicitly shown. The basis of the subspace spanned by these 12 

sensitivity vectors corresponds to Vr in Equation (11). When the width of the coarse burnup 13 

points is appropriately small, assembly neutronics parameters linearly varies between two 14 

adjacent coarse burnup points. Namely, the assembly neutronics parameters at the fine burnup 15 

points can be estimated by the linear combination of those at the coarse burnup points. 16 

Therefore, the sensitivity vectors of the assembly neutronics parameters at the fine burnup 17 

points are given by the linear combination of those at coarse burnup points. Consequently, the 18 

subspace Vc spanned by the sensitivity vectors at coarse burnup points is approximately 19 

equivalent to the subspace Vf spanned by the sensitivity vectors at fine burnup points. 20 

There are two approaches to estimate sensitivity coefficients at coarse state points. In 21 

the first approach, fine state-point condition (fine burnup step) is used for assembly 22 

calculations and then parts of the calculation results are picked up as the results of coarse 23 

state-point. In this case, computation time for assembly calculation cannot be reduced. In the 24 

second approach, coarse state point (coarse burnup point) is directly used in assembly 25 

calculation. In the second approach, computation time can be reduced. However, utilization of 26 
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coarse step degrades assembly calculation results. Thus when the second approach is used, 1 

equivalence of these two approaches should be confirmed. In Reference 15, it is shown that 2 

the sensitivity vector obtained by approximate assembly calculations with coarse burnup steps 3 

can well reproduce that obtained by assembly calculation with fine burnup steps for UO2- fuel 4 

and MOX fuel assemblies. Thus, in a typical LWR core analysis, the subspace c~V  spanned 5 

by the sensitivity vectors obtained by the approximate assembly calculation with coarse 6 

burnup steps (the second approach) is approximately equivalent to the subspace Vc obtained 7 

the first approach. Namely, c~V  can approximate Vf  as well as Vc. In this study, we propose 8 

a method using the basis of subspace c~V  as an AS basis, which is obtained from the 9 

sensitivity matrix 2
~G  based on the approximate assembly neutronics parameters with coarse 10 

calculation condition. 11 

The required number of forward calculations to obtain 2
~G  still remains N. However, 12 

due to less number of state points, number of neutron transport calculation, burnup calculation, 13 

and the effective cross section calculation in approximate assembly calculations will be 14 

reduced. Thus, the calculation cost to obtain an AS basis will be reduced by employing the 15 

approximate assembly calculations. 16 

 17 

3.3. Accuracy of sensitivity vector 18 

 The proposed method utilizes the following assumptions to construct an AS basis for 19 

ROM: 20 

 The core sensitivity matrix can be decomposed using the assembly sensitivity matrix as 21 

shown in Equation (16). 22 

 Equation (9) holds true about the singular values of the assembly sensitivity matrix. 23 

 The assembly neutronics parameters at fine state points can be given by the linear 24 

combination of those of coarse state points. 25 
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 The sensitivity matrix of approximate assembly neutronics parameters obtained with 1 

coarse burnup steps can well reproduce that of the assembly neutronics parameters 2 

obtained with original fine burnup steps. 3 

Namely, the sensitivity matrix of core neutronics parameters obtained by the proposed 4 

method includes some approximations. 5 

 For practical application, user should determine the number of AS dimensions 6 

required to obtain the target accuracy or estimate approximation error by the user specified 7 

number of AS dimensions. Thus, in this paper, the accuracy of approximation versus number 8 

of AS dimensions r is quantitatively evaluated. The relative difference norm of the row 9 

vectors of the sensitivity matrix of core neutronics parameters to the reference values obtained 10 

by the direct method is defined as follows: 11 
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where, r is number of dimensions of AS, rg  and refg  are the row vectors of sensitivity 13 

matrix obtained by the proposed and the direct methods, respectively. When the sensitivity 14 

matrix obtained by the proposed method is equal to that obtained by the direct method, the 15 

relative difference norm given by Equation (19) will be zero.  16 

 The proposed method utilizes only forward calculations. Namely, the finite difference 17 

approximation is applied to evaluate the sensitivity coefficients. Therefore, due to the 18 

non-linear effect and numerical round off error, discretization error is inevitably included in 19 

the estimated sensitivity coefficients. Thus, it is difficult to identify the source of relative 20 

difference given by the Equation (19), i.e., the AS expansion or the finite difference 21 

approximation. In order to clarify this point, the relative difference norm given by Equation 22 

(20) is defined as the theoretical value: 23 
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The numerator of the right hand side of Equation (20) represents the magnitude of orthogonal 2 

components of the reference sensitivity vector to AS. Namely, Equation (20) gives the 3 

accuracy of the proposed method without the non-linear effects and the numerical round off 4 

error. In verification calculation in this paper, the approximation accuracy is discussed with 5 

Equations (19) and (20), though the reference values of the sensitivity vectors are evaluated 6 

with the direct method. 7 

 8 

3.4. Procedure of sensitivity matrix estimation with proposed method 9 

In this chapter, utilization of the sensitivity matrix of the approximate assembly 10 

neutronics parameters to obtain AS is described. The procedure of the proposed method to 11 

estimate the sensitivity matrix of core neutronics parameters is summarized as follows: 12 

1). The sensitivity matrix 2
~G  of the approximate assembly neutronics parameters Σ~  is 13 

evaluated with N (= the number of input parameters) forward assembly calculations with 14 

coarse condition.  15 

2). SVD of 2
~G  performed as Equation (17) and r-dimensional AS basis Vr is obtained by 16 

truncating small singular values. 17 

3). The input parameters are expanded in the AS basis as ασ


∆=∆ rV  and the sensitivity 18 

matrix F to the expansion coefficients is evaluated by Equation (14) with r forward 19 

assembly and core calculations.  20 

4). The sensitivity matrix of the core neutronics parameters is reconstructed by Equation 21 

(11). 22 

 23 
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4. Numerical verification 1 

To verify the validity of proposed method, the proposed method and the direct method 2 

are applied to a typical 3-loop PWR equilibrium core analysis. In this section, the conditions 3 

and results of the verification calculation are described. 4 

 5 

4.1. Calculation conditions 6 

The CASMO-4/SIMULATE-3 code system is used in this verification calculation [16, 7 

17]. 5040 cross sections in L-library, which is a cross section library of CASMO-4, are taken 8 

into account as input parameters (N = 5040): These are the 70 group cross sections for 4 9 

reactions (capture, fission, scattering, and average number of neutrons per fission ν) of 18 10 

heavy nuclides (U-234, 235, 236, 238, Np-237, Pu-238, 239, 240, 241, 242, Am-241, 242, 11 

243, Cm-242, 243, 244, 245 and 246), i.e., 704185040 ××= . The input parameters are 12 

listed in Table. 1. 13 

The target core is a typical 3-loop equilibrium PWR core and the sensitivity 14 

coefficients of the target core parameters are estimated. In CASMO-4/SIMULATE-3 15 

calculations, the calculation conditions comparable to those of the typical design calculation 16 

are used and the thermal-hydraulic feedback effects are explicitly taken into account. 17 

The fuel pin arrangement, specifications of the fuel assembly and fuel pin loaded into 18 

target core are shown in Figure 2, Tables 2 and 3. Figures 3 and 4 show the fuel loading 19 

pattern and the assembly average burnup distribution of the target core at beginning of cycle 20 

(BOC), respectively. The cycle burnup is 15 GWd/t. The target core neutronics parameters are 21 

the critical boron concentration at end of cycle (EOC) and the relative assembly power of the 22 

fuel assembly filled by hatched lines in Figure 4 (0.0 GWd/t assembly at 5-th row and 2-th 23 

column). This assembly has highest relative power at EOC with the non-perturbed 24 

calculation.  25 
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The approximate assembly calculations for UO2 fuel and UO2-Gd2O3 fuel (Gd fuel), 1 

which loaded into the target core, are performed and the sensitivity matrix of the approximate 2 

assembly neutronics parameters to input parameters is evaluated. Each approximate assembly 3 

calculation is performed with 600 ppm boron concentration, 900 K fuel temperature, and 581 4 

K moderator temperature. For UO2 fuel assembly, the burnup calculation is performed from 5 

0.0 to 70.0 GWd/t with 6 coarse burnup steps (i.e., 0.0, 0.1, 1.0, 5.0, 35.0, 70.0 GWd/t). For 6 

Gd fuel assembly, the burnup calculations is performed from 0.0 to 70.0 GWd/t with 52 steps 7 

(i.e., 0.0, 0.1, increments by 0.5 from 0.5 to 24.0, 35.0, 70.0 GWd/t). The tabulated points for 8 

branch calculations are set as follows: 9 

 Boron concentration : 0.0, 1200.0, 2400.0 ppm 10 

 Fuel temperature : 556 K 11 

 Moderator temperature : 556 K 12 

For branch calculation, 6 coarse burnup steps used in UO2 fuel assembly are chosen both for 13 

the UO2 and Gd fuel assemblies. Namely, the number of tabulated points for UO2 and Gd fuel 14 

assemblies are 42 (= 6 + (3 + 1 + 1 + 1) ×  6) and 88 (= 52 + (3 + 1 + 1 + 1) ×  6), 15 

respectively. It is noted that the typical number of tabulated points for UO2 and Gd fuel 16 

assembly are 400 and 600, respectively. The calculation cost to obtain an AS basis is reduced 17 

to (42 + 88) / (400 + 600) ≈  13% by the utilization of the approximate assembly 18 

calculations. 19 

As the approximate neutronics parameters Σ~ , various parameters obtained by 20 

assembly calculations can be used. In the present study, homogenized macroscopic 2-group 21 

cross sections (diffusion coefficient, capture, fission, production, removal, ν) at each state 22 

points are used. The total number of Σ~  is 1300 (1300 = (42 UO2 burnup steps + 88 Gd 23 

burnup steps) ×  5 reactions ×  2 groups) and 2
~G , which is the sensitivity matrix of Σ~ , is 24 

the 1300-by-5040 matrix. 100080 (= 5040 times per assembly ×  2 assemblies) forward 25 



 16 

assembly calculations are performed to obtain 2
~G  with 10 % perturbation for each cross 1 

section listed in Table 1. 2 

After SVD of 2
~G , the first r right singular vectors of 2

~G , which correspond to the r 3 

largest singular values, are used as the AS basis Vr. The perturbation is given to the expansion 4 

coefficients of input parameters (70 group microscopic cross sections) with expansion in the 5 

AS basis to estimate sensitivity coefficients of core neutronics parameters. The amount of 6 

perturbation to the expansion coefficients is decided as the relative norm of the perturbation 7 

vector to input parameters is 0.1, i.e., approximately 10% perturbation. It is noted that the 8 

sensitivity matrix of the core neutronics parameters to the expansion coefficients (e.g., the 9 

matrix F in Equation (11)) is obtained with assembly calculations using not coarse tabulated 10 

points but typical tabulated points (i.e., 400 points for UO2 and 600 points for Gd). The 11 

relative difference norm of the sensitivity vectors obtained by the proposed method to those 12 

obtained by the direct method is evaluated with Equations (19) and (20) at the AS dimension 13 

of r = 1, 5, 10, 20, 50, 100 and 200. 14 

The reference values of relative sensitivity coefficients are obtained by the direct 15 

method with 5040 set of assembly and core calculations with 50 % perturbation for each input 16 

parameters (70 group microscopic cross sections) by Equation (7). As mentioned later, 10 % 17 

perturbation in direct method would be too small and large numerical round off error may 18 

arise for some cross sections. Thus, 50 % perturbation is used to obtain reference values 19 

instead of 10 % which is given to obtain 2
~G , i.e., larger perturbation is adopted to obtain 20 

accurate sensitivity coefficients as the reference values. 21 

 22 

4.2. Results 23 

Firstly, the results of the sensitivity coefficients of boron concentration at EOC are 24 

shown. Figure 5 shows the relative sensitivity coefficients obtained by the proposed method 25 

with r = 200 and reference values of those obtained by the direct method. The horizontal axis 26 
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represents the cross section ID listed in Table 1. Figure 5 shows that the magnitude and sign 1 

of the sensitivity coefficients of boron concentration at EOC are well reproduced with 200 2 

(<< 5040) calculations. In addition, Figure 6 shows the comparison between the relative 3 

sensitivity coefficients obtained by the proposed method and those obtained by the direct 4 

method. In Figure 6, the horizontal axis and vertical axis represent the relative sensitivity 5 

coefficients of the boron concentration at EOC obtained by the direct method and the 6 

proposed method, respectively. As shown in Figure 6, the values obtained by the proposed 7 

method reproduce the reference values as the dimension of AS increases. These results show 8 

that the matrix decomposition in Equation (16) is valid because core calculations are 9 

performed with the homogenized cross sections obtained by the assembly neutronics 10 

parameters. Figure 7 shows the relative difference norm of the sensitivity coefficients of 11 

boron concentration at EOC versus the number of AS dimension. In Figure 7, “Experiment” 12 

and “Theory” represent the relative difference norms given by Equations (19) and (20), 13 

respectively. As shown in Figure 7, both the relative difference norms of “Experiment” and 14 

“Theory” are decreased as the AS dimension increases in the range of r < 50. The relative 15 

difference of “Theory” is reduced to 2 % at r = 200. On the other hand, the relative difference 16 

norm of “Experiment” is 7 %, which larger than that of “Theory”. This is caused by the finite 17 

difference approximation in the proposed method. In the same way, the results of the relative 18 

sensitivity coefficients of the relative assembly power are shown in from Figure 8 to Figure 19 

10. As shown in Figures 8 and 9, the magnitude and sign of the sensitivity coefficients of the 20 

relative assembly power obtained by the proposed method well reproduce those of reference. 21 

Namely, the proposed method can be applied to not only boron concentration but also relative 22 

assembly power.  23 

The proposed method does not require dedicated calculations such as generalized 24 

adjoint calculation for each neutronics parameters. The proposed method can simultaneously 25 

estimate the sensitivity coefficients for various neutronics parameters with lower calculation 26 
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cost. In addition, burnup, thermal-hydraulic feedback effect, and refueling are explicitly taken 1 

into account in this verification calculation. Even in such a situation, the proposed method 2 

works well although application of the adjoint-approach would be difficult.  3 

As shown in Figure 10, the relative difference norm of “Experiment” tends to increase 4 

in the range of r > 20 and is about 10 %, which is larger than that of “Theory”. This is caused 5 

by the finite difference approximation for the estimation of sensitivity coefficients of the 6 

relative assembly power. Figure 11 shows that the relative sensitivity coefficients of relative 7 

assembly power obtained by the direct method with 10 % perturbation for input parameters. 8 

Compared to the Figure 8 (a), some sensitivity coefficients, e.g., Np-237 capture (ID: 1120 ~ 9 

1190), seem to contain noise. Since 10 % perturbation is smaller than 50 %, which is used to 10 

obtain the reference values, and the effect of the numerical round off error would be larger. 11 

This is same as for the expansion coefficients in the proposed method. Especially for larger r, 12 

the sensitivity coefficients of the assembly neutronics parameters to the expansion coefficients 13 

becomes smaller, thus the perturbation of the core neutronics parameters to the expansion 14 

coefficients will be small. Therefore, tighter convergence criteria or larger perturbation is 15 

necessary to reduce the numerical round off error. In this verification calculation, magnitude 16 

of perturbation to each expansion coefficient is constant and is independent to the number of 17 

AS dimensions. Thus, the numerical round off error becomes significant as r is increased, 18 

consequently, the relative difference norm tends to increase as shown in Figure 10. 19 

Appropriate choice of magnitude of perturbation considering the non-linear effect and 20 

numerical round off error would be a future task. 21 

 22 

5. Conclusion 23 

We proposed a method to estimate the sensitivity coefficients of the core neutronics 24 

parameters based on the reduced order modeling (ROM) using the sensitivity matrix of 25 

assembly neutronics parameters obtained by approximate assembly calculations employing 26 
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the coarse state points. The proposed method assumes that the sensitivity matrix of the core 1 

neutronics parameters can be expressed by linear combination of the active subspace (AS) 2 

basis obtained from the sensitivity matrix of the assembly neutronics parameters. The 3 

proposed method obtains an AS basis by the singular value decomposition (SVD) of the 4 

sensitivity matrix of the approximate assembly neutronics parameters evaluated by forward 5 

calculations. The required number of the forward core calculations to estimate the sensitivity 6 

coefficients is reduced using the AS basis: The variation of the input parameters is expanded 7 

by the AS basis so that the degree of freedom of the input parameters is reduced from the 8 

number of the input parameters to the number of the AS dimensions. The proposed method 9 

utilizes only forward calculations and has potential to significantly reduce the calculation cost 10 

compared to the direct method. Thus, the proposed method can be a candidate for the practical 11 

estimation method of the sensitivity coefficients when the adjoint-approach is 12 

computationally impractical such as the case with LWR core analysis. 13 

The proposed method is applied to a typical 3-loop PWR equilibrium core analysis. A 14 

total of 5040 input parameters i.e., the 70-group microscopic cross sections of the heavy 15 

nuclides are taken into account. Through the verification calculation, it is confirmed that the 16 

sensitivity coefficients of boron concentration and relative assembly power estimated by the 17 

proposed method can well reproduce those of the direct method. The verification results show 18 

that the proposed method can estimate the sensitivity coefficients of the various core 19 

neutronics parameters with less calculation cost even when the adjoint-approach is difficult to 20 

be applied.  21 

The relative difference norm of “Experiment” of the sensitivity coefficients of relative 22 

assembly power tends to increase in the range of large r. This is caused by numerical round 23 

off error of the finite difference approximation; this problem is common to the forward 24 

sensitivity estimation. The appropriate amount of perturbation in the proposed method should 25 

be investigated in the future. In this work, the approximation accuracy of the proposed 26 
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method is discussed compared to the results of the direct method. However, in a practical 1 

application, the number of AS dimensions to achieve the target precision has to be estimated 2 

without the result of the direct method. Thus, an estimation method of the upper bound of the 3 

approximation error versus AS dimension such as Reference 13 should be applied. 4 

 5 

 6 
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Figure captions 

 

Figure 1. Burnup dependence of assembly neutornics perameters with/without 

perturbations. 

Figure 2. Geometry of fuel assemblies (1/8 configuration). 

Figure 3. Core configuration (1/8 core). 

Figure 4. Assembly average burnup distribution at beginning of cycle (BOC) (1/8 core, 

GWd/t). 

Figure 5. Relative sensitivity coefficients of boron concentration at EOC. 

Figure 6.  Comparison of relative sensitivity coefficients of boron concentration at end of 

cycle (EOC). r indicates dimension of active subspace in the present method. 

Figure 7.  Active subspace (AS) dimension versus relative difference norm of relative 

sensitivity of boron concentration at EOC. 

Figure 8. Relative sensitivity coefficients of relative assembly power at EOC (fuel 

assembly filled by hatched lines in Fig.3). 

Figure 9.  Comparison of relative sensitivity coefficients of relative assembly power at 

EOC (fuel assembly filled by hatched lines in Fig.3). 

Figure 10.  AS dimension versus relative difference norm of relative sensitivity of relative 

assembly power at EOC (fuel assembly filled by hatched lines in Fig.3). 

Figure 11.  Relative sensitivity coefficients of relative assembly power at EOC (fuel 

assembly filled by hatched lines in Fig.3) obtained by the direct method with 

10% perturbation for input data. 
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Figure 1.  Burnup dependence of assembly neutornics parameters with/without 

perturbations. 

R. Katano: Estimation of core sensitivity coefficients based on Reduced-Order Modeling 

using sensitivity matrix of assembly characteristics 
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Figure 2.  Geometry of fuel assemblies (1/8 configuration). 

R. Katano: Estimation of core sensitivity coefficients based on Reduced-Order Modeling 

using sensitivity matrix of assembly characteristics 
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Figure 3.  Core configuration (1/8 core). 

R. Katano: Estimation of core sensitivity coefficients based on Reduced-Order Modeling 

using sensitivity matrix of assembly characteristics 

 



 5 

 

 

1 2 3 4 5 6 7 8

1 37.7

2 0.0 35.9

3 32.8 18.5 13.9

4 31.1 15.6 14.4 32.5

5 35.9 0.0 20.9 34.0 0.0

6 13.2 32.8 24.2 0.0 0.0

7 16.7 0.0 0.0 11.4

8 0.0 15.1

40 GWd/t

0 GWd/t
 

Figure 4.  Assembly average burnup distribution at beginning of cycle (BOC) (1/8 core, 

GWd/t). 

R. Katano: Estimation of core sensitivity coefficients based on Reduced-Order Modeling 

using sensitivity matrix of assembly characteristics 

 



 6 

 

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

0 560 1120 1680 2240 2800 3360 3920 4480 5040

R
el

at
iv

e 
se

ns
iti

vi
ty

 [-
]

Cross section ID  

(a) Reference 

 

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

0 560 1120 1680 2240 2800 3360 3920 4480 5040

R
el

at
iv

e 
se

ns
iti

vi
ty

 [-
]

Cross section ID  

(b) Proposed method: r = 200 

Figure 5.  Relative sensitivity coefficients of boron concentration at EOC. 

R. Katano: Estimation of core sensitivity coefficients based on Reduced-Order Modeling 

using sensitivity matrix of assembly characteristics 
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                (a) r = 1                                    (b) r = 5 

                (c) r = 20 

 

Figure 6.  Comparison of relative sensitivity coefficients of boron concentration at end of 

cycle (EOC). r indicates dimension of active subspace in the present method. 

R. Katano: Estimation of core sensitivity coefficients based on Reduced-Order Modeling 

using sensitivity matrix of assembly characteristics 
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Figure 7.  Active subspace (AS) dimension versus relative difference norm of relative 

sensitivity of boron concentration at EOC. 

R. Katano: Estimation of core sensitivity coefficients based on Reduced-Order Modeling 

using sensitivity matrix of assembly characteristics 
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(b) Proposed method: r = 200 

Figure 8.  Relative sensitivity coefficients of relative assembly power at EOC (fuel 

assembly filled by hatched lines in Fig.3). 

R. Katano: Estimation of core sensitivity coefficients based on Reduced-Order Modeling 

using sensitivity matrix of assembly characteristics 
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                (a) r = 1                                    (b) r = 5 

                (c) r = 20 

 

Figure 9.  Comparison of relative sensitivity coefficients of relative assembly power at EOC 

(fuel assembly filled by hatched lines in Fig.3). 

R. Katano: Estimation of core sensitivity coefficients based on Reduced-Order Modeling 

using sensitivity matrix of assembly characteristics 
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Figure 10.  AS dimension versus relative difference norm of relative sensitivity of relative 

assembly power at EOC (fuel assembly filled by hatched lines in Fig.3). 

R. Katano: Estimation of core sensitivity coefficients based on Reduced-Order Modeling 

using sensitivity matrix of assembly characteristics 
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Figure 11.  Relative sensitivity coefficients of relative assembly power at EOC (fuel 

assembly filled by hatched lines in Fig.3) obtained by the direct method with 10% 

perturbation for input data. 

R. Katano: Estimation of core sensitivity coefficients based on Reduced-Order Modeling 

using sensitivity matrix of assembly characteristics 
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Table 1.  ID of input parameters (microscopic cross sections in 70 group) 

Nuclide Capture Fission Scattering ν  

U-234 1-70 71-140 141-210 211-280 

U-235 281-350 351-420 421-490 491-560 

U-236 561-630 631-700 701-770 771-840 

U-238 841-910 911-980 981-1050 1051-1120 

Np-237 1121-1190 1191-1260 1261-1330 1331-1400 

Pu-238 1401-1470 1471-1540 1541-1610 1611-1680 

Pu-239 1681-1750 1751-1820 1821-1890 1891-1960 

Pu-240 1961-2030 2031-2100 2101-2170 2171-2240 

Pu-241 2241-2310 2311-2380 2381-2450 2451-2520 

Pu-242 2521-2590 2591-2660 2661-2730 2731-2800 

Am-241 2801-2870 2871-2940 2941-3010 3011-3080 

Am-242 3081-3150 3151-3220 3221-3290 3291-3360 

Am-243 3361-3430 3431-3500 3501-3570 3571-3640 

Cm-242 3641-3710 3711-3780 3781-3850 3851-3920 

Cm-243 3921-3990 3991-4060 4061-4130 4131-4200 

Cm-244 4201-4270 4271-4340 4341-4410 4411-4480 

Cm-245 4481-4550 4551-4620 4621-4690 4691-4760 

Cm-246 4761-4830 4831-4900 4901-4970 4971-5040 
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Table 2.  Specifications of fuel assemblies. 

  UO2 UO2-Gd2O3 

Fuel rod arrangement 17 x 17 

Number of UO2 rods  264 240 

Number of Gd bearing rods  0 24 

Number of instrumental thimble 1 

Number of control rod guide tubes 24 

Outer diameter of thimble [mm] 12.2 

Inner diameter of thimble [mm] 11.4 

Outer diameter of guide tube [mm] 12.2 

Inner diameter of guide tube [mm] 11.4 

Pitch of fuel rod [mm]  12.6 

Pitch of fuel assembly [mm]  215.0 
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Table 3.  Specifications of fuel rod. 

  UO2 UO2-Gd2O3 

Fuel density [g/cm3]  10.5 10.1 

Uranium enrichment [wt%]  4.8 3.2 

Gadolinia concentration [wt%]  0.0 10.0 

Pellet diameter [mm] 8.2 

Inner diameter of cladding [mm] 8.4 

Outer diameter of cladding [mm] 9.5 
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