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Crossing-line-node semimetals: General theory and application to rare-earth trihydrides

Shingo Kobayashi,1,2 Youichi Yamakawa,3,1 Ai Yamakage,2,1 Takumi Inohara,2 Yoshihiko Okamoto,2,1 and Yukio Tanaka2

1Institute for Advanced Research, Nagoya University, Nagoya 464-8601, Japan
2Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan

3Department of Physics, Nagoya University, Nagoya 464-8602, Japan
(Received 24 March 2017; published 20 June 2017)

Multiple line nodes in energy-band gaps are found in semimetals preserving mirror-reflection symmetry.
We classify possible configurations of multiple line nodes with crossing points (crossing line nodes) under
point-group symmetry. Taking the spin-orbit interaction (SOI) into account, we also classify topological phase
transitions from crossing-line-node Dirac semimetals to other topological phases, e.g., topological insulators
and point-node semimetals. This study enables one to find crossing-line-node semimetal materials and their
behavior in the presence of SOI from the band structure in the absence of SOI without detailed calculations. As
an example, the theory applies to hexagonal rare-earth trihydrides with the HoD3 structure and clarifies that it is
a crossing-line-node Dirac semimetal hosting three line nodes.
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I. INTRODUCTION

The degeneracy (node) of the energy spectrum in the
Brillouin zone is a topological object. Gapless semimetals
are the realization of topological nodes in condensed matter
physics [1–7]. Interestingly, semimetals hosting topological
nodes exhibit novel transport and response phenomena for
external electromagnetic fields [8–11]. For instance, in Weyl
semimetals, which have point nodes in the Brillouin zone,
electric current flows perpendicular to an electric field (anoma-
lous Hall effect) and parallel to a magnetic field (chiral
magnetic effect [12]) due to the topological structure of the
nodes.

Since topological invariants crucially depend on the spatial
dimension [13–16], node structures other than point nodes
are expected to induce topological responses distinct from
those in Weyl semimetals. The line node [17–26] is one of
these intriguing topological electronic states. Many line-node
semimetal materials [27–42] have been proposed and some
measurements have actually seen line nodes in semimetals
[43–50]. Moreover, exotic magnetic transports [51–54] in
line-node semimetals has been recently reported. In addition,
superconductivity is also found in the noncentrosymmetric
line-node semimetal PbTaSe2 [55–59]. Line-node semimetals
have great potential for diverse developments in materials
science.

In contrast to point nodes, there are many types of
configurations of line nodes, i.e., single, spiral [60,61], chain
[62,63], separate multiple [43–45,64], nexus [65–67], and
crossing [68–72] line nodes.

In this work, we focus on crossing-line-node semimetals,
as shown in Fig. 1, and study a general theory for it from the
viewpoint of crystalline symmetry. The configuration of the
crossing line nodes is uniquely determined for a given level
scheme of conduction and valence bands under a point-group
symmetry. The spin-orbit interaction (SOI) may open a gap
in the line nodes but the crossing points possibly remain
gapless, i.e., a Dirac semimetal may be realized. We also
clarify whether the resulting states are Dirac semimetals or
(topological) insulators. Applying the obtained results, one
can find Dirac semimetals and topological insulators from

line-node semimetals and can derive their topological indices
from the band calculation in the absence of SOI.

As an example, we apply the present theory to a hexagonal
hydride YH3 [space group P 3̄c1 (No. 165)], with the HoD3

structure [73]. YHx has been focused on as a switchable mirror
[74], i.e., the metal-insulator transition takes place at x = 2.85
from a reflecting cubic crystal to a transparent hexagonal
one. From optical measurements [75–78], the gap has been
evaluated to be 2.8 eV or slightly smaller. On the other hand,
early band calculations predicted that the hexagonal YH3 is
a semimetal rather than an insulator [79–81]. Subsequent
studies discussed another lower symmetric structure [82],
weak [83–85] and strong [86–88] correlation effects giving
rise to a finite gap in YH3. Although the actual material
is insulating, we study the gapless electronic structure of
the YH3 without correlation effects, as a representative of
HoD3-structure materials, and its topological properties in
detail since the electronic structure has been established so
it is useful for further investigations. The YH3 with HoD3

structure is shown to be a semimetal hosting three crossing
line nodes. A tiny energy gap (∼4 meV) is induced in the line
nodes by SOI. This gap is characterized by the topological
indices of (1;000).

II. CROSSING LINE NODES PROTECTED BY
POINT-GROUP SYMMETRIES

In general, a band crossing located on high-symmetry
planes/lines is stable toward band repulsion if each energy
band belongs to different eigenstates of crystalline symmetry.
In particular, in mirror-reflection symmetric systems without
SOI, a band crossing forms a stable Dirac line node (DLN)
when it lies on a mirror-reflection plane and two energy bands
have different mirror-reflection eigenvalues. Generalizing this
approach to all point groups, we investigate crossing line nodes
protected by point groups: Cnv , Dnh, Dnd , Td , Th, and Oh

(n = 2,3,4,6) and their possible topological phase transitions
to topological insulators and Dirac semimetals. Crossing line
nodes are classified roughly into two classes. One is for internal
linked rings, as shown in Fig. 1. The other is for external linked
ones (chains), which are studied in Refs. [62,63]. We focus on
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FIG. 1. Crossing line nodes in the momentum space. (a)–(c)
Three, six, and seven crossing line nodes realized in dihedral
point-group symmetries. (d) and (e) Six and nine crossing line nodes
in cubic point-group symmetries.

the former class in this paper, in which line nodes are protected
by mirror-reflection symmetries. The latter is realized by
a different mechanism/symmetry such as nonsymmorphic
symmetry, which is not in the scope of the present study.

Here we consider a level scheme consisting of one-
dimensional (1D) irreducible representations (IRRs) (�1a,�1b)
of the lowest conduction and highest valence bands. We focus
on mirror-reflection symmetry-protected DLNs encircling
time-reversal invariant momenta (TRIM). According to the
Schoenflies symbols, mirror reflections are labeled as σh, σv ,
and σd , which represent horizontal, vertical, and diagonal
mirror-reflection operations in point groups, respectively.
When conduction and valence bands cross on a σm (m =
h,v,d)-symmetric plane, the band crossing is stable if 1D IRRs
�1a and �1b have different eigenvalues of σm from each other,
i.e., the character of σm is −1 in �∗

1a × �1b. Furthermore,
the number of crossing lines corresponds to the number
of equivalent σm planes. For example, in C4v-symmetric
systems, possible crossing-line-node configurations are v2,
d2, and v2d2 for {(A1,B2),(A2,B1)}, {(A1,B1),(A2,B2)}, and
{(A1,A2),(B1,B2)}, respectively, where vi (di) labels i line
nodes protected by σv (σd ) symmetry. Table I shows possible
crossing line nodes for each point group, and the correspon-
dence with the level schemes is shown in Appendix A. The
symmetry-adapted effective Hamiltonian for 1D IRRs are also
described in Appendix B. The study of crossing line nodes
for 1D IRRs can be generalized to crossing line nodes for
higher dimensional IRRs. In that case, it is necessary to take
into account the effect of multibands. Nevertheless, when we
choose a basis diagonalizing σm, the mechanism for protecting
line nodes is the same as in the 1D IRR case: namely, a line
node on a σm-symmetric plane is stable if two bands forming
the line node have the different eigenvalues of σm. In particular,
a level scheme consisting of 2D (3D) IRRs (�2(3)a,�2(3)b) leads
to two (three) line nodes at most on a σm-symmetric plane.
Possible line node configurations for 2D and 3D IRRs are
listed in Table VII in Appendix B.

In the last part of this section, it is worth summarizing
the relation between symmetry and crossing line nodes. In

TABLE I. Possible crossing line nodes and topological phase
transitions for each point group (PG) for 1D IRRs. In the second
column, mi (m = h, v, d) indicates i line nodes protected by σm. The
third column shows the effect of the SOI, where the DLNs encircle
a TRIM. TI and NI stand for the topological insulator and normal
insulator, respectively. DP stands for Dirac points, which are located
on the (n � 3)-fold rotational axes. For the case of I, the SOI makes
a gap on the crossing DLNs, but we cannot determine whether the
system becomes a TI or NI from the point-group symmetries. For
the TI, the topological indices (ν0; ν1ν2ν3) are obtained from Eqs. (1)
and (2). The configurations of d3 (v3), d3v3, hd3v3, d6, and h3d6 are
depicted in Figs. 1(a)–1(e), respectively.

PG Line nodes SOI

Cs , Cnh h TI
D3d d3 TI
Dnd (n = 2, 4, 6) dn I
C2v v(zx), v(zy) TI

v2 I
C3v v3 TI
Cnv (n = 4, 6) vn/2, dn/2 DP

vn/2dn/2 I
D2h h(zx), h(zy), h(xy), h3 TI

h2 NI
D3h h, v3 TI

hv3 I
Dnh (n = 4, 6) vn/2, dn/2, hvn/2, hdn/2 DP

vn/2dn/2 NI
h, hvn/2dn/2 TI

Td d6 I
Th h3 TI
Oh h3, d6 DP

h3d6 TI

general, line nodes can be protected by mirror(glide)-reflection
symmetry and/or spatial-inversion symmetry. Crystals have
several equivalent mirror-reflection-invariant planes on which
nodal rings simultaneously appear and are connected with
crossing points on the principal axis. Spatial-inversion symme-
try, on the other hand, protects line nodes which are not fixed
to high-symmetry points [38]. Therefore, mirror-reflection
symmetry plays a essential role for the emergence of crossing
line nodes.

III. EFFECT OF SOI

In systems with SOI, mirror-reflection symmetry-protected
line nodes are generally unstable [35] except for nonsymmor-
phic systems [19,89] since the mirror-reflection eigenvalues
for spin up and down are different, i.e., �1a with spin up
hybridizes with �1b with spin down. This instability potentially
leads to different topologically nontrivial phases such as
Dirac/Weyl semimetals and topological insulators. The criteria
for realizing these topological phases depend intrinsically on
the level schemes and the number of line nodes encircling a
TRIM, as we shall show in the following.

In the presence of SOI, the energy bands are labeled by the
double representations, and 1D IRRs without SOI all become
2D IRRs after taking the product with the spin- 1

2 representation
E1/2. Therefore, after including SOI, the crossing points of
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multiple line nodes on the Cnv-symmetric line remains as a
Dirac point if each crossing energy band belongs to different
double representations within Cnv , i.e., when (�′

1a,�
′
1b) in Cnv

are compatible with the 1D IRRs of (�1a,�1b), and �′
1a × E1/2

and �′
1b × E1/2 are different. Note that the Cnv-symmetry-

protected Dirac points occur independently of the presence of
spatial-inversion symmetry. The same criterion is applicable to
higher dimensional IRRs if �2(3)a × E1/2 is decomposed into
2D IRRs, and two different 2D IRRs cross on a Cnv-symmetric
line. However, we do not completely predict the presence of
Dirac points from the level schemes since the multibands are
labeled again after including the SOI. Off the Cnv-symmetric
line, antisymmetric SOI may turn line nodes into Weyl points.
The presence/absence of the Weyl points depends totally on
the form of the SOI. It is beyond the scope of the paper to
discuss such Weyl points.

If the SOI opens a gap on line nodes or an effect of
breaking the crystalline symmetry destabilizes the Dirac
point, the time-reversal-invariant systems potentially become
topological insulators, depending on the band topology of
the occupied states. For centrosymmetric systems with point
groups Cnh, Dnh, D3d , Th, and Oh (n = 2,4,6), we can adapt
the parity criterion proved in Ref. [70] for the crossing line
nodes, which allows us to determine theZ2 topological number
(ν0; ν1ν2ν3) of the topological insulator from the number of
DLNs in the system without the SOI (see Sec. IV for more
details):

ν0 =
∑

n1,n2,n3=0,1

N
(
�(n1n2n3)

)
mod 2, (1)

νi =
∑

ni=1;nj �=i=0,1

N
(
�(n1n2n3)

)
mod 2, (2)

where N (�(n1n2n3)) is the number of DLNs encircling the TRIM
�(n1n2n3) = n1b1/2 + n2b2/2 + n3b3/2 for bi the ith primitive
reciprocal lattice vector.

On the other hand, for noncentrosymmetric systems, we
can partially determine the Z2 topological numbers from the
number of DLNs by adapting the mirror-parity criterion proved
in Ref. [35], which is applicable to the DLN h of Cs , C3h, and
D3h, v of C2v , and v3 of C3v and D3h.

For these cases, the strong index ν0 is given by Eq. (1). The
weak indices ν1 and ν2 are given by Eq. (2). The third weak
index ν3 is also determined from Eq. (2), except for Cs and
C3h.

For example, when a single DLN encircles a TRIM �(n1n2n3)

in the absence of SOI, the Z2 topological numbers are given
by (1; n1n2ν3) for h of Cs and C3h; (1; n1n2n3) for h of D3h,
v of C2v , and v3 of C3v and D3h, where ν3 is determined for
C2v , C3v , and D3h due to the presence of an additional mirror-
reflection symmetry. Other noncentrosymmetric systems are
outside the scope of the mirror-parity criterion and depend on
the details of the SOI.

The obtained results enable us to predict the Dirac points
and Z2 topological invariants in the presence of SOI from the
band structures in the absence of SOI, without calculating the
inversion/mirror-reflection parities of the wave functions. As
an example, in Table II, we show the results for four materials
proposed in the literature.

TABLE II. Proposed materials, configurations of crossing line
nodes, resulting states induced by SOI, time-reversal-invariant mo-
mentum (TRIM) enclosed by the line nodes, and point-group (PG)
symmetry of the TRIM. DP denotes the Dirac point. MT carbon
stands for Mackay-Terrones carbon.

Material LN w/ SOI TRIM PG Ref.

MT carbon h3 DP R Oh [68]
LaN v3 DP X D4h [69]
Cu3NPd h3 DP R Oh [70,71]
CaTe hv2 DP M D4h [72]
YH3 d3 TI � D3d this work

IV. TOPOLOGICAL NUMBERS

A mirror-reflection symmetry-protected line node is at-
tributed to the band degeneracy between the conduction and
valence bands with opposite mirror-reflection eigenvalues.
That is, on the σm-symmetric plane, the topological number
can be given by counting the number of occupied states with
σm = λ outside and inside of the nodal loops:

Qλ = n>
occ,λ − n<

occ,λ ∈ Z, (3)

where n
>(<)
occ,λ is the number of occupied states with σm = λ

outside (inside) a nodal loop. In the following, we consider
time-reversal-invariant systems and show the Z2 topological
number of line nodes, which is associated with the Z2

topological number of TIs.

A. Z2 topological number in the absence of SOI

From previous studies [7,35,70], a DLN gives a nontrivial
Z2 topological number in terms of the Berry phase, which links
to the drumhead surface state and polarization (see Sec. V).
The Berry phase in spinless systems is defined by [35]

�j (kl,ki) =
∮

C

dkj trAj (k) − i tr ln Bj (kl,ki), (4)

where Aj (k) and Bj (kl) are the non-Abelian Berry connection
and the sewing matrix defined by, respectively,

[A(k)]mn = −i〈k,m|∂k|k,n〉, (5)

[Bj (kl,ki)]mn = 〈k,m|Bj |k − Gj ,n〉|kj =π . (6)

Here i,j,l = 1,2,3, |k,n〉 is the Bloch function with band index
n, and the sewing matrix originates from a nontrivial periodic
boundary condition:

H (k) = B
†
jH (k + Gj )Bj , (7)

instead of imposing the momentum dependence on a group
operation. Using the Berry phase, the Z2 topological number
is given by

(−1)ν(kl ,ki ) = ei�j (kl ,ki ), (8)

where ν(kl,ki) takes values of 0 or 1 due to the constraints
from the spatial-inversion or mirror-reflection symmetry. If
ν(kl,ki) = 1, a loop C encircles a band degeneracy, implying
that an odd number of DLNs penetrate into the inner side of

245208-3



SHINGO KOBAYASHI et al. PHYSICAL REVIEW B 95, 245208 (2017)

C. In the following, we relate the Z2 topological numbers
to spatial-inversion or mirror-reflection eigenvalues at a high
symmetric momentum. Note that a similar argument was
discussed in Refs. [35,70]. For simplicity, we assume in the
following that the nontrivial boundary condition occurs only
for the k⊥ direction, i.e., H (k⊥,k‖) = B

†
⊥H (k⊥ + G⊥,k‖)B⊥,

where k‖ is a momentum perpendicular to k⊥.
First of all, consider centrosymmetric systems. The Hamil-

tonian hosts the spatial-inversion symmetry as

PH (k)P † = H (−k), (9)

where P is the spatial-inversion operator. Under the inversion
operation, the non-Abelian Berry connection transforms as

A(k) = −P (−k)† A(−k)P (−k) − iP (−k)†∂kP (−k), (10)

where [P (k)]nm = 〈k,m|P | − k,n〉. As we consider the loop
C = {(k⊥,�‖)| − π � k⊥ � π}, where �‖ is a TRIM on the
plane perpendicular to the k⊥ direction, the integral of A(k)
becomes ∫ 0

−π

dk⊥trA⊥(k⊥,�‖)

= −
∫ π

0
dk⊥trA⊥(k⊥,�‖)

+ i

∫ π

0
dk⊥trP (k⊥,�‖)†∂k⊥P (k⊥,�‖), (11)

which yields∫ π

−π

dk⊥trA⊥(k) = i ln
det P (π,�‖)

det P (0,�‖)
+ 2πn, n ∈ Z. (12)

Substituting Eq. (12) into Eq. (4), one obtains

�⊥(�‖) = i ln
det P (π,�‖)′

det P (0,�‖)
+ 2πn, n ∈ Z, (13)

where [P (π,�‖)′]mn ≡ [P (π,�‖)B⊥(�‖)†]mn = 〈(π,�‖),m
|PB†|(π,�‖),n〉. Therefore, when we choose the basis as
[P (�)]nm = ξn(�)δmn, this results in

(−1)ν(�‖) =
∏

n∈occ

ξn(0,�‖)ξn(π,�‖), (14)

which relates the Z2 topological number to the parity eigen-
values of the TRIMs. Here ξn(�) is the eigenvalue of P at
� and takes ±1. For a surface Siη = {(kj ,kl,ki = ηπ )| − π �
kj ,kl � π} (η = 0,1), the Z2 topological number of C = ∂Siη

is given by

(−1)N(Siη) =
∏

nj ,nl=0,1

∏
n∈occ

ξn

(
�(nj ,nl ,η)

)
, (15)

where N (Siη) is the number of DLNs penetrating into Siη. Note
that when a DLN crosses ∂Siη, we slightly modify the path with
spatial-inversion symmetry. (See Fig. 2 as an example.)

Next, consider noncentrosymmetric systems. In this case,
we use the mirror-reflection symmetry instead of the spatial-
inversion symmetry. The mirror-reflection symmetry satisfies

MH (k⊥,k‖)M† = H (−k⊥,k‖), (16)

Γ(0,0,0)

k1

k2

Γ(0,1,0) Γ(1,1,0)

Γ(1,0,0) Γ(0,0,0)

Γ(0,1,0) Γ(1,1,0)

Γ(1,0,0)

Γ(0,0,0)
Γ(1,0,0)

Γ(0,1,0) Γ(1,1,0)

Γ(1,0,0)

Γ(0,1,0) Γ(1,1,0)

Γ(0,0,0)

k2

k1

S30
S30

S30 S30

(a) (b)

(c) (d)

FIG. 2. The shape of loop C = ∂S30 on the plane of k3 = 0, where
the red dots indicate the position of DLNs. Here we assume the
crossing line nodes encircle �(0,0,0) and change the path slightly in
order to avoid the line node. (a) The line node configuration h of Cs ,
Clh, Dlh, and D2h (l = 2,4,6), (b) v2d2 of D4h, (c) d3 of D3d , and
(d) v3d3 of D6h.

where M is the mirror-reflection operator. Under the mirror-
reflection operation, the non-Abelian Berry connection trans-
forms as

A(k⊥,k‖) = − M(−k⊥,k‖)† A(−k⊥,k‖)M(−k⊥,k‖)

− iM(−k⊥,k‖)†∂kM(−k⊥,k‖), (17)

where [M(k⊥,k‖)]nm = 〈(k⊥,k‖),m|M|(−k⊥,k‖),n〉. After in-
tegrating A(k) along C = {(k⊥,k‖)| − π � k⊥ � π} in a
similar manner to the case of the spatial-inversion symmetry,
it turns out that

�⊥(k‖) = i ln
det M(π,k‖)′

det M(0,k‖)
+ 2πn, n ∈ Z, (18)

where [M(π,k‖)′]mn ≡ [M(π,k‖)B⊥(k‖)†]mn = 〈(π,k‖),m
|PB†|(π,k‖),n〉. When we choose the basis that satisfies
[M(�⊥,k‖)]nm = ζn(�⊥,k‖)δmn, where �⊥ is a TRIM on a
line perpendicular to the mirror-reflection symmetric plane
and ζn(�⊥,k‖) = ±1, the Z2 topological number is described
by the mirror-reflection eigenvalues:

(−1)ν(k‖) =
∏

n∈occ

ζn(0,k‖)ζn(π,k‖). (19)

Also, if we take a loop as C = ∂Siη, which is the surface
perpendicular to the mirror-reflection symmetric plane, one
obtains

(−1)N(Siη) =
∏

nj ,nl=0,1

∏
n∈occ

ζn

(
�(nj ,nl ,η)

)
. (20)

In contrast with the spatial inversion cases, Eq. (20) is
applicable only if a DLN does not cross ∂Siη.
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Finally, we mention the connection between the Z2 topo-
logical number and Qλ. When a Dirac nodal ring exists on
the plane of k⊥ = 0 and encircles a TRIM, it follows from the
definition of Qλ that

(−1)Qλ =
∏

n∈occ

ζn(0,�‖,>)ζn(0,�‖,<)

=
∏

k⊥=0,π

∏
n∈occ

ζn(k⊥,�‖,>)ζn(k⊥,�‖,<)

= (−1)ν(�‖,<), (21)

where �‖,>(<) is a TRIM outside (inside) the nodal ring on the
plane of k⊥ = 0.

B. Z2 topological number of topological insulators

Taking into account the SOI, some cases become topo-
logical insulators. Here we prove the criterion of topological
insulators, connecting the number of DLNs with the Z2

topological number of topological insulators. We start with
the simplified expression [35]

νiη = �̃jliη(kl = 0) + �̃jliη(kl = π )

2π
mod 2, (22)

with

�̃jliη(kl) =
∮

C

dkj trAj (k)|ki=ηπ − i tr ln Bj (kl,ηπ ), (23)

where η = 0,1 and �̃jliη(kl) includes the spin degrees of
freedom, i.e., �̃jliη(kl) = 2�j (ki = ηπ,kl) in the SOI-free
limit. The Z2 topological number is obtained by ν0 = νi0 +
νi1 mod 2 and νi = νi1. Note that Eq. (22) is applicable
to noncentrosymmetric systems only when the kj axis is
perpendicular to the mirror-reflection symmetric plane. When
we choose a loop C that does not cross DLNs in systems
without SOI, the systems have a gap along C with and without
the SOI. Hence, the topological number does not change even
when the SOI is turned off. Therefore, Eq. (22) is rewritten as

(−1)νiη = exp

[
i

(
�̃jliη(kl = 0)

2
+ �̃jliη(kl = π )

2

)]

= exp
{
i
[
�j (0,ηπ ) + �j (π,ηπ )

]}
=(−1)ν(0,ηπ)+ν(π,ηπ)

=(−1)N(Siη), (24)

where N (Siη) represents the number of line nodes penetrating
into the surface Siη = {(kj ,kl,ki = ηπ )| − π � kj ,kl � π}.
Using the eigenvalues, Eq. (24) immediately leads to

νiη = N (Siη) mod 2, (25)

and Eqs. (1) and (2) in the main paper. Equation (24) is
described by, for centrosymmetric systems,

(−1)N(Siη) =
∏

kj ,kl=0,π

∏
n∈occ

ξn(kj ,kl,ki = ηπ ), (26)

and, for noncentrosymmetric systems,

(−1)N(Siη) =
∏

kj ,kl=0,π

∏
n∈occ

ζn(kj ,kl,ki = ηπ ). (27)

Concretely, consider a crossing DLN encircling �(0,0,0) in a
centrosymmetric system. In this case, the Z2 topological num-
ber (22) is calculated as ν11 = ν21 = ν31 = 0 and ν10 = ν20 =
ν30 = N (�(0,0,0)) mod 2, where N (�(0,0,0)) is the number of
line nodes encircling �(0,0,0). Thus, one obtains

ν1 = ν2 = ν3 = 0, (28)

ν0 = N (�(0,0,0)) mod 2. (29)

Therefore, when the SOI makes a gap, the systems with an
odd number of DLNs become topological insulators.

V. DRUMHEAD SURFACE STATES

The one-dimensional Z2 invariant ν [Eq. (8)] does not
exactly guarantees the presence of drumhead surface states
[7,35]. For instance, when a nodal ring is located on the
kz = 0 plane which is reflection invariant, drumhead surface
states appear on the (001) surface, which is parallel to
the mirror plane and breaks the (001)-reflection symmetry.
Namely, drumhead surface states are not protected by mirror-
reflection symmetry. Nevertheless, the partial correspondence
between the invariant ν and drumhead surface states holds as
follows. In the particle-hole-symmetric limit, the symmetry
class of the system is raised from AI to AIII [13–15], where
the chiral-symmetry-protected Z topological invariant W is
defined and its parity is given by ν, i.e., (−1)ν = (−1)W .
Then, the bulk-edge correspondence exactly holds hence there
are completely flat-band zero-energy surface states within
the nodal ring. Adding a perturbation which weakly breaks
particle-hole symmetry into the system, surface states slightly
move away from the zero energy. Eventually the energy
dispersion of the surface states forms a drumhead-shaped band
in weakly particle-hole-symmetry-breaking systems.

Here we show an example of drumhead surface states
for crossing-line-node semimetals. We examine two minimal
models consisting of A1g (s-like) and A2u (pz-like) orbitals
(A1g–A2u model) and of A1g and B1g (dx2−y2 -like) orbitals
(A1g–B1g model) under the D4h point-group symmetry.
The Hamiltonians for these models are explicitly shown in
Appendix C. Line nodes appear on the kz = 0 plane (h) in
the former model [Fig. 3(a)] while on the diagonal mirror
planes (kx = ±ky) but not on the vertical planes (kx,ky = 0,π )
(d2) in the latter model [Fig. 3(b)]. The configurations h

and d2 of line nodes are consistent with the general theory
discussed in the main manuscript. Moreover, the general
formulas Eqs. (19) and (21) derived in the previous section
tells us that the one-dimensional invariant ν[hkl](k‖), where the
subscript [hkl] denotes the direction of the integral path and k‖
is perpendicular to [hkl], is obtained as follows: ν[001](k‖) = 1
for the A1g–A2u model and ν[110](k‖) = ν[11̄0](k‖) = 1 for
the A1g–B1g model for k‖ located within the line nodes.
Additionally, in the latter model, ν[100](k‖) = ν[010](k‖) = 0
holds because there is no line node on the (100) and (010)
planes. Correspondingly, there exist surface states on the (001)
surface of the former model and on the (110) and (11̄0) surfaces
of the latter model while there is no surface state on the (100)
and (010) surfaces in the latter model, as numerically verified
below.
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FIG. 3. Line nodes and angle-resolved surface density of states
for the A1g–A2u [(a)–(c)] and A1g–B1g [(d)–(f)] models.

We show the angle-resolved density of states on two
different surfaces for the two models by calculating the surface
Green’s function [90,91]. There exists a drumhead surface
state within the line node on both the (001) [Fig. 3(b)] and
(101) [Fig. 3(c)] surfaces of the A1g–A2u model. The A1g–B1g

model, on the other hand, has no surface state on the (100)
surface, as shown in Fig. 3(e), because the two line nodes have
completely overlapped onto the (100) surface. On the other
surfaces, e.g., the (110) surface shown in Fig. 3(f), surface
states can emerge in the region in which the line nodes are
not overlapping. This result is also consistent with the general
theory.

VI. APPLICATION TO RARE-EARTH TRIHYDRIDES

Applying the general theory, we show that a hexagonal rare-
earth trihydride with the HoD3 structure is a crossing-line-node
semimetal with three line nodes. As a representative of the
HoD3-structure materials, we consider the hexagonal YH3.
Results for LuH3 and ferromagnetic GdH3 are also shown.
In the present work, the band structure is calculated using
the WIEN2k code [92]. We used the full-potential linearized
augmented plane-wave method within the generalized gradient
approximation. 10 × 10 × 8 k point sampling was used for the
self-consistent calculation.

A. YH3

The gapless band structure in the hexagonal YH3 was
originally proposed by Dekker et al. [80] and is verified by
our calculation, as shown in Fig. 4.

Nearly gapless band dispersions are found on the �M , �K ,
and �A lines. The detailed calculation shown in Fig. 5(a)
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A2g

0.5 1
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Y

E
[e

V
]
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(b) (c)

(a)

FIG. 4. (a) Energy band and density of states of hexagonal YH3.
The inset shows three crossing line nodes on the M�AL planes,
which corresponds to d3 of D3d in Table I and Fig. 1(a). The solid
(red) and dashed (blue) lines denote the density of states of the H and
Y atoms, respectively. (b) Top and (c) side views of the crossing line
nodes corresponding to the inset of (a).

FIG. 5. Energy bands of YH3 near the crossing line nodes
(a) without and (b) with SOI.
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reveals that the band gap closes at 0.13 Å−1 on the �M lines
and at 0.14 Å−1 on the �A lines while the gap opens by 4 meV
on the �K line. Moreover, the conduction and valence bands
at the � point are assigned to the A2u and A2g representations
of D3d , respectively.

From the general theory, the system must host three crossing
line nodes in the A2g–A2u scheme. Three crossing line nodes
are actually seen on the three mirror (M�AL) planes. The
location of the nodes is depicted in the inset of Fig. 4. On the
�K line, a tiny band gap opens since the K�AH planes are
not mirror planes. On other low-symmetry lines, the band
gap is also weakly generated, on the order of 1 meV. In
other words, the system could behave as a Dirac-surface-node
semimetal such as graphene networks [93] and BaMX3 (M =
V, Nb, Ta; X = S, Se) [89], except for the low-energy and
low-temperature regime (less than 1 meV).

It is worth mentioning that the Fermi surface of the
hole-doped system mainly consists of the 1s orbitals of the
H atoms (see the right panel of Fig. 4). At EF = −0.5 eV, at
which the carrier density is about 1020 cm−3, 90% of the total
density of states comes from the 1s orbitals of H. This Fermi
surface might lead to high-temperature superconductivity, as in
hydrogen sulfide [94–96]. Indeed, YH3 has been predicted to
be a superconductor below 40 K under 17.7 GPa [97], although
the crystal structure is not the HoD3 structure but the fcc under
pressure [98–102].

As mentioned above, the crossing line nodes realize and
encircle the � point, which has the D3d -point-group symmetry.
The conduction and valence bands at the � point are not
degenerate, i.e., belong to the 1D IRRs of the D3d point
group. Then our general theory shown in Table I and Eqs. (1)
and (2) tells us that the SOI induces a gap on the crossing
line nodes. The resulting gapped state is a strong topological
insulator of (1;000). Notice that, strictly speaking, the system
is semimetallic but the topological invariants are well defined
since the direct gap opens at any momenta. The first-principles
data, which are shown in Fig. 5(b), coincides with this
prediction. The induced spin-orbit gap is estimated to be on
the order of 1 meV. The SOI of the Y atom is small because it
is not a heavy element. The SOI of the H atom is, obviously,
negligible. Note that the Dirac point on the A point, which
is located 0.7 eV below the Fermi level, still remains even in
the presence of SOI, due to the nonsymmorphic symmetry of
P 3̄c1 [3].

Finally, we construct a low-energy effective k · p Hamilto-
nian in the vicinity of the � point to describe the crossing line
nodes and SOI, as follows:

H0(k) = c(k)σ0s0 + m(k)σ3s0 + A
(
k3
x − 3kxk

2
y

)
σ2s0

+O(k4), (30)

HSOI(k) = λ1σ1szkz + λ2σ1(sxkx + syky) + O(k3), (31)

c(k) = c0 + c1k
2
z + c2

(
k2
x + k2

y

)
, (32)

m(k) = m0 + m1k
2
z + m2

(
k2
x + k2

y

)
. (33)

Here σi denotes the Pauli matrix for the orbitals (σ3 = ±1
for the A2g and A2u orbitals, respectively). si denotes the

FIG. 6. Angle-resolved density of states D(k‖,E) on the (001)
surface of YH3.

Pauli matrix for the spin. The parameters are determined to
reproduce the crossing line nodes of the first-principles data:

c0 = 0.01391 eV,

c1 = −0.5444 eV Å2,

c2 = 0.1185 eV Å2,

m0 = −0.15156 eV,

m1 = 8.082 eV Å2,

m2 = 8.314 eV Å2,

A = 0.70 eV Å3,

λ1 = 0.01395 eV Å,

λ2 = 0.00621 eV Å.

As seen in Fig. 4, the band structure is nearly isotropic and
particle-hole symmetric, hence the parameters approximately
satisfy m1 ∼ m2 and ci � mi . Calculating the surface states
of the above effective model, we verify that YH3 is a
strong topological insulator of (1; 000). We focus on the
(001) surface. kz in the above Hamiltonian is regularized as
kz → sin(kzc)/c and k2

z → 2[1 − cos(kzc)]/c2. The obtained
lattice Hamiltonian is solved by using the recursive Green’s
function technique [90,91], and the angle-resolved density of
states on the (001) surface is shown in Fig. 6.

The system is, as mentioned above, a semimetal but hosts
gapless surface states around the �̄ point, which is projected
from the � point onto the surface, within the direct gap. This
directly proves that the direct gap of YH3 is characterized by
the topological indices (1;000).

B. Other rare-earth trihydrides

HoD3-structured materials without correlations ubiqui-
tously exhibit crossing line nodes in the band gap. We show the
energy band structure of LuH3, which has 14 f electrons, with
the HoD3 structure as another example of a crossing-line-node
semimetal. The lattice constant is taken from the calculated
value in Ref. [103].

The obtained first-principles band structure shown in Fig. 7
is quite similar to that for YH3 (Fig. 4) without correlation
effects, i.e., three crossing line nodes (d3 of D3d in Table I)
are realized.
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FIG. 7. Energy band of LuH3 with the P 3̄c1 symmetry.

One more example is ferromagnetic GdH3 with the HoD3

structure, where Gd’s have S = 7/2 spins. The energy bands
for spin up (majority) and for spin down (minority) are shown
in Fig. 8. The f electrons migrate from the Fermi level to
higher-energy regions. The remaining spin-up state hosts three
crossing line nodes, as with LuH3 (Fig. 7), while the spin-
down state is insulating. The resulting state is a crossing-line-
node (d3) half semimetal. Note that, in the actual material of
GdH3, the antiferromagnetic state is more stable [104] than the
ferromagnetic state as the ground state and has been observed
below TN = 1.8 K [105,106].

VII. SUMMARY

We studied a general theory classifying crossing-line-node
semimetals under point-group symmetries. The classification
tells us the configuration of crossing line nodes for a given level
scheme of conduction and valence bands. This also enables
us to determine whether the crossing line nodes are gapped
by the SOI from the configuration of the nodes. This will
be quite important for materials development, i.e., one can
predict materials being topological insulators and semimetals
by exploring the band-calculation database in the absence of
SOI, without any detailed calculations.

We found that the rare-earth trihydride YH3, as a rep-
resentative of HoD3-structure materials, is a crossing-line
node semimetal, which hosts three line nodes on the mirror-
reflection-invariant planes. Although YH3 is known to prob-
ably be an insulator by correlation effects, the present study
encourages us to address materials with the HoD3 structure
and promises to realize a new topological semimetal.

This study has extensively revealed the electronic states
of crossing line nodes. There, on the other hand, remains

−2

−1

0

1

2

Γ MK Γ A L Γ
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E
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]
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FIG. 8. Energy bands for (a) spin up and (b) spin down states in
ferromagnetic GdH3.

an interesting issue: topological transports and responses in
crossing-line-node semimetals. The configuration is distinct
from those of other point, line, and surface nodal structures.
Therefore, we expect new topological quantum phenomena in
crossing-line-node semimetals, which should be clarified in
future work.
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APPENDIX A: TABLES OF LINE NODE
CONFIGURATIONS FOR 1D IRRS

Tables III, IV, and V show the correspondence between the
level schemes and line node configurations building on the
criteria, where mi and 0 indicate i line nodes protected by σm

TABLE III. Line node configurations, level schemes, and the
effect of SOI in Dnd and Cnv for 1D IRRs.

Dnd (n = 2,4,6)
A1 A2 B1 B2

A1 0 dn/I dn/I 0
A2 0 0 dn/I
B1 0 dn/I
B2 0

D3d

A1g A2g A1u A2u

A1g 0 d3/TI d3/TI 0
A2g 0 0 d3/TI
A1u 0 d3/TI
A2u 0

C2v

A1 A2 B1 B2

A1 0 (xz)(yz)/I (yz)/I (xz)/I
A2 0 (xz)/I (yz)/I
B1 0 (xz)(yz)/I
B2 0

C3v

A1 A2

A1 0 v3/TI
A2 0

C2nv (n = 2,3)
A1 A2 B1 B2

A1 0 vndn/I dn/DP vn/DP
A2 0 vn/DP dn/DP
B1 0 vndn/I
B2 0
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TABLE IV. Line node configurations, level schemes, and the effect of SOI in Dnh for 1D IRRs.

D2h

Ag B1g B2g B3g Au B1u B2u B3u

Ag 0 h2/NI h2/NI h2/NI h3/TI h/TI h/TI h/TI
B1g 0 h2/NI h2/NI h/TI h3/TI h/TI h/TI
B2g 0 h2/NI h/TI h/TI h3/TI h/TI
B3g 0 h/TI h/TI h/TI h3/TI
Au 0 h2/NI h2/NI h2/NI
B1u 0 h2/NI h2/NI
B2u 0 h2/NI
B3u 0

D3h

A′
1 A′

2 A′′
1 A′′

2

A′
1 0 v3/TI hv3/I h/TI

A′
2 0 h/TI hv3/I

A′′
1 0 v3/TI

A′′
2 0

D4h

A1g A2g B1g B2g A1u A2u B1u B2u

A1g 0 v2d2/NI d2/DP v2/DP hv2d2/TI h/TI hv2/DP hd2/DP
A2g 0 v2/DP d2/DP h/TI v2d2/NI hd2/DP hv2/DP
B1g 0 v2d2/NI hv2/DP hd2/DP hv2d2/TI h/TI
B2g 0 hd2/DP hv2/DP h/TI hv2d2/TI
A1u 0 v2d2/NI d2/DP v2/DP
A2u 0 v2/DP d2/DP
B1u 0 v2d2/NI
B2u 0

D6h

A1g A2g B1g B2g A1u A2u B1u B2u

A1g 0 v3d3/NI hv3/DP hd3/DP hv3d3/TI h/TI d3/DP v3/DP
A2g 0 hd3/DP hv3/DP h/TI hv3d3/TI v3/DP d3/DP
B1g 0 v3d3/NI d3/DP v3/DP hv3d3/TI h/TI
B2g 0 v3/DP d3/DP h/TI hv3d3/TI
A1u 0 v3d3/NI hv3/DP hd3/DP
A2u 0 hd3/DP hv3/DP
B1u 0 v3d3/NI
B2u 0

and the absence of a stable line node. After including the SOI,
when crossing DLNs encircle a TRIM, they transform into
normal (NI)/topological (TI) insulators or a Dirac point (DP).
For the case of I, the SOI makes a gap on the crossing DLNs,
but we cannot determine whether the system becomes a TI or
NI from the point-group symmetries.

APPENDIX B: SYMMETRY-ADAPTED EFFECTIVE
MODELS

First of all, consider a level scheme consisting of 1D
IRRs �1a and �1b. The low-energy effective Hamiltonian is
generally described by

H (k) = f0(k)σ0 + fz(k)σz + f+(k)σ+ + f+(k)∗σ−, (B1)

where (σ0,σ ) are the 2 × 2 identity and Pauli matrices
in the orbital space and σ± = (σx ± iσy)/2. We assume
that the Hamiltonian (B1) possesses time-reversal symmetry,

which demands that f0(k)∗ = f0(−k), fz(k)∗ = fz(−k), and
f+(k)∗ = f+(−k). The group operation on this Hamiltonian
is defined by

U (g)†H (k)U (g) = H (D(g)k), (B2)

where U (g) is a unitary matrix in terms of g in the orbital
space and D(g) represents a rotation matrix concerning g

in the momentum space. Since we focus on the 1D IRRs,
U (g) becomes ±σ0 or ±σz. In particular, the mirror-reflection
operations σh, σv , and σd are given as follows:

(1) σh in Cs , Cnh, Dnh, Th, and Oh:

U (σh)†H (kx,ky,kz)U (σh) = H (kx,ky, − kz). (B3)

(2) σv(yz) in C2v and D2h; σv in Cnv and Dnh (n = 3,4,6);
σd in Dld (l = 2,3,4,6):

U (σv(d))
†H (kx,ky,kz)U (σv(d)) = H (−kx,ky,kz). (B4)
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TABLE V. Line node configurations, level schemes, and the effect
of SOI in Td , Th, and Oh for 1D IRRs.

Td

A1 A2

A1 0 d6/I
A2 0

Th

Ag Au

Ag 0 h3/TI
Au 0

Oh

A1g A2g A1u A2u

A1g 0 d6/DP h3d6/TI h3/DP
A2g 0 h3/DP h3d6/TI
A1u 0
A2u 0

(3) σv(xz) in C2v and D2h; σd in C6v and D6h:

U (σv(d))
†H (kx,ky,kz)U (σv(d)) = H (kx, − ky,kz). (B5)

(4) σd in C4v , D4h, Td , and Oh:

U (σd )†H (kx,ky,kz)U (σd ) = H (ky,kx,kz). (B6)

Assuming that the crossing energy bands appear around the
σm (m = h,v,d)-symmetric planes, the crossing line is stable
if f+ = 0 on the σm-symmetric planes because the f+ term
describes the band mixing between �1a and �1b and makes
a gap. Thus, the stable DLNs requires that U (σm) = ±σz,
leading to f+(k‖,k⊥) = −f+(k‖, − k⊥), where k‖ and k⊥ are
the momenta parallel to and perpendicular to the σm-symmetric
planes. This condition is consistent with the criterion in the

main paragraph. Table VI shows the symmetry-adapted f+(k)
for each line node configuration.

Next, consider a level scheme consisting of 2D (3D)
IRRs (�2a,�2b) [(�3a,�3b)]. To avoid cumbersome multiband
effects, we ignore the level splitting and consider doubly
(triply) degenerate conduction and valence bands as a starting
point. In that case, the energy bands all form a DLN, and it
is possible to decompose the effective Hamiltonian for 2D
(3D) IRRs into two (three) 2 × 2 effective Hamiltonians in
terms of 1D IRRs. As an example of 2D IRRs, we discuss
the level scheme (E,E) for C3v . The symmetry operators are
defined as

U (σd ) = diag[1, − 1,1, − 1], (B7)

U (C3) = 1

2

⎛
⎜⎜⎝

−1 −√
3 0 0√

3 −1 0 0
0 0 −1 −√

3
0 0

√
3 −1

⎞
⎟⎟⎠. (B8)

Then, the symmetry-adapted effective Hamiltonian is
given by

H (k) =

⎛
⎜⎜⎜⎝

f0(k) 0 0 ivRe[k3
+]

0 f0(k) −ivRe[k3
+] 0

0 ivRe[k3
+] g0(k) 0

−ivRe[k3
+] 0 0 g0(k)

⎞
⎟⎟⎟⎠,

(B9)

where f0(k) = c0 + c1k
2
z + c2(k2

x + k2
y) and g0(k) = c′

0 +
c′

1k
2
z + c′

2(k2
x + k2

y). Here c0, c1, c2, c′
0, c′

1, c′
2, and v are

material dependent parameters. The effective Hamiltonian can
be described by the block-diagonal form H+v3 (k) ⊕ H−v3 (k),
where H±v3 (k) is a 2 × 2 effective Hamiltonian with f+(k) =
±ivRe[k3

+]. When f0 and g0 cross on the σv-symmetric planes,
we obtain six DLNs and label this line node configuration as

TABLE VI. Symmetry-adapted f+(k) for each line node configuration in point groups (PGs), where k± = kx ± iky . We show f+(k) for dn

of Dnd when U (C ′
2) is given by U (C ′

2) = ±σ0.

PG Line nodes f+(k)

Cs,Cnh h kz

D3d d3 Re[kn
+]

Dnd (n = 2,4,6) dn Im[kn
+]

C2v (xz); (yz); (yz)(xz) ky ; kx ; kxky

C3v v3 Re[k3
+]

C4v v2; d2; v2d2 Im[k2
+]; Re[k2

+]; Re[k2
+]Im[k2

+]
C6v v3; d3; v3d3 Re[k3

+]; Im[k3
+]; Re[k3

+]Im[k3
+]

D2h (xz); (yz); (xy); ky ; kx ; kz;
(xz)(yz); (yz)(xy); (xz)(xy); (yz)(xz)(xy) kykx ; kxkz; kykz; kxkykz

D3h h; v3; hv3 kz; Re[k3
+]; kzRe[k3

+]
D4h h; v2; d2; v2d2; kz; Im[k2

+]; Re[k2
+]; Re[k2

+]Im[k2
+];

hv2; hd2; hv2d2 kzIm[k2
+]; kzRe[k2

+]; kzRe[k2
+]Im[k2

+]
D6h h; v3; d3; kz; Re[k3

+]; Im[k3
+];

v3d3; hv3; hd3; hv3d3 Re[k3
+]Im[k3

+]; kzRe[k3
+]; kzIm[k3

+]; kzRe[k3
+]Im[k3

+]
Td d6 (k2

x − k2
y)(k2

y − k2
z )(k2

z − k2
x)

Th h3 kxkykz

Oh h3; d6; kxkykz; (k2
x − k2

y)(k2
y − k2

z )(k2
z − k2

x);
h3d6 kxkykz(k2

x − k2
y)(k2

y − k2
z )(k2

z − k2
x)
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2v3, where nmi represents i nth-degenerate DLNs protected
by σm, i.e., n × i line nodes appear on the σm-symmetric
plane. To check the effect of band splitting, we include it
as a perturbation: H (k) + H ′(k) with

H ′(k) =

⎛
⎜⎜⎜⎝

v1Re[k2
+] v1Im[k2

−] v2Re[k2
+] v2Im[k2

−]

v1Im[k2
−] −v1Re[k2

+] v2Im[k2
−] −v2Re[k2

+]

v2Re[k2
+] v2Im[k2

−] v1Re[k2
+] v1Im[k2

−]

v2Im[k2
−] −v2Re[k2

+] v1Im[k2
−] −v1Re[k2

+]

⎞
⎟⎟⎟⎠.

(B10)

Since the three σv-symmetric planes are equivalent, we focus
on the σv-symmetric plane of kx = 0, on which the eigenvalues
of H (k) + H ′(k) are

ε1±(k) = f0 + g0

2
+ v1k

2
y ±

√
(f0 − g0)2

4
+ v2

2k
2
y, (B11)

ε2±(k) = f0 + g0

2
− v1k

2
y ±

√
(f0 − g0)2

4
+ v2

2k
2
y. (B12)

The energy bands are plotted in Fig. 9. The small band
splitting does not break the 2v3 line node structure when
v1 > v2 [see Fig. 9(a)]. On the other hand, for large v1,
2v3 changes to v3 due to the change in band structure [see
Fig. 9(b)]. Thus, although there exist at most two line nodes
on a σv-symmetric plane, we can engineer the line node
configuration from 2v3 to v3 or 0 by the band splitting H ′(k). In
a similar manner, we can construct symmetry-adapted effective
models for 3D IRRs. For example, consider the level scheme
consisting of (T2g,T1u) of Oh. In this case, the Hamiltonian
is block-diagonalized as Hh3 (k) ⊕ Hh3 (k) ⊕ Hh3 (k), where
Hh3 (k) is a 2 × 2 effective Hamiltonian with f+(k) = vkxkykz.
Thus, we obtain nine DLNs, labeled by 3h3. After including
the effect of band splitting, 3h3 changes to 2h3, h3, or 0.
In general, the decomposition of level schemes (�2(3)a,�2(3)b)
into Hmi (k) is possible if �∗

2(3)a × �2(3)b includes a 1D IRR
whose character of mi is −1. We list possible decompositions
for level schemes with 2D and 3D IRRs in Table VII.
Our method derives symmetry-adapted effective models in a
comprehensive fashion, but accidental line nodes often occur
off mirror-reflection symmetric planes.

Finally, we mention the cases that level schemes consist
of different dimensional IRRs, such as (�1a,�2b), (�1a,�3b),
and (�2a,�3b). In this case, the above decomposition is not

TABLE VII. Possible line node configurations for level scheme
with 2D and 3D IRRs, where we ignore the effect of band splittings.
nmi represents i nth-degenerate line nodes protected by σm on σm-
symmetric planes, i.e., n × i line nodes appear in total. Taking into
account band splittings, the line node configurations change from nmi

to (n − 1)mi , (n − 2)mi , . . . , mi , or 0, depending on the magnitude
of the band splittings.

PG Level scheme Line nodes

C3h (E′,E′′) 2h

C4h (Eg,Eu) 2h

C6h (E1g(u),E2g(u)), (E1(2)g,E1(2)g) 2h

D2d (E,E) 2d2

D3d (Eg(u),Eg(u)), (Eg,Eu) 2d3

D4d (Ei,Ei)|i=1,2,3, (E1,E3) 2d4

D6d (Ei,Ei)|i=1,2,3,4,5, (Ei,E6−i)|i=1,2 2d6

C3v (E,E) 2v3

C4v (E,E) 2v2, 2d2, 2v2d2

C6v (E1(2),E1(2)) 2v3d3

(E1,E2) 2v3, 2d3

D3h (E
′(′′),E

′(′′)) 2v3

(E
′
,E

′′
) 2h, 2hv3

D4h (Eg(u),Eg(u)) 2v2, 2d2, 2v2d2

(Eg,Eu) 2h, 2hv2, 2hd2, 2hv2d2

D6h (E1g(u),E1g(u)), (E2g(u),E2g(u)) 2v3d3

(E1g(u),E2g(u)) 2hv3, 2hd3

(E1(2)g,E1(2)u) 2h, 2hv3d3

(E1g(u),E2u(g)) 2v3, 2d3

Td (E,E) 2d6

(T1,T2) 3d6

Th (Eg,Eu) 2h3

(Tg,Tu) 3h3

Oh (Eg,Eg) 2d6

(Eg,Eu) 2h3, 2h3d6

(T1g(u),T2g(u)) 3d6

(T1g(u),T1g(u)) 3h3d6

(T1g(u),T2u(g)) 3h3

applicable because when we ignore a band splitting, a band
always remains uncoupled with other bands, resulting in a
metallic phase. Hence, we need to remove the unwanted energy
bands away from the Fermi level by a band splitting. Then we
can engineer mirror-reflection symmetry-protected line nodes
in a similar manner.

E

ky
0-1 212-

1

-1

2

-2

E

ky
2

2

1

1

0

-1

-1-2

-2

ε1+
ε2+
ε1−
ε2−

(b)(a)

FIG. 9. Evolution from double line nodes 2v3 to single line node v3. The energy bands of the effective model for 2D IRRs defined by
Eqs. (B11) and (B12) with parameters (c0,c2,c

′
0,c

′
2,kz) = (−1,1,1, − 1,0). v1 = 0.5 and v2 = 0.3 for (a). v1 = 2.5 and v2 = 0.3 for (b).
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APPENDIX C: EFFECTIVE MODELS

1. A1g–A2u model in D4h

k · p Hamiltonian:

H (k) = c(k)σ0 + m(k)σz + vkzσy, (C1)

with

c(k) = c0 + c1k
2
z + c2

(
k2
x + k2

y

)
, (C2)

m(k) = m0 + m1k
2
z + m2

(
k2
x + k2

y

)
, (C3)

up to the second order of the momentum k. The Hamiltonian
is regularized on the cubic lattice into

H ′(k) = c′(k)σ0 + m′(k)σz + v sin kzσy, (C4)

with

c′(k) = c0 + 2c1(1 − cos kz) + 2c2(2 − cos kx − cos ky),
(C5)

m′(k) = m0 + 2m1(1 − cos kz)

+ 2m2(2 − cos kx − cos ky). (C6)

In order to calculate the surface electronic states, we set the
semi-infinite Hamiltonian as

H (k1,k2) =
∑

n

c†nεcn +
∑

n

(c†ntcn+1 + c
†
n+1t

†cn). (C7)

On the (001) plane, for k1 = kx and k2 = ky , the on-site and
hopping matrices are given by

ε001 = [c0 + 2c1 + 2c2(2 − cos k1 − cos k2)]σ0

+ [m0 + 2m1 + 2m2(2 − cos k1 − cos k2)]σz, (C8)

t001 = −c1σ0 − m1σz − i
v

2
σy. (C9)

On the (101) plane, for k1 = (kx + kz)/
√

2 and k2 = ky , we
have

ε101 = [c0 + 2c1 + 2c2(2 − cos k2)]σ0

+ [m0 + 2m1 + 2m2(2 − cos k2)]σ0 (C10)

and

t101 =
[

(−c1 − c2) cos
k1√

2
+ i(−c1 + c2) sin

k1√
2

]
σ0

+
[

(−m1 − m2) cos
k1√

2
+ i(−m1 + m2) sin

k1√
2

]
σz

+
(

v

2
sin

k1√
2

− i
v

2
cos

k1√
2

)
σy. (C11)

The parameters are set at m0 = −1, m1 = 1.3, m2 = 1.2, v =
1.1, c0 = 0, c1 = 0.2, c2 = 0.3 in the calculation (Fig. 3).

2. A1g–B1g model in D4h

Similarly, we construct an effective model consisting of
A1g and B1g orbitals under the D4h point-group symmetry.
The k · p Hamiltonian has the form

H (k) = c(k)σ0 + m(k)σz + v
(
k2
x − k2

y

)
σx (C12)

and

H ′(k) = c′(k)σ0 + m′(k)σz + 2v(− cos kx + cos ky)σx

(C13)

on the cubic lattice, where c(k), m(k), c′(k), and m′(k) are the
same as in the previous subsection. The corresponding lattice
Hamiltonian has the same form as Eq. (C7). The hoppings are
given by

ε100 = [c0 + 2c1(1 − cos kz) + 2c2(2 − cos ky)]σ0

+ [m0 + 2m1(1 − cos kz) + 2m2(2 − cos ky)]σz

+ 2v cos kyσx (C14)

and

t100 = −c2σ0 − m2σz − vσx, (C15)

with the (100) surface, and by

ε110 = [c0 + 2c1(1 − cos kz)]σ0

+ [m0 + 2m1(1 − cos kz)]σz (C16)

and

t110 = −2c2 cos
k1√

2
σ0 − 2m2 cos

k1√
2
σz + i2v sin

k1√
2
σx,

(C17)

with the (110) surface.
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