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Abstract: 
The routing and scheduling for trucks and vans in an urban road network depends critically on 
the state of the road network. Trucks and vans impose significant costs on other road users 
and the environment, so improved routing and scheduling benefits more than just the logistics 
industry. However, small and medium size enterprises (SMEs) in the logistics business cannot 
justify investment in planning systems. In this paper, an autonomous routing and scheduling 
system which is available to SMEs is proposed and the efficiency of the system is investigated. 
The proposed system accumulates vehicle location data in a central server and uses it to 
generate traffic information. Test simulations using a grid network demonstrate the effects of 
utilizing and sharing vehicle location data on delivery efficiency. The simulation results show 
that the improvement of delivery efficiency is mainly due to the reduction of penalty cost for 
early and late arrival at the customer location. It is also shown that the system leads to the 
buffer effect from variations in traffic conditions on delivery cost and this effect is enhanced 
by taking travel time uncertainty into consideration. It is further shown that the presence of 
measurement periods with insufficient data results in unreliable routing and scheduling. For a 
reliable system, data collection over a wider area is required rather than dense data in a subset 
of links. 
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1. Introduction 
 
The routing and scheduling for trucks and vans in an urban road network depends critically on 
the state of the road network. Trucks and vans impose significant costs on other road users 
and the environment, so improved routing and scheduling benefits more than just the logistics 
industry. Larger logistics companies operating big fleets of vehicles deploy sophisticated 
tracking and tracing systems to support the implementation of routes and schedules, but these 
are expensive. Small and medium sized enterprises (SMEs) with smaller fleets of vehicles 
cannot justify investing in such expensive systems, but are nonetheless numerous and have a 
large impact on the road network and the urban environment. Improved routing and 
scheduling for SMEs would bring significant benefits to the businesses themselves, other road 
users and the urban environment. 
 
Many cities provide web-based journey planners and justify public investment in such 
systems in terms of improved mobility, promotion of public transport and mitigation of road 
congestion (e.g., Transport for NSW). These services are increasingly available via the mobile 
internet and take online traffic and travel information into account. Our study is based on the 
contention that a similar service for SMEs that operate pickup and delivery tours would be of 
comparable value by improving logistical efficiency, reducing truck and van traffic, and 
thereby decreasing congestion, noise and emissions.  
 
In contrast to public transport systems, which offer a certain service level based on a regular 
schedule, the level of service provided by road transportation – as measured using an index 
such as travel time over the road network – changes greatly from hour to hour and day to day 
and also varies among vehicles. To estimate travel times and plan vehicle routing, it is 
necessary to collect road traffic information. Although stationary roadside sensors such as 
loop detectors have been traditionally used to collect such information, they do not cover the 
whole road network for reasons of cost. Furthermore, the real-time use of such information is 
not trivial as the sensors do not measure travel time directly. To realize a routing and 
scheduling system that can be made freely available to SMEs, it would be preferable to 
establish an autonomous system that both collects and uses traffic information. This means it 
would be beneficial to utilize, as probe data, location information from trucks and vans using 
the system itself. 
 
In this study, the concept of a web-based routing and scheduling system that can be made 
freely available to SMEs is presented. The efficiency of such an autonomous routing and 
scheduling system is then analyzed. Looking at the travel time distribution in the road 
network, a focus is the analysis of the relationship between the quantity of data that has been 
accumulated in the historical database and system efficiency. In this way, the influence of 



fluctuations in traffic conditions on routing and scheduling efficiency is determined. 
Especially, the contribution of this research is to show the relationship between the historical 
database being updated day by day and the efficiency of routing and scheduling system. 
 
This paper is organized as follows. Section 2 is a literature review of vehicle routing and 
scheduling systems for SMEs and the use of vehicle location data in the logistics field. In 
Section 3, the concept of the proposed autonomous routing and scheduling system is 
explained. In Section 4, data setting for the test simulations and problem formulation are 
described. In Section 5, the results of test simulations are presented and the efficiency of the 
system is discussed. Finally, Section 6 concludes the study and discusses future research. 
 
2. Literature review 
 
2.1. Vehicle routing and scheduling systems and logistics SMEs 
 
The vehicle routing and scheduling problem plays a central role in the fields of physical 
distribution and logistics (Laporte, 1992). Since the problem was first described by Dantzig & 
Ramser (1959), hundreds of papers have been published on the topic (Baldacci et al., 2008). 
Various forms of the problem, such as mixed vehicle types and vehicle capacity (Desrochers 
& Verhoog, 1991; Baldacci et al., 2008), pickup and delivery on the same tour (Min 1989; 
Bianchessi & Righini, 2007), customer time windows (Solomon, 1987; Bräysy & Gendreau, 
2005), the stochastic nature of travel time and/or customer demand (Gendreau et al. 1996; 
Kenyon & Morton, 2003; Luo et al., 2016), dynamic optimization of the problem (Haghani & 
Jung, 2005), multi depot (Mancini, 2016) and so on have so far been considered. The reason 
for the problem continuing to receive great attention is the mathematical difficulty of its 
solution as well as the importance of the problem in practice. Although a great variety of 
planning software is available commercially, including ArcGIS for Transportation Analytics 
(Institute for Operations Research and the Management Sciences, 2015), such applications are 
not free to use. Further, the fact that routing and scheduling software should be customized 
according to customer and delivery characteristics makes widespread adoption of such 
software difficult. However, most problems faced by SMEs when making deliveries are small 
optimization problems, so it is only necessary to handle the relatively trivial optimization of 
small distribution problems in many cases.  
 
Past research indicates that many logistics SMEs are in need of good routing and scheduling 
plans and that a free or inexpensive system to assist in planning would be beneficial. Golob & 
Regan (2003) show, by carrying out telephone interviews of 700 logistics companies 
operating in California, that although almost all find it annoying to re-route because of 
congestion, only 26% of them use routing and scheduling software. Similarly, Zeimpekis & 



Giaglis (2006), in a questionnaire survey of 73 logistics SMEs in Greece, show that only 27% 
use routing and scheduling software and that almost half of the companies give drivers no 
instructions, leaving them responsible for daily distribution routing. This research also shows 
that the biggest constraint on investment in routing and scheduling software is cost, while the 
second biggest constraint is an unclear return on investment. Grakovski et al. (2008) indicate 
that logistics SMEs whose work is outsourcing deliveries in Riga, which are responsible for 
20% of total city logistics, are unable to provide their vehicles with optimum routes and 
schedules. Cagliano et al. (2014) developed the urban logistics simulation and optimization 
system including and the routing and scheduling planning as a component of the system. Past 
research makes clear that an inexpensive routing and scheduling service would be accepted by 
SMEs and would make their activities more efficient, benefitting not just the SMEs but also 
the community as a whole. 
 
One effect of such a system other than routing and scheduling is in the area of real-time 
information availability and information exchanges among the companies involved. 
Zeimpekis & Giaglis (2006) indicate that many logistics SMEs desire real-time proof of 
delivery and real-time re-routing using a PDA or tablet as well as the monitoring of vehicle 
position to identify bottlenecks in delivery. Grakovski et al. (2008) discuss the importance of 
information sharing and have developed the internet portal “Riga City Logistics” which 
coordinates demand and supply of delivery services between customers and SMEs while also 
optimizing the routing and scheduling problem. Kuswantoro & Rosli (2012) show, through 
regression analysis using questionnaire results from 120 SMEs in Indonesia, that innovation 
in information sharing has a big impact on the performance of SMEs. Tummel et al. (2012) 
show, through a simulation study using German domestic logistics data, that shipment 
reassignments by logistics SMEs based on information sharing can improve transportation 
efficiency. Derrouiche et al. (2014) evaluate the delivery collaborations among logistics SMEs 
through simple case study. Additionally, Gunasekaran et al. (2007) indicate, based on 
interviews with logistics companies in Hong Kong, that real-time information usage improves 
the performance of logistics SMEs and can be a major source of logistics productivity. This 
research demonstrates the importance of real-time information and information sharing 
among companies. 
 
2.2. Use of vehicle location data as probe data in the logistics field 
 
Many trucks involved in delivery services are equipped with a GPS device for operation and 
management (Wang et al. 2015). Additionally, location data from mobile phones or tablets can 
be utilized as a probe vehicle data (Herrera et al., 2010). Lin et al. (2008) estimate nationwide 
link speed distributions from truck location data collected in the United States. Comendador 
et al. (2012) propose efficiency indicators, based on GPS data from delivery trucks, providing 



a simple fleet management tool for SMEs. Fazekas et al. (2014) analyze emergency events 
involving trucks, such as abrupt braking, using data from on-board vehicular safety systems 
with location information. Simroth & Zähle (2011) develop an algorithm for predicting 
long-distance travel times, which are relevant for logistics fleets, utilizing truck location data. 
Their algorithm predicts and updates travel time en route to a destination using histrical data 
and travel time experienced from the origin to the truck’s location. Kim et al. (2011) develop a 
GIS-based system for generating updated routing instructions for vehicles carrying hazardous 
materials and show the efficiency of real-time information within the vicinity of the vehicle’s 
current location. It is clear from this literature that many attempts have been made to use 
location data from trucks and that location data can be utilized as probe data for estimating 
travel times for vehicle routing and scheduling. 
 
3. Concept of autonomous routing and scheduling system 
 
As mentioned above, this research focuses on the concept of a service for SMEs that operate 
pickup and delivery tours. The vision is a routing and scheduling service delivered to truck 
and van drivers via the mobile internet. Drivers would access the service via a standard 
smartphone or tablet computer. Therefore, it is important to design user friendly interface to 
emphasize the system effect. Key to the vision is a web-based diary kept by the SME 
indicating the time windows within which pickups and deliveries need to be made, the venues 
and the type of loads. The drivers would be fed guidance via a smartphone or tablet computer 
in the vehicle, which in turn would feed the system with the current location of each vehicle 
and proof of delivery. Here, the SMEs participating in the system are assumed to agree to 
share the location information of their trucks. 
 
Figure 1 shows the components of the conceptual web-based dynamic routing and scheduling 
system for SMEs. As already noted, one of the key components of the system is the utilization 
of location data from trucks as probe vehicle data. Even though each SME operates a small 
fleet, the data gathered from numerous SMEs will become a huge data source. Sharing the 
information among SMEs will have a significant impact on the accuracy of routing and 
scheduling plan. Location data is transmitted from each vehicle through the mobile internet to 
a system server, where it is stored in a historical database and also used to confirm delivery 
progress. Although more concrete system architectures which consider various data format, 
mobile cellular networks, personal security, and so on, are proposed in literature (Wang, F.Y., 
2010; Zhang et al., 2011; Bin et al., 2013; Pan et al., 2014), it is out of focus of this research. 
 
The historical database is conceptually the same as those described in the literature (Ehmke et 
al., 2012; Miwa et al., 2015). Efficient routing and scheduling depends on the availability of 
historical travel time data; a single and static travel time value per link only poorly represents 



the traffic situation. A city logistics routing system requires time-dependent travel times that 
capture changes in traffic conditions on each network link (Ehmke et al., 2012). The 
importance of time-dependent travel times for improving routing performance is widely 
recognized in other literature (Ichoua et al., 2003; Potvin et al., 2006; Figliozzi, 2009; Maden 
et al., 2010).  
 

 
Fig. 1. Components of web-based dynamic routing and scheduling system for SMEs 
 
4. Simulation study on routing and scheduling system utilizing vehicle location data  
 
4.1. Simulation framework 
A test simulation is implemented so as to obtain a perspective of the proposed system. The 
focus is the evaluation of the efficiency of utilization of vehicle location data. Figure 2 shows 
the simulation framework. In the test simulation, the parameters of link travel time 
distributions are set as input information in regard to traffic conditions and path travel time 
distributions are derived from them. Trucks depart from their depots following a planned 
schedule and take the planned path. It is assumed that truck location data is collected and 
processed as probe vehicle data. As a result, link travel times are obtained and accumulated in 
the historical database. Utilizing this database, the routing and scheduling system plans the 
order in which customers are visited, the paths between customers and the departure time 



from the depot so as to minimize total cost. The historical database is updated every day, so 
the accumulation of newly collected data will affect planning on and after the following day. 
The accuracy of historical database becomes higher as the operating day goes on. 
 
In the historical database, link travel times are accumulated and averaged over each 5-minute 
period (the measurement period). The information saved in the database is the mean link 
travel time, the variance of link travel time and the number of passes for each measurement 
period. The database has an initial value of link travel time that is used if there is no data point 
for that measurement period along a link. On the first day’s operation, for example, all 
measurement periods on all links are occupied by the initial value. The initial value of link 
travel time can be set on an empirical basis, such as by calculating link travel time from the 
speed limit. The variance is set to zero when there are no data points.  
 

 

Fig. 2. Data flow in the test simulation model 
 
It should be noted that two aspects of the system are dynamic. One is the routing and 
scheduling plan, which is continuously updated as new orders are entered during the delivery 
or pickup tour and as traffic conditions change (as in Haghani & Jung, 2005). The other is the 
day-to-day dynamics relating to daily changes in traffic conditions. In the case of the routing 
and scheduling method proposed in this paper, the day-to-day dynamics also relate to the 
evolution of the historical database and the convergence of system efficiency. The day-to-day 
dynamics in autonomous routing and scheduling systems is not investigated up to now as far 
as authors know.  
 
In this study, following past research (see, for example, Chen et al., 2007), travel time is 



assumed to follow a log-normal distribution. Rakha et al. (2006) pointed out the existence of 
strong correlations among link travel times and empirically demonstrated the most accurate 
method for calculating the variance of path travel time. In their method, it is assumed that the 
path’s coefficient of variance is set equal to the mean coefficient of variation over all links 
along the path. Using this method, the mean and variance of path travel time are expressed by 
the following equations. 
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where 𝑇(𝑑, 𝑘) is the travel time of path 𝑘 at departure time 𝑑, 𝑇�(𝑑, 𝑘) is its mean value, 
𝑇�(𝑑, 𝑘−𝑙) is the mean travel time of path 𝑘 from the origin node to the inflow node of link 𝑙, 
𝑡𝑙�𝑑 + 𝑇�(𝑑, 𝑘−𝑙)� is the travel time of link 𝑙  on path 𝑘  at departure time 𝑑 , 𝑡𝑙̅�𝑑 +
𝑇�(𝑑, 𝑘−𝑙)� is its mean value, 𝐿𝑘 is the set of links which compose path 𝑘, and |𝐿𝑘| is the 
number of links in 𝐿𝑘. Random values of link and path travel time are drawn from the 
log-normal distribution. In the case of path travel time, the probability density function is 
expressed as follows, 
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where 𝜇𝑘,𝑑 and 𝜎𝑘,𝑑 are the mean and standard deviation of the natural logarithm of path 
travel time 𝑇(𝑑, 𝑘), respectively. 
 
It should be noted that the path travel times are drawn from above probability density function 
rather than from samples of link travel times, since the latter are implicitly correlated with 
each other. Therefore, in this study, random samples of link travel times, which will be 
accumulated in the historical database, and random samples of path travel times are treated 
independently. This means that the test simulation conducted here evaluates not information 
accuracy but efficiency of utilization of location data and the day-to-day evolution of the 
routing and scheduling system. 
 
4.2. Data setting and problem formulation 
 
As this study addresses SMEs, the system will handle a large number of small optimization 
problems, so the challenge lies not in solving large and complex optimization problems, but 
rather in efficiently managing data feeds and the relatively trivial optimization (and 
reoptimization) of small distribution problems. For very small problems, an exhaustive search 
may be feasible; in the case of larger problems, recourse to the saving method (Clarke & 
Wright, 1964) or some other suitable heuristics might be required to achieve the required 
speed (Gayialis & Tatsiopoulos, 2004).  
 
The test simulation model uses a grid network which is useful for getting a fundamental 
knowledge free from particular city conditions. It is shown by Figure 3, which consists of 80 
links and 25 nodes. Two road types, major and minor, are assumed, with major roads 
consisting of a ring road and other major roads. All links have the same length of 5 km and 
link travel speeds change with time considering traffic congestion. Figure 4 shows the speed 
profiles of each type of road, which are set by reference to Kaparias et al. (2007). The speed 
profiles show the mean value of link travel speed in each measurement period. The average 
values of link travel speed for whole business period, which is set as 8:30–17:30, are 36.6 
km/h for major roads and 30.1 km/h for minor roads. The initial values of link travel time are 
set by these average speeds. All paths between any pair of nodes are set in advance.  
 



 
Fig. 3. Grid network for test simulation 
 

 
Fig. 4. Link travel speed profiles 
 
Link travel speeds are assumed to follow a normal distribution (Kaparias et al., 2008). 
According to past research (Yamamoto et al., 2009), the variance is defined by the mean 
speed as follows, 
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where, for link 𝑙 and for measurement period ℎ, 𝑣𝑙(ℎ) is the link travel speed, 𝑣̅𝑙(ℎ) is the 
mean link travel speed, and 𝛽𝑙 is a parameter expressing the coefficient of variance. This 
parameter might, according to past research, be set to 0.21. In this test simulation, it is set at 
0.05 for the ring road and 0.3 for all other roads. This yields an average value of coefficient of 
variation of 0.25. The conversion from link travel speed to link space speed is handled by the 
method shown in Rakha et al. (2006).  
 
Fifty SMEs are assumed to be located evenly over the network. That is, two SMEs are located 
at each node. All SMEs have three customers and customer locations are set randomly. 
Customer locations for each SMEs are not changed through simulation study. Each SME is 
assumed to own only one truck and load capacity is not considered. The reason for this choice 
of only one vehicle with unlimited capacity is that, generally, an SME has a small number of 
trucks and delivery volumes are not large. It should be noted that even if elaborate settings 
about location of SME, number of trucks and capacity limit are considered, the findings will 
not be changed significantly. It will require calculating many cases for averaging the influence 
of variety of settings and will influence only on the number of operating days until 
convergence. That is, if the more complex settings are considered, the larger (smaller) number 
of operating days will be needed for convergence. Each customer has a 1–3 hour time window, 
with the size of the time window set randomly within this range. The time window size was 
determined by reference to the past research (Taniguchi & Shimamoto, 2004; Tang et al., 
2015). Trucks start their tours during business hours. The departure time is considered at 
five-minute interval and sojourn time at customer is set 10 minutes.  
 
In this case, the objective function of the problem is formulated to minimize the total cost of 
delivery. The total cost consists of operating cost and the penalty cost for early and late arrival 
at the customer location. Since the problem has been simplified by the assumption that each 
SME has only one vehicle with unlimited capacity, the objective function can be expressed as 
follows,  
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where 𝑑0 is the departure time from the depot, 𝐱 is the vector of the customer visit order, 
𝑥𝑗 is an element of vector 𝐱 and represents the 𝑗th customer visited, 𝐤 is the vector of the 
planned path, 𝑘𝑗−1,𝑗 is an element of vector 𝐤 and represents the path from 𝑥𝑗−1 to 𝑥𝑗. 
Also, 𝐶(𝑑0, 𝐱, 𝐤) is the total cost, 𝐶𝑡(𝑑0, 𝐱, 𝐤) is the operating cost, 𝐶𝑝(𝑑0, 𝐱, 𝐤) is the 
penalty cost due to early and/or late arrival, 𝑛 is the number of customers, 𝑑𝑗  is the 
departure time from the 𝑗th customer, 𝑇�𝑑𝑗−1, 𝑥𝑗−1, 𝑥𝑗, 𝑘𝑗−1,𝑗� is the travel time on path 
𝑘𝑗−1,𝑗 from 𝑥𝑗−1 to 𝑥𝑗 at departure time 𝑑𝑗−1, 𝑐𝑡 is the operating cost per minute, 𝑝𝑒𝑒𝑒𝑒𝑒 
and 𝑝𝑙𝑙𝑙𝑙 are the penalty costs per minute for early arrival and late arrival, respectively. 
Additionally, 𝑡𝑡𝑠𝑠𝑠𝑠𝑠,𝑗 and 𝑡𝑡𝑒𝑛𝑛,𝑗 are the start and end times of the delivery time window 
for the 𝑗th customer, 𝐷0 is the depot, 𝐷𝑖 is the 𝑖th customer in the delivery list, and 𝑡𝑠 
and 𝑡𝑒 are the start and end of business hours. 
 
An alternative formulation for incorporating the penalty cost is proposed by Ando & 
Taniguchi (2006). In their method, the uncertainty of path travel time is considered and the 
expected penalty cost is calculated based on the path travel time distribution. 
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where 𝑓(∙) is the probability density function of path travel time and is given by equation (2). 
In this research, the above two methods of considering penalty cost are compared.  
 
Since a routing and scheduling problem cannot be linearized, it has no efficient solving 
method. In this study, for both formulations, an exhaustive method is applied to search for the 



optimum solution. That is, all feasible combination of departure time from the depot, 
customer visit order and paths are calculated and compared. The Trapezoidal rule is used for 
integration calculation in equation (5). In the formulation given by equation (4.c), as with 
many practical routing and scheduling systems, the penalty cost is calculated based on the 
average arrival time. This method of penalty calculation is called an “average arrival time 
based penalty” (AP) in this study. On the other hand, the alternative method expressed by 
equation (5) is called the “expected penalty” method (EP). In the following test simulation, by 
reference to the literature (Ando & Taniguchi, 2006), 𝑐𝑡 is set to 0.3 AUD/min, 𝑝𝑒𝑒𝑒𝑒𝑒 and 
𝑝𝑙𝑙𝑙𝑙 are set 0.6 AUD/min and 1.2 AUD/min, respectively. In addition, if the truck arrives 
back at the depot after business hours, a late arrival penalty is applied. 
 
5. Test simulation results and discussion  
 
5.1. Evolution of cost reduction attained by utilizing vehicle location data 
 
Since the test simulation is influenced by the randomness of the path and link travel times, it 
was conducted ten times with different random seeds. The log-normally distributed random 
variables were obtained using the Box-Muller method (Box & Muller, 1958). Figure 5 shows 
the day-to-day changes in (a) total cost, (b) operating cost and (c) penalty cost for one 
simulation using the AP method (blue lines). The average value for the ten simulations is 
shown by the bold red lines. It is clear that as data collection continues, the total cost 
decreases gradually. This is due to the falling penalty cost; operating cost decreases only 
marginally. In addition, day-to-day variations of penalty cost and total cost are large, while 
operating cost varies little.  
 

 (a) 



 (b) 

 (c) 
Fig. 5. Day-to-day changes in cost based on arrival time penalty (AP): (a) total cost, (b) 
operating cost, (c) penalty cost.  
 
Figure 6 shows the average total costs for the 10 simulations by both AP and EP. This figure 
shows that this routing and scheduling system utilizing location data has no effect for the first 
few days (until about the 10th operating day). This is due to the randomness of the link and 
path travel times. The rate of total cost reduction drops at around the 100th operating day in 
this test situation, and is near convergence by around the 200th operating day. Taking the 
convergence value of total cost to be the averaged cost from the 201st to the 250th operating 
days, the overall reduction achieved is -4.0% for the AP method and -4.5% for the EP method.  
These reductions are comparable to those shown in the past research which adopted the 
similar cost function (for example, Ando & Taniguchi, 2006). Although these reductions are 
small, this is partly because the initial values of link travel time are set based on average link 
travel speeds during business hours. If speed limits are applied (60km/h for major roads and 
40km/h for minor roads), the percentage reductions become -10.4% and -10.8%, respectively. 
Finally, the converged total cost by EP is slightly lower than that by AP.  



 

 
Fig. 6. Comparison of total cost by AP and EP formulations 
 
Table 1 summarizes the converged value of total cost for six different scenarios (again with 10 
simulations for each). All converged total costs are average values from the 201st to the 250th 
operating day. The variances of total cost from the 201st to the 250th operating day are also 
shown. In case 1, the base case, the data settings as explained in section 4.2 are applied. In 
case 2, the time windows for all customers are set to 1 hour. Case 3 is divided into two cases 
according to the magnitude of link speed changes. In case 3a, link speed reductions related to 
regulation speeds are increased by 1.5 times. On the other hand, in case 3b, the link speed 
reductions are decreased to one half (0.5 times). The former represents a situation with more 
congestion while the latter represents moderate congestion. Case 4 also consists of two cases. 
Case 4a considers a higher penalty cost situation, in which the penalty cost is increased by 1.5 
times. On the other hand, case 4b considers a moderate penalty cost, in which the penalty cost 
is decreased to one half (0.5 times). Percentage figures shown in parentheses in the rightmost 
column are the reduction from the average total cost without location data (cost at 0th 
operating day). 
 
The table shows that cost reductions are high in case 3a and low in case 2. This means that the 
system is particularly effective in a highly congested situation and less effective when 
scheduling constraints are strict. For all cases, the cost reductions achieved by EP are slightly 
better than those by AP. This means that taking travel time uncertainty into account 
contributes to the minimization of total cost, but the difference is not significant on an average. 
More noteworthy is the reduction of day-to-day variances of total costs by AP and EP from 
those of total costs without location data use. These reductions reach around -50% in many 
cases. Therefore, the one of the biggest merit of introduction of routing and scheduling system 



is the buffer effect from variations in traffic conditions on delivery cost. It is also noteworthy 
that there are significant differences in day-to-day variances of total costs between AP and EP. 
In all cases, the variances of total costs by EP are much smaller than those by AP. This means 
that taking travel time uncertainty into account can buffer the effect of day-to-day variations 
in traffic conditions. To look more deeply into this point, Table 2 shows the results of 
statistical tests (significant difference test) of total cost variances between AP and EP. It is 
found that the total cost variance by EP is smaller than that by AP with statistical significance 
in many cases. A reasonable explanation for the lack of significant difference of total cost 
variance in case 4a is that in the case of so high penalties, routing and scheduling cost is 
sensitive due to penalty cost. So the influence of traffic condition variance on planning cannot 
be reduced even if travel time uncertainty is considered. 
 



Table 1. Summary of convergence value of total cost*1 
 Calculation number Average  

(% reduction*2) 1 2 3 4 5 6 7 8 9 10 

<Case 1> 

Base case 

Total cost without 

location data 

Mean  4735 4749 4726 4736 4,710 4,720 4,748 4,737 4,759 4,743 4,736 

Variance 7,408 9,932 6,395 11,203 9,862 10,963 11,192 8,179 14,839 7,787 9,776 

Average Arrival Time 

Penalty 

Mean  4,570 4,554 4,529 4,585 4,547 4,547 4,555 4,545 4,539 4,565 4,554 (-3.8%) 

Variance 4,005 5,540 4,576 5,921 5,649 3,273 5,035 6,244 5,425 5,874 5,154 (-47.3%) 

Expected Penalty Mean  4,539 4,529 4,534 4,546 4,539 4,532 4,530 4,528 4,525 4,532 4,533 (-4.3%) 

Variance 2,760 3,473 4,087 3,411 3,166 3,851 4,241 3,635 4,834 2,195 3,565 (-63.5%) 

<Case 2> 

Strict time 

window 

Total cost without 

location data 

Mean  6,160 6,164 6,135 6,158 6,125 6,123 6,179 6,154 6,178 6,150 6,153 

Variance 12,413 12,279 8,241 14,145 10,223 13,776 14,502 12,668 18,914 10,617 12,778 

Average Arrival Time 

Penalty 

Mean  5,988 5,960 5,972 5,985 5,985 5,952 5,990 5,956 5,995 5,962 5,974 (-2.9%) 

Variance 10,473 9,626 7,903 6,730 6,269 9,159 8,801 4,807 11,280 7,104 8,215 (-35.7%) 

Expected Penalty Mean  5,932 5,968 5,957 5,959 5,933 5,962 5,960 5,962 5,965 5,977 5,958 (-3.2%) 

Variance 6,192 7,438 5,574 6,400 5,935 4,990 5,637 6,883 6,582 7,054 6,269 (-50.9%) 

<Case 3a> 

High 

congestion 

Total cost without 

location data 

Mean  5,725 5,732 5,689 5,737 5,678 5,699 5,732 5,712 5,747 5,732 5,718 

Variance 16,923 21,439 12,228 26,717 20,029 23,748 25,806 17,805 32,267 21,435 21,840 

Average Arrival Time 

Penalty 

Mean  5,395 5,419 5,384 5,427 5,414 5,382 5,393 5,394 5,392 5,393 5,399 (-5.6%) 

Variance 15,522 17,461 13,040 16,085 9,579 12,927 18,948 11,125 15,599 13,374 14,366 (-34.2%) 

Expected Penalty Mean  5,375 5,340 5,338 5,354 5,342 5,328 5,385 5,384 5,353 5,355 5,355 (-6.3%) 

Variance 13,730 9,073 11,400 11,699 6,872 8,166 13,998 15,364 11,011 11,808 11,312 (-48.2%) 

 
 
 



Table 1 (cont.). Summary of convergence value of total cost 
 Calculation number Average  

(% reduction*2) 1 2 3 4 5 6 7 8 9 10 

<Case 3b> 

Low 

congestion 

Total cost without 

location data 

Mean  4,144 4,160 4,153 4,154 4,137 4,146 4,161 4,155 4,162 4,147 4,152 

Variance 2,588 4,502 3,348 3,069 2,585 2,970 3,245 4,266 5,113 2,276 3,396 

Average Arrival Time 

Penalty 

Mean  4,069 4,067 4,056 4,066 4,059 4,052 4,053 4,053 4,055 4,054 4,058 (-2.3%) 

Variance 1,437 2,057 1,485 1,613 1,590 1,391 1,437 1,343 1,354 996 1,470 (-56.7%) 

Expected Penalty Mean  4,038 4,057 4,045 4,048 4,048 4,033 4,034 4,049 4,051 4,045 4,045 (-2.6%) 

Variance 919 1,021 1,129 1,721 1,293 1,133 1,458 1,220 723 968 1,159 (-65.9%) 

<Case 4a> 

High time 

penalty 

Total cost without 

location data 

Mean  3,445 3,452 3,431 3,447 3,433 3,436 3,449 3,442 3,459 3,451 3,445 

Variance 2,991 3,375 2,165 4,488 3,662 4,635 4,006 3,571 5,253 2,756 3,690 

Average Arrival Time 

Penalty 

Mean  3,324 3,339 3,326 3,341 3,323 3,329 3,320 3,322 3,325 3,339 3,329 (-3.4%) 

Variance 1,373 1,905 1,946 1,361 1,777 1,566 1,676 1,568 1,468 2,335 1,698 (-54.0) 

Expected Penalty Mean  3,321 3,323 3,322 3,326 3,317 3,315 3,313 3,324 3,337 3,319 3,322 (-3.6%) 

Variance 1,323 1,468 1,756 1,075 1,209 1,943 1,089 2,334 1,907 2,327 1,643 (-55.5%) 

<Case 4b> 

Low time 

penalty 

Total cost without 

location data 

Mean  6,038 6,060 6,042 6,046 6,007 6,018 6,066 6,045 6,072 6,042 6,044 

Variance 16,222 23,827 12,714 21,939 18,075 22,837 21,544 17,595 31,094 16,531 20,238 

Average Arrival Time 

Penalty 

Mean  5,767 5,777 5,782 5,741 5,733 5,769 5,774 5,754 5,745 5,735 5,758 (-4.7%) 

Variance 9,800 10,895 13,052 10,615 9,665 7,165 9,684 9,445 12,548 10,625 10,349 (-48.9%) 

Expected Penalty Mean  5,751 5,738 5,743 5,733 5,737 5,742 5,752 5,758 5,749 5,752 5,745 (-4.9%) 

Variance 12,773 7,034 8,446 5,199 6,270 9,177 9,738 8,931 10,150 9,522 8,724 (-56.9%) 

*1 Convergence values of total costs are averaged values from the 201st to the 250th operating day. 
*2 Percentage reductions are calculated against the average total cost without location data. 
 



 
Table 2. Statistical tests of total cost variance 
 Total cost variance (n = 10) Significant 

difference test  

of mean values 

(t-stat, d.f. = 18) 

Mean s.d. 

<Case 1> 

Base case 

Average Arrival Time Penalty 5,154.2 940.8 
4.16** 

Expected Penalty 3,565.3 756.0 

<Case 2> 

Strict time window 

Average Arrival Time Penalty 8,215.2 2018.1 
2.86* 

Expected Penalty 6,268.6 753.5 

<Case 3a> 

High congestion 

Average Arrival Time Penalty 14,366.0 2,879.5 
2.46* 

Expected Penalty 11,312.1 2,679.0 

<Case 3b> 

Low congestion 

Average Arrival Time Penalty 1,470.4 267.1 
2.52* 

Expected Penalty 1,158.6 285.2 

<Case 4a> 

High time penalty 

Average Arrival Time Penalty 1,697.6 302.5 
0.30 

Expected Penalty 1,643.1 479.6 

<Case 4b> 

Low time penalty 

Average Arrival Time Penalty 10,349.3 1,658.6 
1.89(*) 

Expected Penalty 8,724.1 2,153.3 

** p < 0.01, * p < 0.05, (*), p < 0.1 

 
5.2. Effect of sharing of location information 
 
Figure 7 shows the comparison of average total costs between the system with the location 
information sharing and that without sharing among SMEs. From the figure, it can be found 
that the sharing of location information can accelerate the efficiency, although the 
convergence costs are almost the same. Obviously, the reason for the difference in efficiency 
is that the data points in each measurement period can be accumulated fast by using location 
information of other SMEs. The relatively big differences are shown around early operating 
days when enough data points are not accumulated.  
 



 

Fig. 7. Sharing of location information and system efficiency 
 
5.3. Relationship between amount of historical data and system efficiency 
 
Although the results given in the previous subsection demonstrate the evolution of routing 
and scheduling along operating days, the relationship between the amount of data in the 
historical database and system efficiency is not demonstrated. To investigate this, Figure 8 
shows the relationship between the number of data points in the historical database and 
system efficiency. In the analysis here, the routing and scheduling problem was calculated 
while increasing the number of data points in each measurement period one by one. Since all 
simulations showed similar results, the result of only case 1 is shown in the figure.  
 
It is clear from the figure that just five new data points in each measurement period gives 
good system efficiency, while system efficiency is close to convergence with thirty data points. 
The average total costs from the 101st to the 150th data points are 4,537.3 for AP and 4,527.2 
for EP, respectively, representing percentage reductions of -4.8% for ATP and -5.0% for EP, 
respectively. This means that the convergence total costs indicated in the previous subsection 
are not true convergence values. It can be thought that this difference between the 
convergence values shown here and those shown in the previous subsection is due to the 
unevenness of data points in the historical database. That is, the presence of measurement 
periods with sparse data can lead to unreliable routing and scheduling. Therefore, to realize a 
more reliable and efficient system, even data collection in wider area is required than dense 
data in a part of links. 
 



 
Fig. 8. Number of accumulated data points and system efficiency 
 
6. Conclusion and future research 
 
This paper describes a concept for an autonomous routing and scheduling system for SMEs 
and offers a perspective on its effectiveness through test simulations. A preliminary literature 
review indicates that an inexpensive routing and scheduling system would find wide 
acceptance among SMEs with logistics tasks and would increase the efficiency of their 
deliveries. It is proposed that, to establish such a system, utilizing vehicle location data as 
traffic information is of considerable importance. This leads to a conceptual system in which 
SMEs feed information to the system on a daily basis through the web while the system 
returns routing and scheduling assistance. A driver would be fed guidance via a smartphone or 
tablet computer in the vehicle, which in turn would feed the system with the current location 
of each vehicle and also proof of delivery. The location data fed back to the server via the 
mobile internet is used as probe vehicle data.  
 
Test simulations demonstrate the effect of utilizing vehicle location data on delivery efficiency. 
In particular, the evolution of the system as location data is gathered day-by-day is analyzed. 
The results show that the system leads to improved efficiency mainly as a result of reduced 
penalty costs and buffer effect from variations in traffic conditions on delivery cost. The 
buffer effect is enhanced by taking travel time uncertainty into consideration. Additionally, the 
presence of measurement periods with sparse data points results in unreliable routing and 
scheduling. For a more reliable system, data collection over a wider area is required rather 
than dense data in a subset of links. 
 
Future research on this topic should consider the algorithm for finding a path with minimum 



penalty cost. In the case that there is no effective algorithm, k shortest path algorithm can be 
used (for example, Yen, 1971). A further area for improvement would be to make use of 
vehicle location data in real time, which has been shown in past research to be beneficial. This 
would entail the real-time use of vehicle location data to carry out dynamic optimization of 
the routing and scheduling problem. Finally, more realistic outputs would be obtained if the 
other problems and systems surrounding the routing and scheduling problem, such as 
diffusion of mobile information service, interactions between trucks and other road users, and 
so on, were included in the simulation (Wang, 2010; Cagliano et al., 2014). 
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