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In Mod. Phys. Lett. A 31, 1650213 (2016), Nojiri proposed a simple model in order to solve one of the
problems related to the cosmological constant. The model is induced from a topological field theory, and
the model has an infinite number of BRS symmetries. The BRS symmetries are, in general, spontaneously
broken, however. We investigate the BRS symmetry in detail and show that there is one and only one BRS
symmetry which is not broken, and the unitarity can be guaranteed. In the model, the quantum problem of
the vacuum energy, which may be identified with the cosmological constant, reduces to the classical
problem of the initial condition. We investigate the cosmology given by the model and specify the region of
the initial conditions, which could be consistent with the evolution of the Universe. We also show that there
is a stable solution describing the de Sitter space-time, which may explain the accelerating expansion in the
current Universe.
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Recent observations indicate that the expansion of the
Universe is accelerating. The energy density generating the
accelerating expansion is called dark energy. The simplest
model of dark energy may be a cosmological term with a
small cosmological constant, Λ1=4 ∼ 10−3 eV. The cosmo-
logical term can be regarded with the energy density of the
vacuum but, as is well known, the corrections from the
matter in quantum field theory to the vacuum energy
ρvacuum diverges and it is necessary to introduce the cutoff
scale Λcutoff , which might be the Planck scale, to regularize
the divergence. Then the obtained value of the vacuum
energy, ∼Λ4

cutoff , is much larger than the observed value of
the energy density in the Universe, ð10−3 eVÞ4. Even if we
impose the supersymmetry in the high energy, the vacuum
energy by the quantum corrections is evaluated as
∼Λ2

cutoffΛ2
SUSY. Here, we denote the scale of the supersym-

metry breaking byΛSUSY. The vacuum energy coming from
the quantum corrections can then be very large. We may use
the counterterm in order to obtain the observed very small
vacuum energy ð10−3 eVÞ4, but very significant fine-tuning
is necessary, and it looks extremely unnatural. For a
discussion of why the vaccum energy is so small but does
not vanish, see, for example, [1]. Unimodular gravity
theories [2–28] were proposed to solve this problem.
For other scenarios to solve the cosmological constant
problems, see, for example, [29–35].
In [36], motivated by the unimodular gravity theories, a

new model has been proposed. The action of this model is
given by

S0 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p fLgravity−λþ∂μλ∂μφ−∂μb∂μcgþSmatter:

ð1Þ

Here, λ and φ are scalar fields and b and c are also scalar
fields, but they are fermionic (Grassmann odd), and b is
later identified with the antighost and c with the ghost. The
action without the ghost c and antighost b appeared in [37]
for other purposes. Recently, the cosmological perturbation
based on the model in (1) was investigated in [38]. In (1),
we express the action of matters by Smatter and the
Lagrangian density of the gravity Lgravity can be that of
an arbitrary model. We should note that there is not any
parameter except the parts coming from Smatter and Lgravity.
We divide the gravity Lagrangian density Lgravity into the

sum of some constant Λ, which may include the large

quantum corrections, and another part Lð0Þ
gravity, where

Lgravity ¼ Lð0Þ
gravity − Λ. We also redefine the scalar field λ

by λ → λ − Λ. Then the action (1) is rewritten as

S0 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p fLð0Þ
gravity−λþ∂μλ∂μφ−∂μb∂μcgþSmatter:

ð2Þ

The obtained action (2) does not include the constant Λ,
which tells us that the constant Λ does not affect the
dynamics. Although the constant Λ may include the large
quantum corrections from matter to the vacuum energy, the
large quantum corrections can be tuned to vanish.
The model in (1) includes ghosts [36], which generate

the negative norm states in the quantum theory—and
therefore the model is inconsistent—but the negative norm
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states can be excluded by defining the physical states
through the use of BRS symmetry [39]. In fact, the
action is invariant under the infinite numbers of the BRS
transformation,

δλ ¼ δc ¼ 0; δφ ¼ ϵc; δb ¼ ϵðλ − λ0Þ: ð3Þ
Here, ϵ is a fermionic parameter and λ0 is a solution of the
equation

0 ¼ ∇μ∂μλ; ð4Þ
which can be obtained by the variation of the action (1)
with respect to φ.1 If we define the physical states as the
states invariant under the BRS transformation in (3), we can
consistently exclude the negative norm states as in gauge
theory [40,41]. By assigning the ghost number 1 for c and
−1 for b and ϵ, we find that the ghost number is also
conserved. The four kinds of fields λ, φ, b, and c can be
identified with a quartet in Kugo-Ojima’s quartet mecha-
nism in gauge theory [40,41].
We should note that the Lagrangian density in the

action (1),

L ¼ −λþ ∂μλ∂μφ − ∂μb∂μc; ð5Þ
can be regarded as the Lagrangian density of a topological
field theory [42], where the Lagrangian density is BRS
exact—that is, it is given by the BRS transformation of a
certain quantity. We may start with a field theory including
only the scalar field φ, but the Lagrangian density vanishes
(Lφ ¼ 0). Because the Lagrangian density vanishes, under
any transformation of φ, the action is trivially invariant. In
this sense, we may regard this theory as a gauge theory. We
now impose the following gauge condition in order to fix
the gauge symmetry:

1þ∇μ∂μφ ¼ 0: ð6Þ
Then the gauge-fixing Lagrangian [43] is given by the BRS
transformation (3) of −bð1þ∇μ∂μφÞ. In fact, we find

δð−bð1þ∇μ∂μφÞÞ
¼ ϵð−ðλ − λ0Þð1þ∇μ∂μφÞ þ b∇μ∂μcÞ
¼ ϵðLþ λ0 þ ðtotal derivative termsÞÞ: ð7Þ

Therefore, the Lagrangian density (5) is surely BRS exact up
to the total derivative terms if λ0 ¼ 0, and we find that the
theory in (5) could be regardedwith a topological field theory.
We should note that for the unbroken BRS symmetry—
where, in general, λ0 ≠ 0—the Lagrangian density (5) is not
BRS exact. In this sense, the Lagrangian density (5) is not that
of the exact topological field theory, which may be a reason

why the Lagrangian density (5) gives nontrivial and physi-
cally relevant contributions.
We should note that the gauge condition (6) does not fix

the gauge symmetry completely, and there remains residual
gauge symmetry. In fact, the gauge condition (6) is
invariant under the residual gauge transformation

φ → φþ δφ: ð8Þ

Here, δφ satisfies the equation∇μ∂μδφ ¼ 0. Then, by using
the residual gauge symmetry, we can choose (be restricted
to) the initial conditionwhereφ is a constant—or even zero.2

We should also note that Eq. (3) tells that λ is nothing
but the Nakanishi-Lautrup field [44–46]. Then, by using
Eq. (3), λ − λ0 is BRS exact, which indicates that
the vacuum expectation value of λ − λ0 must vanish. If
the vacuum expectation value of λ − λ0 does not vanish, the
BRS symmetry is spontaneously broken, and we may not
be able to consistently impose the physical state condition.
We should note that there is only one unbroken BRS
symmetry in the infinite numbers of the BRS symmetry in
(3). Because Eq. (4) is the field equation for λ, the real
world should be realized by one and only one solution of
(4) for λ. Therefore, in the real world, only one λ0 is chosen
so that λ ¼ λ0 and the corresponding BRS symmetry is not
broken. Therefore, by using the unbroken BRS symmetry,
we can exclude the negative norm state (the ghost states)
and the unitarity is guaranteed. We should also note that λ0
can include the classical fluctuation as long as λ0 satisfies
the classical equation (4). Therefore, although the quantum
fluctuations are prohibited by the BRS symmetry, there
could appear the classical fluctuations.
The above arguments suggest that the quantum problem

of the cosmological constant or vacuum energy might be
solved. There is not, however, any principle to determine
the value of λ or Λþ λ in the quantum theory. The value
could be determined by the initial conditions in the classical
theory. In other words, the quantum problem of the vacuum
energy is replaced with the classical problem of the initial
conditions. In the following, we investigate the cosmology
given by the model (1) and specify the region of the initial
conditions, which could be consistent with the evolution of
the observed Universe. We may assume the Friedmann-
Robertson-Walker (FRW) metric with a flat spacial part,

ds2 ¼ −dt2 þ aðtÞ2
X3
i¼1

ðdxiÞ2; ð9Þ

and λ and φ are assumed to depend only on the time
coordinate t. In (9), aðtÞ is called the scale factor. By a
variation of λ in the action (1), we obtain Eq. (6), which has
the following form in the FRW metric (9):

1The existence of the BRS transformation where λ0 satisfies
Eq. (4) was pointed out by Saitou. 2This argument comes from discussions with S. Akagi.
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0 ¼ 1 −
�
d2φ
dt2

þ 3H
dφ
dt

�
: ð10Þ

Here, H is the Hubble rate H defined by H ≡ 1
a
da
dt. The

general solution of (10) is given by

φðtÞ ¼
Z

t dt1
aðt1Þ3

Z
t1
dt2aðt2Þ3 þ φ1

Z
t dt1
aðt1Þ3

þ φ2:

ð11Þ

Here, φ1 and φ2 are constants. On the other hand, the
equation given by a variation of φ is given by (4), which has
the following form:

0 ¼ d2λ
dt2

þ 3H
dλ
dt

; ð12Þ

whose general solution is given by

λ ¼ λ1 þ λ2

Z
t dt1
aðt1Þ3

: ð13Þ

As a gravity theory, we simply consider the Einstein gravity
whose Lagrangian density is given by

Lgravity ¼
R
2κ2

− Λ: ð14Þ

Here, R is the scalar curvature and κ is the gravitational
coupling constant. Λ is a cosmological constant, but it may
include the large quantum correction from matter.
First, by neglecting the contributions from matter, we

consider the FRW cosmology. Then the first and second
FRW equations have the following forms:

3

κ2
H2 ¼ Λþ λ −

dλ
dt

dφ
dt

; ð15Þ

−
1

κ2

�
3H2 þ 2

dH
dt

�
¼ −Λ − λ −

dλ
dt

dφ
dt

: ð16Þ

We can delete Λ from Eqs. (15) and (16), and we find

1

κ2
dH
dt

¼ dλ
dt

dφ
dt

: ð17Þ

Then we find that there is a solution, where λ is a constant
λ ¼ λ1. In fact, λ ¼ λ1 is a solution of (12) or the solution in
(13) with λ2 ¼ 0. Then Eq. (17) indicates that H is a
constant, H ¼ H0, and the space-time is therefore the de
Sitter space-time. By using (15) or (16), we obtain the
explicit value of λ ¼ λ1 as follows:

λ1 ¼ −Λþ 3H2
0

κ2
: ð18Þ

A solution of Eq. (10) is given by φ ¼ t
3H0

, which is a
special case in (11). We should note that the value of H0

does not depend on the value of the cosmological constant
Λ. BecauseH0 is given by the constant of the integration in
(17), the value of H0 could be determined by the initial
condition or something else. In any case, the value of the
cosmological constant Λ is irrelevant for the cosmology.
The above result also tells that the problem in the quantum
theory for the vacuum energy reduces to the initial con-
dition problem in the classical theory in our model.
We now investigate the stability of the solution in (18)

expressing the de Sitter space-time. For this purpose, we
consider the perturbation from the solution

H ¼ H0 þ δH; λ ¼ −Λþ 3H2
0

κ2
þ δλ;

φ ¼ t
3H0

þ δφ: ð19Þ

Then, by using (10), (12), and (15), we obtain the following
equations, respectively:

0 ¼ δφ̈þ 3H0δ _φ −
1

3H0

δH; ð20Þ

0 ¼ δ ̈λþ 3H0δ_λ; ð21Þ

6

κ2
H0δH ¼ δλþ 1

3H0

δ_λ: ð22Þ

By deleting δH from (20) and (22), we obtain

0 ¼ δφ̈þ 3H0δ _φ −
κ2

18H2
0

�
δλþ 1

3H0

δη

�
: ð23Þ

Here, we have defined a new variable δη by

δη≡ δ_λ: ð24Þ

Then we can rewrite (21) as follows:

0 ¼ δ_ηþ 3H0δη: ð25Þ

By summarizing Eqs. (23), (24), and (25), we can write the
equations in the matrix form,

0
B@

δ_λ

δ_η

δφ̈

1
CA ¼ A

0
B@

δλ

δη

δ _φ

1
CA; A≡

0
B@

0 1 0

0 −3H0 0

κ2

18H2
0

− κ2

54H3
0

−3H0

1
CA:

ð26Þ

The eigenvalues of the matrix A are given by −3H0 and two
0s. Because there are not positive eigenvalues, the solution
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is stable—or at least quasistable. Then the solution (18)
describing the de Sitter space-time might correspond to the
accelerating expansion in the current Universe.
We now investigate what could be the initial condition

corresponding to the value of the vacuum energy in the
Universe. After inflation, the Universe passed through the
radiation-dominated and matter-dominated eras and
entered into the dark energy–dominated era. In the radi-
ation-dominated and matter-dominated eras, the contribu-
tions from λ and φ can be neglected, and these scalar fields
are expected to evolve by following (11) and (13). In the
future dark energy–dominated era, the Universe is expected
to be described by the asymptotically de Sitter space-time
in (18).
In the radiation-dominated era, the scale factor is

given by

aðtÞ ¼ aradt1=2; ð27Þ

in the matter-dominated era,

aðtÞ ¼ amatt2=3; ð28Þ

and in the dark energy–dominated era,

aðtÞ ¼ aΛeH0

ffiffiffiffiffi
ΩΛ

p
t: ð29Þ

Here, arad, arad, and aΛ are constants depending on the
energy density of the radiation, the matter density, and the
dark energy density, respectively. We express the value of
the Hubble rate H in the current Universe by H0 and the
dark energy density parameter by ΩΛ.
Then, by using (11) and (13), the scalar fields λðtÞ and

φðtÞ in the radiation-dominated era are given by

φðtÞ ¼ φradðtÞ≡ φrad2 −
2φrad1

a3rad
t−1=2 þ 1

5
t2;

λðtÞ ¼ λradðtÞ≡ λrad1 −
2λrad2
a3rad

t−1=2: ð30Þ

On the other hand, in the matter-dominated and dark
energy–dominated eras, the scalar fields are given by

φðtÞ ¼ φmatðtÞ≡ φmat2 −
φmat1

a3mat
t−1 þ 1

6
t2;

λðtÞ ¼ λmatðtÞ≡ λmat1 −
λmat2

a3mat
t−1; ð31Þ

φðtÞ ¼ φΛðtÞ≡ φΛ2 −
φΛ1

3H0

ffiffiffiffiffiffiffi
ΩΛ

p
a3Λ

e−3H0

ffiffiffiffiffi
ΩΛ

p
t þ t

3H0

ffiffiffiffiffiffiffi
ΩΛ

p ;

λðtÞ ¼ λΛðtÞ≡ λΛ1 −
λΛ2

3H0

ffiffiffiffiffiffiffi
ΩΛ

p
a3Λ

e−3H0

ffiffiffiffiffi
ΩΛ

p
t: ð32Þ

Here, φrad1, φrad2, λrad1, λrad2, φmat1, φmat2, λmat1, λmat2, φΛ1,
φΛ2, λΛ1, and λΛ2 are constants.
We now use approximations where the radiation-domi-

nated era transitioned to the matter-dominated era at the
time t ¼ t1, and the matter-dominated era to the dark
energy–dominated era at t ¼ t2. We connect the solutions
in (30), (31), and (32) by imposing the continuities of the
values of φ, λ, _φ, and _λ at the transit points. Then, at the
point t ¼ t1, we require that

φrad2 −
2φrad1

a3rad
t−1=21 þ 1

5
t21 ¼ φmat2 −

φmat1

a3mat
t−11 þ 1

6
t21;

λrad1 −
2λrad2
a3rad

t−1=21 ¼ λmat1 −
λmat2

a3mat
t−11 ; ð33Þ

and

φrad1

a3rad
t−3=21 þ 2

5
t1 ¼

φmat1

a3mat
t−21 þ 1

3
t1;

λrad2
a3rad

t−3=21 ¼ λmat2

a3mat
t−21 : ð34Þ

Then we find

φmat1 ¼
�
amat

arad

�
3

t1=21 φrad1 þ
1

15
a3matt

3
1;

φmat2 ¼ φrad2 −
t−1=21 φrad1

a3rad
þ 1

10
t21;

λmat2 ¼
�
amat

arad

�
3

t1=21 λrad2;

λmat1 ¼ λrad1 −
λrad2
a3rad

t−1=21 : ð35Þ

On the other hand, at the point t ¼ t2, we require

φmat2 −
φmat1

a3mat
t−12 þ 1

6
t22 ¼ φΛ2 −

φΛ1

3H0

ffiffiffiffiffiffiffi
ΩΛ

p
a3Λ

e−3H0

ffiffiffiffiffi
ΩΛ

p
t2

þ t2
3H0

ffiffiffiffiffiffiffi
ΩΛ

p ;

λmat1 −
λmat2

a3mat
t−12 ¼ λΛ1 −

λΛ2
3H0

ffiffiffiffiffiffiffi
ΩΛ

p
a3Λ

e−3H0

ffiffiffiffiffi
ΩΛ

p
t2 ;

ð36Þ

and

φmat1

a3mat
t−22 þ 1

3
t2 ¼

φΛ1

a3Λ
e−3H0

ffiffiffiffiffi
ΩΛ

p
t2 þ 1

3H0

ffiffiffiffiffiffiffi
ΩΛ

p ;

λmat2

a3mat
t−22 ¼ λΛ2

a3Λ
e−3H0

ffiffiffiffiffi
ΩΛ

p
t2 ; ð37Þ

and we obtain
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φΛ1 ¼
a3Λ
a3mat

t−22 e3H0

ffiffiffiffiffi
ΩΛ

p
t2φmat1 −

a3Λe
3H0

ffiffiffiffiffi
ΩΛ

p
t2

3H0

ffiffiffiffiffiffiffi
ΩΛ

p þ 1

3
t2a3Λe

3H0

ffiffiffiffiffi
ΩΛ

p
t2 ;

φΛ2 ¼ φmat2 −
�
1 −

1

3H0t2
ffiffiffiffiffiffiffi
ΩΛ

p
�

φmat1

t2a3mat
þ t2
9H0

ffiffiffiffiffiffiffi
ΩΛ

p þ 1

6
t22 −

1

9H2
0ΩΛ

;

λΛ2 ¼
�
aΛ
amat

�
3

t−22 e3H0

ffiffiffiffiffi
ΩΛ

p
t2λmat2;

λΛ1 ¼ λmat1 −
�
1 −

1

3H0t2
ffiffiffiffiffiffiffi
ΩΛ

p
�

λmat2

t2a3mat
: ð38Þ

By combining the above equations, we find

λ0 þ Λ ¼ 3H2
c

κ2
¼ Λþ λΛ1 −

λΛ2
3H0

ffiffiffiffiffiffiffi
ΩΛ

p
a3Λ

e−3H0

ffiffiffiffiffi
ΩΛ

p
t2 ;

λΛ1 ¼ λrad1 −
λrad2
a3rad

t−1=21

�
1þ t1t−12

�
1 −

t−12
3H0

ffiffiffiffiffiffiffi
ΩΛ

p
��

;

λΛ2 ¼ λrad2

�
aΛ
arad

�
3

e3H0

ffiffiffiffiffi
ΩΛ

p
t2t−22 t1=21 ;

φΛ1 ¼ φrad1

�
aΛ
arad

�
3

t−22 t1=21 e3H0

ffiffiffiffiffi
ΩΛ

p
t2 þ 1

15
a3Λt

3
1t

−2
2 e3H0

ffiffiffiffiffi
ΩΛ

p
t2 −

a3Λe
3H0

ffiffiffiffiffi
ΩΛ

p
t2

3H0

ffiffiffiffiffiffiffi
ΩΛ

p þ 1

3
t2a3Λe

3H0

ffiffiffiffiffi
ΩΛ

p
t2 ;

φΛ2 ¼ φrad2 −
�
t−1=21

a3rad
þ
�
1 −

1

3H0t2
ffiffiffiffiffiffiffi
ΩΛ

p
�

t1=21

t2a3rad

�
φrad1 þ

t2
9H0

ffiffiffiffiffiffiffi
ΩΛ

p −
1

9H2
0ΩΛ

−
1

15

�
1 −

1

3H0t2
ffiffiffiffiffiffiffi
ΩΛ

p
�
t31
t2
þ 1

10
t21 þ

1

6
t22: ð39Þ

Now we consider the constraints on the scalar fields coming from the observations. For this purpose, we use the values of
the cosmological parameters in [47].
(a) The scale factor and the cosmological time when the density of the radiation was equal to the density of matter:

arm ¼ 2.8 × 10−4, t1 ¼ 4.7 × 104 yr ∼ 1.5 × 1012 s ¼ 2.3 × 1027 ½eV−1�.
(b) The scale factor and the cosmological time when the density of the matter was equal to the density of the dark energy:

amΛ ¼ 0.75, t2 ¼ 9.8 × 109 yr ∼ 3.1 × 1017 s ¼ 4.7 × 1032 ½eV−1�.
(c) The cosmological time when the radiation-dominated era began: t3 ¼ 10−32 s ¼ 10−17 ½eV−1�.
(d) The scale factor and the cosmological time in the current Universe: a0 ¼ 1, t0 ¼ 13.5 × 109 yr ∼ 4.3 × 1017 s ¼

6.5 × 1034 ½eV−1�.
(e) The Hubble constant in the current Universe: H0¼70kms−1Mpc−1∼2.2×10−18 s−1¼1.5×10−33 ½eV�.
(f) The density parameters of the radiation, the matter, and the dark energy: Ωr ¼ 8.4 × 10−5, Ωm ¼ 0.30,

ΩΛ ∼ 0.70.
Then we obtain
(a) arad ∼ ð2H0

ffiffiffiffiffi
Ωr

p Þ1=2 ¼ 2.0 × 10−10 s−1=2 ¼ 5.1 × 10−18 ½eV1=2�
(b) amat ∼ ð3

2
H0

ffiffiffiffiffiffiffi
Ωm

p Þ2=3 ∼ 5.7 × 10−13 s−2=3 ¼ 4.3 × 10−24 ½eV2=3�
(c) The critical density: ρ0 ¼ 3H2

0

8πG ¼ 5 × 10−24 kgm−3 ¼ 4.2 × 10−11 ½eV4�.
(d) Newton’s gravitational constant: G ∼ 6.6 × 10−11 m3 kg−1 s−2 ¼ 6.7 × 10−57 ½eV−2�.
First constraints can be obtained by requiring that Λþ λ become a constant corresponding to the cosmological constant

Λ0 ∼ 10−11 ½eV4�,

Λ0 ∼ Λþ λΛ1 ≫
				 λΛ2
3H0

ffiffiffiffiffiffiffi
ΩΛ

p
a3Λ

e−3H0

ffiffiffiffiffi
ΩΛ

p
t0

				: ð40Þ
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By using (39), we can rewrite the constraints in (40) as
follows:

10−11 ½eV4� ∼ Λþ λrad1

−
λrad2
a3rad

t−1=21

�
1þ t1t−12

�
1 −

t−12
3H0

ffiffiffiffiffiffiffi
ΩΛ

p
��

∼ Λþ λrad1 − λrad2 × ð3.1 × 1065 ½eV1
2�Þ;

ð41Þ

10−11 ½eV4� ≫ jλrad2j × ð1.8 × 1036 ½eV1
2�Þ: ð42Þ

Then Eq. (42) gives the following constraint:

jλrad2j ≪ 10−47 ½eV5�: ð43Þ
The next constraint requires that the matter should surely be
dominant compared to the contributions from λ and φ in the
matter-dominated era t1 ≪ t ≪ t2,

Λþ λrad1 −
λrad2
a3rad

t−1=21 ð1þ t1t−1Þ

−
λrad2
a3rad

t1=21

��
t1=21

a3rad
φrad1 þ

1

15
t31

�
t−4 þ 1

3
t−1

�

≪ ρ ¼ Ωmρ0a−3matt
−2: ð44Þ

We should require that the radiation be dominant in the
radiation-dominated era t ≪ t1,

Λþ λrad1 −
λrad2
a3rad

�
φrad1

a3rad
t−3 þ 12

5
t−1=2

�
≪ ρ¼ Ωrρ0a−4radt

−2:

ð45Þ

It is, in general, not so straightforward to solve the
constraints (44) and (45). We may, however, evaluate the
constraints as follows. When the matter-dominated era
transitioned to the dark energy–dominated era at t ¼ t2, the
lhs is almost equal to the rhs, by definition of the transition.
Each of the terms, except for the first constant terms, on the
lhs becomes larger when t → t1 and the most dominant
term is the t−4 one. Then we may have the following
constraint:

				λrad2
�
φrad1 þ

2

5
a3radt

5=2
1

�				 ≪ Ωmρ0
a6rad
a3mat

t1; ð46Þ

that is,

jλrad2ðφrad1 þ 1.4 × 1016 ½eV−1�Þj ≪ 10−23 ½eV4�: ð47Þ
At the beginning of the radiation-dominated era t ¼ t3, the
t−3 term dominates on the lhs of Eq. (45) and we obtain the
following constraint:

jλrad2φrad1j ≪ Ωrρ0a2radt3; ð48Þ

that is,

jλrad2φrad1j ≪ 10−62 ½eV4�: ð49Þ
We may summarize the obtained constraints as

Λþ λrad1 − λrad2 × ð3.1 × 1065 ½eV−1�Þ ∼ 10−11 ½eV4�;
jλrad2j ≪ 10−47 ½eV5�;

jλrad2ðφrad1 þ 1.4 × 1016 ½eV−1�Þj ≪ 10−23 ½eV4�;
jλrad2φrad1j ≪ 10−62 ½eV4�:

ð50Þ
The first constraint in (50) or (41) seems to indicate that we
require fine-tuning of the initial conditions.
We now consider more about the initial condition for λ.

By choosing t as a present time, λ can be expressed as

λ ∼ 10−11 ½eV4� ∼ λrad1 −
λrad2

6.4 × 10−39 ½eV� : ð51Þ

This may suggest that

λrad1 ∼ ð10−3 ½eV�Þ4; λrad2 ∼ ð10−10 ½eV�Þ5: ð52Þ
The obtained value then seems to be very small. If we
assume λrad1 ¼ 0, which might be unnatural, then by using
(30), we find the value of λ at the beginning of the radiation-
dominated era t ∼ t3,

λ ¼ λradðt3Þ ∼ ð0.1 ½keV�Þ4: ð53Þ
The obtained value might be a little bit more reasonable.
Then, even if λ ∼ 10−12 ½eV4� in the present Universe, λ ∼
½ð0.1 ½keV�Þ4� at the beginning of the radiation-dominated
era. The converse is not true because, in general, λrad1 ≠ 0:
If we only require λ ∼ ð0.1 ½keV�Þ4 at the beginning of the
radiation-dominated era, we may find λ ∼ ð0.1 ½keV�Þ4 ≫
10−12 ½eV4� even in the present Universe.

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

106

108

1010

10-15 10-10 10-5 100 105 1010 1015

λ 
[e

V
4 ]

t [s]

FIG. 1. The development of λ.
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We now solve Eqs. (10), (12), and (15) numerically. In
Fig. 1, the time development of λ is given. The obtained
value of λ at the beginning of the radiation-dominated era is
consistent with the analytic result in (53). In Fig. 2, the time
development of ϕ≡M3

Plφ is given. Figure 3 shows the
development of the energy density. The parameters λrad1
and λrad2 are chosen to reproduce the value of the dark
energy density in the current Universe. The dark energy
density in the matter-dominated era or the radiation-
dominated era is surely negligible.
In summary, we have clarified the structure of the

model in [36] and investigated the cosmology given by the
model. Although the model has an infinite number of BRS
symmetries, most of the symmetry is broken, and there
remains one and only one BRS symmetry which guaran-
tees the unitarity of the model. We have also shown that,

by using the residual gauge symmetry, the initial condition
where φ is a constant can be chosen. Because the quantum
problem of the vacuum energy reduces to the classical
problem of the initial condition in the model, we have
investigated the region of the initial conditions which
could be consistent with the evolution of the Universe. It
seems difficult to solve the fine-tuning problem in the
initial condition in this model. It has been also shown that
a stable solution describing the de Sitter space-time exists
in this model.
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supported (in part) by a MEXT KAKENHI Grant-in-Aid
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Acceleration” (No. 15H05890) (D. N and S. N.).
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