1	Title
2	Identification of enzymes involved in the mevalonate pathway of Flavobacterium
3	johnsoniae
4	
5	Authors
6	¹ Hajime Hayakawa, ¹ Fumiaki Sobue, Kento Motoyama, Tohru Yoshimura, and Hisashi
7	Hemmi
8	
9	Affiliation
10	Department of Applied Molecular Bioscience, Graduate School of Bioagricultural
11	Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
12	
13	Corresponding author
14	Hisashi Hemmi
15	Department of Applied Molecular Bioscience, Graduate School of Bioagricultural
16	Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
17	Phone: 052-789-4134 Fax: 052-789-4120
18	E-mail address: hhemmi@agr.nagoya-u.ac.jp
19	
20	
21	
22	
23	
24	

25 Keywords

- 26 Mevalonate pathway, isoprenoid, mevalonate kinase, phosphomevalonate kinase,
- 27 diphosphomevalonate decarboxylase
- 28

29 Abbreviations

- 30 BMD, bisphosphomevalonate decarboxylase; DMD, diphosphomevalonate
- 31 decarboxylase; GGPP, geranylgeranyl diphosphate; IP, isopentenyl phosphate; IPK,
- 32 isopentenyl phosphate kinase; IPP, isopentenyl diphosphate; M3K, mevalonate
- 33 3-kinase; MEP, methylerythritol phosphate; MVA, mevalonate; MVA-3-P, mevalonate
- 34 3-phosphate; MVA-5-P, mevalonate 5-phosphate; MVA-5-PP, mevalonate
- 35 5-diphosphate; MVK, mevalonate kinase; PMD, phosphomevalonate decarboxylase;
- 36 PMK, phosphomevalonate kinase

38 Abstract

39	The mevalonate pathway is prevalent in eukaryotes, archaea, and a limited
40	number of bacteria. This pathway yields the fundamental precursors for isoprenoid
41	biosynthesis, i.e., isopentenyl diphosphate and dimethylally diphosphate. In the
42	downstream part of the general eukaryote-type mevalonate pathway, mevalonate is
43	converted into isopentenyl diphosphate by the sequential actions of mevalonate kinase,
44	phosphomevalonate kinase, and diphosphomevalonte decarboxylase, while a partial lack
45	of the putative genes of these enzymes is sometimes observed in archaeal and bacterial
46	genomes. The absence of these genes has led to the recent discovery of modified
47	mevalonate pathways. Therefore, we decided to investigate the mevalonate pathway of
48	Flavobacterium johnsoniae, a bacterium of the phylum Bacteroidetes, which is reported
49	to lack the genes of mevalonate kinase and phosphomevalonate kinase. This study
50	provides proof of the existence of the general mevalonate pathway in F . <i>johnsoniae</i> , and
51	it involves the kinases that are distantly related to the known enzymes.

53 Introduction

54	The mevalonate (MVA) pathway is one of the two biosynthetic routes that yield
55	isopentenyl diphosphate (IPP) and dimethylally diphosphate (DMAPP), which are
56	fundamental biosynthetic precursors for >70,000 diverse isoprenoids [1, 2]. The
57	pathway prevails in eukaryotes and archaea, and also in a limited number of bacteria,
58	whereas the other biosynthetic route, the methylerythritol phosphate (MEP) pathway, is
59	generally found in bacteria. In the well-known eukaryote-type (or "classical") MVA
60	pathway (Figure 1), MVA, an intermediate formed from three molecules of acetyl-CoA,
61	is converted into 5-phosphomevalonate (MVA-5-P) by the action of mevalonate kinase
62	(MVK). MVA-5-P is then phosphorylated by phosphomevalonate kinase (PMK), and
63	the product 5-diphosphomevalonate (MVA-5-PP) is converted into IPP by the action of
64	diphosphomevalonate decarboxylase (DMD). These three enzymes belong to the
65	GHMP (named from the initials of galactokinase, homoserine kinase, MVK, and PMK)
66	kinase family and show a modest degree of homology with one another [3].
67	Recently, modified MVA pathways (Figure 1) were discovered in several species
68	of archaea and bacteria. Those microorganisms are reported to lack "a part of" the
69	putative genes of the classical MVA pathway [4-6]. For example, some of the bacteria
70	of the phylum Cloroflexi, such as Roseiflexus castenholzii, and most of the halophilic

71	archaea of the class Halobacteria, such as Haloferax volcanii, lack the putative gene of
72	PMK in their genomes, while they possess those of MVK and DMD. The putative
73	DMD genes from <i>R</i> . <i>castenholzii</i> and <i>H</i> . <i>volcanii</i> were later found to encode a new
74	enzyme, phosphomevalonate decarboxylase (PMD), which converts MVA-5-P into
75	isopentenyl phosphate (IP) [7, 8]. The phosphorylation of IP by a non-GHMP kinase
76	conserved in the microorganisms, i.e., isopentenyl phosphate kinase (IPK), yields IPP.
77	The pathway involving MVK, PMD and IPK is referred to as the modified MVA
78	pathway I. In contrast, the thermoacidophilic archaea of the order Thermoplasmatales,
79	such as Thermoplasma acidophilum, lack the putative gene of PMK but possess
80	multiple genes of the remote homologs of DMD. The archaea utilize a relatively distant
81	homolog of DMD, i.e., mevalonate 3-kinase (M3K), which converts MVA into
82	3-phosphomevalonate (MVA-3-P) [9, 10]. MVA-3-P is phosphorylated by a
83	non-GHMP kinase to give 3,5-bisphosphomevalonate, which is then converted into IP
84	by the actions of another DMD homolog, bisphosphomevalonate decarboxylase (BMD)
85	[11]. Finally, IPK converts IP into IPP [12]. The pathway found in <i>T. acidophilum</i> is
86	referred to as the modified MVA pathway II.
87	The partial lack of the putative genes of the classical MVA pathway is reported to
88	be observed also in some bacterial species other than Chloroflexi bacteria. In their study

89	on the conservation of isoprenoid biosynthetic genes in the genomes of a wide range of
90	organisms, Lombard and Moreira [4] reported the absence of the putative genes of
91	MVK and PMK in the genomes of a portion of the bacteria of the phylum Bacteroidetes,
92	whereas the putative genes of the other enzymes in the classical MVA pathway were
93	present. Although these Bacteroidetes species do not have a putative gene of IPK, which
94	is involved in the known modified pathways, this situation let us imagine that a novel
95	modified MVA pathway might exist in them. It should be noted that the remaining
96	Bacteroides species do possess the putative genes of the MEP pathway.
97	In the present study, we re-examined the genomes of the MVA pathway-utilizing
98	Bacteroidetes species, and we found two conserved genes encoding GHMP kinase
99	homologs that were distantly-related to the known MVKs and PMKs. An investigation
100	into the catalytic functions of these GHMP kinase homologs and the DMD homolog
101	from Flavobacterium johnsoniae demonstrated the existence of the classical MVA
102	pathway in the bacterium, and also provided information about the evolution and
103	prevalence of the MVA pathways.

105 Materials and Methods

106	<i>Materials</i> — Silica gel 60 normal-phase TLC plates and silica gel 60 RP-18 F_{2548}
107	reverse-phase TLC plates were purchased from Merck Millipore, Darmstadt, Germany.
108	The radiolabeled substrates, [2-14C]MVA-5-P (55 Ci/mol) and [1-14C]IPP (55 Ci/mol),
109	were purchased from American radiolabeled chemicals, USA. The Seiji Koike, ADEKA
110	Corporation, Japan, donated the (R) -Mevalonolactone.
111	
112	Information studies — A database search of the sets of putative orthologous genes was
113	performed at the website of the Microbial Genome Database (MBGD;
114	http://mbgd.genome.ad.jp/). Phylogenetic analysis of the MVA pathway-related
115	enzymes of the GHMP kinase family was accomplished using the amino acid sequences
116	of the previously identified enzymes registered in Brenda (http://brenda.enzyme.org/).
117	The multiple alignments of the sequences containing those of Fjoh_1387, Fjoh_1417
118	and Fjoh_1389 were performed with the MAFFT server at the EBI website
119	(http://www.ebi.ac.uk/Tools/msa/mafft/), and the phylogenetic tree was constructed
120	based on the alignment data using CLC Sequence Viewer version 7.7 (Qiagen, USA).
121	Amino acid sequence identities shared by enzymes were calculated using LALIGN
122	(http://embnet.vital-it.ch/software/LALIGN_form.html) with a global-method mode.

124	Gene cloning and recombinant expressions of enzymes — The genes of Fjoh_1387,
125	Fjoh_1417, and Fjoh_1389 were amplified using KOD DNA polymerase (TOYOBO)
126	and the primer pairs listed below: 5'-cgcgcggcagccatatgaaaggaccactatttactc-3' and
127	5'-ggatcctcgagcatattagaattggtaaacaacttctag-3' for the Fjoh_1387 gene;
128	5'-cgcgcggcagccatatgtcaacaaccttttacagtaacg-3' and
129	5'-ggatcctcgagcatactactcctgcaaaatcatttcatc-3' for the Fjoh_1417 gene; and,
130	5'-aaaaaacatatgttaacagcagctgattttatacc-3' and 5'-aaaggatcctcaattatcaattaataatgcgccc-3'
131	for the Fjoh_1389 gene. The amplified gene of either Fjoh_1387 or Fjoh_1417 was
132	cloned into an NdeI-cut pET15b plasmid (Promega) using an InFusion Cloning kit
133	(TaKaRa) to construct pET15b-Fjoh_1387 and pET15b-Fjoh_1417, respectively. The
134	amplified gene of Fjoh_1389 was cut with NdeI and BamHI, and then ligated with an
135	NdeI/BamHI-cut pET15b plasmid to construct pET15b-Fjoh_1389. An E. coli
136	Rosetta(DE3) strain transformed with either pET15b-Fjoh_1387 or pET15b-Fjoh_1417
137	was grown in LB medium containing 100 μ g/mL ampicillin and 30 μ g/mL
138	chloramphenicol at 37°C until the OD_{600} value of the culture medium reached 0.7. After
139	induction with 1 mM IPTG, the culture was grown at 22°C for 24 h with slower

140 rotational shaking (at 90 rpm). An E. coli KRX strain transformed with

141	pET15b-Fjoh_1389 was grown in LB medium containing 100 μ g/mL ampicillin at 37°C
142	until OD_{600} reached 0.6. After induction with 0.1% L-rhamnose, the culture was grown
143	at 37°C for 24 h.

145	Purification of recombinant enzymes — The cells of transformed E. coli were
146	harvested by centrifugation and then disrupted by sonication with a UP200S ultrasonic
147	homogenizer (Hielscher Ultrasonics, Germany) in a buffer containing 20 mM sodium
148	phosphate, pH7.4, 0.5 M NaCl, and 20 mM imidazole. The purification of
149	polyhistidine-tagged recombinant proteins with a HisTrap FF crude column (GE
150	Healthcare) was performed according to the manufacturer's protocol, using an elution
151	buffer containing 20 mM sodium phosphate, pH 7.4, 0.5 M NaCl, and 500 mM
152	imidazole. For the purification of Fjoh_1387, however, an elution buffer of pH8.3 was
153	used instead, and 1 M arginine and 5% glycerol were immediately added to the solution
154	of the eluted protein to avoid aggregation.
155	
156	Preparation of substrates — [2-14C]MVA and [2-14C]MVA-5-PP were enzymatically
157	synthesized from [2-14C]MVA-5-P, and [1-14C]IP was synthesized from [1-14C]IPP, as

described in our previous work [13]. [2-¹⁴C]MVA-3-P was synthesized from

159	$[2^{-14}C]MVA-5-P$, as described elsewhere [9]. Non-labeled (<i>R</i>)-MVA was synthesized
160	from (R)-mevalonolactone. Sixty-five mg of (R)-mevalonolactone was hydrolyzed in 3
161	mL of 0.2 N KOH at 37°C for 1 h followed by the addition of HCl to adjust the pH to
162	7.2. After dilution with distilled water to reach a final volume of 5 mL, the solution was
163	used as 0.1 M (R)-MVA for the experiments described below.
164	
165	Radio-TLC analysis of the reaction products — To analyze the products from the
166	reaction with the recombinant F. johnsoniae proteins, 30 μ L of a reaction solution
167	containing 10.8 pmol of the ¹⁴ C-labeled substrate ([2- ¹⁴ C]MVA, [2- ¹⁴ C]MVA-5-P,
168	[2- ¹⁴ C]MVA-3-P, [2- ¹⁴ C]MVA-5-PP, or [1- ¹⁴ C]IP), 10 pmol of each purified protein,
169	300 nmol of ATP, 1.5 μ mol of sodium phosphate buffer at pH7.5, and 60 nmol of
170	MgCl ₂ was prepared. After reaction for 1 h at 30 °C, 5 μ L of the solution was spotted on
171	a silica gel 60 normal-phase TLC plate, and the plate was developed with
172	<i>n</i> -propanol/28% ammonium water/ H_2O (6:3:1). The distribution of radioactivity on the
173	TLC plate was detected using a Typhoon FLA7000 image analyzer (GE healthcare).
174	
175	Cultivation of F. johnsoniae $- F.$ johnsoniae JCM8514, which was provided by the

176RIKEN BRC through the Natural Bio-Resource Project of the MEXT, Japan, was

177	cultivated in a 1 L medium containing 5 g Bacto Peptone (Difco) and 3 g Beef Extract
178	(Difco), whose pH was adjusted to 7.0 by the addition of NaOH, at 30 °C for 2 days
179	prior to being harvested.
180	
181	Cell-free conversion assay using the radiolabeled substrates -0.6 g of F. johnsoniae
182	cells was dissolved with 1 mL of 500 mM MOPS-NaOH buffer, pH7.2, and was
183	disrupted by sonication. The homogenate was centrifuged at 15,000 rpm for 30 min, and
184	the supernatant was used as a cell-free extract. In a 100 μ L volume, 100 pmol of the
185	radiolabeled substrate ([2- ¹⁴ C]MVA, [2- ¹⁴ C]MVA-5-P, [2- ¹⁴ C]MVA-3-P,
186	$[2^{-14}C]MVA-5-PP, [1^{-14}C]IP, or [1^{-14}C]IPP)$ was reacted with the cell-free extract of <i>F</i> .
187	<i>johnsoniae</i> containing 800 μ g protein, 800 nmol ATP, 3 nmol DMAPP, and an
188	appropriate amount of S. acidocaldarius geranylgeranyl diphosphate (GGPP) synthase,
189	which was prepared as described elsewhere [14], in 10 mM MOPS-NaOH buffer, pH7.0,
190	containing 10 mM MgCl ₂ , at 30°C for 1 h. After the reaction, 200 μ L of saturated saline
191	was added to the mixture, and the hydrophobic product GGPP was extracted with 600
192	μ L 1-butanol that had been saturated with saline. Using a treatment with potato acid
193	phosphatase (Sigma-Aldrich) according to a method described by Fuji et al. [15], GGPP
194	was converted into geranylgeraniol. The alcohol was extracted with n -pentane and then

spotted on a reversed-phase silica gel 60 RP-18 F_{2548} TLC plate. The plate was developed with acetone/H₂O (9:1) and visualized using a Typhoon FLA7000 (GE healthcare).

198

Kinetic studies of the enzymes by ADP-coupling assay – The ATP-dependent activities 199of MVK, PMK and DMD were assayed via rate measurement of the formation of ADP, 200201which was coupled to the oxidation of NADH via pyruvate kinase and lactate dehydrogenase. To measure the MVK activity of Fjoh_1387, various amounts (1.5-100 202 203nmol) of (R)-MVA were added to the reaction solution containing 36.5 μ mol of sodium phosphate buffer, pH 7.5, 80 nmol of NADH, 2.5 µmol of MgCl₂, 2 µmol of ATP, 2.5 204 μ mol of phosphoenol pyruvate, 5 U of pyruvate kinase from rabbit muscle (Oriental 205Yeast, Japan), and 5 U of lactate dehydrogenase from pig heart (Oriental Yeast). After 206preincubation of the solution at 30°C for 10 min, the reaction in a total volume of 500 207208 μ L was started by the addition of 8.7 ng of purified Fjoh 1387. The time course for decrease in the absorption of NADH at 340 nm ($\varepsilon = 6,220 \text{ M}^{-1}\text{cm}^{-1}$) during the reaction 209at 30°C was monitored using a spectrophotometer UV-2450 (Shimadzu, Japan) to 210211calculate the initial velocity. The kinetic parameters were calculated by fitting a 212Michaels-Menten equation to the substrate concentration versus the initial velocity plot

213	using a Kaleidagraph software (SYNERGY software, USA). To measure the activities
214	of the other F. johnsoniae proteins, a 2/5 scale (200 μ L) of the reaction mixture for the
215	MVK assay described above was used with the exception of changes in the protein and
216	substrate: To measure PMK activity of Fjoh_1417, 8-256 nmol of (R,S)-MVA-5-P
217	(Sigma-Aldrich) and 6.93 ng of the protein were used; To measure the DMD activity of
218	Fjoh_1389, 4-128 nmol of (<i>R</i> , <i>S</i>)-MVA-5-PP (Sigma-Aldrich) and 6.93 ng of the protein
219	were used. The measurement of absorption was performed using a Multiskan FC
220	microtiter plate reader (Thermo Scientific, USA).

Results

224	First, we performed the comparative genomic analysis of Bacteroidetes species
225	to obtain information about the conservation of the genes involved in the MVA pathway.
226	About half of the Bacteroidetes species whose entire genome sequences have been
227	solved possess the putative ortholog gene of the MVA pathway-related enzymes such as
228	DMD and hydroxymethylglutaryl CoA reductase, while the remaining Bacteroides
229	species possess those of the MEP pathway-related enzymes. Thus, we used the MBGD
230	database to search for putative genes that are conserved only among the MVA
231	pathway-utilizing species. The database search revealed several sets of ortholog genes
232	that are highly conserved among the MVA pathway-utilizing species, but are absent in
233	the MEP pathway-utilizing species. Among such conserved genes, our interest was
234	piqued by those encoding Fjoh_1387 and Fjoh_1417 proteins in the genome of F .
235	johnsoniae, which belong to different sets of orthologs. The gene of Fjoh_1387 is
236	located closely to that of the DMD homolog Fjoh_1389 on the chromosome, and the
237	gene of Fjoh_1417 juxtaposes that of the hydroxymethylglutaryl CoA reductase
238	homolog Fjoh_1418. Fjoh_1387 is annotated as a mevalonate kinase-like protein in
239	other databases such as KEGG, while Fjoh_1417 is annotated as a hypothetical protein.
240	Fjoh_1387 and Fjoh_1417 are, however, far removed from known MVKs and PMKs

241	from organisms other than the Bacterioidetes species. For example, the identity between
242	the amino acid sequences of Fjoh_1387 and Staphylococcus pneumoniae MVK is only
243	21.1%, while that between Fjoh_1417 and S. pneumoniae MVK is 18.1%. Sequence
244	identities between S. pneumoniae PMK and Fjoh_1387 or Fjoh_1417 are 19.5 and
245	19.6%, respectively. Notably, those values are lower than 23.9% identity between
246	Fjoh_1387 and Fjoh_1417. Therefore, we performed phylogenetic analysis of the
247	already-identified GHMP kinase family enzymes such as MVK, PMK, DMD, PMD,
248	M3K, and BMD that are involved in the MVA pathways of various organisms, along
249	with the hypothetical proteins found from $F.$ johnsoniae such as Fjoh_1387, Fjoh_1417,
250	and the DMD homolog Fjoh_1389. As shown by the phylogenetic tree in Figure 2,
251	MVKs, PMKs, and DMDs generally form distinct clusters. Both Fjoh_1387 and
252	Fjoh_1417 are, however, distantly located from the cluster of known MVKs and also
253	from the cluster of PMKs excluding human PMK that is known to have an unusually
254	short sequence. Fjoh_1389 seems to be involved in the cluster of known DMDs, but its
255	position is relatively close to DMD homolog enzymes such as PMD, M3K, and BMD.
256	In such situations, it was difficult to judge whether the F. johnsoniae proteins constitute
257	the classical MVA pathway or comprise new roles in a modified MVA pathway.
258	Therefore, we cloned the genes of Fjoh_1387, Fjoh_1417, and Fjoh_1389, and

259	the proteins were recombinantly expressed in <i>E. coli</i> cells as fusion with an N-terminal
260	polyhistidine tag. After purification, each of the proteins was reacted with radiolabeled
261	substrates such as MVA, MVA-5-P, MVA-3-P, MVA-5-PP, and IP in the presence of
262	ATP and Mg ²⁺ . As shown in Figure 3A, Fjoh_1387 only reacted with MVA and
263	produced MVA-5-P. In contrast, Fjoh_1417 synthesized MVA-5-PP from MVA-5-P, as
264	shown in Figure 3B. These results indicate that Fjoh_1387 and Fjoh_1417 are MVK
265	and PMK, respectively. Fjoh_1389 catalyzed the complete conversion of MVA-5-PP
266	into IPP, but showed only slight activity to convert MVA-5-P into IP (Figure 3C).
267	Although these results strongly support the existence of the classical MVA pathway in
268	F. johnsoniae, we performed further analysis to determine if cell-free extract from the
269	microorganism contains these enzyme activities. In the analysis, the radiolabeled
270	substrates used for the enzyme assays were reacted with the cell-free extract from F .
271	<i>johnsoniae</i> in the presence of ATP, Mg^{2+} , DMAPP, and GGPP synthase from S.
272	acidocaldarius. When the substrate was converted into IPP by the enzymes in the
273	cell-free extract, the condensation reaction between IPP and DMAPP catalyzed by
274	GGPP synthase gave the radiolabeled hydrophobic product GGPP, which could be
275	extracted with butanol. TLC analysis of the product following phosphatase treatment
276	demonstrated that MVA-5-P and MVA-5-PP were efficiently converted into GGPP via

277	IPP, while MVA-3-P and IP were not (Figure 3D). Although MVA was not converted
278	into GGPP, most likely due to the weak activity of MVK in the cell-free extract, an
279	explanation could be the extreme instability of the enzyme. Indeed, the recombinant F .
280	johnsoniae MVK easily aggregated and became inactivated typically in a few days after
281	purification (data not shown). These results demonstrated that the classical MVA
282	pathway actually exists in the cells of F . <i>johnsoniae</i> , even though the enzymes included
283	in the pathway, particularly MVK and PMK, are distant relatives of the ones that are
284	known. To compare the catalytic efficiencies of F. johnsoniae MVK (Fjoh_1387), PMK
285	(Fjoh_1417), and DMD (Fjoh_1389) with those of known enzymes from different
286	organisms, kinetic studies were performed. As shown in Table 1, the kinetic parameters
287	of the enzymes from F . <i>johnsoniae</i> are comparable to the reported parameters of their
288	orthologs, supporting the functions of the enzymes identified in this study. It is
289	noteworthy that the K_m of F. johnsoniae MVK for MVA is smaller than those of any
290	MVKs ever reported [16], which is particularly true for the much larger $K_{\rm m}$ s of bacterial
291	MVKs from <i>E. faecalis</i> and <i>S. pneumoniae</i> , possibly because of its unique nature with
292	respect to its amino acid sequence.

Discussion

295	The MEP pathway is the general route that supplies the precursors for
296	isoprenoid biosynthesis in bacteria. However, genome information [4] suggests that
297	several limited lineages of bacteria, such as parts of phyla Bacteroidetes, Chloroflexi,
298	and Firmicutes, utilize the MVA pathway, and biochemical studies have proven this in
299	some cases. This situation allows us to imagine a simple evolutionary scenario whereby
300	the MVA pathway was transferred horizontally to the ancestors of such bacterial
301	lineages and then replaced the MEP pathway that had been inherited from the a
302	common bacterial ancestor. If such a replacement has occurred, some advantage must
303	be assigned to the bacterial strains that acquired the MVA pathway. Misic et al. recently
304	proposed that escape from the immune system of animal hosts could be an advantage
305	[17]. That study found that the Staphylococcus species that possess the MVA pathway
306	associate with primate hosts, while those that have the MEP pathway do with
307	non-primate animal hosts. The researchers proposed that acquisition of the MVA
308	pathway allows the Staphylococcus species to weaken the immune response by the host
309	via V γ 2V δ 2 T cells, which reside only in primates and are activated by an intermediate
310	of the MEP pathway, (E)-1-hydroxy-2-methyl-2-but-2-enyl 4-diphosphate. This
311	hypothesis, however, seems not to be the case with Bacteroidetes. Most of the MVA

313	the majority of them were isolated from marine environments or from marine organisms.
314	Only limited Flavobacteriales species, such as some of those belonging to genera
315	Capnocytophaga, Chryseobacterium, Elizabethkingia, Myroides, and Weeksella, are
316	human pathogens.
317	The positions of <i>F. johnsoniae</i> MVK and PMK in the phylogenetic tree in
318	Figure 2 are unusual because enzymes with the same function form a unified cluster, as
319	MVKs, PMKs, and DMDs do, even if they are from distantly related organisms. This
320	situation is caused by the low level of similarity that exists between the F . <i>johnsoniae</i>
321	enzymes and their homologs from organisms other than Bacteroidetes, and that can also
322	explain why the genes of both MVK and PMK were once reported to be absent in
323	Bacteroidetes [4]. The unique nature of F. johnsoniae enzymes could be attributed to
324	the different evolutionary history of the MVA pathway of the phylum Bacteroidetes, or,
325	practically, the order Flavobacteriales: The origin of the horizontal transfer of the MVA
326	pathway genes to their ancestor might be far removed from the origins to the ancestors
327	of other bacterial lineages.

pathway-utilizing Bacteroidetes species are included in the order Flavobacteriales, and

328

329 Acknowledgement

330	This work was partially supported by JSPS KAKENHI [Grants Number 26660060,
331	16K14882, and 17H05437 to H.H] and by a grant from Takeda Science Foundation for
332	H.H. (R)-Mevalonolactone was kindly donated by Seiji Koike, ADEKA Corporation,
333	Japan.
334	
335	Footnotes
336	¹ These authors contributed equally.
337	

338 **References**

- 339 [1] T. Kuzuyama, H. Hemmi, S. Takahashi, Mevalonate Pathway in Bacteria and
- 340 Archaea, in: L. Mander, H.-W. Liu (Eds.) Comprehensive Natural Products II Chemistry
- and Biology, Elsevier, Oxford, UK, 2010, pp. 493-516.
- 342 [2] C.E. Vickers, M. Bongers, Q. Liu, T. Delatte, H. Bouwmeester, Metabolic
- engineering of volatile isoprenoids in plants and microbes, Plant Cell Environ, 37 (2014)
- 344 1753-1775.
- 345 [3] J.L. Andreassi, II, T.S. Leyh, Molecular functions of conserved aspects of the GHMP
- kinase family, Biochemistry, 43 (2004) 14594-14601.
- [4] J. Lombard, D. Moreira, Origins and early evolution of the mevalonate pathway of
- isoprenoid biosynthesis in the three domains of life, Mol Biol Evol, 28 (2011) 87-99.
- [5] R. Matsumi, H. Atomi, A.J. Driessen, J. van der Oost, Isoprenoid biosynthesis in
- Archaea–biochemical and evolutionary implications, Res Microbiol, 162 (2011) 39-52.
- [6] A. Smit, A. Mushegian, Biosynthesis of isoprenoids via mevalonate in Archaea: the
- 352 lost pathway, Genome Res, 10 (2000) 1468-1484.
- 353 [7] N. Dellas, S.T. Thomas, G. Manning, J.P. Noel, Discovery of a metabolic alternative
- to the classical mevalonate pathway, eLife, 2 (2013) e00672.
- 355 [8] J.C. VanNice, D.A. Skaff, A. Keightley, J. Addo, G.J. Wyckoff, H.M. Miziorko,

- 356 Identification in Haloferax volcanii of phosphomevalonate decarboxylase and
- 357 isopentenyl phosphate kinase as catalysts of the terminal enzymatic reactions in an
- archaeal alternate mevalonate pathway, J Bacteriol, 196 (2014) 1055-1063.
- 359 [9] Y. Azami, A. Hattori, H. Nishimura, H. Kawaide, T. Yoshimura, H. Hemmi,
- (R)-Mevalonate 3-phosphate is an intermediate of the mevalonate pathway in
- 361 *Thermoplasma acidophilum*, J Biol Chem, 289 (2014) 15957-15967.
- 362 [10] J.M. Vinokur, T.P. Korman, Z. Cao, J.U. Bowie, Evidence of a novel mevalonate
- 363 pathway in archaea, Biochemistry, 53 (2014) 4161-4168.
- 364 [11] J.M. Vinokur, M.C. Cummins, T.P. Korman, J.U. Bowie, An adaptation to life in
- acid through a novel mevalonate pathway, Sci Rep, 6 (2016) 39737.
- 366 [12] M. Chen, C.D. Poulter, Characterization of thermophilic archaeal isopentenyl
- 367 phosphate kinases, Biochemistry, 49 (2010) 207-217.
- 368 [13] H. Nishimura, Y. Azami, M. Miyagawa, C. Hashimoto, T. Yoshimura, H. Hemmi,
- 369 Biochemical evidence supporting the presence of the classical mevalonate pathway in
- the thermoacidophilic archaeon *Sulfolobus solfataricus*, J Biochem, 153 (2013) 415-420.
- 371 [14] H. Hemmi, K. Shibuya, Y. Takahashi, T. Nakayama, T. Nishino,
- 372 (S)-2,3-Di-O-geranylgeranylglyceryl phosphate synthase from the thermoacidophilic
- archaeon Sulfolobus solfataricus. Molecular cloning and characterization of a

- 374 membrane-intrinsic prenyltransferase involved in the biosynthesis of archaeal
- 375 ether-linked membrane lipids, J Biol Chem, 279 (2004) 50197-50203.
- 376 [15] H. Fujii, T. Koyama, K. Ogura, Efficient enzymatic hydrolysis of polyprenyl
- 377 pyrophosphates, Biochim Biophys Acta, 712 (1982) 716-718.
- 378 [16] P. Nyati, C. Rivera-Perez, F.G. Noriega, Negative feedbacks by isoprenoids on a
- mevalonate kinase expressed in the *Corpora allata* of mosquitoes, Plos One, 10 (2015)
- e0143107.
- 381 [17] A.M. Misic, C.L. Cain, D.O. Morris, S.C. Rankin, D.P. Beiting, Divergent
- isoprenoid biosynthesis pathways in *Staphylococcus* species constitute a drug target for
- treating infections in companion animals, mSphere, 1 (2016).
- [18] M. Hedl, V.W. Rodwell, *Enterococcus faecalis* mevalonate kinase, Protein Sci, 13
- 385 (2004) 687-693.
- 386 [19] Y.A. Primak, M. Du, M.C. Miller, D.H. Wells, A.T. Nielsen, W. Weyler, Z.Q. Beck,
- 387 Characterization of a feedback-resistant mevalonate kinase from the archaeon
- 388 *Methanosarcina mazei*, Appl Environ Microbiol, 77 (2011) 7772-7778.
- 389 [20] Z. Fu, N.E. Voynova, T.J. Herdendorf, H.M. Miziorko, J.J. Kim, Biochemical and
- 390 structural basis for feedback inhibition of mevalonate kinase and isoprenoid metabolism,
- 391 Biochemistry, 47 (2008) 3715-3724.

- 392 [21] K.X. Huang, A.I. Scott, G.N. Bennett, Overexpression, purification, and
- 393 characterization of the thermostable mevalonate kinase from *Methanococcus jannaschii*,
- 394 Protein Exp Purif, 17 (1999) 33-40.
- 395 [22] S.S. Doun, J.W. Burgner, 2nd, S.D. Briggs, V.W. Rodwell, Enterococcus faecalis
- 396 phosphomevalonate kinase, Protein Sci, 14 (2005) 1134-1139.
- 397 [23] D. Pilloff, K. Dabovic, M.J. Romanowski, J.B. Bonanno, M. Doherty, S.K. Burley,
- 398 T.S. Leyh, The kinetic mechanism of phosphomevalonate kinase, J Biol Chem, 278
- 399 (2003) 4510-4515.
- 400 [24] T.J. Herdendorf, H.M. Miziorko, Phosphomevalonate kinase: functional
- 401 investigation of the recombinant human enzyme, Biochemistry, 45 (2006) 3235-3242.
- 402 [25] M.L. Barta, D.A. Skaff, W.J. McWhorter, T.J. Herdendorf, H.M. Miziorko, B.V.
- 403 Geisbrecht, Crystal structures of Staphylococcus epidermidis mevalonate diphosphate
- 404 decarboxylase bound to inhibitory analogs reveal new insight into substrate binding and
- 405 catalysis, J Biol Chem, 286 (2011) 23900-23910.
- 406 [26] N.E. Voynova, Z. Fu, K.P. Battaile, T.J. Herdendorf, J.J. Kim, H.M. Miziorko,
- 407 Human mevalonate diphosphate decarboxylase: characterization, investigation of the
- 408 mevalonate diphosphate binding site, and crystal structure, Arch Biochem Biophys, 480
- 409 (2008) 58-67.

- 410 [27] D. Krepkiy, H.M. Miziorko, Identification of active site residues in mevalonate
- 411 diphosphate decarboxylase: implications for a family of phosphotransferases, Protein Sci,
- 412 13 (2004) 1875-1881.

Enzymes Organisms/used substrates	$K_{\rm m}$ (μM^{-1})	$V_{\rm max}$	$k_{\rm cat}$
	(µ101)	(µmor mini mg)	(300
<u>MVK</u>			
F. johnsoniae/(R)-MVA	11.4	43.0	25.0
E. faecalis/(RS)-MVA ^[18]	330	11.4	-
S. pneumoniae/(R)-MVA ^[19]	236	-	11
H. sapiens/(RS)- $MVA^{[20]}$	40.8	28.0	-
S. cerevisiae/(R)-MVA ^[19]	131	-	38
M. mazei/(R)-MVA ^[19]	68	-	4.3
M. jannaschii/(RS)-MVA ^[21]	68.5	387	-
<u>PMK</u>			
F. johnsoniae/(RS)-MVA-5-P	106	22.2	12.8
E.faecalis/(RS)-MVA-5-P ^[22]	190	3.9	-
S. pneumoniae/(R)-MVA-5-P ^[23]	4.2	-	3.4
H. sapiens/(R)-MVA-5- $P^{[24]}$	34	46.4	-
S. solfataricus/(RS)-MVA-5-P ^[13]	77	5.1	-
DMD			
F. johnsoniae/(RS)-MVA-5-PP	37.7	26.6	18.5
S. epidermidis/(RS)-MVA-5-PP ^[25]	9.1	9.8	5.9
H. sapiens/(RS)-MVA-5-PP ^[26]	28.9	6.1	4.5
S. cerevisiae/(RS)-MVA-5- $PP^{[27]}$	123	6.4	4.9

Table 1 Kinetic parameters of *F. johnsoniae* MVK, PMK and DMD, with the
reported parameters of the enzymes from other organisms

Figure legends

445	Figure 1: GHMP kinase family enzymes in the classical and modified MVA pathways.
446	The green, blue, and red arrows indicate the enzyme reactions of the classical pathway,
447	modified pathway I, and modified pathway II, respectively. The black arrows indicate
448	the upstream reactions that are held in common. Enzymes belonging to the GHMP
449	kinase family are shown in the gray boxes, while non-GHMP family kinases appear in
450	the open boxes.
451	
452	Figure 2: Phylogenetic tree of MVA pathway-related GHMP kinase family enzymes.
453	Bootstrap values larger than 50% are shown at each node.
454	
455	Figure 3: Radio-TLC enzyme assay of the recombinant F. johnsoniae proteins and
456	cell-free extract from F. johnsoniae.
457	(A-C) Normal-phase TLC analyses of the products from the reactions of the
458	recombinant Fjoh_1387 (A), Fjoh_1417 (B), and Fjoh_1389 (C) with the radiolabeled
459	intermediates of the classical and modified mevalonate pathways. (D) Reversed-phase
460	TLC analysis of geranylgeraniol, which was synthesized only when the radiolabeled
461	substrates were converted into IPP by F. johnsoniae cell-free extract.

Figure 1

