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Abstract

Pinholes are formed on surfaces of metals by the exposure to helium plasmas, and they are

regarded as the initial process of the growth of fuzzy nanostructures. In this study, number density

of the pinholes is investigated in detail from the scanning electron microscope (SEM) micrographs

of tungsten and tantalum exposed to the helium plasmas. A power law relation was identified

between the number density and the size of pinholes. From the slope and the region where the

power law was satisfied, the fractal dimension D and smin, which characterize the SEM images,

are deduced. Parametric dependences and material dependence of D and smin are revealed. To

explain the fractality, simple Monte-Carlo simulations including random walks of He atoms and

absorption on bubble was introduced. It is shown that the initial position of the random walk

is one of the key factors to deduce the fractality. The results indicated that new nucleations of

bubbles are necessary to reproduce the number-density distribution of bubbles.
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I. INTRODUCTION

Helium (He) plasma irradiation leads to fuzzy nanostructures on metallic surfaces [1–4].

From experiments, it was suggested that the growth and migration of He bubbles are deeply

related with the formation of the nanostructures [5, 6]. To understand the mechanism of the

growth of the nanostructures in more detailed manner, various theoretical and simulation

works have been conducted [7–17]. For ex., the nucleation of the helium bubble in tungsten

materials had been researched by using calculations based on density functional theory

(DFT) [11, 12, 18–20]. The DFT researches clarified that helium atoms easily nucleate in

tungsten materials. The growth to larger bubbles from a nuclei had also been simulated by

using molecular dynamics (MD) [15, 21–25].

To confirm the physics involved, it is of importance to compare quantitatively between

theoretical studies and experiments with some indices. Comparisons were made on the sur-

face pinhole densities and sizes [7], the temperature ranges of nanostructure growth condition

[9], and the nanostructured layer thickness [16]. One of the methods to quantify the mor-

phology changes is the fractal analysis. It was found that the nanostructures have fractality

in various point of view [26, 27]: the surface morphology, the relations between the porosity

and height, and pinhole number and sizes. Concerning the pinholes on the surfaces, which

should reflect the bubbles formed in the metals, it is of interest to investigate because they

are highly likely to play crucial roles on morphology changes.

In this study, focusing on pinholes formed on the surface by the exposure to the He

plasmas, the size distribution of the pinholes formed on tungsten (W) and tantalum (Ta)

samples are investigated in detail using scanning electron microscope (SEM) micrographs

observed from the top. It is shown that a power law relation can be identified between the

cumulative number of pinholes formed on the surface and its sizes and that they varied with

the He fluence, the surface temperature, and so on.

To demonstrate the fractality identified on the size of bubbles, simple Monte-Carlo (MC)

models are introduced to model the growth of He bubbles on metals. Until now, the number-

size relation of He bubbles has been discussed using the MD simulation [24], which can

directly observe the growth process and the emission of loop punching. However, by the

limitation of space and time scales due to computer resources, the sample number of helium

bubbles is insufficient to discuss the fractal structure in the MD. Although the kinetic Monte-
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Carlo (KMC) [28] and objective KMC [29] can probably treat the sufficient space and time

scales, simpler models may be better to investigate the origin of the fractality identified. In

Sec. II, after explaining analysis method, experimental observations on W and Ta surfaces

are shown. In Sec. III, two MC simulation models are introduced. Based on comparisons

of simulation results, we will discuss key processes to exhibit the fractality.

II. EXPERIMENTAL OBSERVATION

A. Method

Figure 1(a) show an SEM micrographs of the He irradiated sample with the contrast

profile. The sample is a single crystal (SC) W with the crystal orientation of {100}. The

sample was exposed to the He plasma in the divertor simulator NAGDIS-II (Nagoya Divertor

Simulator) at the incident ion energy of 55 eV at the surface temperature of 1800 K up to

the He fluence of 1.8×1025 m−2. In Table I, the samples and the irradiation conditions

used for the analysis are summarized, and W2 is the sample used in Fig. 1. In addition

to SC-W, polycrystalline (PC) W sample was used. Major important parameters, i.e., the

surface temperature, the incident ion energy, and the He fluence are shown in Table I. In

the contrast profile in Fig. 1(a), we can see that there is a peak in the contrast level around

120-130. In Fig. 1(b), three digitized images with the threshold level of 40, 60, and 80 are

shown. All the three cases are in the left wing (bright side) of the contrast distribution and

only pinholes are counted as black pixels.

Figure 1(c) shows the cumulative number density distribution of pinholes as a function

of the hole area measured from the digitized images. From the double logarithmic plot, it

can be identified that the relation between the number density of pinholes, N , and the hole

area, S, satisfied the power law relation, namely,

N ∝ S−D/2. (1)

Here, the value D corresponds to the steepness of the slope, and the factor of two below D in

Eq. (1) was used to discuss the relation between the number density and the characteristic

length of the hole, typically the diameter. The number of the black dots, consequently, D

increased with increasing the contrast threshold. This is probably because the influence

of the threshold would be more sensitive for smaller holes. In this image, we think that
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the threshold of 80 was too high and better to eliminate the influence of the noises on the

images by decreasing the threshold from 1.57±0.08 at the threshold of 40 to 1.89±0.05 at

80, because it was identified in some location that two pinholes connected and changed the

profile. Here, the error represented a fitting error obtained in the fitting process. Although

the threshold should depend on the brightness of the image, we usually use the threshold

lower than 50. We should admit that the value D obtained from this method using SEM

images have some inevitable ambiguity caused from the contrast, typically less than ±10%.

In addition to the slope D, another important parameters for the analysis the minimum

area where the power law is satisfied, smin. From Fig. 1(c), for ex., smin can be obtained

from the knee of the slope, roughly, 104 nm2.

B. Tungsten

Figures 2(a-1)-(a-3) show SEM micrographs of the sample W4. It is known that there

is a threshold in the incident ion energy for the formation of the nanostructures around

20-30 eV [6]. Because the incident ion energy of W4 was on the border of the threshold,

the fiberform structure did not grow on the surface, though the He fluence was much higher

than recognized necessary fluence of 5×1025 m−2. The grain orientation was determined by

an orientation imaging microscope (OIM) [30].

The analysis was conducted for surfaces with the crystal orientation of {001}, {113}, and

{407}. The profile slightly altered with changing the crystal orientation. On {113} surface,

the obtained D was 2.63±0.10, and smin was estimated to be 4.2×102 nm2. On {001} surface,

the number density slightly increased at S ∼ 103 nm2, and the slope decreased compared

with the {113} surface. Approximately, variation in D by crystal orientation was 20%.

Figures 3(a-1)-(a-3) show SEM micrographs of W1-W3, respectively, and the relations

between the hole density and the hole area are shown in Fig. 3(b). It is seen that D and

smin both increased with the He fluence: from 1.46 ± 0.18 to 2.29 ± 0.14 for D and from

2.4×102 to 1.4×103 nm2 for smin.

They are not only dependent on the He fluence, but on other parameters as well such as

the irradiated surface temperature. Figures 4(a-1)-(a-2) show SEM micrographs of W1 and

W5, respectively, and Fig. 4(b) shows the cumulative number density distribution of pinholes

as a function of the pinhole area. The irradiation temperature of W1 and W5 was 1800 and
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1200 K, respectively. Although the fluence of W5 was twice lower compared with that of

W5, the temperature dependence clearly appeared on the number density distribution, as

shown in Fig. 4(b). It is identified that the obtained D decreases and smin increases with

the surface temperature.

In Figs. 5(a) and (b), the obtained D and smin, respectively, are summarized as a function

of the He fluence. Although the relation was not so simple, because the obtained values also

have dependences on the surface temperature and the incident ion energy, both of D and

smin increased with the He fluence up to ∼ 5×1025 m−2. When the incident ion energy was

on the boundary of the energy threshold of 20-30 eV, smin was clearly lower than the higher

energy cases. When the temperature is lower, say 1200 K, D is higher than the other low

He fluence cases.

C. Tantalum

Table II shows the irradiation conditions of tantalum samples (Ta1-Ta5) used for the

analysis. The temperature range was 940 to 1480 K, and the fluence was higher than 1025

m−2 on all the samples. Pinholes were formed after the He plasma irradiation when the

surface temperature was higher than 800 K, and, also, fuzzy tantalum was formed when the

surface temperature was 1100 K and the He fluence was greater than 1026 m−2 [31]. Pore

density distribution has been analyzed previously on Ta surfaces exposed to the He plasmas

[32]. It was found that small pores and large pores decrease and increase, respectively, with

the temperature.

Figures 6(a) and (b) shows the cumulative number density distribution of pinholes on

Ta2 and Ta4, respectively, as a function of the area of pinholes. Note that the scales of the

vertical and horizontal axis are different in Figs. 6(a) and (b). SEM micrographs of the

samples are shown in the insets. It is seen that the pinholes are formed on the surface, and

the sizes of the pinholes are quite different between the cases at 1090 and 1420 K. In both

cases, power law relation can be identified in some scale; it deviated when the scale is small,

i.e., 2-300 nm2 at 1090 K and 5×103 nm2 at 1420 K. Such a deviation was not identified on

W samples. This may be because of noises of the SEM images due to short time image scan

for Ta cases. We omit the deviation and focused on D and smin for tantalum as well. From

the number density distribution, D = 1.89± 0.10 and smin = 6.4× 103 nm2 at 1090 K, and
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D = 0.82± 0.13 and smin = 1.8× 104 nm2 at 1420 K.

Figures 7(a) and (d) show the temperature dependences of D and smin, respectively. In

Ta case, because the fluence and incident ion energy dependences are not so significant in the

ranges in table II, the dependence can be well explained as a function of the temperature.

With increasing the surface temperature from 940 to 1480 K , D decreased from two to unity,

while smin increased up to ∼2×105 nm2. It is interesting to compare D and smin between Ta

and W. In case of W, D increased up to 2.5 and smin is comparable or less than 1×104 nm2

under the conditions where the nanostructures are formed. Fuzzy Ta nanostructures were

formed on the surface when the surface temperature was 1100 K, where smin is 1×104 nm2,

as can be seen in Fig. 7. It is likely that D and smin can be measures to identify proper

condition of the formation of nanostructures.

D. Discussion

Fractality in the number-size distribution has been identified on various places [33]. Typ-

ical examples are on the craters of planets [34] or crater ejecta on Venus [35]. Concerning the

craters on the moon, they have fractality between the size and the number with D of ∼ 2.0

[34]. It was identified that the fractality on the craters was originated from the size distri-

bution of meteorites. To support the number-size distribution of meteorites, experimental

demonstration has been conducted to destruct basaltic bodies by high velocity impact [36];

interestingly, fractality in the number-size distribution has been found on fragments. It

was identified in general that fragmentation processes such as weathering, explosions, and

impacts often produce a fractal distribution over a wide range of scales [33].

The number density distribution of pinholes reflects that of He bubbles beneath the

surface. Concerning the He bubbles, the distribution was determined not by fragmentation

but by coalescence process. In the next section, we discuss the mechanism of the fractality

identified on the coalescence processes based on a Monte Carlo simulation.
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III. SIMULATION

A. Model

From experiments, it was confirmed that the size distribution of He bubble pinhole sat-

isfied the power law relation. The power law relation indicates that the size distribution of

the He bubbles has a fractal structure. To discuss the origin of the fractality, two different

simple Monte-Carlo models are proposed in the present work.

The first model is composed of the random walk of He atoms and the growth of He bubbles

due to absorption of the helium atoms. A simulation box is set in a two dimensional (x, z)

space. The widths of the simulation box in x and z directions are w and h, respectively. The

four sides of the simulation box connect to the opposite side under the periodic boundary

condition. In this simulation box, the following random walk cycles are performed. A He

atom is put in the simulation box. The initial position of the He atom is decided by uniform

random distribution. Then, the He atom moves to the four adjacent cells, i.e., the left,

right, up, or down, at random. The distance of the movement at a step is simply unity.

The movement of the He atom is repeated Nwalk steps. If the He atom reaches a He bubble,

the He atom is absorbed on the He bubble, and the size is incremented. Here, the size

of a He bubble is determined by the number of He atoms included in the bubble, n. The

radius of a He bubble, r, is defined as a square root of n, namely, r =
√
n, based on the

fact that the radius is determined from a spherical equilibrium bubble. By an absorption

process, the number of He atoms included in the bubble increased from n to n + 1. On

the other hand, if the He atom did not encounter any He bubbles during the movements of

Nwalk steps, it is regarded as a nucleation, and, then, a new He bubble whose size is unity

is generated on the final position of the He atom. The number of the random walk steps,

Nwalk, is likely to relate to the diffusivity. On the other hand, the number of the above

cycles, Nstep, corresponds to the He fluence. In the present calculation, the parameters are

set to w = h = 1000 and Nwalk = 1000. Figure 8(a) shows a schematic of random walk

processes in the simulation. The He atom started from ‘A’ was absorbed by the helium

bubble ‘C’, while the He atom started from ‘B’ was not absorbed during Nwalk steps, and,

then, a new He bubble is generated in the final position ‘D’.

The second model introduced a surface effect; the periodic boundary condition is adopted
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in the x-direction, and the top boundary at z = 0 is regarded as a surface. There is no limit

in the bottom of the box in z-direction, i.e., h =∞. He atoms are injected from the surface

side perpendicularly. The initial position of He atoms in x-direction is determined at random,

while that in z-direction is fixed at the depth of d from the surface. However, if bubbles

existed at < d, the initial position is shifted to deeper so that the total penetration depth,

i.e., the distance in which helium atom passes through the material region, corresponds to

d. The sole difference between the first and second models is in the initial position in z

direction. The rules of the random walk, the absorption, and the nucleation in the second

model are the same as those in the first model. Furthermore, the second model is similar to

the Monte-Carlo part of the previous MD-MC hybrid simulation [17, 37], in which an early

phase of W fuzzy nanostructure formation has been successfully reproduced. In the second

model, d is set to 100, and the other parameters are the same as the calculation of the first

model.

Figure 8(b) shows a schematic illustrating the injection process in this model. The solid

and dashed lines are trajectories of injected He atoms. In the second model, the length of the

dashed lines, i.e., inside bubbles, are not counted as the injection depth d. The rhombuses

‘E’, ‘F’, and ‘G’ are start positions of random walks. The He atom injected into the position

‘E’ pass through material all the way, while the He atoms injected to the positions ‘F’ and

‘G’ pass through He bubbles. The penetration length through material is always d. That

is, d = d1 + d2 = d3 + d4.

B. Results and discussion

Figure 9(a-1)-(a-3) shows the time evolution of the spatial distribution of He bubbles in

the first model at Nstep = 105, 4×105, and 7×105. The size of He bubbles increases with the

elapsed time. The space distribution of the He bubbles was kept roughly uniform. Figure

10(a) shows the cumulative number density distributions of bubbles in the first model at

Nstep = 105 and 106. It is seen that the distribution does not follow the power law scaling.

The number of small helium bubbles is significantly low, while many large bubbles are

formed. It should be said that the power law scaling in the number-size distribution of He

bubbles could not be reproduced in the first model.

Figure 9(b-1)-(b-3) shows the time evolution of the spatial distribution of He bubbles in
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the second model at Nstep = 105, 4× 105, and 7× 105. It is observed that the bubble formed

region is gradually extended to deeper. Moreover, the size of He bubbles decreases with

the depth. Figure 10(b) is the cumulative number density distributions of bubbles in the

second model at Nstep = 105 and 106. The size distribution satisfied the power law scaling

both at Nstep = 105 and 106. From the comparison with the first model, it is suggested that

the surface effect introduced in the second model is a key to cause the fractal feature in the

number-density relation of He bubbles.

The failure of the first model is in the fact that the grown bubbles gradually fill the simu-

lation box. Consequently, almost all the injected He atoms are trapped by the bubbles, and

new nucleation rarely occurs. It is noted that we quickly checked whether the distribution

alters when using a three dimensional model, and found that the similar distribution was

obtained even if the three dimensional effect was taken into consideration. On the other

hand, in the second model, new nucleation constantly occurs in the deeper region while

bubbles are grown at the same time. It is likely that self-similarity appeared in the number-

size distribution is attributed to the fact that the nucleation and the growth in size occur

continuously without changing the rates significantly.

Here, let us think about the processes controlling the size distribution. Considering the

density of bubbles with n atoms, N(n), a following simple rate equation would be satisfied

in the present model

dN(n)

dt
= an−1N(n− 1)− anN(n), (2)

where an is the absorption rate of He atoms to a He bubble with n atoms. When steady

state assumption is satisfied, i.e. dN(n)/dt = 0, following relation is obtained:

N(n) =
an−1

an
N(n− 1) (3)

= a1N(1)
1

an
. (4)

If the number-size distribution can be scaled in the power law with D, an can be written as

an ∝ rD. (5)

In the present model, an should be proportional to the occupation area of a bubble, and

r =
√
n; thus,

an ∝ πr2 ∝ n. (6)
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In the present simulation, from the fact that the profile did not change so much at n < 2×102,

it can be said that the steady state approximation is valid for the small bubbles. Indeed, in

Fig. 10(b), from n = 1 to 103, the density also changed almost by three orders of magnitudes,

indicating that D was approximately two.

In experiments, D varied from 0.8 to 2.6; the value can be higher or lower than the deduced

value from the simple simulation. In actuality, the absorption rate might be proportional to

the volume of the bubble, the size of bubbles would not satisfy the relation r ∝ n especially

when the temperature is high, and coalescences of bubbles and bursting of bubbles on the

surface could change the number-size distribution. Those effects could change D. It is of

interest to investigate the variation of D further with simulation by taking into account

those effects.

IV. CONCLUSIONS

The size of pinholes formed on metal surfaces by helium plasma irradiation was investi-

gated in detail using scanning electron microscope (SEM) micrographs. We digitized SEM

images and counted the number and area of pinholes formed on tungsten and tantalum ex-

posed to helium plasmas. A power law relation was identified between the number density

and the size of pinholes, and two indices (D and smin) that characterize the images were

deduced. We should admit that this method is slightly dependent on the contrast of the

image and threshold of digitization, but the error is roughly ±10% for D.

We analyzed pinholes formed on single crystal and polycrystalline tungsten surface. Con-

cerning D, which corresponds to the slope of the relation between the number density and

size of the pinholes, it has a clear dependence on the helium fluence in addition to the tem-

perature when the nanostructure growth condition was satisfied. It increased from unity

to 2.5 with changing the morphology up to the helium fluence of 5×1025 m−2, which is the

typical necessary helium fluence for full growth of the fuzzy nanostructures. We analyzed

samples of which the sample temperature during the irradiation was in the range of 1200-

1800 K. In this temperature range, smin also increased with the He fluence and changed

from 103 to 104 nm2. As for tantalum, clear dependences of D and smin were identified on

the surface temperature. From 900 to 1500 K, D decreased from two to unity, and smin

increased from 103 to 105 nm2. From the analogy to the case of tungsten, it was suggested
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that around 1100 K is most plausible or similar conditions for the growth of fuzzy nanos-

tructures on the surface. Indeed, it was revealed from experiments that the nanostructure

growth was identified on the temperature range. Analysis of pinholes formed on the surface

during the helium plasma irradiation can give indices to identify the formation condition of

nanostructure growth.

Simple Monte-Carlo (MC) simulation was used to reproduce the fractality identified in the

size-density distribution of He bubbles. He atoms are introduced in the simulation box, and

random walks and absorption to He bubbles are taken into consideration. When the initial

position was chosen randomly, small bubbles quickly disappeared because new nucleation

did not occur sufficiently, and the power law relation was not realized. When the surface

effects were taken into consideration to determine the initial positons, the power law relation

was well reproduced. In the present simple model, the fractal dimension was approximately

two. In future, it is of interest to conduct quantitative comparisons in D by taking into

consideration the effects that were not introduced in this study: three dimensional effects,

coalescences of He bubbles, bursting of He bubbles on the surface, and so on.
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TABLE I: A summary of tungsten samples analyzed.

Sample No crystal Surface temperature Incident ion energy He fluence

W1 SC 100 1800 K 55 eV 6 ×1024 m−2

W2 SC 100 1800 K 55 eV 1.8 ×1025 m−2

W3 SC 100 1800 K 55 eV 4.7 ×1025 m−2

W4 PC 1700 K 25 eV 5.3 ×1026 m−2

W5 SC 100 1200 K 73 eV 3 ×1024 m−2

W6 SC 100 1600 K 27 eV 1.5 ×1025 m−2

W7 SC 110 1800 K 55 eV 6 ×1024 m−2

W8 SC 110 1800 K 55 eV 1.8 ×1025 m−2

W9 SC 110 1800 K 55 eV 4.7 ×1025 m−2

W10 SC 100 1550 K 70 eV 6 ×1024 m−2

W11 SC 100 1550 K 70 eV 1.0 ×1025 m−2

W12 SC 100 1550 K 70 eV 1.6 ×1025 m−2

TABLE II: A summary of tantalum samples analyzed.

Sample No Surface temperature Incident ion energy He fluence

Ta1 940 K 63 eV 2.2 ×1026 m−2

Ta2 1090 K 46 eV 8.4 ×1025 m−2

Ta3 1250 K 70 eV 4.5 ×1025 m−2

Ta4 1420 K 77 eV 1.2 ×1026 m−2

Ta5 1480 K 95 eV 1.1 ×1026 m−2
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FIG. 1: (a) An SEM micrographs of the He irradiated sample (W2) with the contrast profile, (b)

three digitized images with the threshold level of 40, 60 and 80, and (c) the cumulative number

density distribution of pinholes as a function of the hole area.
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FIG. 2: (a-1)-(a-3) SEM micrographs of the sample W4 at different crystal orientation measured

by OIM method and (b) the cumulative number density distribution of pinholes as a function of

the hole area.
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FIG. 3: (a-1)-(a-3) SEM micrographs of W1-W3 and (b) the relations between the cumulative

density of pinholes and the pinhole area.
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FIG. 8: (a) A schematic of random walk processes in the models and (b) a schematic illustrating

the injection process in the second model. The gray circles indicate the existing bubbles. The

rhombuses indicate the start positions of random walks of helium atoms.

(a-1) (a-2) (a-3)

(b-1) (b-2) (b-3)

FIG. 9: The spatial distributions of helium bubbles in (a-1)-(a-3) the first model and (b-1)-(b-3)

the second model. The number Nstep is (a-1)(b-1) 105, (a-2)(b-2) 4×105, and (a-3)(b-3) 7×105.
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FIG. 10: The cumulative number density of helium bubbles as a function of the number of atoms

in a bubble in (a) the first model and (b) the second model.
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