
Graphical Abstract

A solid-supported acidic oxazolium perchlorate as an easy-handling catalyst for the synthesis of modified pyrimidine nucleosides via Vorbrüggentype *N*-glycosylation

Nabamita Basu, Kin-ichi Oyama, and Masaki Tsukamoto*

Tetrahedron Letters journal homepage: www.elsevier.com

A solid-supported acidic oxazolium perchlorate as an easy-handling catalyst for the synthesis of modified pyrimidine nucleosides via Vorbrüggen-type *N*-glycosylation

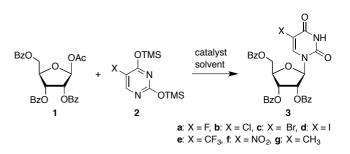
Nabamita Basu^a, Kin-ichi Oyama^b, and Masaki Tsukamoto^a,*

^aGraduate School of Information Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan ^bChemical Instrumentation Facility, Research Center for Materials Science, Nagoya University, Nagoya 464-8602, Japan

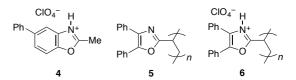
ARTICLE INFO

Article history: Received Received in revised form Accepted Available online

Available online Keywords:

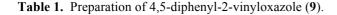

N-Glycosylation Pyrimidine nucleoside Polyoxazole Acidic oxazolium perchlorate

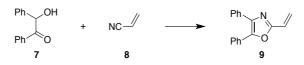
ABSTRACT


A solid-supported acidic oxazolium perchlorate was investigated as a heterogeneous catalyst in *N*-glycosylation reactions using silylated modified pyrimidines and an acylated ribose or glucose to afford the corresponding pyrimidine nucleosides. This salt is a nonhygroscopic and stable powder whose activity is comparable to that of 2-methyl-5-phenylbenzoxazolium perchlorate. A reaction with this polymer catalyst can be conducted on a gram scale. Reusability of the solid-supported catalyst was also investigated.

2009 Elsevier Ltd. All rights reserved.

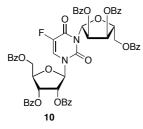
N-Glycosylation promoted by trimethylsilyl triflate (TMSOTf) utilizing sugar acetates such as 1 and silvlated pyrimidines 2 is a standard method of synthesizing modified pyrimidine nucleosides that are utilized for antiviral and anticancer agents as well as for various applications in the life sciences (cf. Scheme 1).¹⁻⁴ To complete the reaction, a stoichiometric amount of TMSOTf is generally used due to its low reactivity. In addition, this reagent's hygroscopic nature requires extreme caution in handling.^{1,2} To solve this problem, Jamison et al. proposed acidic pyridinium salts as the first Brønsted acid catalysts.⁵ We invented 2-methyl-5phenylbenzoxazolium perchlorate (4) as a nonhygroscopic and stable catalyst, which showed higher reactivity than those of TMSOTf and 2,6-di-tert-butyl-4-methylpyridinium triflate.⁶ The only drawback of this method is the tedious purification procedure necessitated by the remaining oxazole compound after workup. If the acidic oxazolium salt derived from a polyoxazole were employed as a catalyst, it would be easier to remove it from the reaction mixture. Although various kinds of polymer-supported reagents have been developed,⁷⁻⁹ they have not been applied to the synthesis of pyrimidine nucleosides. Because polyoxazoles such as poly(4,5-diphenyl-2-vinyloxazole) (5) have been synthesized, ^{10,11} we prepared a solid-supported acidic oxazolium salt 6 from 5 and investigated its potential as a catalyst for N-glycosylation.




Scheme 1. Standard *N*-glycosylation reactions using 1-*O*-acetyl-2,3,5-tri-*O*-benzoyl- β -D-ribofuranose (1) and silylated 5-substituted uracils **2**.

First, we optimized the conditions for the preparation of 4,5diphenyl-2-vinyloxazole (9), which is the building block for poly(4,5-diphenyl-2-vinyloxazole) (5). Kurusu et al. prepared this monomer unit in 43% yield by reaction of benzoin (7) and acrylonitrile (8) (1.1 equiv) in the presence of sulfuric acid (Table 1, entry 1).¹⁰ On the basis of their method, we conducted an experiment on a 1-gram scale to afford 9 in only 23% yield, with unidentified by-products. Therefore, we modified this

^{*} Corresponding author. Tel.: +81-52-789-4779; fax: +81-52-789-4779; e-mail: tsukamoto@is.nagoya-u.ac.jp (M. Tsukamoto)


Entry	7, mmol	8 , equiv	H ₂ SO ₄ , equiv	Tf ₂ O, equiv	Temperature and time	Yield, %
1 ^a	40	1.1	14	0	0 °C for 2 h	43
2	5	10	8	0	0 °C for 10 min, then rt for 1 h	68
3	5	10	5	0.5	0 °C for 10 min, then rt for 1 h	81
4	14	10	5	0.5	0 °C for 10 min, then rt for 1 h	38

^aData from Ref 10.

procedure by using an excess amount of **8** as a solvent as well as by decreasing the amount of sulfuric acid. With 10 equiv of **8** and 8 equiv of sulfuric acid, the desired product was obtained in 68% yield (entry 2). The amount of sulfuric acid was reduced to 5 equiv in the presence of trifluoromethanesulfonic anhydride $(0.5 \text{ equiv})^{12,13}$ to afford **9** in 81% yield (entry 3). Unfortunately, scaling up to ca. 14 mmol of **7** decreased the yield to 38%. Nevertheless, a sufficient amount of pure **9** for the subsequent reaction was obtained by repeating the small-scale reaction.

The polymerization of **9** was conducted as reported by Kurusu et al. by using 2,2'-azodiisobutyronitrile (AIBN) as an initiator to give poly(4,5-diphenyl-2-vinyloxazole) (**5**),¹⁰ whose number average molecular weight (M_n) and weight average molecular weight (M_w) were estimated to be 1.19 x 10⁴ and 12.5 x 10⁴, respectively, by gel permeation chromatography (GPC) measurement. **5** was then converted to nonhygroscopic poly(4,5-diphenyl-2-vinyloxazolium perchlorate) (**6**) by treatment with perchloric acid. The loading amount of acid on **6** was determined to be 2.6–2.8 mmol/g. The elemental analysis of **6** indicated that ca. 90% of the oxazole nitrogen was protonated.

The catalytic activity of poly(oxazolium perchlorate) **6** was evaluated in the reaction of 1-*O*-acetyl-2,3,5-tri-*O*-benzoyl- β -D-ribofuranose (**1**) and silylated 5-fluorouracil **2a** on a 0.1 mmol scale as previously described (cf. Scheme 1).⁶ The catalyst loading was set at 5 mol%. After refluxation for 2 h using a stirring bar, the yield of the *N*-glycosylated product **3a** was determined by ¹H NMR. The use of **6** in acetonitrile afforded a 77% yield of **3a**, which was comparable to that obtained by our conventional catalyst **4** (80% yield) and was superior to that with TMSOTf (50% yield).⁶ In contrast to the reaction with **4**, N^1 , N^3 -bis-*N*-glycoside **10** was not detected. The polymer catalyst **6** also showed similar activity in acetone to afford a 74% yield. Therefore, we applied these conditions in acetonitrile for the synthesis of various modified pyrimidine nucleosides.

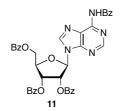
To investigate the applicability of our polymer catalyst 6, we conducted reactions of 1 with silvlated pyrimidines 2 having halogens, trifluoromethyl, and nitro groups on a 0.3 mmol scale in acetonitrile (Scheme 1). As shown in Table 2, reactions with

the silvlated pyrimidines 2a-2e were finished within 6 h, giving the corresponding nucleosides 3a-3e in 87-97% yields without the formation of a significant amount of unwanted N^1 , N^3 -bis-Nglycosides. After the reaction was over, the polymer residue derived from catalyst 6 was stuck to the wall of a reaction vessel and was not soluble in acetonitrile. Therefore, it was easy to remove the polymer from the reaction mixture.¹⁴ In the reaction with silvlated 5-nitrouracil 2f, the desired nucleoside 3f was not obtained (entry 6) along with the recovered starting materials (i.e., sugar acetate 1 and 5-nitrouracil). The reaction with silylated thymine 2g was quite slow and could not be completed within 6 h. Thus, the reaction temperature was increased. As a result, the reaction at 140 °C for 14 h afforded 3g in 95% yield (entry 7). This may have been due to the electron-donating property of 2g, which deactivates the catalytic activity. The same approach was applied to the reaction of 1 (0.3 mmol) and silvlated N^6 benzoyladenine to produce $N^6, 2', 3', 5'$ -tetra-*O*-benzoyladenosine (11) in 88% yield.^{15,16}

Table 2. Synthesis of pyrimidine ribosides **3** from 1-*O*-acetyl-2,3,5-tri-*O*-benzoyl- β -D-ribofuranose (**1**) and silylated 5-substituted uracils **2** by using solid-supported oxazolium perchlorate **6**^a

P • • • • • • • • • • • • • • • • • • •	01000		
Entry	Silylated base	Nucleoside	Isolated yield, %
1	2a	3a	90
2	2b	3b	87
3	2c	3c	92
4	2d	3d	95
5 ^b	2e	3e	97
6	2f	3f	$0^{c,d}$
7	2g	3g	15 ^e (95) ^f

^aUnless otherwise stated, reactions were conducted on a 0.3 mmol scale under the following conditions: [1] = 100 mM, [2] = 130 mM, 6 (5 mol %), MeCN, reflux, 6 h.


b[2e] = 120 mM.

^cThe same result was obtained in acetone.

^d1 and 5-nitrouracil were recovered.

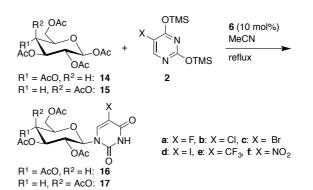
^eThe yield was determined by ¹H NMR analysis. **1** (85%) and thymine were also observed by TLC and ¹H NMR analyses.

^fThe reaction was conducted under the following conditions: [1] = 100 mM, [2g] = 110 mM , 6 (5 mol %), MeCN, 140 °C, 14 h.

Subsequently, we employed tetra-*O*-acetyl- β -D-ribofuranose (12) as a glycosyl donor in acetonitrile. As shown in Table 3, the tri-acetylated pyrimidine ribosides 13 were obtained in 89–98% yields. For the synthesis of 13e, the reaction was easily scaled up to the 1-gram level. The reaction was finished within 30 min, as in the case of that using catalyst 4.⁶ Triacetyl 5-nitrouridine (13f) was obtained in a reasonable yield (entry 6) in contrast to the reaction using the glycosyl donor 1 (Table 2, entry 6).

Table 3. Synthesis of pyrimidine ribosides **13** from 1,2,3,5-tetra-*O*-acetyl- β -D-ribofuranose (**12**) and silylated 5-substituted uracils **2** by using solid-supported oxazolium perchlorate **6**^a

Entry	Silylated base	Nucleoside	Time, h	Isolated yield, %	
1	2a	13a	6	91	
2	2b	13b	6	89	
3	2c	13c	6	93	
4	2d	13d	7	96	
5 ^b	2e	13e	0.5	98	
6	2f	13f	6	90	

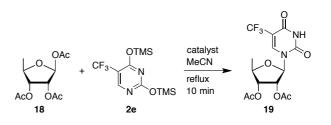

^aUnless otherwise stated, reactions were conducted on a 0.3 mmol scale under the following conditions: [12] = 100 mM, [2] = 130 mM.

b[2e] = 120 mM.

We also conducted reactions of pentaacetyl- β -D-glucose (14) and silylated 5-substituted uracils 2 in the presence of polymer catalyst 6 as shown in Table 4.^{2,17,18} Because the glycosyl donor 14 had lower reactivity than ribofuranoses 1 and 12, catalyst loading was set at 10 mol% in order to complete the reactions within 24 h.⁶ The pyrimidine glucosides 16 were obtained in 91– 98% yields. In the case of 2e, the reaction was completed in 2 h (entry 5). A mixture of penta-*O*-acetyl- β -D-galactopyranose (15), 2a, and 6 (10 mol%) led to the formation of 17a¹⁷ in 98% yield (entry 7).

Finally, catalyst reusability was investigated in the reaction of 1,2,3-tri-*O*-acetyl-5-deoxy- β -D-ribofuranose (**18**) and silylated 5-(trifluoromethyl)uracil **2e** (Table 5).¹⁹ With 5 mol% of **6**, 2',3'-di-*O*-acetyl-5-(trifluoromethyl)-5'-deoxyuridine (**19**) was obtained in 98% yield (Run 1). The recovered polymer, however, did not show any catalytic activity with the recovery of the

3


Entry	Glycosyl donor	Silylated base	Nucleoside	Time, h	Isolated yield, %
1	14	2a	16a	24	93
2	14	2b	16b	24	92
3	14	2c	16c	24	91
4	14	2d	16d	24	98
5 ^b	14	2e	16e	2	98
6	14	2f	16f	24	98
7 ^c	15	2a	17a	24	98

^aUnless otherwise stated, reactions were conducted on a 0.3 mmol scale under the following conditions: [14] or [15] = 100 mM, [2] = 130 mM.

b[2e] = 120 mM.

^cPolyoxazole **5** was recovered in a ratio of 94%.

Table 5. Investigation of catalyst reusability in the reaction of 1,2,3-tri-*O*-acetyl-5-deoxy- β -D-ribofuranose (18) and silylated 5-(trifluoromethyl)uracil **2e** by using solid-supported oxazolium perchlorate **6**^a

Run	Catalyst	Isolated yield, %
1	6 (5 mol%)	98
2	Polymer recovered after Run 1	0^{b}
3°	Polymer recovered after Run 2 was acidified and used as catalyst	97

^aReactions were conducted on a 1 mmol scale under the following conditions: [18] = 100 mM, [2e] = 110 mM.

^bDetermined by TLC and ¹H NMR analyses.

^cAfter Run 3 was conducted, polyoxazole **5** was recovered in a ratio of 82% based on the amount of **6** used in Run 1, indicating that 93–94% of the polymer was recovered for each Run.

starting materials (Run 2). We assumed that **6** was converted to the polyoxazole **5**. Therefore, the recovered polymer after Run 2 was acidified with perchloric acid and then used for the *N*-glycosylation (Run 3). The catalytic activity of the acidified polymer was returned to the original level, supporting the above assumption.

In summary, poly(4,5-diphenyl-2-vinyloxazolium perchlorate), prepared by the reaction of poly(4,5-diphenyl-2-vinyloxazole) and perchloric acid, was found to be effective as an easyhandling catalyst for the synthesis of modified pyrimidine nucleosides via N-glycosylation reaction. The catalytic activity was comparable to that of 2-methyl-5-phenylbenzoxazolium perchlorate. The reaction can be scaled up to the gram level. Because the polymer residue derived from the catalyst can be removed from the reaction mixture, the purification procedure is simpler than that of 2-methyl-5-phenylbenzoxazolium perchlorate. The recovered polymer lost the catalytic activity; however, treatment with perchloric acid activated the polymer residue so that it could be used as a catalyst.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 26410041. The authors are grateful to Messrs Hiroki Morita, Hiroshi Shirouzu, and Atsuya Fukuhara for their preliminary experiments.

References and notes

- 1. Vorbrüggen, H. Acc. Chem. Res. 1995, 28, 509-520.
- Vorbrüggen, H.; Ruh-Pohlenz, C. Handbook of Nucleoside Synthesis; Wiley: New York, NY, 2001.
- Nucleosides and Nucleotides as Antitumor and Antiviral Agents; Chu, C. K., Baker, D. C., Eds.; Plenum: New York, NY, 1993.
- Ahmadian, M.; Bergstrom, D. E. In *Modified Nucleosides: in Biochemistry, Biotechnology and Medicine*; Herdewijn, P., Ed.; Wiley-VCH, Weinheim, Germany, 2008, Chap. 10, pp. 251–276.
- Sniady, A.; Bedore, M. W.; Jamison, T. F. Angew. Chem. Int. Ed. 2011, 50, 2155–2158.

- Shirouzu, H.; Morita, H.; Tsukamoto, M. *Tetrahedron* 2014, 70, 3635–3639.
- 7. Manecke, G.; Storck, W. Angew. Chem. Int. Ed. Engl. 1978, 17, 657–670.
- 8. Lu, J.; Toy, P. H. Chem. Rev. 2009, 109, 815-838.
- Bradley, M.; Galaffu, N. In *Encyclopedia of Polymer Science and Technology, 4th edn.*; Mark, H. F., Eds.; Wiley: Hoboken, NJ, 2014, Vol. 11, pp. 17–47.
- 10. Kurusu, Y.; Nishiyama, H.; Okawara, M. Kogyo Kagaku Zasshi 1968, 71, 1741–1744.
- 11. Hilborn, J. G.; Labadie, J. W.; Hedrick, J. L. *Macromolecules* **1990**, *23*, 2854–2861.
- Martínez, A. G.; Alvarez, R. M.; Vilar, E. T.; Fraile, A. G.; Hanack, M.; Subramanian, L. R. *Tetrahedron Lett.* 1989, *30*, 581– 582.
- 13. Lai, P.-S.; Taylor, M. S. Synthesis 2010, 1449–1452.
- 14. The polymer residue after the *N*-glycosylation can be recovered by an aqueous workup or by simply removing the reaction mixture from the vessel. Quantitative analyses were made in the syntheses of 17a (Table 4) and 19 (Table 5). The polymer can be included in the crude material, but due to its high polarity, it is easily removed by column chromatography.
- 15. Vorbrüggen, H.; Krolikiewicz, K.; Bennua, B. Chem. Ber. 1981, 114, 1251–1255.
- 16. Under the refluxing conditions in either acetonitrile or acetone, the reaction of sugar acetate 1 (0.1 mmol) and silylated N⁶-benzoyladenine ended with the recovery of 1 and N⁶-benzoyladenine, as in the case of catalyst 4.⁶
- Haeckel, R.; Weber, K.; Germann, C.; Haberkorn, U.; Zeisler, S.; Eisenbarth, J.; Wiessler, M.; Oberdorfer, F. J. Label. Compds. Radiopharm. 1996, 38, 1061–1070.
- Kantsadi, A. L.; Hayes, J. M.; Manta, S.; Skamnaki, V. T.; Kiritsis, C.; Psarra, A.-M. G.; Koutsogiannis, Z.; Dimopoulou, A.; Theofanous, S.; Nikoleousakos, N.; Zoumpoulakis, P.; Kontou, M.; Papadopoulos, G.; Zographos, S. E.; Komiotis, D.; Leonidas, D. D. *ChemMedChem* **2012**, *7*, 722–732.
- 19. Shen, B.; Jamison, T. F. Org. Lett. 2012, 14, 3348-3351.

Supplementary Material

Supplementary material including the detailed experimental procedures and spectral data related to this article can be found at the journal's homepage.