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The relic abundance of the dark matter (DM) particle d is studied in a secluded DM scenario, in which
the d number decreasing process dominantly occurs not through the pair annihilation of d into the standard
model particles, but via the dd → mm scattering process with a subsequently decaying mediator particlem.
It is pointed out that the cosmologically observed relic abundance of DM can be accomplished even with a
massive mediator having a mass mm non-negligibly heavy compared with the DM particle mass md. In the
degenerated d −m case (md ¼ mm), the DM relic abundance is realized by adjusting the dd → mm
scattering amplitude large enough and by choosing an appropriate mediator particle lifetime. The DM
evolution in the early universe exhibits characteristic “terrace” behavior, or two-step number density
decreasing behavior, having a “fake” freeze-out at the first step. Based on these observations, a novel
possibility of the DM model buildings is introduced in which the mediator particle m is unified with the
DM particle d in an approximate dark symmetry multiplet. A pionic DM model is proposed to illustrate
this idea in a renormalizable field theory framework.
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I. INTRODUCTION

More than 80% of the matter is made up of dark matter
(DM) in the Universe [1–3]. Very little of the DM nature
is known, however, besides its cosmological abundance
Ωdmh2 ¼ 0.1188� 0.0010 [3].
Theories beyond the standard model (BSM) in particle

physics often predict the existence of new massive par-
ticles. The lightest neutral stable new particle, if it exists in
these BSM scenarios, provides an excellent DM candidate,
longevity of which is guaranteed by a new symmetry
existing in the BSM scenario. For reviews, see, e.g.,
Refs. [4,5].
A promising hypothesis we are able to make in these DM

models is that the DM particles were produced thermally
in the early universe (thermal relic hypothesis) [6] and the
cosmological DM abundance can be computed through the
Boltzmann equation, once the mass and the couplings of
the DM particle are fixed. It has been widely assumed that
the DM number density decreasing process was dominated
by the pair annihilation of the DM particles into the
standard model (SM) particles. If this is true, the DM
particle mass and its couplings with the SM particles can be
related with each other through the observed value of the
cosmological DM abundance. Assuming further the DM
pair annihilation cross section is determined by the cou-
plings of the order of the electroweak gauge coupling

strengths, the thermal relic hypothesis predicts the DM
particle mass of the weak scale. This striking coincidence is
often called the “WIMP Miracle.” The heavier DM particle
mass, the stronger DM couplings with the SM sector we
need to assume in these widely adopted thermal relic
scenarios: we therefore cannot seclude the DM particles
from the SM sector. This tendency has encouraged the DM
particle searches in the direct detection experiments [7] and
in the collider experiments [8]. It is unfortunate, however,
up to the present time, we have no fully confidently positive
results in these DM particle search experiments [7,9–13].
Recently, new varieties of thermal relic DM scenarios

have been proposed. In these scenarios, interactions
between the DM particles and the SM particles are weak
enough to make the scenarios consistent with the present
and near future constraints from the direct DM detections
and the collider experiments, still keeping the observed
value of the cosmological DM abundance, by introducing
novel mechanisms to decrease the DM particle number
density in the thermal history of the early universe.
The authors of Refs. [14,15] consider a scenario in which

the relic density is controlled by the 3 → 2 scattering
process among the DM particles, instead of the traditional
2 → 2 process of the DM pair annihilation into the SM
particles. The cross section for the 3 → 2 scattering enough
to explain the observed DM abundance may be achieved in
the DM model associated with dark strong dynamics,
assuming the dark pions to be the DM particle. The
anomaly induced Wess-Zumino-Witten (WZW) term
[16,17] in the dark chiral Lagrangian naturally explains
the required 3 → 2 scattering in the dark sector. Although
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the dark sector in this scenario is chemically secluded from
the visible sector, it is assumed to interact with the SM
sector very weakly, keeping the dark sector temperature
equal to the visible sector in the epoch of the DM particle
number decreasing processes. It has been pointed out,
however, the WZW induced 3 → 2 scattering annihilation
process may not be enough to reduce the DM number
density if the higher order effects are incorporated con-
sistently in the chiral perturbation framework.
References [18,19] introduce a phenomenological sce-

nario in which the DM number density decreasing mecha-
nism is implemented by the DM pair annihilation into
additional non-SM particles (mediator particles) through
the 2 → 2 process (the secluded DM scenario). The
mediator is assumed to decay into the SM particles later
and is sufficiently lighter than the DM particle. Note here
the mass hierarchy between the two separate mass scales
(the DMmassmd and the mediator massmm),md ≫ mm, is
introduced on an ad hoc basis in this scenario. With a large
mass gap md ≫ mm, the DM relic abundance is insensitive
to the mediator particle m lifetime. It is assumed that
the dark sector decouples chemically from the visible sector
in the early epoch of its thermal history, but it follows
the visible sector temperature, keeping the kinematical
equilibrium with the SM particles.
The authors of Ref. [20] propose a DM sector almost

completely decoupled from the SM sector both kinemat-
ically and chemically (cannibal DM). Novel mechanisms
similar to SIMP and the secluded DM are responsible for
the DM particle number decreasing process in the dark
sector. Since the dark sector is decoupled from the SM
sector almost completely, the DM particle temperature
differs from the SM sector in the thermal history of the
Universe. Reference [21] considers a similar scenario
having the dark sector kinematically decoupled from the
visible sector. The late-time decay of new particles into
the SM sector, which were produced copiously in the dark
sector thermal history, reheats the visible sector and dilutes
the DM density.
In this paper, we solve the Boltzmann equation numeri-

cally in a toy secluded DM model having a heavy mediator
md ∼mm. The secluded DM having a large mass gap
md ≫ mm, as well as the familiar mechanism of the DM
pair annihilation into the SM particles, can also be analyzed
in this toy model. We point out the seclusion mechanism
works well even with md ∼mm if the mediator lifetime is
short enough, in contrast to the original secluded DM
proposal having a large mass gap md ≫ mm and a longer
lifetime mediator. The hierarchy assumption md ≫ mm
made ad hoc in Refs. [18,19] is, therefore, not necessary.
We notice that the departure of the mediator number density
from its thermoequilibrium value causes non-negligible
effects in the evaluation of the DM relic density.
Especially, in the md ¼ mm case with sufficiently strong

d −m interaction, the evolutions of the DM density

exhibits interesting behavior, i.e., two-step DM density
decreasing. At the first step, the dark sector chemically
decouples from the SM particles, and the DM density is
temporarily frozen to a value much higher than usual
thermal relic DM scenario (“fake” freeze-out). This is fake
because the DM particle still interacts with the mediator
particle strongly, and it keeps the chemical equilibrium
with the mediator. The next-step DM density decreasing
starts when the mediator decay becomes active. The relic
abundance of the DM density is therefore controlled by
the mediator lifetime. The true freeze-out takes place only
after the DM particle decouples from the mediator. The
evolution of the DM density thus exhibits characteristic
“terrace” structure in this setup as shown in Fig. 1 later.
The realization of the secluded mechanism withmd∼mm

opens a new fascinating window on the DM model
buildings, allowing unified descriptions for the mediator
and the DM in the secluded scenarios. We give a concrete
example of unified description of mediator and DM, in
which both mediator and DM particles are realized as the
pseudo-Nambu-Goldstone bosons, in a manner similar to
the SIMP scenario. We emphasize that the key process in
the secluded DM scenario, i.e., the 2 → 2 process of the
DM pair annihilation into mediator particles, is provided
by the low energy theorem amplitude and is well under
theoretical control in our concrete model.
This paper is organized as follows: In Sec. II, we give a

toy model of the secluded DMmodel. A brief review on the
Boltzmann equation we use in our numerical analysis is
also described there. The results on the numerical compu-
tations on the evolutions of the DM and mediator number
densities are presented in Sec. III. We then propose a pionic
DM scenario based on our numerical computation in
Sec. IV. Section V is devoted for summary and outlook.
We ensure comprehension of the numerical evolutions by
analytically describing the relevant quantities in the
Appendix.

II. BOLTZMANN EQUATION IN A TOY MODEL
FOR SECLUDED DARK MATTER

It is possible to write down a toy model in which several
known DM density decreasing mechanisms, such as the
familiar thermal relic DM, the cannibal DM with a
decaying mediator, and the secluded DM with a mass
gap md ≫ mm, are described in a unified manner. The
secluded DM scenario with md ∼mm we consider in this
paper can also be implemented in this toy model as well.
We here introduce such a toy model and write down the
coupled Boltzmann equations governing the evolutions of
the DM and the mediator number densities.

A. A toy model

We introduce two real scalar fields ϕd and ϕm, which
correspond to the DM and mediator particles d and m,
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respectively. They interact with each other and also with the
SM weak doublet Higgs field ϕ. The model is described by
the Lagrangian,

Ltoy ¼
1

2
ð∂μϕdÞ2 −

1

2
m2

dϕ
2
d þ

1

2
ð∂μϕmÞ2 −

1

2
m2

mϕ
2
m

þ gddmmðϕdϕdÞðϕmϕmÞ þ gmϕ†ϕmmϕmϕ
†ϕ

þ gddϕ†ϕϕdϕdϕ
†ϕ

þ gmmϕ†ϕϕmϕmϕ
†ϕ; ð2:1Þ

with md, mm being masses of the DM particle d and the
mediator particle m, respectively. The longevity of the DM
particle d is protected by the Z2 symmetry ϕd ↔ −ϕd.
We know several parameter regions explain the cosmo-

logically observed DM relic abundance in the present
toy model.

(i) If we take the mm much heavier than the DM mass,

mm ≫ md;

we can integrate out them particle in the Lagrangian
and we only have two parameters md and gddϕ†ϕ,
which can be chosen to obtain the relic abundance.
This model is nothing but the conventional Higgs
portal DM [22–24], a typical scenario in the familiar
thermal relic DM.

(ii) If we take

gddϕ†ϕ ¼ gmmϕ†ϕ ¼ 0;

and very small gmϕ†ϕ, the dark sector particles d
and m decouple from the visible sector almost
completely and the thermal equilibrium with the
visible sector is lost. For

md ≫ mm;

the mediator m decays into the visible particles after
the decoupling between m and d, due to the long
lifetime of m, ∝ 1=ðmmg2mϕ†ϕ

Þ. In this case, gddmm

and md can be chosen to obtain the observed relic
density. This scenario can be considered as a Higgs
portal realization of the cannibal DM model [20].

(iii) It is also possible to consider a scenario in which
both gddϕ†ϕ and gmmϕ†ϕ are nonzero but satisfy

gddϕ†ϕ ≪ 1; gmmϕ†ϕ ≪ 1:

The DM coupling strengths are arranged so as the
dark sector to keep its thermal contact with the
visible sector even after its chemical decoupling.
Similarly to the cannibal DM case, if we take

md ≫ mm

and nonvanishing gmϕ†ϕ, the DM density decreasing
process takes place in the dd → mm scattering
process. The coupling gddmm and the DM mass
md control the relic abundance. This possibility
(the secluded DM with a large mass gap) has been
known since Refs. [18,19].

Note that the gddϕ†ϕ ≪ gmmϕ†ϕ model with gmmϕ†ϕ ∼ 0.1
and gddmm ∼ 0.1 can also accommodate the appropriate DM
relic density. See Ref. [25] for a study of this possibility in
the stable mediator limit. It will be dealt with further in a
separate publication.
In the following sections, we consider yet another

realization to obtain the appropriate relic abundance by
choosing the lifetime of the mediator particle m in a novel
parameter region mm ∼md and gddϕ†ϕ ≪ 1, gmmϕ†ϕ ≪ 1,
which guarantee the thermal equilibrium between the
dark sector and SM fields in the epoch of its chemical
decoupling from the SM particles.

B. Boltzmann equation with a species going
out of equilibrium

Here we describe a procedure to obtain the Boltzmann
equation for a particle i valid even when out-of-chemical-
equilibrium particles j, X and Y are interacting with the
particle i. We restrict ourselves to the case in which all of
these particles keep kinematical equilibriums with the
thermal bath and feel the same temperature T. The validity
of this assumption in our DM relic density analysis will be
discussed later in Sec. III G.
We illustrate the procedure in a simple setup in which

only two processes, (i) decay and inverse decay i ↔ XY,
(ii) scattering process ij ↔ XY, are responsible. Using
Eq. (5.11) in Ref. [26], the Boltzmann equation for i is
given by

dni
dt

þ 3Hni ¼ −
Z

dΠidΠXdΠYð2πÞ4δð4Þðpi − pX − pYÞ

× jMj2i↔XYðfi − fXfYÞ

−
Z

dΠidΠjdΠXdΠY

× ð2πÞ4δð4Þðpi þ pj − pX − pYÞ
× jMj2ij↔XYðfifj − fXfYÞ; ð2:2Þ

with

dΠa ¼
ga

ð2πÞ3
d3pa
2Ea

ð2:3Þ

denoting a Lorentz invariant phase space for a ¼ i, j, X, Y.
Here ga stands for the internal degree of freedom for
particle a. The Hubble rate H is given by
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H ¼ 1.66g1=2�
T2

Mpl
; ð2:4Þ

where g� represents the total number of relativistic degrees
of freedom for particles. We use g� ¼ 106.75 to simplify
the numerical analysis throughout the present paper. The
Planck mass is denoted by Mpl.
In order to perform the phase space integrals in

Eq. (2.2), we assume the distribution functions fa are
approximately given by the Maxwell-Boltzmann distri-
bution form, fa ¼ e−ðEa−μaÞ=T . Here μa represents the
value of the chemical potential for a. The δ functions
enforce Ei ¼ EX þ EY and Ei þ Ej ¼ EX þ EY . Then the
distribution functions are rewritten as fi − fXfY ¼
e−Ei=Tðeμi=T − eðμXþμYÞ=TÞ, and fifj − fXfY ¼ e−ðEiþEjÞ=T

ðeðμiþμjÞ=T − eðμXþμYÞ=TÞ. Note that the number density neqa
for a species a in chemical equilibrium with the thermal
bath is given by

neqa ¼ ga
ð2πÞ3

Z
d3pae−Ea=T:

The actual number density na for a species a out of
chemical equilibrium is related with the chemical potential
μa as na ¼ eμa=Tneqa .
We introduce thermally averaged decay rates and ther-

mally averaged cross sections as follows:

hΓii↔XY ¼ 1

neqi

Z
dΠidΠXdΠYð2πÞ4δð4Þðpi − pX − pYÞ

× jMj2i↔XYe
−Ei=T; ð2:5Þ

hσviij↔XY ¼ 1

neqi neqj

Z
dΠidΠjdΠXdΠY

× ð2πÞ4δð4Þðpi þ pj − pX − pYÞ
× jMj2ij↔XYe

−ðEiþEjÞ=T; ð2:6Þ

where v is relative velocity of initial particles. The phase
space integrals in the Boltzmann equation (2.2) can now be
performed. We obtain

dni
dt

þ 3Hni ¼ −feμi=T − eðμXþμY Þ=Tgneqi hΓii↔XY

− feðμiþμjÞ=T − eðμXþμY Þ=Tgneqi neqj

× hσviij↔XY

¼ −
�
ni − neqi

nX
neqX

nY
neqY

�
hΓii↔XY

−
�
ninj − neqi neqj

nX
neqX

nY
neqY

�
hσviij↔XY;

ð2:7Þ

which is expressed in terms of the actual number density na
and the number density in chemical equilibrium neqa . In the
case where species X and Y are in chemical equilibrium
with the thermal bath, nXðYÞ=n

eq
XðYÞ ¼ 1, the Boltzmann

equation (2.7) reduces to a “familiar” form. Once species X
and/or Y go out of equilibrium, their number densities
deviate from equilibrium values, i.e., nXðYÞ=n

eq
XðYÞ ≠ 1,

which makes an important difference from the analysis
based on the familiar Boltzmann equation. The nonunity
ratio nXðYÞ=n

eq
XðYÞ ≠ 1 can trigger nonequilibration of

species i even if the rates of the processes i ↔ XY and
ij ↔ XY are faster than the Hubble rate H.
The assumption we made on the distribution functions

fa cannot be justified if the departures from their chemical
and thermal equilibriums are large. It should be noted,
however, the validity of this approximation can be guar-
anteed in the situation in which all of particles i, j, X and Y
start to deviate from their chemical equilibriums almost
simultaneously.

C. Boltzmann equation for the DM-mediator system

We are now ready to derive the Boltzmann equations
which determine the evolutions of the number densities of
the DM particle d and the mediator particle m in our toy
model, Eq. (2.1). The number changing processes of the
DM and the mediator are

m ↔ ϕ†ϕ;

ddðmmÞ ↔ ϕ†ϕ;

dd ↔ mm: ð2:8Þ

The interplay between these processes determines the DM
relic density.
The Boltzmann equations are derived by implementing

the processes (2.8) in (2.7),

dnd
dt

þ 3Hnd ¼ −hσvidd↔ϕ†ϕ½n2d − ðneqd Þ2�

− hσvidd↔mm

�
n2d − ðneqd Þ2 n2m

ðneqm Þ2
�
; ð2:9Þ

dnm
dt

þ 3Hnm ¼ −hΓim↔ϕ†ϕ½nm − neqm �
− hσvimm↔ϕ†ϕ½n2m − ðneqm Þ2�

− hσvimm↔dd

�
n2m − ðneqm Þ2 n2d

ðneqd Þ2
�
:

ð2:10Þ

We assumed that the SM Higgs is in chemical equilibrium,
i.e, nϕ ¼ neqϕ .

OKAWA, TANABASHI, and YAMANAKA PHYSICAL REVIEW D 95, 023006 (2017)

023006-4



Note that, if the mediator couples with the SM particles
sizably via gmϕ†ϕ or gmmϕ†ϕ, the mediator keeps its chemical
equilibrium with the SM Higgs through the decay and
inverse decay processm ↔ ϕϕ†, or through themm↔ϕϕ†

process. If the chemical equilibrium of the mediator particle
lasts until the final DM freeze-out epoch, the mediator can
be regarded as a part of background thermal plasma in the
dd ↔ mm process. In this case, the DM relic density is
determined almost solely by gddmm and becomes insensitive
to the values of gmϕ†ϕ and gmmϕ†ϕ.
The situation becomes a bit elaborate, if m goes out

of chemical equilibrium before d decouples from the
mediator m. All of couplings gddmm, gmϕ†ϕ and gmmϕ†ϕ

are equally important in the determination of the DM relic
abundance in this case.
In the remaining of this section, we analytically derive

the critical value of the gmϕ†ϕ coupling, which separates
these two phases.
We include only the m (inverse) decay process in the

Boltzmann equation (2.10) as the reaction between the
mediator and the SM fields. This simplification is reason-
able, because the decay dominates over the scattering with
the SM Higgs when the temperature drops below m mass.
We introduce a variable Xm ¼ nmR3, where R denotes the
scale factor of the Universe. The Boltzmann equation of m
can be rewritten in terms of Xm,

dXm

dt
¼ −

1

2
hΓim↔ϕ†ϕðXm − Xeq

m Þ; ð2:11Þ

where we assumed m and d keep their chemical
equilibrium. We consider a situation that ϕm goes out of
equilibrium at a time t0. Xm at a time t0 þ Δt (Δt is an
infinitesimal time interval) is obtained by solving the
Eq. (2.11) as

Xm ¼ Xeq
m þ Ce−hΓiΔt=2; ð2:12Þ

where C is a constant. As long as the inequality

hΓim↔ϕ†ϕΔt ≫ 1 ð2:13Þ

is satisfied,m immediately goes back to equilibrium. Hence
this inequality stands for the equilibrium condition of m.
In the derivation of the condition (2.13), we implicitly

assume that Xeq
m is constant in an interval Δt. It is necessary

for justification for the condition (2.13) to guarantee the
inequality ΔXeq

m =Xeq
m ≪ 1 in Δt. ΔXeq

m =Xeq
m in Δt is

computed as follows:

ΔXeq
m

Xeq
m

¼ Δt
Xeq
m

�
R3

Δneqm
Δt

þ neqm ð3 _RR2Þ
�

¼ Δt
�
Δ logneqm

Δt
þ 3H

�
: ð2:14Þ

The first term for T0 < mm, where T0 represents the
temperature which m goes out of equilibrium, is

Δ log neqm
Δt

¼ −H
�
3

2
þmm

T

�
: ð2:15Þ

Thus the inequality ΔXeq
m =Xeq

m ≪ 1 is rewritten in terms
of mm and T as

ΔXeq
m

Xeq
m

¼
�
3

2
−
mm

T

�
ΔtH

≃ −
mm

T
ΔtH: ð2:16Þ

The approximation from the first line to the second line
holds for mm ≫ T.
As a result, by combining the conditions (2.13)

and (2.16), we find the condition to maintain the equilib-
rium of m and the SM fields as

T
mm

hΓim↔ϕ†ϕ

H
≫ 1: ð2:17Þ

We can convert the condition in terms of the model
parameters as follows:

T
mm

hΓim↔ϕ†ϕ

H

≃
�
gmϕ†ϕ

10−7

�
2
�
106.75
g�

�
1=2

�
100 GeV

T

�
≫ 1: ð2:18Þ

Hencem goes out of the equilibrium ofm and the SM fields
for gmϕ†ϕ ≲ 10−7. The nonequilibration of m indirectly
gives rise to the d decoupling from the SM thermal bath via
the d −m scattering. As a result the m lifetime controls the
d relic density. We will numerically check these results in
next section.
Note that there exist scattering processes with SM

fermions ψ i or SM gauge bosons, e.g., mϕ ↔ ψ iψ i,
mϕ ↔ WþW−, and so on, and they can contribute to
the m thermalization. These contributions are however
negligible. This is understood as follows. As is noted
above, key ingredient in our scenario is that m goes out of
the equilibrium between m and SM fields, which leads
nonfamiliar relic density of DM. m goes out of the
equilibrium for gmϕ†ϕ ≲ 10−7. As long as gddϕ†ϕ ≳ 10−4

which is minimum value for the m thermalization, the
reaction mm ↔ ϕϕ dominates over the scattering proc-
esses with SM fermions or SM gauge bosons. Hence we
can omit the scattering processes with SM particles via
gmϕ†ϕ coupling.
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III. NUMERICAL RESULTS

We here present our results on the numerical computa-
tions for the DM relic density.
The evolutions of d and m particles are illustrated in

Secs. III A, III B and Sec. III C with numerical results
computed at several reference points. We assumemd ¼ mm
in these reference points, since the DM evolution behaves
quite differently than the scenario with md ≫ mm.
Motivated by the unified model of the DM and the
mediator, we consider gddϕ†ϕ ¼ gmmϕ†ϕ case throughout
in this section. We emphasize that all of the results shown
below are not affected, however, even if gddϕ†ϕ ¼ 0 as long
as gddmm ≠ 0, gmmϕ†ϕ ≠ 0.
The parameter dependences of the DM relic density are

shown in Sec. III D and Sec. III E assuming md ¼ mm. We
find that it is necessary to take into account the nonunity
ratio nm=n

eq
m ≠ 1 in the Boltzmann equations (2.9)

and (2.10). The important role of nm=n
eq
m ≠ 1 should be

emphasized.
In Sec. III F, we plot the parameter regions consistent

with the observed DM relic density in the r − gddmm plane.
Here the mass ratio mm=md is denoted by r. We find
numerically that, if the lifetime of the mediator particlem is
longer than the DM decoupling time from the mediator, the
mass ratio r cannot exceed ∼0.95 in order to account for the
observed DM relic abundance. On the other hand, if we
introduce a lifetime of m comparable with or shorter than
the DM decoupling time, the situation changes drastically.
Our mechanism yields the observed DM relic density in the
secluded scenario even for a completely degenerated d −m
system, with which we deduce the upper bound on the
mediator lifetime.
The validity of the Boltzmann equation (2.7) in which

both d, m and Higgs are assumed to feel the same
temperature is studied in Sec. III G.

A. Evolution example 1

Wehere give an example of the number density evolutions
for the DM and mediator particles. A typical evolution of
Yd ¼ nd=s (Ym ¼ nm=s) is shown in Fig. 1, with Yd (Ym)
being the number density normalized by the entropy density
s for d (m). The horizontal axis shows z ¼ md=T. The
mediatorm and the DM d are assumed to degenerate in mass
md ¼ mm ¼ 1 TeV.We take gddmm ¼ 4, gmϕ†ϕ ¼ 2 × 10−9,
and gddϕ†ϕ ¼ gmmϕ†ϕ ¼ 1 × 10−3 as a reference point in this
plot. The Hubble rate H, thermal averaged decay rate and
inverse decay rate of m ↔ ϕ†ϕ (hΓiD and hΓiID), and
interaction rates of dd → mm, mm → dd, and dd → ϕ†ϕ
are shown in Fig. 2 with the same parameter set. As we see in
Fig. 2, there exist characteristic time scales which play
important roles in the determination of the evolutions.
They are

(i) The time scale zddϕ†ϕ at which the both DM and
mediator go out of chemical equilibrium from the

SM thermal bath. We find it is zddϕ†ϕ ≃ 27 in Fig. 2.
This scale can be determined by the condition

hσviddϕ†ϕnd ¼ H: ð3:1Þ

(ii) The scale zmϕ†ϕ ≃ 96 determined by the mediator
lifetime,

hΓiD ¼ H: ð3:2Þ

The mediator decay starts to affect the evolution of
the system after z > zmϕ†ϕ.

(iii) The time scale zE until when the detailed balance
between the dd → mm and mm → dd processes is
held. The dd ↔ mm detailed balance ends at zE.
Due to the rapid decreasing of the mediator density
through the mediator decay, the mediator density
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FIG. 1. Evolutions of d and m. The observed DM relic density
Yobs
d ¼ ð4.330� 0.036Þ × 10−13 is shown by the horizontal band.
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Ym falls below Yd after zE. The mediator decay rate
hΓiD exceeds the interaction rate of dd ↔ mm for
z > zE. We see zE ≃ 510 with the present set of
parameters.

(iv) The time scale zddmm when the dd → mm interaction
rate becomes slower than the Hubble rate. The DM
density is frozen to its final abundance after zddmm,
decoupled from the mediator particle m. We find
zddmm ≃ 950 in Fig. 2.

The DM evolution in this setup exhibits distinctive
terrace structure as shown in Fig. 1, which can be understood
step by step in terms of these characteristic time scales.
In the beginning of the evolution (z ≪ zddϕ†ϕ ≃ 27),

our scenario traces familiar DM evolution in the Higgs
portal DM scenario. The DM d is thermalized through the
process dd ↔ ϕ†ϕ whose rate is much larger than H. The
equilibrium between ϕm and the background SM fields is
also achieved through the process mm ↔ ϕ†ϕ.
At the next stage (zddϕ†ϕ ≲ z≲ zmϕ†ϕ ≃ 96), the DM

density Yd is temporarily “frozen” to a value (Yd ∼ 10−8)
much higher than the corresponding value (Yd ∼ 4 × 10−13)
in the well-known Higgs portal DM scenario. We call this
phenomenon fake freeze-out of the DM. The larger value of
Yd ∼ 10−8 is because the DM interacts with the SM much
weaker than the Higgs portal DM in the present model and
thus it decouples from the SM at an earlier time. Note that
the mediator m goes out of the equilibrium with the SM
simultaneously with the DM fake freeze-out. This situation
holds even in the gddϕ†ϕ ≪ gmmϕ†ϕ case due to the sizable
interactions among m and d.
The mediator decay becomes active after zmϕ†ϕ ≃ 96.

The inverse decay rate hΓiID, on the other hand, is
negligibly small. The m density in a comoving volume
starts to decrease exponentially after z≃ zmϕ†ϕ through the
mediator decaym → ϕ†ϕ. The temporarily frozen mediator
density Ym is then thawed by the mediator decay. We see in
Fig. 1, due to the strong interaction dd ↔ mm, the DM
density Yd tracks Ym until z≃ zE ≃ 510. We thus find the
DM density Yd decreases drastically after its decoupling
from the SM thermal bath. It is important to emphasize that
the decoupling of d and m from the SM thermal bath does
not imply the freeze-out of their densities.
Once the m decay rate exceeds the interaction rate of

dd ↔ mm, the rapidly decreasing m density breaks the
detailed balance between the interactions mm → dd and
dd → mm. Note that the DM density is still decreasing if
the interaction rate of dd → mm is larger than the Hubble
rate H. The DM density is fixed to its final abundance only
at the last stage (z≳ zddmm ≃ 950) when the interaction rate
of dd → mm becomes smaller than H.

B. Evolution example 2

Another example of typical evolution is shown in Fig. 3,
which differs qualitatively from the example we had shown

in the previous subsection. In this plot, we take parameters
md ¼ mm ¼ 1 TeV, gddmm ¼ 0.5, gmϕ†ϕ ¼ 4 × 10−8, and
gddϕ†ϕ ¼ gmmϕ†ϕ ¼ 7 × 10−3, which lead to zddϕ†ϕ ≃ 23,
zmϕ†ϕ ≃ 6, zE ≃ 29, and zddmm ≃ 56 as shown in Fig. 4. We
therefore find zddϕ†ϕ > zmϕ†ϕ, in contrast to the inequality
zddϕ†ϕ < zmϕ†ϕ we had in the previous subsection. As a
result, the distinctive terrace structure we observed in the
previous subsection disappears in Fig. 3. Instead, we see a
change of slope at the scale zddϕ†ϕ in the plot of Yd.

C. Evolution example 3

Here we give an example in which the mediator decay
time scale zmϕ†ϕ coincides approximately with the DM
decoupling scale zddϕ†ϕ. This situation happens with para-
meters md¼mm¼1TeV, gddmm¼0.95, gmϕ†ϕ¼1×10−8,
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FIG. 3. Evolutions of d and m. The observed DM relic density
Yobs
d ¼ ð4.330� 0.036Þ × 10−13 is shown by the horizontal

band. md ¼ mm ¼ 1 TeV, gddmm ¼ 0.5, gmϕ†ϕ ¼ 4 × 10−8, and
gddϕ†ϕ ¼ gmmϕ†ϕ ¼ 7 × 10−3.
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and gddϕ†ϕ ¼ gmmϕ†ϕ¼ 7×10−3. Corresponding time scales
are zddϕ†ϕ ≃ 31, zmϕ†ϕ ≃ 20, zE ≃ 82, and zddmm ≃ 152.
See Fig. 5 and Fig. 6 for the behavior of evolution and
interaction rates, respectively. The mediator decay affects
the evolution immediately after the DM decoupling from
the SM thermal bath. We see no clear terrace structure nor
simple slope change in the DM evolution shown in Fig. 5.

D. gddmm dependence

We study the gddmm dependence of the d relic density.
Fig. 7 shows the DM relic density as a function of gddmm.
We take md ¼ mm ¼ 1 TeV. Parameters taken for the
analysis are ðgmϕ†ϕ;gddϕ†ϕ¼gmmϕ†ϕÞ¼ð2×10−9;1×10−3Þ,
ð2 × 10−9; 7 × 10−3Þ, ð4 × 10−8; 1 × 10−3Þ, ð4 × 10−8;
7 × 10−3Þ, ð1×10−8;1×10−3Þ, and ð1 × 10−8; 7 × 10−3Þ,
respectively.

Larger gddmm provides smaller d relic density. This is
because longer equilibrium between d and m can be
achieved by larger gddmm, which delays the decoupling
between d and m. As we show in the Appendix, the
semianalytic formula (A28) for the DM relic abundance
Yrelic
d is actually inversely proportional to g2ddmm and

supports this understanding.
On the other hand, smaller gddmm gives larger relic

density. For each value of gddϕ†ϕ, the relic density
approaches to its asymptotic value in the d −m collision-
less limit, which corresponds to the DM relic density
controlled by the gddϕ†ϕ in the Higgs portal scenario. The
DM relic density becomes almost insensitive to the value of
gddmm for gddmm ≲ gddϕ†ϕ. This is understood as follows.
Figure 8 shows the interaction rates of dd → mm and dd →
ϕ†ϕ for gddmm ¼ 10−4, 7 × 10−3 and 1. Other coupling
strengths are taken as gddϕ†ϕ ¼ gmmϕ†ϕ ¼ 7 × 10−3 and
gmϕ†ϕ ¼ 2 × 10−9. We see the DM-mediator decoupling
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FIG. 5. Evolutions of d and m. The observed DM relic density
Yobs
d ¼ ð4.330� 0.036Þ × 10−13 is shown by the horizontal

band. md ¼ mm ¼ 1 TeV, gddmm ¼ 0.95, gmϕ†ϕ ¼ 1 × 10−8, and
gddϕ†ϕ ¼ gmmϕ†ϕ ¼ 7 × 10−3.
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epoch (hσviddmmnd ¼ H) is earlier than the DM-Higgs
decoupling (hσviddϕ†ϕnd ¼ H) for gddmm < gddϕ†ϕ. There
is therefore no gddmm dependence of the relic density
for gddmm ≲ gddϕ†ϕ.
Hence, our mechanism to reduce the DM relic density

works only when the gddmm coupling is stronger than the
DM-Higgs coupling gddϕ†ϕ in the Higgs portal DM scenario.

E. Mediator lifetime dependence

If the mediator were in chemical equilibrium with the
thermal bath, Ym=Y

eq
m ¼ 1 and thus nm=n

eq
m ¼ 1. The DM

Boltzmann equation (2.9) would then be separated from
the mediator Boltzmann equation (2.10) completely. The
DM relic abundance would therefore be insensitive to the
mediator properties such as the mediator lifetime (gmϕ†ϕ

coupling). In the reality, however, the mediator departs
from its chemical equilibrium almost simultaneously with
the fake freeze-out epoch of the DM. We need to take into
account effects of Ym=Y

eq
m ≠ 1 in our computations of the

DM relic density. Solving the coupled Boltzmann equa-
tions (2.9) and (2.10), we obtain the DM relic density as
plotted in the solid line in Fig. 9 as a function of gmϕ†ϕ. On
the other hand, if the chemical equilibrium of the mediator
particle nm ¼ neqm were satisfied in (2.9), we would obtain
the dotted line result in Fig. 9. We see the coupling gmϕ†ϕ

controls the DM relic density. The effects of the departure
of the mediator chemical equilibrium Ym=Y

eq
m ≠ 1 are

significant.
The relic density decreases with decreasing lifetime

(increasing gmϕ†ϕ). It approaches to the value of Ym=Y
eq
m ¼1

around gmϕ†ϕ ≃ 10−7. The behavior of the relic density is
understood as follows. For gmϕ†ϕ ≳ 10−7 as derived in
Eq. (2.8), the mediator keeps its chemical equilibrium with
the SM Higgs. The m density in (quasi-)equilibrium
exponentially drops, and guides the overabundant d density
to the observed one.

Figure 10 shows the evolutions of Yd for each gmϕ†ϕ. Too
long m lifetime keeps overdensities of m for a long period,
and leads to a mild damping of d. Freeze-out of Yd occurs
at large z due to a large deviation of Ym=Y

eq
m from unity,

and hence Yd remains overabundant. On the other hand, a
deviation of Ym=Y

eq
m from unity becomes smaller for shorter

m lifetime. The Boltzmann equations (2.9) and (2.10) and
the relic density approach to those in familiar thermal relic
scenarios.
We here note the nonunities Ym=Y

eq
m ≠ 1 and Yd=Y

eq
d ≠ 1

also affect the evolutions of the d and m densities after the
epoch zE, when the detailed balance of the dd ↔ mm
process is broken.

F. Parameter regions consistent with the observed
DM relic abundance

We show parameters that can account for the central
value of the observed DM relic density Yobs

d ¼ 4.330 ×
10−13 in Fig. 11. We take md ¼ 1 TeV and gddϕ†ϕ ¼
1 × 10−3. The solid, dashed and dotted lines correspond
to the case of negligibly small gmϕ†ϕ (very late-time
decaying mediator), gmϕ†ϕ ¼ 2 × 10−9 and 1 × 10−7,
respectively. We see in this plot that for r≡mm=md ≲
1=2 the coupling gddmm required for the observed relic
density gets close to an asymptotic value gddmm ≃ 0.16,
almost independently of gmϕ†ϕ. This illustrates the fact that
in secluded scenarios with a light mediator (r ≪ 1), the DM
relic density is controlled only by gddmm and the DM mass
md, and becomes insensitive to gmϕ†ϕ and gddϕ†ϕ.
On the other hand, as r gets larger, the required coupling

gddmm also becomes larger. For the case of the negligibly
small gmϕ†ϕ (the very late-time decaying mediator), espe-
cially, the coupling gddmm goes over the unitarity bound
around r≳ 0.95. We thus find the upper bound on r so as
to explain the observed DM relic density. Thus, with the
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extremely long-lived mediator which survives even after
the DM decoupling from the mediator, the completely
degenerated mediator setup (r ¼ 1) is not feasible to
account for the observed DM relic density. This property
is consistent with the numerical results for the DM relic
abundance done in the context of a right-handed sneutrino-
neutrino DM-mediator model [27].
The situation changes drastically if we consider a shorter

lifetime mediator. The secluded DM scenario with r ¼ 1
becomes viable if the mediator lifetime is comparable with
or shorter than the DM decoupling time from the mediator.
Actually, when gmϕ†ϕ ¼ 2 × 10−9, the coupling gddmm ≃ 4

is required at r ¼ 1 and is marginally consistent with the
unitarity. For the mediator with shorter lifetime (larger
gmϕ†ϕ), it is easier to find the parameter regions consistent
with the observed relic density and also with the unitarity.
We numerically obtain the lower limit on gmϕ†ϕ, gmϕ†ϕ ≳
2 × 10−9 for md ¼ 1 TeV and gddϕ†ϕ ¼ 1 × 10−3.
The required gddmm coupling for r ¼ 1 decreases with

increasing gmϕ†ϕ. It approaches to an asymptotic value
gddmm ≃ 0.4 around gmϕ†ϕ ≃ 10−7. This is because for
gmϕ†ϕ ≳ 10−7, as is described in Sec. II C, the mediator
is thermalized through the decay and inverse decay process,
m ↔ ϕϕ†, and remains in chemical equilibrium with the
SM sector until the final freeze-out of the DM number
density. In this case, the DM relic density is insensitive
to gmϕ†ϕ and gddϕ†ϕ, and is determined almost through the
DM mass md, the DM-mediator mass ratio r and the d −m
coupling gddmm.

G. Temperature of d −m system

Throughout this work, we assume that the temperatures
of d −m system holds on the background temperature even
after they decouple from the SM particles.

Kinetic equilibrium of d and the SM fields ensures that
they evolve in a common background with a temperature,
even if the chemical equilibrium of them is not achieved.
Figure 12 shows the comparison of the Hubble expansion
rate H and the interaction rate of dϕ ↔ dϕ. We take
md ¼ 1 TeV, gddmm ¼ 1, and gmϕ†ϕ ¼ 1 × 10−8. The inter-
action rate dominates H in the region of z≲ a few × 102.
For z≳ a few × 102, on the other hand, the dark sector
evolves in the temperature Tdark which may be different
from the SM temperature TSM.
In the example 1 shown in Sec. III A, Tdark ¼ TSM does

not hold after the mediator lifetime scale zmϕ†ϕ. The two-
step DM density decreasing profile (terrace behavior) is
maintained even if we take into account the effects of
Tdark ≠ TSM, though we neglected the effects in our
numerical computations in this paper. The issue will be
discussed further in our future publication.
It is also possible to modify our toy model to keep

Tdark ¼ TSM for a longer period, assuming, e.g., the
neutrino portal couplings for the dark sector instead of
the Higgs portal coupling.

IV. A REALIZATION IN PIONIC DARK
MATTER SCENARIO

As we have shown in the previous section, the dd ↔ mm
scattering amplitude needs to be strong enough to achieve
the observed DM relic density Ωdmh2 ¼ 0.1188� 0.0010
in our degenerated mediator setup. If we assume the DM
and mediator particles are elementary, it is extremely
difficult to obtain such a strong interaction without con-
flicting with the Landau pole problem, however. We here
show both of the degeneracy between the DM particle (d)
and the mediator particle (m),md ≃mm, and the marginally
strong interaction in dd ↔ mm scattering can be accom-
modated in models of dark strong dynamics having the
dark pions [28–30] as composite particles. Note the dark
pions exist ubiquitously in models of electroweak
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symmetry breaking, including technicolor [31], composite
Higgs [32,33] and also in classically scale invariant
extensions of the SM [34–37]. Note also the SIMP
mechanism [14,15,38] is embedded in the dark pion
scenario, although the DM relic density decreasing mecha-
nism presented in this paper does not rely on it.

A. Dark QCD and dark pions

We consider a model in which both DM particle d and
mediator m are unified in a dark pion multiplet. The dark
pions are hypothetical pseudo-Nambu-Goldstone bosons
associated with dynamical breaking of a newly introduced
dark chiral symmetry. They often are the lightest BSM
particle existing in models with a dark strong dynamics
(dark QCD), and are regarded as the DM candidate
particles. In this section, we show the d −m unification
and the marginally strong dd ↔ mm amplitude can be
achieved in a setup with the dark pions.
We introduce a new strong Yang-Mills gauge dynamics,

termed “dark QCD” as

LDQCD ¼ −
1

4g2Ds
Ga

μνGaμν þ ψiDψ ; ð4:1Þ

in analog to the usual quantum chromodynamics (QCD).
Here the dark quark fermion field ψ forms a dark isospin
doublet

ψL ¼
�
UL

DL

�
; ψR ¼

�
UR

DR

�
; ð4:2Þ

and belongs to the fundamental representation of the dark
QCD gauge group. The fermion fields with left- and
right-handed chiralities are specified by using subscripts
L and R, respectively. The Lagrangian (4.1) enjoys global
SUð2ÞL × SUð2ÞR dark chiral symmetry,

�
UL

DL

�
→

�
U0

L

D0
L

�
¼ exp

�
i
X
a

τa

2
θaL

��
UL

DL

�
; ð4:3Þ

�
UR

DR

�
→

�
U0

R

D0
R

�
¼ exp

�
i
X
a

τa

2
θaR

��
UR

DR

�
; ð4:4Þ

with τa being the Pauli SUð2Þ matrix. In the
Lagrangian (4.1), the dark gluon field Ga

μ couples with
the dark quark ψ through the covariant derivative,

Dμψ ¼ ∂μψ þ iGa
μTaψ ; ð4:5Þ

with Ta being the fundamental representation matrix of the
dark QCD gauge symmetry. The dark gluon field strength
Ga

μν is defined as usual

Ga
μνTa ¼ ∂μGa

νTa − ∂νGa
μTa þ iGa

μGb
ν ½Ta; Tb�: ð4:6Þ

Note here that both the dark fermion and the dark gluon are
blind to the SM gauge group. These fields therefore
contribute to the dark component in the Universe.
The negative beta function in the Yang-Mills theory

renormalization group equations makes the dark QCD
gauge coupling strength gDs nonperturbatively strong
and induces very strong attractive force between ψ and
ψ , which triggers a ψψ condensate

hψψi ≠ 0 ð4:7Þ
and dynamical breaking of the dark chiral symmetry,

SUð2ÞL × SUð2ÞR → SUð2ÞV; ð4:8Þ
in a manner similar to the usual QCD.
It is now apparent how dark pions πaD (a ¼ 1, 2, 3)

appear in this setup. They are the Nambu-Goldstone bosons
associated with the dynamical symmetry breaking (4.8).
Due to the exact chiral symmetry, however, the dark pions
remain exactly massless in this model. We therefore
introduce explicit symmetry breaking terms,

Lexplicit ¼ −ψLmψ

�
1 −

1

Λ2
s
ϕ†ϕ −

1

Λ2
p
iτ3ϕ†ϕ

�
ψR þ H:c:;

ð4:9Þ

with ϕ denoting the SUð2ÞW doublet SM Higgs field. The
explicit breaking terms, Eq. (4.9), make the dark pions
massive. The dark pions interact with the SM Higgs field ϕ
also through the explicit breaking terms, Eq. (4.9). Possible
origin of these explicit symmetry violating terms, Eq. (4.9),
will be dealt in the next subsection in a renormalizable field
theory framework. In this subsection, we concentrate on the
impacts of these terms in the dark pion phenomenologies.
The dark pion low energy effective theory can be

described by using the chiral Lagrangian,

Lχ ¼
f2

4
tr½∂μU†∂μU� þ f2

4
tr½χ†U þ U†χ�; ð4:10Þ

with f being the dark pion decay constant. Here the
nonlinear chiral field U is expressed using the dark pion
field πD,

U ¼ exp

�
i
f

X
a

τaπaD

�
: ð4:11Þ

The effects of the explicit violation of the dark chiral
symmetry, Eq. (4.9), can be analyzed by using

χ ¼ 2Bmψ

�
1 −

1

Λ2
s
ϕ†ϕþ 1

Λ2
p
iτ3ϕ†ϕ

�
; ð4:12Þ

with B being a low energy constant related with the dark
quark pair condensate.
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Expanding the chiral Lagrangian (4.10) in terms of the
dark pion field πD, we obtain

Lχ ¼
1

2

X
a

ð∂μπ
a
DÞð∂μπaDÞ −

1

2
m2

πD

X
a

πaDπ
a
D

þ gπDπDϕ†ϕ

X
a

πaDπ
a
Dϕ

†ϕ

þ gπ3Dϕ†ϕmπDπ
3
Dϕ

†ϕþ � � � : ð4:13Þ

It should be noted here that all of the dark pions π1D, π
2
D, π

3
D

share the identical mass mπD , which can be evaluated
by using the low energy constant B and the dark quark
mass mψ ,

m2
πD ¼ 2Bmψ : ð4:14Þ

We also find the dark pions couple with the SM Higgs
boson through Eq. (4.9) as

gπDπDϕ†ϕ ¼ 1

2

m2
πD

Λ2
s
; ð4:15Þ

which plays an important role to thermalize the dark pions
in the early universe.
Note that the Lagrangians, Eq. (4.1) and Eq. (4.9), are

invariant under the fermion transformation,

UL → −UL; UR → −UR; ð4:16Þ

which also survives as an exact symmetry even after the
dynamical chiral symmetry breaking. It is easy to see that
π1D and π2D are odd under the transformation (4.16)

π1D → −π1D; π2D → −π2D: ð4:17Þ

They are therefore stable and can be considered as the DM
candidate particles. On the other hand, the third component
of the dark pion π3D is even under the symmetry (4.16). It
then decays into the SMHiggs bosons through the coupling

gπ3Dϕ†ϕ ¼ fmπD

Λ2
p

: ð4:18Þ

We identify the third component dark pion π3D as the
mediator in the secluded DM scenario. In this manner, the
DM and the mediator particles are unified in the same dark
isospin multiplet. The dark pion scattering amplitude can
be evaluated by using the low energy theorem,

Mðπ1Dπ1D ↔ π3Dπ
3
DÞ ¼ Mðπ2Dπ2D ↔ π3Dπ

3
DÞ

¼ s −m2
πD

f2
: ð4:19Þ

The amplitude (4.19) is strong enough to make the secluded
DM scenario based on this setup. If we deduce
the ddmm interaction coupling gddmm of Eq. (2.1) from
the π1Dπ

1
D ↔ π3Dπ

3
D amplitude at the threshold, we obtain

4gddmm ¼ 3m2
πD

f2
: ð4:20Þ

The marginally strong amplitude gddmm ∼ 1 can thus be
easily achieved for the massive dark pions with mπD ∼ f.
The other phenomenological couplings gmϕ†ϕ, gddϕ†ϕ and
gmmϕ†ϕ are

gmϕ†ϕ¼gπ3Dϕ†ϕ; gddϕ†ϕ¼gmmϕ†ϕ¼ gπDπDϕ†ϕ: ð4:21Þ

Note that the dark baryons also potentially contribute to
the DM relic abundance in this model. The dark baryon
relic abundance turns out, however, to be negligibly small
in its minimal setup of the dark QCD at the TeV scale, as
demonstrated in the technibaryon context in Ref. [39]. In
models of asymmetric dark baryon DM, our mechanism to
decrease the dark pion number density can be applied to
make the dark pions harmless in the cosmology [40,41].

B. A UV completion

The purpose of this subsection is to give a possible
renormalizable UV completion behind the explicit breaking
terms, Eq. (4.9). For such a purpose, we introduce real
scalar fields S and P, which interact with the dark fermions
through the Yukawa Lagrangian

LYukawa ¼ −ψLyðSþ iτ3PÞψR − ψRyðS − iτ3PÞψL;

ð4:22Þ

with y being the Yukawa coupling strength. Note that the
Yukawa Lagrangian violates explicitly the SUð2ÞL ×
SUð2ÞR symmetry down to Uð1ÞL ×Uð1ÞR.
We introduce kinetic and potential terms for these scalar

field in a renormalizable manner,

LLσM ¼ 1

2
ð∂μSÞ2 þ

1

2
ð∂μPÞ2 − VðS; PÞ; ð4:23Þ

with

V ¼ λ

4
ðS2 þ P2 − F2Þ2

þ 1

4
ϵΔF2ðS2 − P2Þ − ϵSF3S − ϵPF3P; ð4:24Þ

with F being a constant with a mass dimension. We also
introduce the interaction among S, P and the SM Higgs
field ϕ as
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Lϕ†ϕ ¼ −
λM
2
ðS2 þ P2Þ

�
ϕ†ϕ −

v2

2

�
: ð4:25Þ

Note that the dimension 4 operators in the potential (4.24)
and the interaction with the SM Higgs (4.25) respect the
Uð1Þ symmetry among S and P, while the operators with
lower dimensions violate the Uð1Þ symmetry. The dimen-
sion 2 operators respect the symmetries S → −S, P → −P,
while the dimension 1 operators do not. The potential is
arranged to give nonvanishing vacuum expectation values
(VEVs) for S (and P) around the F scale. It is convenient if
we parametrize VEVs as

hSi ¼ φ cos θ; hPi ¼ φ sin θ: ð4:26Þ

We also rewrite the explicit symmetry violating parameters
ϵS and ϵP using new parameters jϵj and θϵ,

ϵS ¼ jϵj cos θϵ; ϵP ¼ jϵj sin θϵ: ð4:27Þ

Note here that, if we take θϵ ¼ 0, the angle θ is
determined as

θ ¼ π

2
n; ð4:28Þ

with n taking an integer value. Much involved vacuum
structure than Eq. (4.28) can be obtained if we take
nontrivial value of θϵ. Especially, in this case, the mass
eigenstates arising from S and P fields do not necessary
align to the VEV direction. The misalignment between the
VEVs and the particle mass eigenstates causes interesting
phenomenologies in this setup.
It is a bit tedious but straightforward to obtain the low

energy effective theory by integrating out the S and P fields
around the vacuum at the tree level. Due to the complex
structure of the vacuum, Eq. (4.26), the dark quarks acquire
a complex mass in general, which can be rotated away by
performing an appropriate chiral rotation in the dark quark
fields.
Hereafter, we take

ϵΔ ¼ 0.01; jϵj ¼ 0.1; 0 < θϵ <
π

4
ð4:29Þ

λ ≥ 0.1: ð4:30Þ

Figure 13 shows the behavior of

R ¼ f
mπD

gπDπDϕ†ϕ

gπ3Dϕ†ϕ
: ð4:31Þ

We see it is possible to take sufficiently large value of
gππϕ†ϕ=gπ3ϕ†ϕ, if we take the parameter θϵ small enough.
Note that a Z2 symmetry (P → −P symmetry) is restored in
the θϵ → 0 limit. The smallness of gmϕ†ϕ coupling (gπ3Dϕ†ϕ

coupling), as we assumed in our numerical demonstrations
of Sec. III, can thus be explained in a technically natural
manner by the smallness of the θϵ parameter.

V. SUMMARY AND OUTLOOK

We have demonstrated in this article that the secluded
DM scenario can successfully explain the observed relic
DM density in the Universe even in the case with the non-
negligibly heavy mediator particle m compared with the
DM particle d mass, md ∼mm, if the mediator lifetime is
short enough and the dd ↔ mm transition occurs rapidly
enough. The assumption md ≫ mm imposed in the original
secluded DM scenario [18,19] is therefore not necessarily
required. Allowing a heavy mediator having the mass mm
nearly degenerate with the DM particle mass md, novel
possibilities of particle theory DMmodel buildings are now
opened. We gave a concrete renormalizable DM model, in
which both the DM particle d and the mediator particle m
are realized as the dark SUð2Þ triplet pseudo-Nambu-
Goldstone particles produced in the dark chiral symmetry
breaking in the dark QCD. The rapid transition dd ↔ mm
required in this scenario is naturally achieved thanks to the
compositeness of the dark pions (d and m) and the dark
strong dynamics.
Although we concentrated on the computations of the

relic abundance in this manuscript, much work need to be
done in the DM phenomenologies in this scenario. Due to
the smallness of the DM coupling with the SM sector, the
direct detection of the secluded DM and the production of
the DM particles in the high energy collider experiments
become rather challenging. The large dd → mm amplitude
and the subsequent decay of the mediator particle m, on
the other hand, induce interesting signals in the indirect
astrophysical DM detection experiments. The dark pion
model we proposed in this paper can easily incorporate the
DM particle number decreasing mechanism through the
3 → 2 scattering via the WZW interaction (SIMP mecha-
nism) in addition to the DM number decreasing from the
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FIG. 13. The behavior of Eq. (4.31).
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mediator decay. These issues will be discussed in a separate
publication.
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Note added.—During the completion stage of this manu-
script, two papers [42,43] which discuss massive mediator
in the cannibal DM scenario appeared in the arXiv.

APPENDIX: TERRACE STRUCTURE STUDIED
IN A SEMIANALYTIC MANNER

In this appendix, we study the terrace structure we
numerically found in Sec. III A more closely using an
analytic method. A semianalytic formula to evaluate the
DM relic abundance Yrelic

d is also given. We assume the
mediator m and the DM d are degenerate in mass,
md ¼ mm, as in Sec. III A. They also possess the same
size couplings with the SM Higgs field, gmmϕ†ϕ ¼ gddϕ†ϕ,
thus hσvidd↔ϕ†ϕ ¼ hσvimm↔ϕ†ϕ. The total number of rela-
tivistic degrees of freedom g� is taken to be g� ¼ 106.75.
We first consider the fake freeze-out, the decoupling of

the DM-mediator system from the SM particles. Since the
mediator decay process is not active at the fake freeze-out
time scale, we can neglect the hΓim↔ϕ†ϕ term in the
Boltzmann equation (2.10). We also know nd ≃ nm,
(neqd ¼ neqm ) and the Boltzmann equation describing the
fake freeze-out behavior can be written as

dndþm

dt
þ 3Hndþm ¼ −

1

2
hσvidd↔ϕ†ϕ½ðndþmÞ2 − ðneqdþmÞ2�;

ðA1Þ

with

ndþm ≡ nd þ nm; neqdþm ¼ neqd þ neqm : ðA2Þ

The Boltzmann equation (A1) can be converted to a form

d
dz

Ydþm ¼ −Afakez−n−2½ðYdþmÞ2 − ðYeq
dþmÞ2�; ðA3Þ

with z≡md=T. Ydþm is defined as

Ydþm ¼ Yd þ Ym; Yeq
dþm ¼ Yeq

d þ Yeq
m : ðA4Þ

Here Yd and Ym are number densities normalized by
entropy density s, Yd ≡ nd=s and Ym ≡ nm=s: The thermal
equilibrium Yd and Ym are

Yeq
d ¼ Yeq

m ¼ 1

2
az3=2e−z; ðA5Þ

with

a≡ 45

2π4

ffiffiffi
π

2

r
1

g�
: ðA6Þ

We therefore obtain

Yeq
dþm ¼ az3=2e−z: ðA7Þ

The coefficient Afake in Eq. (A3) comes from the dd ↔ ϕ†ϕ
cross section,

Afake ≡ 1

2

�
zhσvidd↔ϕ†ϕs

HðTÞ
�				

T¼md

¼
ffiffiffiffiffiffiffiffiffiffi
π

45
g�

r
mdMplσ

ð0Þ
fake: ðA8Þ

Here σð0Þfake is defined through

1

2
hσvidd↔ϕ†ϕ ¼ σð0Þfake

�
T
md

�
n
: ðA9Þ

Note that the dd ↔ ϕ†ϕ process (mm ↔ ϕ†ϕ process)
occurs through the s wave. We therefore use n ¼ 0 in our
numerical estimates.
The freeze-out phenomenon in the type of Boltzmann

equation (A3) has been extensively studied in the textbook
[26]. We here only quote the results. The time scale at
which Ydþm starts to exhibit the fake freeze-out behavior
(zfake) can be defined by

YdþmðzfakeÞ − Yeq
dþmðzfakeÞ ¼ cfakeY

eq
dþmðzfakeÞ; ðA10Þ

with cfake being an order 1 constant. It can be evaluated
as

zfake ¼ ln ½ð2þ cfakeÞcfakeAfakea�
− ðnþ 1=2Þ ln ðln ½ð2þ cfakeÞcfakeAfakea�Þ: ðA11Þ

The textbook suggests ð2þ cfakeÞcfake ¼ nþ 1 gives the
best fit. Using this value of cfake, n ¼ 0 and the set of
parameters in the evolution example 1, we obtain

zfake ≃ 13.7; ðA12Þ

which agrees with the fake freeze-out time scale shown
in Fig. 1.
We next move to the final (true) freeze-out when the DM

decouples from the mediator. Note that the mediator decay
is already active at the age of the final freeze-out. The
hΓim↔ϕ†ϕ term in Eq. (2.10) thus plays an important role.
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On the other hand, the dd ↔ ϕ†ϕ and mm ↔ ϕ†ϕ are
negligibly small. The Boltzmann equations can be approxi-
mated as

d
dz

Yd ¼ −Addmmz−n
0−2½ðYdÞ2 − ðYmÞ2�; ðA13Þ

d
dz

Ym ¼ −Addmmz−n
0−2½ðYmÞ2 − ðYdÞ2� − 4zBYm: ðA14Þ

Here we used hΓiID ≪ hΓiD. The coefficients Addmm and B
are defined as

Addmm ¼
�
zhσvidd↔mms

HðTÞ
�				

T¼md

¼
ffiffiffiffiffiffiffiffiffiffi
π

45
g�

r
mdMplσ

ð0Þ
ddmm: ðA15Þ

B ¼ 1

8π

ffiffiffiffiffiffiffi
45

πg�

s
Γm→ϕ†ϕ

Mpl

m2
d

: ðA16Þ

We define σð0Þddmm as

hσvidd↔mm ¼ σð0Þddmm

�
T
md

�
n0

: ðA17Þ

We should note here that σv in the dd ↔ mm process
depends on the velocity v linearly in the case of d −m
mass degeneracy. The parameter n0 in the Boltzmann
equations (A13) and (A14) should therefore be n0 ¼ 1=2
[44].
Summing up (A13) and (A14), we obtain

d
dz

Ydþm ¼ −4zBYm: ðA18Þ

Note also that Yd tracks Ym very closely until the final
freeze-out zf, and thus

Yd ≃ Ym ≃ 1

2
Ydþm: ðA19Þ

Equation (A18) can be solved as

Yd ≃ Ym ≃ a0 exp ð−Bz2Þ; ðA20Þ

for z < zf. Here a0 denotes the integral constant. We
assume further that the behavior Ym ≃ a0 exp ð−Bz2Þ is
valid even at z≃ zf and solve the Boltzmann equation in
the form of

d
dz

Yd ¼ −Addmmz−n
0−2½ðYdÞ2 − ð ~YdÞ2�; ðA21Þ

with

~Yd ≡ a0 exp ð−Bz2Þ; ðA22Þ

instead of its original form (A13). The integral constant a0
is determined by fitting Eq. (A20) with the numerical
solution around z≃ zf. It can also be determined roughly
through matching with the zfake epoch physics as we will
show later.
The freeze-out phenomenon in Eq. (A21) can now be

analyzed in a manner similar to the textbook calculation of
the standard cold thermal relic abundance. There are a
couple of important differences in (A21), however, the
fractional n0 ¼ 1=2 and the expð−Bz2Þ damping behavior
of ~Yd. We see in below how these differences affect the
freeze-out phenomenon in (A21).
We introduce

Δ≡ Yd − ~Yd; ðA23Þ

and define the freeze-out time scale zf by

ΔðzfÞ ¼ cf ~YdðzfÞ; ðA24Þ

with cf being an order 1 constant. The Boltzmann
equation (A21) can be expressed as

d
dz

Δ ¼ −
d
dz

~Yd − Addmmz−n
0−2Δð2 ~Yd þ ΔÞ; ðA25Þ

which can be solved approximately at z ¼ zf as

ΔðzfÞ≃ −
zn

0þ2
f

Addmm

d
dz

~Yd

ð2þ cfÞ ~Yd

				
z¼zf

¼ 2B
Addmm

zn
0þ3

f

2þ cf
: ðA26Þ

Comparing Eq. (A26) with Eq. (A24), we obtain

2B
Addmm

zn
0þ3

f

2þ cf
¼ cfa0 exp ð−Bz2fÞ; ðA27Þ

which leads to a formula to determine the freeze-out time
scale

z2f ≃ 1

B
ln

�ð2þ cfÞcf
2

Addmma0

B

�

−
n0 þ 3

2

1

B
ln

�
1

B
ln

�ð2þ cfÞcf
2

Addmma0

B

��
þ � � � : ðA28Þ
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Note z2f is proportional to lnAddmm in Eq. (A28). This is in
contrast to the usual cold thermal relic computation in
which zf is proportional to lnA. This property comes from
the expð−Bz2Þ damping behavior of ~Yd in this scenario. We
also note very slow convergence of the series expansion
equation (A28). In our numerical analysis, we therefore use
Eq. (A27) directly, rather than Eq. (A28).
Once we determine zf, we can compute the relic

abundance at z → ∞ by

Yrelic
d ¼ lim

z→∞
ΔðzÞ: ðA29Þ

For z ≫ zf, (A25) can be approximated as

d
dz

Δ ¼ −Addmmz−n
0−2Δ2: ðA30Þ

Integrating (A30) from zf to ∞, we obtain

Yrelic
d ≃ n0 þ 1

Addmm
zn

0þ1
f : ðA31Þ

Here the initial value uncertainty ΔðzfÞ is absorbed in the
uncertainty in zf. Note (A31) is identical to the textbook
formula for the cold thermal relic abundance, except for the
fractional value of n0 ¼ 1=2. We obtain a0 ≃ 8.5 × 10−9

and Yrelic
d ≃ 4.2 × 10−13 in our numerical analysis

presented in Sec. III A. Using these values, we see
Eq. (A31) as combined with (A28) gives the best fit with

cf ≃ 1.1; ðA32Þ

which is perfectly consistent with the assumption we made
on cf: it is an order 1 constant. The corresponding freeze-
out zf is calculated as

zf ≃ 564: ðA33Þ

Again Eq. (A33) is consistent with Fig. 1.
The final task we need to carry out is to make a relation

between the fake freeze-out zfake and the final freeze-out zf.
This can be done by computing the coefficient a0 in (A20)
in terms of zfake. Assuming the textbook formula

Ydþm ¼ ðnþ 1Þznþ1
fake

Afake
ðA34Þ

gives the abundance at z ¼ zfake in Eq. (A20), we see

a0 ¼ ðnþ 1Þznþ1
fake

2Afake
exp ðBz2fakeÞ: ðA35Þ

Equation (A35) gives a result consistent with our numerical
fit on a0 within 40% uncertainty.
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