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Abstract

At the beginning of planetary formation, highly porous dust aggregates are formed through coagulation of dust
grains. Outside the snowline, the main component of an aggregate is H2O ice. Because H2O ice is formed in
amorphous form, its thermal conductivity is extremely small. Therefore, the thermal conductivity of an icy dust
aggregate is low. There is a possibility of heating inside an aggregate owing to the decay of radionuclides. It is
shown that the temperature increases substantially inside an aggregate, leading to crystallization of amorphous ice.
During the crystallization, the temperature further increases sufficiently to continue sintering. The mechanical
properties of icy dust aggregates change, and the collisional evolution of dust aggregates is affected by the
sintering.
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1. Introduction

Formation of dust aggregates inside a protoplanetary disk is
the first step of planetary formation. Submicron-sized dust
grains stick together because of surface cohesion. Successive
collisions of dust grains promote the growth of dust aggregates.
In the outer region of a protoplanetary disk, the main
component of dust grains is H2O ice because of low
temperature. It has been shown that the porosity of dust
aggregates is extremely high during their evolution (Kataoka
et al. 2013). The high porosity is equivalent to the large cross
sections, leading to the efficient growth of dust aggregates and
planetesimal formation (Okuzumi et al. 2012). Gravitational
instability of a layer composed of porous aggregates is also
possible if the porosity is considerably high (Michikoshi &
Kokubo 2016).

A dust grain is composed of ices and silicates. The silicate
component of dust grains contains radionuclides such as 26Al
and 40K, which are expected to contribute heating of asteroids
(Ghosh & McSween 1998). If the size of an object is large, the
generated heat is maintained inside the object and the
temperature increases. The minimum size to melt H2O ice
inside an icy planetesimal is ∼10 km (Wakita & Sekiya 2011).
Below this size, the heat conduction is effective, and the
temperature increase is inadequate to melt H2O ice.

H2O ice in a dust grain is formed on the grain through
surface reaction of OH and H2 molecules (Oba et al. 2012). The
formed ice is not crystalline, but amorphous (Oba et al. 2009).
Kouchi et al. (1992) showed that the thermal conductivity of
amorphous H2O ice is 10 5~ - times lower than that of
crystalline ice. This experimental result suggests that heating
is possible even inside dust aggregates with a size of ∼10 m.

The heating can cause sintering of H2O ice (Blackford 2007).
Sintering is molecular transportation from a concave to a
convex surface. Because a neck between adjacent grains is
convex, it grows as sintering proceeds. The mechanical
interactions between grains are greatly affected by sintering,
and the collisional outcomes of sintered aggregates are totally
different from those of nonsintered aggregates (Sirono & Ueno
2017). Further heating leads to melting of H2O ice. If melting
occurs, shrinkage of porous dust aggregates is expected.

There are heat conduction mechanisms other than that
through the solid component of a dust aggregate. Gas
molecules and radiation can contribute to heat transfer,
particularly inside a porous medium (Krause et al. 2011). If
one of these mechanisms is effective, temperature does not
increase. In this study, we examine the contributions of the heat
transfer mechanisms and determine the maximum temperature
inside a porous dust aggregate. In Section 2, the thermal
conductivities for various heat transfer mechanisms are
compared. In Section 3, the temperature inside a porous dust
aggregate is determined analytically and the results of
numerical simulations are presented. The consequences of
heating are discussed in Section 4. The conclusions are
presented in Section 5.

2. Thermal Conductivities

A porous grain aggregate is composed of submicron-sized
icy grains. The grains are connected to each other by surface
cohesion, forming a porous structure (Figure 1). Here we
assume a spherical aggregate of radius R with a packing
fraction of f, which is the volume fraction of the grains to the
total volume of the aggregate. An aggregate can be cooled by
several mechanisms (Figure 1). There are three important
cooling mechanisms: conduction through grains, radiation
inside pore spaces, and gas molecule transport. Conduction
through grains is mainly determined by the thermal conductiv-
ity of H2O ice, because its volume fraction is high
(approximately 90% if we assume a silicate/ice mass ratio of
1:2). The thermal conductivity of amorphous H2O ice kice,a and
that of crystalline ice kice,c differ considerably (Kouchi
et al. 1992). Both conductivities can be expressed as a function
of temperature T as (Haruyama et al. 1993)
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The conductivity for amorphous ice kice,a is applicable under
the temperature range between 30 and 100 K (Haruyama et al.
1993). We use this equation in the whole temperature range
attained in this study (the maximum temperature is ;160 K).
However, the duration of high temperature above 100 K is
short, as shown later.

These conductivities are applicable for ices without porosity.
Porosity (or packing fraction f=1 – porosity) dependence
should be included for investigating the heat conduction inside
a highly porous grain aggregate. Krause et al. (2011)
experimentally determined the packing fraction dependence
as k A Cexpf fµ( ) ( ), where A and C are constants. This
expression well approximates the experimental results in which
the packing fraction ranges between 0.1 and 0.5. However, the
range of the packing fraction, with which we are concerned, is
considerably smaller than this range. Clearly, the expression is
not applicable because it provides a finite conductivity even for

0f = . If we expand k f( ) to Taylor series, the first term should
be zero. Consequently, the leading term is proportional to f.
Therefore, here we simply assume that the conductivities are
expressed by kice,af and kice,cf for porous amorphous and
crystalline ice, respectively.

The thermal conductivity owing to radiation krad depends on
the ambient gas temperature T0 and the mean free path of
radiation l as (Krause et al. 2011)

k T l4 , 3rad 0
3s= ( )

where σ is the Stefan–Boltzmann constant and ò is the emissivity.
Here we adopt 1 = . Equation (3) does not change substantially
even if 1 < because l is equivalent to the inverse of the
absorption coefficient, which is proportional to the emissivity1 
by Kirchhoff’s law. If we assume that the grains distribute
randomly inside an aggregate, then l can be estimated from
l r n 1g

2p = , where rg is the grain radius and n r4 3g
3f p= ( ) is

the number density of grains inside an aggregate. This relation
yields l r4 3g f= .

The ambient gas temperature T0 depends on the heliocentric
distance a. We consider the distribution expressed by Chiang
et al. (2001),
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As shown later, the main result does not depend on the
temperature distribution.
Finally, the thermal conductivity by molecular transport kmol

is expressed as (Krause et al. 2011)
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where kB is the Boltzmann constant, c is the thermal velocity of
gas, and ngas is the number density of gas molecules at the
midplane expressed by (Hayashi et al. 1985)
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Figure 2 compares the heat conduction timescales normal-
ized by Kepler frequency, expressed by R c k ti

2
av av Kepr , where

i is the label for conduction mechanisms, tKep is the Kepler

frequency given by a GM2 3p , and the specific heat cav of
ice–silicate mixture is expressed as (Haruyama et al. 1993)

c c T T8.9 0.28 0.72 J kg K , 7av av,0 ice
1 1c= = + - -( ) ( )

where icec is the mass fraction of ice and assumed to be 2/3.
This value is based on the silicate/gas ratio of 0.0043 and the
ice/gas ratio of 0.0094, calculated from the solar elemental
abundance (Miyake & Nakagawa 1993). The density of an
aggregate avr is expressed as

1
, 8av

ice sil ice ice

r
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where 920 kg mice
3r = - is the density of H2O ice (Petrenko &

Whitworth 2002) and 3690 kg msil
3r = - is the density of

silicate represented by that of the mixture of H and L-chondrite
(Neumann et al. 2012).
It should be noted that thermal conductivities and corresp-

onding diffusivities (k ci av avr ) have temperature dependencies.
To compare the thermal diffusion timescales, we have to adopt
an appropriate temperature because the temperature evolves
from the initial temperature T0. We adopt the temperature Teq
(shown later in Equation (15)) at which the crystallization of
amorphous ice starts. The temperature evolution around Teq
determines the amount of crystallization and the degree of
sintering.
In Figure 2, we adopt R 2 102= ´ cm and 10 3f = - . It

can be observed that the molecular diffusion is the most
efficient mechanism in the inner region, and the radiation is the
most efficient in the outer region, provided that H2O ice is
amorphous. The timescales are proportional to R2. If we
assume R 2 101= ´ cm, the timescales decrease by a factor
of 100. The heliocentric distance dependence is easily obtained
from t aKep

3 2µ except molecular transport, in which the
dependence is a11 4 3 2µ - obtained from n agas

11 4µ - .
Dependence on f differs between ki. The timescales for

amorphous and crystalline ice do not depend on f because ρ
and k are proportional to f. Timescales for radiation and
molecular diffusion are proportional to 1f- , which is obtained
from l 1fµ - . Therefore, we can obtain timescales for different
f from Figure 2 by considering the f dependencies.
We can conclude that the most important heat conduction

mechanism is radiation if the ice is amorphous in a wide range
of a protoplanetary nebula. If the ice becomes crystalline, the
conduction through crystalline ice is the most efficient.

Figure 1. Schematic of heat transport mechanisms inside a porous dust
aggregate of radius R and packing fraction f: radiation (1), molecular transport
(2), and conduction through grains (3).
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3. Temperature inside a Porous Dust Aggregate

3.1. Analytical Calculation

Assuming a spherical aggregate with radius R, the temper-
ature T r t,( ) at a distance of r from the center of an aggregate
at time t is governed by the following heat conduction
equation:

c
T

t r r
r k

T

r
Q

1
, 9av av 2

2
totalr

¶
¶

=
¶
¶

¶
¶

+ ( )

where ktotal is the sum of thermal conductivities consisting of
three different mechanisms. However, as previously observed,
the most effective mechanism is radiation.

If the fraction of crystallization ice ξ of H2O ice is high, the
conductivity is provided by that of crystalline ice. As ξ
increases, the contribution of conduction through crystalline ice
increases. We assume ktotal as a function of ξ as

k k
k

2
1 tanh , 10total rad

c
cx x x= + - - D[ (( ) )] ( )

where cx is the critical fraction of crystalline ice above which the
crystalline part is mutually connected and the heat conduction
through crystalline phase is possible. Because the heat is generated
in the silicate core embedded inside H2O ice, the crystallization
proceeds from the inside of a grain. Thus, the surface of grains
and connections between grains remain amorphous, and the heat
conduction is not efficient, although crystallization proceeds
substantially. Here we assume 0.9cx = as a standard value. In
Equation (10), xD is the transition width of ξ during the change of
thermal conductivity and we assume 0.01xD = .

Boundary conditions at the center and the surface of an
aggregate are expressed as follows:

T T r Rat , 110= = ( )
T

r
r0 at 0. 12

¶
¶

= = ( )

The heating rate Q consists of two terms, the decay of 26Al
radionuclides QAl and the crystallization of amorphous ice

Qcry.
26Al is contained in the silicate component with a number

density of f 1.3 10 kgAl
19 1= ´ - (Neumann et al. 2012). The

decay constant of 26Al is 1.0 10 yrAl
6t = ´ , and the energy

released per one 26Al atom EAl is 6.4 10 J13´ - (Neumann
et al. 2012). Combining these factors, we can obtain the heating
rate inside an aggregate due to the decay of 26Al as

Q
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On the other hand, the heating rate of crystallization of
amorphous ice is expressed as (Haruyama et al. 1993)

Q L
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where A 9.54 10 14= ´ - s and E 7.41 10 Jcry
20= ´ - (Schmitt

et al. 1989). L is the latent heat of crystallization of amorphous
H2O ice. As a standard value, we adopt L 2.550 = ´
10 J21- (Ghormley 1968), which is the latent heat of crystal-
lization of pure H2O.
Because the timescale with which we are concerned is

considerably shorter than the decay constant of 26Al, we can
neglect the last factor texp Alt-( ) in Equation (13).

QAl and Qcry become equal at the temperature Teq, expressed
by

T
E

L Q Alog
. 15eq

cry

av ice Alr c
=

( ∣ ∣ )
( )

If the temperature is less than Teq, Qcry is negligible compared to
QAl because of its exponential temperature dependence
(Equation (14)). When L 0> , Qcry steeply increases as T exceeds
Teq. On the other hand, the temperature stays at T Teq= when
L 0< . In this case, heating byQAl and cooling byQcry balance at
Teq. Teq is 94K for L L 2.55 100

21= = ´ - J.
If cooling by heat conduction and heating by crystallization are

negligible, the temperature increases as c TdT dt Qav av,0 Alr = .
Integrating this equation provides the time eqt required to reach Teq

Figure 2. Heat conduction timescales for different mechanisms normalized by Kepler frequency. Each curve is labeled with corresponding conduction mechanisms.
The size of an aggregate is 2 10 m2´ .
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normalized by Keplerian frequency:

t

T T c

Q t2
, 16

eq

Kep

eq
2

0
2

av av,0

Al Kep

t r
=

-( )
( )

where cav,0 is given by Equation (7). As shown in Figure 3, eqt
becomes zero at a 2.4= au, where the ambient temperature is
Teq. eq Kept t/ reaches the maximum of 4.8 102´ at a 4.1 au=
and decreases as a increases. From Figure 3, eqt is shorter than

t100 Kep outside 20 au.
Because Q fµ and krad

1fµ - from Equation (9), the
temperature distribution shall be the same if Rf is a constant,
provided that the radiation is dominant. In other words, the
thermal evolution is not affected by decreasing f by a factor of
10 and increasing R by a factor of 10 simultaneously. This is
not the case if conduction through crystalline ice is dominant,
because the thermal conductivity through ice is proportional to
f. In this case, the temperature evolution does not depend on f.
However, because the temperature evolution before crystal-
lization determines the onset of crystallization, we expect that
the overall temperature evolution is similar if Rf is a constant.

The latent heat of crystallization expressed by
L 2.55 10 J0

21= ´ - is for pure amorphous H2O ice. Inter-
stellar H2O ices contain impurities such as CO, CO2, CH4, and
NH3 (Gibb et al. 2004). Kouchi & Sirono (2001) experimen-
tally demonstrated that the latent heat is decreased by the
addition of impurities because they take the latent heat of
sublimation upon crystallization. This is the case if the
impurities are homogeneously mixed with amorphous H2O
ice. The latent heat does not change if the impurities
concentrate to form pure ice. We changed L from L0 in the
simulation for investigating the effect of impurities.

The temperature increases uniformly except near the
surface for short timescales t c R kav

2
radr . For long time-

scales t c R kav
2

radr , the temperature distribution is
approximately that of the steady state. Considering the
temperature dependence of krad, we can calculate the

steady-state temperature distribution as
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if the radiation is the most effective. The temperature is close to
T0 if R is small, and it increases with R1 2 if R is large.
The central temperature exceeds Teq if the aggregate radius is

larger than
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Aggregates larger than this size are heated above Teq

irrespective of R. Below this size, the maximum temperature
is essentially determined by the ambient temperature T0.
Figure 4 compares different temperatures. Two thick curves

are the maximum central temperatures T r 0rad =( ) for aggre-
gate sizes of R 2 10 m2= ´ and 1 10 m2´ . The central
temperature approaches these temperatures in the limit of
t = ¥. Two dotted curves are the temperatures after t300 Kep
and t30 Kep without cooling. The central temperature increases
to that provided by the solid curve if the dotted curve exceeds
the solid curve. It can be observed that the central temperature
can reach to the solid curve outside 8 au after t300 Kep.
An important temperature to be compared to T r 0rad =( ) is

Teq, where the heating rates owing to the decay of 26Al and
crystallization of amorphous ice are equal. Above this
temperature, heating owing to the release of the latent heat of
crystallization dominates. It can be observed that if the
aggregate size is larger than R 2 10 m2= ´ , the central
temperature exceeds Teq irrespective of the heliocentric
distance.
Through the analytical calculation presented earlier, we can

predict whether heating occurs or not for a particular aggregate.
Even if heating proceeds around the center, it is possible that

Figure 3. Time eqt required to reach Teq normalized by Keplerian frequency as a function of heliocentric distance.
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heating does not proceed around the surface. To understand the
internal temperature distribution of an aggregate, numerical
simulation of the thermal evolution of an aggregate is required.

3.2. Numerical Simulation Results

We numerically solved Equation (9) by an implicit scheme,
with a spatial mesh width of R R 10 4D = - . Time step varies
according to the heating rate by crystallization, because it
changes by many orders of magnitude. The aggregate size R is
varied between R = 102 and 3� 105 m. The initial temperature
is T 500 = K, corresponding to the ambient temperature at
a 10.5= au in the model represented by Equation (4). The
packing fraction is 10 3f = - . If R is larger than 2.5� 105 m,
H2O ice melting occurs. Because shrinkage associated with

melting is not included in this study, the simulation is
applicable only for R<2.5� 105 m.
Figure 5 shows the evolution of the temperature at the center

for an R 10 m3= aggregate with L L 2.55 10 J0
21= = ´ -

and L L 2.55 100
21= - = - ´ - J. As discussed in the pre-

vious subsection, the temperature gradually rises. When the
temperature reaches Teq, the two heating rates by the decay of
26Al and by the crystallization of amorphous ice become
comparable. Because the temperature continues to increase and
the temperature dependence of crystallization is steep, the
temperature drastically increases to a value greater than Teq for
an L 0> aggregate. Then, the temperature quickly reaches to
the peak temperature of 160 K and decreases immediately.
This is because the release of the latent heat of crystallization is

Figure 4. Comparison of temperatures analytically obtained. Thick curves labeled by 2 10 m2´ and 1 10 m2´ correspond for maximum central temperatures of
aggregates with radii of R 2 10 m2= ´ and R 1 10 m2= ´ , respectively. The horizontal line is Teq, and the lower thin curve is T0. The dotted curves labeled t300 Kep

and t30 Kep are the central temperatures at 300 and 30 Keplerian frequency, respectively, without any cooling.

Figure 5. Evolution of the temperature at the center. Aggregate radius R is 103 m, and packing fraction f is 10−3. The initial temperature is 50 K. The solid curve is
the evolution of an aggregate with L L0= , and the dashed curve is L L0= - . The horizontal line is T 94eq = K.
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completed at the center and the thermal conductivity changes
from that of radiation to that of crystalline ice. The temperature
oscillates around 110 K, as the boundary between crystalline
and amorphous ice shifts outward. Finally, heating by QAl
inside the aggregate and cooling by radiation through the low-
temperature region around the surface balance, and the
temperature remains constant.

Evolution of the temperature distribution inside the aggregate
with L L0= is shown in Figure 6. At the beginning, the
temperature uniformly increases except around the surface. When
t = 7619 yr, the central temperature reaches Teq. The temperature
at the center reaches its peak of 160K at t=7930 yr. Then, the
boundary between crystalline and amorphous ice expands to the
surface. At the boundary, abrupt crystallization followed by
cooling repeatedly proceeds, and the central temperature
oscillates accordingly. When t=8618 yr, heating by crystal-
lization cannot exceed cooling from the surface, and therefore the
crystallization stops. Then, the temperature gradually decreases
from the surface. As observed previously, once the crystallization

starts, the thermal evolution of an aggregate quickly proceeds.
This is due to the strong temperature dependence of the
crystallization rate (Equation (14)).
For an aggregate with L L 00= - < , the evolution is totally

different after reaching Teq. The temperature gradually increases
from T 94 Keq = to the peak temperature of 97 K for

2 10 yr4´ (dashed line in Figure 5). Then, the temperature
decreases gradually. The slight increase of temperature is due
to the 1 x- dependence of Qcry, which decreases as the
crystallization proceeds. The fraction of crystalline ice ξ

reaches 0.9cx = when the temperature at the center reaches
its peak at t 2.7 10 yr4= ´ . The left panel of Figure 7 shows
the final distribution of ξ for L L0= and L L0= - . Interest-
ingly, both distributions are similar. Crystallization proceeds
globally except around the surface in both cases. It can be seen
that the thicknesses of low-temperature regions around the
surface are the same for both L L0= and L L0= - cases
(compare Figure 6 and the left panel of Figure 7).

Figure 6. Evolution of the temperature distribution inside an aggregate of R 10 m3= and 10 3f = - . The initial temperature is 50 K. The numbers associated with the
curves are the elapsed time (in years) from the beginning. The vertical line at R R 0.10TD = is the thickness of the low-temperature region determined by
Equation (19). The horizontal line is Teq.

Figure 7. Left: distribution of the fraction of crystalline ice ξ at the end of simulation for L L0= (solid curve) and L L0= - (dashed curve). Right: temperature
distribution when the temperature at the center of an aggregate with L L0= - reaches its peak.
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The temperature around the surface is low throughout the
simulation because the surface temperature is fixed to 50 K. Ice
around the surface is still amorphous, and the dominant cooling
mechanism is radiation in this region. The thickness of this
low-temperature region RTD can be estimated by

R
k T

c
, 19T

rad eq

av av
eq

r
tD =

( )
( )

where eqt is expressed by Equation (16). If we assume
10 3f = - , R 1.0 10T

2D = ´ m. In Figure 6, R RTD is shown
as the vertical line. Equation (19) well estimates the thickness
of the low-temperature region. Because of krad

1fµ - , avr fµ ,
and QAl fµ , the thickness RTD is proportional to 1f- .

Impurities such as CO escape from amorphous H2O ice upon
crystallization. Simultaneously, the impurity molecule takes the
latent heat of sublimation if its condensation temperature is lower
than the temperature of the ice. Thus, the maximum temperature
shown in Figure 5 depends on L. If cooling by conduction is
negligible, the maximum temperature by crystallization can be

obtained by integrating (see Equations (9) and (14))

c TdT Ld 20
T T

T T

av av,0
0

1

av ice
eq

max

ò òr r c x=
x

x

=

=

=

=
( )

as

T
L

c
T2 . 21max

ice

av,0
eq
2c

= + ( )

Figure 8 compares the temperature estimated by Equation (21)
and the maximum temperature at the center of an R 10 m3=
aggregate, obtained from numerical simulation. It can be
observed that Equation (21) well represents the numerical
results, except around L 0~ . This is because Equation (21)
does not contain the contribution from the heating owing to the
decay of 26Al, leading to an underestimate of the maximum
temperature expressed by Equation (21). It should be noted that
Equation (21) does not depend on the ambient gas temper-
ature T0.
From Figure 8, the maximum temperature varies between

160 and 100 K depending on L. At this temperature range,

Figure 8. Maximum temperature attained in an aggregate of R 10 m3= . The solid curve is expressed by Equation (21).

Figure 9. (a) Schematic of the evolution of the shape of a neck as sintering proceeds. The thick curve is the initial surface profile. Thin curves are the profiles as time
proceeds. (b) The neck profile is approximated by a circle with a radius x smoothly connected to the spherical grains of radius rg.
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sintering can proceed inside an aggregate. Sintering increases
the mechanical strengths of an aggregate and would affect the
collisional evolution of an aggregate (Sirono & Ueno 2017).
Simultaneously, the increase of the strengths also affects the
porosity evolution of an aggregate (Kataoka et al. 2013).

The degree of sintering is determined by the radius of a neck
rneck connecting the adjacent grains. The radius grows by
molecular transport from the main part of an icy grain
(Figure 9(a)). The growth rate depends on the curvature of
neck Γ, which is the sum of two principal radii of curvature.
One is the neck radius rneck. The other one is the radius of
curvature along the direction of connecting two grain centers
(Figure 9(b)). If we approximate the shape of a neck by a circle
connecting two grains (Figure 9(b)), the radius of the circle x is
expressed by

x
r

r r2
. 22neck

2

g neck
=

-( )
( )

Using this formula as the radius of curvature, the curvature Γ

can be written as

r r

r r

r r

r

2 1

2 3
, 23

g neck

neck
2

neck

g neck

neck
2

G =-
-

+

=-
-

( )

( )

where the minus sign comes from the concave shape of the
surface along the direction of connecting two grain centers.
Along the perpendicular direction (rneck), the surface is convex
and the sign is positive.

The degree of sintering can be computed by integrating
(Sirono 2011)

dr
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P T
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H O
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where P T T Texp 28.55 6070 Pa,H O2 = -( ) ( ) ( in kelvin;
Bauer et al. 1997) is the equilibrium vapor pressure of H2O,

0.069 J m 2g = - is the surface energy of H2O ice (Petrenko &

Whitworth 2002), 3.25 10 m29 3W = ´ - is the molecular
volume of H2O, m 3.0 10 kgH O

26
2 = ´ - is the molecular mass

of H2O, and avG is the curvature averaged over the entire
surface. Here we neglect avG because avG G except at the last
stage of sintering. It should be noted that dr dt 0neck = when
r 2 3neck = , at which the growth of a neck stops. The
numerical simulations show that the final neck radius is

r0.8 g (Sirono 2011).
Figure 10 shows the thickness of less sintered zone RD b,

inside which the degree of sintering r rneck gb = is less than
0.5, as a function of the latent heat of crystallization L L0. The
threshold of 0.5 has been observed (Sirono & Ueno 2017),
above which the collision between porous sintered aggregates
is affected by sintering. It can be observed that the thickness is
well explained by the thickness of the low-temperature zone
expressed by Equation (19). The thickness increases at
L L 0.40 = . This is because the maximum temperature is
inadequate for sintering to proceed for small L. This transition
can be explained in terms of the sintering timescale. Based on
the growth rate of a neck expressed by Equation (24), we can
estimate the timescale required for sintering as

T
r m k T

P T

2
. 25sint

g
2

H O
3 3

H O
2

2

2

t
p

g
=

W
( )

( )
( )

Adopting Tmax of Equation (21) as T in Equation (25), we can
obtain the timescale for sintering as a function of L L0, as
shown in the right panel of Figure 10. The horizontal curve is
the cooling timescale of an aggregate of R 10 m3= . If the
sintering timescale is less than the cooling timescale
R2ρavcav,0Tmax/krad, sintering can proceed. It can be observed
that the intersections between the sintering and cooling
timescales well explain the transition of RD b.

4. Discussion

4.1. Evolution of an Icy Dust Aggregate

Icy dust aggregates grow through sticking collisions of icy
dust grains. As an aggregate grows, the timescale of the gas
drag increases. When the gas drag timescale and the Kepler
frequency are comparable (Stokes number St is unity), an
aggregate quickly infalls to the central star. If the packing

Figure 10. Left: location of the boundary R RD b below which the sintering degree r rneck gb = is larger than 0.5 as a function of latent heat of crystallization L L0.
The aggregate radius is 103 m. The horizontal lines denote the thickness of the low-temperature region expressed by Equation (19). Right: sintering timescale defined
by Equation (25) as a function of L L0. The horizontal curve is the cooling timescale of an aggregate with a radius of 103 m.
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fraction is 10−3, the size of an aggregate with St=1 is
1 10 m2´ at 20 au. The infalling aggregates of St=1

continue to collide with other aggregates. Further growth of
the aggregates to planetesimals proceeds inside 10 au, where
the infalling aggregates can concentrate (Okuzumi et al. 2012).
The gravitational attraction plays a central role after the
formation of planetesimals.

Figure 3 shows the required time eqt to reach Teq, the time to
trigger crystallization. If the formation timescale of planetesi-
mals is considerably shorter than eqt , heating proceeds after the
formation of planetesimals. In this case, the compaction of a
planetesimal owing to self-gravity might be affected by
sintering. This is because sintering greatly increases the
mechanical strength of an icy dust aggregate. The resulting
planetesimals have extremely low densities such as 10 3f = - .

If the formation timescale of planetesimals is comparable to
or longer than eqt , the collisional evolution of icy dust
aggregates would change. In this case, sintering proceeds to a
large extent inside an aggregate. As shown by Equation (19),
the thickness of a nonsintered zone is 10 m2~ if 10 3f = - . The
mechanical strengths substantially increase below this zone.
The collisional outcome of the sintered aggregate would be
affected if the depth of penetration during a collision is larger
than the thickness. In this case, the collisional sticking is
difficult because the brittle disruption occurs (Sirono & Ueno
2017). As a result, the collisional outcome becomes bouncing
or fragmentation. The growth of an icy aggregate stops when
the penetration depth is larger than that of the sintered zone.

4.2. Amount of Impurities and Latent Heat of Crystallization

Figure 10 clearly shows that there is a critical L L0 to
proceed sintering. Below the critical L, sintering does not
proceed and the mechanical properties of an aggregate do not
change. The latent heat of crystallization decreases as the
content of impurities increases, because the impurities take the
latent heat of sublimation and decrease L. It is important to
clarify the critical content of impurities in H2O ice. Here we
investigate CO, for example. Kouchi & Sirono (2001)
measured the latent heat of sublimation of CO associated
with the crystallization of amorphous H2O ice as
L 6.9 10CO

20´ - J. Suppose that a fraction x of amorphous
H2O ice is replaced by CO. Then the latent heat is given by
L x L x xL10 CO= - -( ) ( ) . If the critical latent heat is
L L 0.40 = (Figure 10), the corresponding molar fraction of
CO is x=0.02, obtained by solving L x L0.4 0=( ) . This
fraction is smaller than those around low-mass young stellar
objects (x=0.05; Gibb et al. 2004). Amorphous H2O ice
containing CO more than the critical fraction of x=0.02 is not
sintered, and even the heating of 26Al proceeds to some extent.
However, it should be noted that the latent heat does not
change if the impurities concentrate to form pure ice.

The sublimated CO molecules diffuse to the surface of an
aggregate and escape, because the condensation temperature of
CO is ;19 K, which is much lower than the aggregate
temperature. However, the condensation temperatures of CO2

and NH3 are 68 and 84 K, respectively. If these molecules are
contained as impurities, the mechanical strengths of an
aggregate can change owing to condensation. As shown in
Figure 6 and Equation (19), the temperature is maintained low
around the surface. Impurity gas diffuses to the surface and
condenses when the temperature becomes lower than the
condensation temperature. Because condensation proceeds

exactly at the condensation temperature, a condensed region
of impurities appears inside the low-temperature region. The
mechanical strength increases accordingly at the condensed
region. The location of the condensed region depends on the
ambient temperature T0. It should be noted that this process
happens even if L is smaller than the critical value. Figure 7
displays that crystallization proceeds to a large extent even if
L 0< . In this case, CO2 and NH3 condense at r R 0.98= and
0.94, respectively, for T 500 = K. Thus, this condensation
process inevitably changes the strengths of an aggregate
irrespective of L.
Another important factor is the amount of 26Al contained in

the silicate part of grains. We assumed that the content is that
when calcium-aluminium-rich inclusion (CAI) is formed. If the
formation time is delayed compared to that of CAI, the 26Al
content decreases according to the decay of 26Al. Thus, the
26Al content and the corresponding QAl decrease. If the
formation time of an aggregate is 100Myr (decay constant of
26Al) after that of CAI, QAl is decreased by a factor of e−1. In
this case, the time required to reach Teq is prolonged by a factor
of e−1 accordingly. Then the sintering might not occur before
the formation of planetesimals.
Finally, the mass fraction of ice icec can be lowered by some

heating mechanism before the formation of an aggregate. In
this case, QAl becomes larger than that assumed in this study,
and sintering proceeds in smaller aggregates than
R 2 10 m2= ´ obtained in this study.

5. Conclusion

We clarified whether the temperature inside a porous icy dust
aggregate increases or not owing to the decay of 26Al. It has
been shown that the temperature increases against heat transfer
mechanisms, including molecular transport and radiation. The
temperature inside the aggregate increases sufficiently to
trigger the crystallization of amorphous ice. During the
crystallization, the temperature increases further, and sintering
proceeds to grow a neck between grains. The growth of an
aggregate might stop owing to sintering, depending on the
formation timescale of planetesimals.

The author is thankful for the constructive comments by an
anonymous reviewer. This work was supported by JSPS
KAKENHI grant no. 17K05631.
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