Multi-atlas pancreas segmentation: Atlas selection based on vessel structure
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Abstract

Automated organ segmentation from medical images is an indispensable component for clinical applications such
as computer-aided diagnosis (CAD) and computer-assisted surgery (CAS). We utilize a multi-atlas segmentation
scheme, which has recently been used in different approaches in the literature to achieve more accurate and robust
segmentation of anatomical structures in computed tomography (CT) volume data. Among abdominal organs, the
pancreas has large inter-patient variability in its position, size and shape. Moreover, the CT intensity of the pancreas
closely resembles adjacent tissues, rendering its segmentation a challenging task. Due to this, conventional intensity-
based atlas selection for pancreas segmentation often fails to select atlases that are similar in pancreas position and
shape to those of the unlabeled target volume. In this paper, we propose a new atlas selection strategy based on
vessel structure around the pancreatic tissue and demonstrate its application to a multi-atlas pancreas segmentation.
Our method utilizes vessel structure around the pancreas to select atlases with high pancreatic resemblance to the
unlabeled volume. Also, we investigate two types of applications of the vessel structure information to the atlas
selection. Our segmentations were evaluated on 150 abdominal contrast-enhanced CT volumes. The experimental
results showed that our approach can segment the pancreas with an average Jaccard index of 66.3% and an average
Dice overlap coefficient of 78.5%.
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2011 (Matsuda et al. (2011)). Because pancreatic can-
cer is difficult to treat and has such a high mortality
rate, it would be beneficial to develop systems to au-
tomatically detect the pancreatic region for radiologists

1. Introduction

Automated abdominal organ segmentation from
three-dimensional medical images is one of the essential

components for clinical applications, such as computer-
aided diagnosis (CAD) (Kobatake (2007)), computer-
assisted surgery (CAS) planning and navigation (Aza-
gury et al. (2012)). Pancreatic cancer has recently been
increasing globally (Ito et al. (2013)), and its mortality
rate is the fourth among cancer-related deaths in Japan,
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(Shimizu et al. (2010)).

Among the abdominal organs, the pancreas has par-
ticularly large inter-subject variability in its position, size
and shape among the population. Also, the pancreas
has a thinner shape in the abdominal region compared
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with other abdominal organs. The CT intensity of the
pancreatic region is very similar to its neighboring struc-
tures, i.e. the stomach wall, duodenum and small/large
intestines. These properties render the segmentation of
the pancreas relatively challenging.

1.1. Related works

In recent years, many organ segmentation methods
have been proposed (Summers (2016)). Among them,
multi-atlas segmentation schemes have been widely uti-
lized for abdominal organ segmentation (Iglesias and
Sabuncu (2015)). Early explorations of multi-atlas seg-
mentation are reported for brain tissues from magnetic
resonance (MR) images (Rohlfing et al. (2004); Hecke-
mann et al. (2006); Lotjonen et al. (2010)). Common
to all these methods is that they all adopt certain type
of global registration, e.g. affine registration, to obtain
atlases to a target image space. Aljabar et al. (2009)
demonstrated that atlas selection was effective in im-
provement of segmentation accuracy for brain MR im-
ages. Wolz et al. (2013) applied the locally weighted atlas
selection scheme to multiple abdominal organ segmenta-
tion from contrast-enhanced CT images. This approach
presents a free-form deformation (FFD) (Rueckert et al.
(1999)) based hierarchical multi-atlas registration and
segmentation framework. Chu et al. (2013) performs
Markov random field (MRF)-based registration (Glocker
et al. (2008)) and globally spatially divided hierarchical
construction of probabilistic atlas for abdominal multi-
organ segmentation.

These multi-atlas approaches for abdominal organ
segmentation have achieved good segmentation perfor-
mances on relatively large organs, e.g. the liver. How-
ever, as for the segmentation accuracy of the pancreas, it
is still significantly lower than other abdominal organs.
One of the main reasons is that the selection of atlases
with high similarity in the pancreatic region tends to fail
due to the fact that the tissues surrounding the pancreas
region have similar CT intensity. Also, the pancreatic
shape and position have large inter-subject variability.
These pancreatic properties cause the atlas-to-target reg-
istration to be trapped in local minima. Wang et al.
(2014) uses patch-based segmentation with a label fu-
sion scheme using intensity and spatial context. Tong
et al. (2015) also uses voxel-wise local atlas selection to
train a patch dictionary. However, these types of patch
selections also consider only intensity similarity between

image patches, and therefore have a high risk of mis-
selection of similar patches as shown in Bai et al. (2015).

1.2. Contribution of this paper

In this paper, we propose a new atlas selection strat-
egy based on vessel structure to overcome the aforemen-
tioned atlas selection failure and demonstrate its appli-
cation to multi-atlas pancreas segmentation. The main
motivation of utilizing vessel structure for the atlas se-
lection is that each abdominal organ is generally close to
certain vessels, e.g. the pancreatic body is running along
the splenic vein and the head is along the superior mesen-
teric vein. A schematic illustration of anatomical struc-
ture surrounding the pancreas is shown in Fig. 1. Differ-
ent from vessels inside the brain region, these vessels have
larger diameters and can be utilized for organ position
information. For example, Farag et al. (2014a) consid-
ers detecting three abdominal structures (splenic vein,
superior mesenteric vein, and their confluence point) as
landmarks for pancreas localization. Other SSM-based
approaches with anatomical landmark detection of or-
gans and vessels (Shimizu et al. (2010); Hammon et al.
(2013); Okada et al. (2015)) demonstrate the combina-
tion of SSM, and these anatomical landmarks could be
more effective for the target segmentation.

The main contribution of this paper is summarized
as follows: We propose a method that uses vasculature
around the pancreas in the atlas selection. This proce-
dure is intended to reduce the mis-selection of similar
atlas caused by CT intensity. To perform this, we intro-
duce two types of applications of vessel structure. Atlases
are selected based on vessel structure image. One appli-
cation utilizes vessel structure binarized image and the
other utilizes vessel structure enhanced image. In the
light of the criterion in atlas selection, there are many
ways for atlas selection. For example, Aljabar selected
atlases based on age (Aljabar et al. (2009)). Cordier se-
lected atlases using intensity distribution (Cordier et al.
(2015)). The paper by Iglesias and Sabuncu (Iglesias
and Sabuncu (2015)) surveys atlas selection criteria. In
terms of atlas selection criteria, the proposed method can
be classified as the method utilizing anatomical structure
information (including the splenic vein) in atlas selection.

In Section 2, we explain our multi-atlas segmentation
pipeline in detail. In Section 3, CT images used in the
experiments and segmentation results are described. We
discuss advantages and disadvantages of our method in
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Figure 1: Schematic illustration of anatomical structure surrounding the pancreas.

Section 4 as well as comparison with other state-of-the-
art approaches. This paper is concluded in Section 5.

2. Method

2.1. Owverview

We briefly explain our pancreas segmentation method
step-by-step (Fig. 2). First, spatial standardization of
the abdominal region and extraction of the pancreatic
region are performed for all available atlas data. Each
atlas data includes CT volume and its manually labeled
abdominal organs (liver, spleen, pancreas, and both kid-
neys). Then, the vessel structure around the pancreas
region is automatically detected and vessel structure im-
ages are generated. After that, atlas-to-target registra-
tion is carried out between cropped pancreatic regions.
The vessel structure images of each atlas data and its
associated CT volume are warped with the resulting de-
formation fields. Here, we have two types of vessel struc-
ture images. One is a binarized image whose voxels have
1 in the vessel region and others 0. The other is an en-
hanced image whose voxels have a positive enhancement
value in the vessel region and others 0. Then, we select
atlas data based on similarity between the deformed ves-
sel images. Using the selected atlases, a probability map
of each target of the unlabeled CT volume is generated.

A graph cut optimization is performed to combine prob-
ability and intensity prior of each organ. The input to
our pipeline is an unlabeled CT volume and the output
is the labeled image of that CT volume.

2.2. Atlas data preparation

2.2.1. Spatial standardization of abdominal region

First, spatial standardization of all atlas data is ex-
ecuted as preprocessing. The spatial standardization is
useful to reduce the inter-subject variability of positions
and sizes of abdominal organs. This process consists of
simple image processing such as translation and scaling
of the abdomen. The detailed process is shown in Chu
et al. (2013) and a short summary is presented in Ap-
pendix A. This process produces normalized atlas data
whose image size and resolution are the same in all the
atlas data.

2.2.2. Pancreas VOI computation

We compute the volume of interest that contains the
whole pancreas region in each atlas data. We call this
volume of interest the PVOI (pancreas volume of inter-
est). PVOI is defined as a cuboid region whose edge
sizes are all the same. PVOI size is defined as a maxi-
mum size that covers all the pancreas regions stored in
all atlas data. The center of a PVOI is computed from
the positional information of the liver. First, we compute
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Figure 2: Proposed pipeline of multi-atlas pancreas segmentation. Left and right side indicate the process of atlas data set and unlabeled

input CT volume, respectively.

the liver and the pancreas centers for each atlas from the
liver and the pancreas regions stored in the atlas dataset.
These centers can be computed as the geometrical aver-
age of voxel positions of each region. Then, we compute
the average vector from the liver center to the pancreas
center as

N
Z o — oM, (1)

where N is the number of atlas images stored in the
dataset, and ng) and O(L") are the positions of the pan-
creas and the liver. The PVOI center Ofg) is estimated

by the following equation:

O =0 + 5~ 0ff), ®)

The PVOI radius r is determined so that PVOIs with a
size of 2r cover all the pancreas regions for all the atlas
data. The PVOI can be expressed as

R={x| |z=0p|<r
|y - OPyl S T,

|z—épz\§r 1.

(3)

As stated above, a PVOI can be obtained from the liver
center information. Liver regions can be stably obtained
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Figure 3: Illustration of pancreas VOI computation. Using liver center of ground truth O and average offset vector A, the pancreas

center is estimated as Op. Then pancreas VOI centered at Op is

manually from a contrasted CT volume and are located
next to the pancreas. Since the PVOI must also be ob-
tained for an input CT data, this approach can easily
identify a PVOI of an input data from the liver infor-
mation stably obtained from an input data. Figure 3
represents a graphical illustration of the PVOI computa-
tion.

2.8. Vessel region extraction

This step computes vessel regions within each ex-
tracted PVOI. The vessel structure images are gener-
ated for all CT images including the atlas and input im-
ages. The target vessel regions include the splenic vein
(SV), superior mesenteric vein (SMV), aorta (AO), infe-
rior vena cava (IVC), portal vein (PV). Below, we pro-
pose two types of vessel images for atlas selection.

2.3.1. Vessel structure binarized image (VBI)

A vessel structure binarized image (VBI) is computed
within a PVOL. In this image, voxels of the vessel region
are expressed as 1 and others are 0. Therefore, the vessel
structure binarized image is given by

L,
0,

if x is a vessel voxel,
otherwise.

V) = { ()

extracted as above.

Figure 4 (a) shows an example of the automatically ex-
tracted vessel structure binarized image in a transverse
slice. Our procedure to generate the vessel structure bi-
narized image is decomposed into the following two steps:
AOQ detection and SV detection.

A set of AO seed points is explored in a transverse
slice first. This is simply found by applying a morpho-
logical operator, thresholding, and region labeling. A
labeled region with maximum area and roundness is se-
lected as AO seed points. Region growing is performed
from the seed points with a spherical component to de-
tect AO voxels.

Next, SV detection begins with searching for the
hilum point of the spleen using the ground truth of the
spleen. We generate the ground truth of the spleen of
each CT image by manual tracing. This point plays a
role in the connection between the spleen and the SV.
To detect the hilum point, we utilize a multi-scale line
enhancement filter with Hessian analysis detailed in Sato
et al. (1998). A set of detected voxels with high enhance-
ment values inside the spleen are selected as seed points
of region growing. Again, region growing is performed
with a similar setting to earlier to detect SV voxels from
the hilum via SV to the end of SMV.

Finally, we integrate the outputs of the AO detec-
tion and the SV detection to generate a vessel structure



Figure 4: (a) Automatically extracted vessel structure binarized image overlapped with its CT slice. The vessel region is colored red.
(b) Vessel structure enhanced image. Color code indicates a low enhancement with blue and high enhancement with red.

binarized image Vp(x).

2.3.2. Vessel structure enhanced image (VEI)

A vessel structure enhanced image represents vessel
voxels within a PVOI as a positive enhancement value,
and the others as 0. To generate the vessel structure en-
hanced image, we employ a multi-scale line enhancement
filter (Sato et al. (1998)). We utilize the vessel structure
binarized image Vz(x) as a masking region to enhance
the vessel-like structures within it. The vessel structure
enhanced image is given by

w - max {01»2 A3(x;09)}, if efu, <71,
1<i<m

12?%’;1{01‘2 23 (x;04)

Ve(x) =
& (x) otherwise.

Here 0; = i-07 and 01, A123(+), m represent a standard de-
viation of Gaussian function, output value of multi-scale
line enhancement filter, and step size of the enhance-
ment filter, respectively. These notations are employed
in the conventional multi-scale line enhancement filter
(Sato et al. (1998)). The Aj23(+) is give as

|/\2|+/\17 if A3 <Ao< A <0,
if A3<X<0
Mzs(xio0) = el = A ) ©

0, otherwise.

A1, A2, and A3 represent the first, second, and third eigen-
value of the Hessian matrix at x with a o;, respectively.

We introduce the following four new mathematical
symbols into the conventional multi-scale line enhance-
ment filter: w,e;,u,,7 in Eq. (5) are a weight coeffi-
cient, unit vector of the first eigenvector of the Hessian
matrix centered at x with scale of o;, unit vector of the
head-to-foot direction, and threshold value, respectively.
This paper utilizes the anatomical knowledge that the
SV running along the pancreatic region is basically or-
thogonal to the head-to-foot axis, where the formed angle
> Bconst- The weight w controls the strength to empha-
size the SV. Figure 4 (b) shows an example of the vessel

5) structure enhanced image obtained by applying Eq. (5).

Figure 5 shows 3D visualizations of the vessel structure
enhanced images.

2.4. Atlas-to-target registration

Each atlas PVOI is aligned to the unlabeled PVOI
with the nonrigid registration technique based on Markov
random field (MRF) optimisation (Glocker et al. (2008)).
After the MRF optimization, each atlas PVOI including
the vessel images Vp(x), Vi(x) is warped using the de-
formation field. The atlas-to-target registration is per-
formed within the whole PVOI.



Figure 5: 3D visualizations of vessel structure enhanced images by the volume rendering technique. Regions having high vessel enhanced

values are displayed as opaque region.

2.5. Atlas selection based on vessel structure image

A similarity between the vessel images of each at-
las and unlabeled CT is measured, and atlases with
the N}, highest similarities are selected. Each selected
atlas is weighted with that similarity and averaged to
generate a probability map of each organ M;(x), where
I € {liver, spleen, pancreas, both kidneys, background}.

We propose two types of atlas selection schemes based
on different image similarity measurements of the ves-
sel structure. One utilizes the Jaccard index (Jaccard
(1901)), which assesses an overlap between vessel regions
of an input PVOI and an atlas PVOL.

Another utilizes normalized cross correlation (NCC)
(Bracewell (1965)). NCC also measures a similarity be-
tween vessel regions of an input PVOI and an atlas
PVOI. NCC places much importance on the vessel-like
structures with the line enhancement value.

2.6. Pancreas region segmentation

Coarse-to-fine pancreas segmentation using the prob-
ability maps M;(x) is performed. This process combines
maximum a posterior (MAP) estimation (Levitan and
Herman (1987)) and refinement with multi-class graph
cut optimization (Boykov et al. (2001); Boykov and Kol-
mogorov (2004)).

We use an expectation maximization (EM) algorithm
(Dempster et al. (1977)) to estimate a probability den-
sity function P(I(x)]6;) of CT intensity of each organ I
for voxel x within the non-zero region of M;(x), except
for a background. Here, 6; indicates a set of parameters

that the EM algorithm infers for organ [. Each organ
region is modeled as a mixture of three Gaussian dis-
tributions. Each distribution represents a low-intensity,
high-intensity, and organ region, respectively. A low-
intensity region mainly includes the air and fat tissues
while the high-intensity region includes vessel and bone
regions. This is helpful in order to exclude the non-organ
regions included in the probability map and makes each
estimation more accurate. The MAP estimation is com-
puted by the following formula of

[(I(x)) = arg max P(I(x)|6;) Mi (x), (7)
where [*(I(x)) represents an estimated optimal organ la-
bel of voxel x with intensity value of I(x).

The estimation is done by multi-class graph cut opti-
mization in the same manner as Wolz et al. (2013) (Ap-
pendix B).

3. Data and Results

3.1. Material

150 abdominal CT scans acquired from 36 female and
114 male subjects were used for the experiments. All
scans were acquired between 2004 and 2009 at Nagoya
University hospital by a TOSHIBA Aquilion 64 scanner
and obtained under typical clinical protocols for the pur-
pose of laparoscopic resection of the stomach and gall-
bladder glands or colon. 141 subjects had early or ad-



Table 1: CT specification.

Table 2: Acquisition parameters.

X-ray tube voltage [kV] 120
Slice size [pixels] 512 x 512 X-ray tube current [mAs] 350 ~ 400
Slice number [slices] 263 ~ 1061 Starting point o%s delaved after iniccti
Pixel spacing [mm] | 0.546 ~ 0.820 (patient age < 60) § delayed after injection
Slice thickness [mm] | 0.400 ~ 0.800 Starting point 7s after intensity of aorta
(patient age > 60) is over 80 H.U.
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Figure 6: Box plots of four evaluation metrics of the proposed segmentation and previous one (Karasawa et al. (2015)). From left to

right, proposed segmentation based on VBI, VEI, and previous one in each column. A black horizontal line of each box plot indicates
a median value. ** and *** represent that there exists a significant difference (p < 0.01) and stronger significant difference (p < 0.001)
between two methods, respectively. Bottom value of each box plot represents average + standard deviation. (a) Box plots of Jaccard
index and Dice coefficient. (b) Box plots of average surface distance and root-mean square distance.

vanced gastric cancer, one subject had cholecystitis can-
cer and eight subjects had colorectal cancer. All subjects
were aged between 26 and 84 years with a mean age of
62.8+12.0. CT specification and acquisition parameters
are summarized as Tables 1 and 2.

Manual rating was performed for the ground truth
data of the liver, spleen, pancreas and the kidneys. All
150 subjects were segmented by one out of three trained
raters. Segmentation of the ground truth images is based
on interactive region growing, where a spherical element
is utilized to prevent excess segmentation of a target re-
gion, or graph-cut segmentation, where a set of fore-
ground and background voxels is manually set as seed
points. After the semi-automated segmentation, manual
correction of all the segmentations was performed on all
the slices of right-to-left, ventral-to-back, and head-to-
foot directions.

In the experiments shown in this paper, we utilized
liver regions manually traced. This trace can be replaced
with automated method such as the one developed by
Wolz et al. (2013). The center is computed from the
liver region.

Four types of measurements are used for segmenta-
tion evaluation: Jaccard index (JI) (Jaccard (1901)),
DSC similarity coefficient (DSC) (Dice (1945)), average
symmetric surface distance (ASD), and root-mean aver-
age symmetric surface distance (RMSD) (Heimann et al.
(2009)). JI and DSC measurements evaluate the overlap
between the ground truth and the segmentation result
of the pancreas. The others evaluate a surface distance
error between them.

We fixed the parameters as r = 84,w = 2.0,7 =
0.25,01 = 1.0,m = 10. These values were experimen-
tally determined. We performed the segmentation ex-
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Figure 7: Example where the segmentation accuracy is improved by proposed method compared to the previous one. Each image
represents a coronal slice in the same position. From left to right, a probability map and the corresponding segmentation contour
overlapped with the ground truth contour of the conventional, VBI-based, and VEI-based methods, respectively. (a) - (c) indicate the
probability maps. Color code represents low probability with blue and high probability with red. (d) - (f) indicate the corresponding

segmentation contours and ground truth contours.

Ground truth boundary is traced in yellow and segmentation boundary in red.

Segmentation performance is 34.2%, 76.9%, and 80.2% with respect to JI, respectively.

periments using the atlas selection with Nj, = 20. This
number is selected based on previous experiences.

3.2. Ezxperimental results

Leave-one-out cross validation was utilized for the
performance evaluation. All experiments were executed
on servers equipped with an Intel Xeon Dual or Quad
Core 1.86 ~ 3.07 GHz CPU. The overall runtime per CT
volume takes between two ~ four hours.

Two types of the atlas selections described in Section
2.5 are performed separately and evaluated. For simplic-
ity, we refer to vessel structure binarized image as VBI
and vessel structure enhanced image as VEI.

Figure 6 (a) and (b) show box plots of the evalua-
tion metrics of the proposed segmentation and the con-
ventional one (Karasawa et al. (2015)), respectively. In
Fig. 6, both VBI- and VEI-based segmentation much
outperform the conventional one in terms of JI and DSC
measurements. We performed a statistical pair-wise two-
tailed t-test in terms of JI, DSC, ASD, and RMSD. In
the t-test in terms of JI and DSC between the VBI-based
method and the conventional method, the VBI-based
segmentations were significant with p = 2.26 x 107 <
0.001, 1.25 x 1072 < 0.01, respectively. In the t-test in
terms of JI and DSC between the VEI-based method and
the conventional method, the VEI-based segmentations
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Figure 8: Example where the segmentation accuracy is reduced by the proposed method compared to the previous one. Each image
represents a transverse slice in the same position. From left to right, a probability map and the corresponding segmentation contour
overlapped with the ground truth contour of the conventional, VBI-based, and VEI-based methods, respectively. (a) - (c) indicate the
probability maps. Color code represents low probability with blue and high probability with red. (d) - (f) indicate the corresponding

segmentation contours and ground truth contours.

Ground truth boundary is traced in yellow and segmentation boundary in red.

Segmentation performance is 64.0%, 29.3%, and 31.1% with respect to JI, respectively.

were significant with p = 5.74 x 1079, 2.96 x 1077 <
0.001, respectively. As shown in Fig. 6 (b), there is no
statistical significance between the proposed and the pre-
vious methods on the surface error measurements. The
reason for this will be discussed in Section 4.

Figure 7 shows an improved case with the probabilis-
tic map and the corresponding segmentation contour to-
gether with the ground truth contour. Figure 7 (a) -
(c) show the probabilistic map generated by the conven-
tional, VBI-based, and VEI-based methods, respectively.
Figure 7 (d) - (f) show the contours of the ground truth
and the segmentation result of the conventional, VBI-
based, and VEI-based methods, respectively. From left

10

to right, segmentation performance is 34.2%, 76.9%, and
80.2% with respect to JI, respectively. The white arrows
in (a) point to areas where the probability is relatively
higher in the duodenum and small intestine regions with
similar intensity to the pancreas. False positives to these
regions have occurred in (d). However, we can see in (b)
and (c) that the probability of these regions is lowered
by the proposed VBI- and VEI-based segmentation. This
resulted in the elimination of the false positives.

Figure 8 shows a worse case with the probabilistic
map and the corresponding segmentation contour to-
gether with the ground truth contour. Figure 8 (a) -
(¢) indicate the probabilistic map generated by the con-
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Figure 9: Scatter plot that describes relation between vessel region overlap within a PVOI and pancreas segmentation accuracy. The
overlap is measured with DSC. Horizontal axis represents average overlap between vessel regions of selected atlas PVOIs and of input
PVOI. Vertical axis represents average overlap between pancreas regions of selected atlas PVOIs and of input PVOIL. Green arrows
show that the higher the average overlap between vessel regions of selected atlas PVOIs and of input PVOI becomes, the smaller the

dispersion of segmentation performance.

ventional, VBI-based, and VEI-based methods, respec-
tively. Figure 8 (d) - (f) indicate the contours of the
ground truth and the segmentation result of the con-
ventional, VBI-based, and VEI-based methods, respec-
tively. From left to right, the segmentation performance
is 64.0%, 29.3%, and 31.1% with respect to JI, respec-
tively. For this case, we can see that the probability
map has a better shape than the previous (a); however,
the segmentation results of the proposed methods have
false negatives in the pancreatic head region. This im-
plies that the regularization term in the coarse-to-fine
segmentation is important and should be automatically
adjusted for every CT volume.

A scatter plot that describes a relation between vessel
region overlap within PVOI and pancreas segmentation
accuracy is shown in Fig. 9. Standard deviations of pan-
creas centroid along x-, y-, and z-axes are shown in Fig.
10. Examples of cases who have relatively large surface
distance error (> 10 mm with ASD) are shown in Fig.
11.

11

4. Discussion

Through our experiments using vessel structure-
based atlas selection, we were able to obtain better per-
formances on the pancreas segmentation. In particular,
we obtained better segmentation performance using ves-
sel structure enhancement, which places more emphasis
on the splenic vein region. From this reason, we can con-
clude that the atlas selection based on vessel structure
is much more effective in selecting atlases with similar
pancreatic shape and position to that of an input CT
volume.

Figure 9 indicates a scatter plot that describes a re-
lation between vessel region overlap and segmentation
performance. The vessel region overlap in the horizontal
axis represents an average overlap between vessel regions
of selected NV atlas PVOIs and of input PVOI. The ver-
tical axis represents the segmentation accuracy assessed
with DSC. From the plot, we can observe the follow-
ing: one is that the vessel structure-based atlas selection
for multi-atlas pancreas segmentation has a positive ef-
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Figure 10: Standard deviations of pancreas centroid along x-, y-, and z-axes in original (blue), standardized (orange), and cropped
PVOI space (green). Lower standard deviations are obtained in the x- and y-axes by the abdominal spatial regularization. The next

PVOI extraction reduces much standard deviation in the z-axis.

fect on selecting atlases with similar pancreas shape and
position. The other is that this atlas selection scheme
is effective in elimination of the dispersion of the seg-
mentation performance. As shown by the red regression
line in this figure, there exists a weak positive correlation
(=0.126) between the average vessel overlap and the pan-
creas segmentation performance. However, we can also
observe that the variability of segmentation accuracy is
amplified in the low vessel overlap region while it gets
smaller in the high vessel overlap region.

We performed the spatial standardization of the ab-
dominal region to relieve the inter-subject variability of
the body trunk size and position, followed by the PVOI
extraction to localize the pancreatic region more pre-
cisely. Figure 10 demonstrates that we were successful
in eliminating standard deviations in the x-, y-, and z-
directions by the abdominal spatial regularization and
PVOI extraction. Less variability of the pancreas posi-
tion and shape in the PVOI contributes to reducing the
local minima of the atlas-to-target image registration to
the pancreas region of an input CT volume. Therefore,
this lower variability of the standard deviations in the
three directions makes the registration to the pancreas
more precise.

Table 3 shows a comparison with existing state-of-
the-art works on pancreas segmentation performance.
The first row shows the segmentation performance using

12

the VBI-based or VEI-based atlas selection. The sec-
ond row shows the performance evaluated on the same
data set used in our experiments. The third row shows
the performance evaluated on a different data set from
ours. This table shows the pancreas segmentation accu-
racies. From this table, we can see that the proposed
VBI- and VEI-based atlas selection approaches outper-
form any other state-of-the-art work with respect to JI
and DSC overlap. The experimental result of Jiang et al.
(2013) outperforms ours; however, their method was only
evaluated on 10 cases and requires manual input of seed
points. In contrast, our segmentation pipeline is fully
automated and requires no manual delineation.

This paper is focused on pancreas region segmenta-
tion utilizing pancreas-specific atlas selection. Atlas se-
lection was performed by considering splenetic arteries.
Although the proposed method is tuned for pancreas seg-
mentation, the similar idea can be utilized for segmenta-
tion of the kidney, which is characterized by renal arter-
ies.

Future works mainly include the following six points.
While we obtained better segmentation performance in
terms of JI and DSC than most of the state-of-the-art
methods shown in Table 3, our segmentation pipeline
still has much higher computational burden compared
with other approaches based on machine learning. This
point is a main disadvantage of our method to be im-
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proved in the future. This is mainly caused by the atlas-
to-target nonrigid registration. The computational com-
plexity can be an issue in the application to the CAD
system of pancreatic cancer, considering surgeons may
wish to diagnose the cancer on the spot.

We used an in-house dataset of CT volumes in our
evaluation. To compare the segmentation accuracy with
the previous methods, use of the same dataset is impor-
tant. We plan to evaluate our method on available open
datasets on which previous methods have been evaluated.

Figure 11 shows examples which have relatively large
surface distance error (> 10 mm with ASD). As shown
here, with our method there were cases whose surface
distance errors were more deteriorated than the over-
lap measurements. This indicates that atlases selected
by the proposed method failed to represent the pancreas
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shape in some cases. Shape robustness of atlas need to be
improved. Incorporating a shape prior or shape condition
using an organ statistical shape model into the smooth-
ness term of the graph cut of the proposed method will
allow us to consider the correspondence between two pan-
creas parts, e.g. the pancreas tails, of the pancreas statis-
tical shape model and of the pancreas region of an input
CT volume. Also, the performance measures such as JI,
DSC, ASD, RMSD, or others are needed to be selected
by clinical application demands. The proposed method
may have satisfying performance for some applications.

Throughout the experiments, the atlas selection num-
ber Ny = 20 is fixed. Other atlas selection numbers, e.g.
30, should be tested to explore the impact on the seg-
mentation performance. Also, we need to automatically
determine an optimal number for every input CT volume.



Table 3: Comparison table of pancreas segmentation from CT scan. First row shows proposed methods, second row shows segmentation
performance of other groups using the same dataset as ours, and third row shows the segmentation performance of other groups using a
different dataset from ours. The table only shows the segmentation performance (JI, DSC, ASD) on the pancreas. We use the following
brief symbols for each organ: heart (H), stomach (ST), esophagus (E), liver (L), spleen (S), pancreas (P), kidneys (RK, LK), gallbladder
(G), portal vein (PV), aorta (AO), inferior vena cava (IVC). Also, we use the following brief symbols for each CT phase: multiple phase
(M), portal venous phase (P), arbitrary phase (A), non-contrast enhanced phase (N).

# of Segmentation Runtime Performance on pancreas segmentation
Method data | CT phase target [h/case] JT[% | DSC % | gASD )
VBI base 150 P P 2~4 63.9 £ 17.1 | 76.3 £ 16.4 2.53 £ 3.37
VEI base 150 P P 2~4 66.3 £ 15.5 | 78.5 = 14.0 2.50 £ 4.01
Wolz et al. (2013) 150 P LS, P.RK LK 3 55.5 £ 17.1 | 69.6 & 16.7 | 3.72 £ 4.36
Chu et al. (2013) 100 P L,S,P,RK,LK - 54.6 £15.9 | 69.1 £ 15.3 1.88 + 0.64
Wang et al. (2014) 100 P L.S,P.RK,LK 14 - 65.5 + 18.6 -
Karasawa et al. (2015) | 150 P P - 60.5 £ 18.1 | 73.4 £ 17.6 3.16 £ 4.57
Tong et al. (2015) 150 P L,S,P,RK,LK 0.5~ 2 56.9 £ 15.2 | 71.1 £ 14.7 -
Kitasaka et al. (2008) 22 M P - visual assessment: good 12, normal 6, bad 4
H,ST.E
Shimizu et al. (2007) | 10 N L,S,P.RK,LK . 32.5 - -
G,PV,AQ0,ICV
Shimizu et al. (2010) 98 M P 45 [min] 57.9 - -
Hammon et al. (2013) | 40 P P 20.4 [min] 61.2 £ 9.08 - 1.70 £ 0.71
Jiang et al. (2013) 10 p p 0-195 ~ 0.199 . 88.4 -
[s/slice] :
Farag et al. (2014b) | 80 P P 2 £ 3 [min] 572 + 254 | 68.8 £ 25.6 N
Rothetal (2015) | 82 | P P L e | 68 + 10 _
Roth et al. (2016) 82 P P 2 ~ 3 [min] - 78.0 £ 8.2 0.60 £ 0.55
Okada et al. (2013) | 87 A Lg”ig{f\%}( - 52.8 ] ]
Okada et al. (2015) | 134 A Lg:iﬁ?\%{ ] 604+ 16.7 | 73.4 £ 15.1 | 2.77 + 2.40
Saito et al. (2016) 140 M P,S 213 [s] 62.3 £19.5 | 74.4 £ 20.2 -

The VBI- and VEI-based atlas selection methods use
the Jaccard index (JI) and normalized cross correlation
(NCC) as image similarity to select similar atlases from
the data set. It is worth to explore other image similarity
metrics like normalized mutual information (NMI) and
average surface distance (ASD).

We utilized the vessel structure information in the
PVOI in the research and obtained the best segmenta-
tion performance using the atlas selection based on it.
However, we only focused on the vasculature around the
pancreatic region. On this point, we should investigate
the effectiveness of the whole abdominal vessel structure
with a large field-of-view for similar atlas selection of
other abdominal organs, e.g. the liver. It’s also promis-
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ing to use abdominal anatomical landmarks for similar
atlas selection because they also have the anatomical in-
formation that gives a prior of organ position.

Some processes in the proposed method utilize man-
ually segmented regions of organs including liver and
spleen. Also, the spatial standardization of abdominal
region process Chu et al. (2013) includes organ segmen-
tation process. These segmentation results affect pan-
creas segmentation accuracy of the proposed method.
The relation between them need to be clarified. Full
automation of these organ segmentation processes will
be necessary.




5. Conclusion

We proposed a multi-atlas pancreas segmentation
method based on vessel structure around the pancreas.
We also utilized the spatial standardization of the ab-
dominal region and extraction of the pancreatic region
(PVOI) to make the variability of the pancreas centroid
smaller, which contributes to the lower local minima of
the image registration. From the experimental results,
we achieved 66.3% average JI and 78.5% average DSC
overlap using the multi-atlas segmentation pipeline us-
ing vessel structure enhanced image (VEI)-based atlas
selection. This VEI emphasizes more on the splenic vein
region, which runs along the pancreatic region. We can
conclude that the vessel structure-based atlas selection is
effective in selecting atlases with similar pancreas shape
and position to that of an input CT volume.
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Appendix A

Spatial standardization of the abdominal region is
simply performed by image scaling and translation us-
ing

X/ = xT18T2, (8)

where T and T3 represent two translation matrices and
S represents a scaling matrix. A voxel x in the original
space is projected into a new position x’ in the standard-
ized space.

For the purpose of finding the matrices, we utilize
a body trunk region (which includes abdominal cavity,
anatomical tissues inside the body, and body surface),
lung regions, and kidney regions. These regions are ex-
tracted with the combination of some image processing
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techniques such as region growing and 26-neighbor la-
beling. The kidney and the lung regions are roughly seg-
mented by thresholding and connected component pro-
cesses. Since we utilized the contrasted CT images in
the experiment, the kidney can be extracted by simple
thresholding process. The lung regions also can be ex-
tracted by thresholding and connected component. We
define the matrices as

1 0 0 0
0 1 0 0
Ti=1 0 1 0|’ (9)
-C, -C, —-B. 1
T 0 00
0 2 oo
S = R , (10)
0 0 94 0
0 0 0 1
1 0 0 0
0 1 0 0
c, C, B, 1

where 0, h indicates an average width and height of the
bounding box of the body trunk, respectively. éz,éy
indicates an average center position in the transverse
plane. d is an average distance between the bottoms of
the lungs and the kidneys. B, is an average bottom po-
sition of the lungs. These six values are computed ahead
of the experiments. The unit of the values is millime-
ters. For an unlabeled CT volume, the same six values
of w,h,C,,Cy,d, B, are calculated in the same manner.

Appendix B

In the multi-class graph cut, we define an energy func-
tion as

E(L)=) R +XA > B(xX),

XER (x,x")e€

(12)

where L shows an array of the label disposition estimated
by Eq. (7). \is a regularized coefficient. R(-) and B(-,-)
are a data term and smoothness term, respectively. The
data term R(-) represents a binary disagreement between
the estimated labels [ and each organ label [ and is de-
fined as

0, ifl=1I3,
1, otherwise.

(13)



The smoothness term B(:,-) measures a penalty of dis-
continuity between voxels and is given as

0, if 1

1 .
EECEICAIRCEIE otherwise,

== lx’a

(14)

B(x,x) = {

where £ represents a set of neighboring voxels defined
as & = {(x,x/)|x € R,x’ € N*}. N* is a set of voxels
connecting to x with 26-neighbor. The function d(,-)
measures Euclidean distance between two voxels.
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