Large network swelling and solvent
redistribution are necessary for gels to show

negative normal stress
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Abstract

We use a statistical thermodynamic model to theoretically predict the normal stress
of a polymer gel, which is twisted by a rotational rheometer in the parallel plate ge-
ometry. This theory predicts that the normal stress of the gel is positive at a short
timescale. At longer time, the normal stress decreases significantly due to the redistri-
bution of solvent, but is still positive when the polymer network is in the neo-Hookean
regime. The normal stress becomes negative when the polymer network is greatly pre-
stretched in the swelling process because large tension is generated by shearing already
pre-stretched polymers. Our theory predicts the phase diagram with respect to the

direction of normal stress as functions of the aspect ratio and swelling ratio of gels.
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Experimental tests on this prediction may advance our understanding of the physical

mechanisms involved in the negative normal stress generated by polymer gels.

When shear strain is applied, polymeric materials generate stresses both in parallel and
normal to the applied shear.! Many unusual rheological phenomena of polymeric materials
result from the normal stress.! The normal stress does not depend on the direction of applied
shear and thus is a non-linear effect. Most materials show ‘positive’ normal stress, with
which materials expand.! Surprisingly, large negative normal stress has been experimentally
measured from gels of biopolymers.? The rheological properties of biopolymer gels have been
studied theoretically and experimentally to elucidate the physical mechanism involved in the
negative normal stress of such gels.?®> MacKintosh and coworkers theoretically predicted that
the networks of semiflexible polymers generate negative normal stress because stiff polymers
are compressed by smaller stresses than stretching it.%? Meng and Terentjev showed that gels
of flexible polymers also generate negative normal stress when they are pre-stressed.? This
work also showed that this type of network theory predicts negative normal stress only when
a specific network model is used. The forementioned theories?™ highlight the roles played by
the elasticity of polymers in the network and neglect the contributions of solvent. Recently, de
Cagny and coworkers experimentally showed that even flexible polyacrylamide gels generate
negative normal stress at a long timescale due to the redistribution of solvent.? They used
a phenomenological scaling theory to predict that any gels generate negative normal stress
due to the solvent redistribution, however, this theory predicts that the direction of normal
stress depends on the sign of phenomenological parameters. We thus use the statistical
thermodynamic theory of polymer gels to theoretically predict the conditions with which
gels show negative normal stress.

We treat cases in which a cylindrical gel is swollen in a solvent to the equilibrium by
swelling ratio Aeq and then it is twisted by angle 60 by using a rotational rheometer in the
parallel plate geometry while the distance hy between the gel is fixed, see fig. 1. The top

and bottom surfaces of the gel stick to the plates and thus the radius ry of the surface area



Figure 1: A polymer gel is twisted by angle §6 by using a rotational rheometer in the parallel
plate geometry, fixing the height hy of the gel. The top and bottom surfaces of this gel are
fixed to the parallel plates and the radius 7y is constant; the total volume (the polymer
network + the solvent) is fixed.

is constant. We use the cylindrical coordinate systems (r, 6, z) to represent the positions
of the material points before the gel is swollen. After the swelling process, the positions
of these material points change to (rg, 0, 25), where 7y = Aeqr and z3 = Aeqz. With the
twist deformation, these material points further shift to (',6',2"), where r' = Aj(2)Aeqr,

0 = 60+ 00z/hg, and 2’ = Aeq [y dzA1(2). The fixed distance hy between the plates is

ensured by the condition
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The magnitude of the shear strain is characterized by a parameter v (= d6rg/hg). We treat
cases in which the thickness hg of the gel (in the swollen state) is smaller than the radius 7o
and derive the normal stress in the leading order with respect to the power of hy/r¢ in the

spirit of the lubrication approximation.®



The free energy density of a gel” has the form

o
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where fq, is the elastic energy of the polymer network and fs, is the mixing free energy.
¢ is the volume fraction of polymer network and ¢, is the volume fraction of the polymers
when they are crosslinked.” The neo-Hookean model assumes that the polymer network is
composed of Gaussian chains and is widely used to treat polymer networks. With this model,

the elastic energy fe. has the form

1
fela = §GOJ17 (3)

where G| is the shear modulus and J; (= gaa — 3) is the first invariant. g, is the trace of

metric tensor g,p (= Zz” g%) (x4 is the position of a material point before the deformation

and xiy is the position of the material point after the deformation). Henceforth, we use the
indices «, (3, and ~ to collectively represent z, y, and z and use the Einstein convention,
with which repeated indices in one term are summed over z, y, and z. We use prime ’ to
indicate material points after the deformation. The mixing free energy f;, has the form

fsoo = L1 — ¢)log(l — ¢) + xo(1 — #)], where kg is the Boltzmann constant, T is the

Ve

absolute temperature, v, is the size of solvent, and Yy is the interaction parameter.” The
volume fraction ¢ has a relationship ¢ = ¢o/,/g, where g is the determinant of the metric

tensor ¢g,5. The normal stress is derived by using the relationship
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Minimizing the free energy f,o with respect to Aeq (With Aj(2) = A1 (2) = 1) leads to the

force balance equation f—; = [Is1(¢eq) in the swelling process, where I (¢) (= 23%(%@))

is the osmotic pressure of the gel and ¢eq (= ¢o/)3,) is the volume fraction of polymer



network in the swollen state.”® In the following, we use the swelling ratio \e, which is
derived by solving the force balance equation.

At the short timescale after the twist deformation is applied, the gel is treated as an
incompressible material because the solvent has not been redistributed (to relax the hydro-
static pressure of solvent).® With the incompressibility condition, AfA; = 1, the normal

stress has the form

1
o, = ZHsol(qseq)f)ﬂ; (5)

by the leading order terms with respect to the power expansion of 7; the direction of the
normal stress is independent of the sign of v. Eq. (5) predicts that the normal stress is
positive in this time scale as long as the system is stable, s (¢eq) > 0. This is because
polymers are stretched in the #-direction by the twist deformation and generate the hoop
stress towards the rotation axis. This increases hydrostatic pressure (which is taken into
account implicitly in the incompressibility condition) and thus generates normal stress in
the positive direction.

At a long timescale, after the solvent is redistributed, the stretching ratios, Aj(z) and
A1 (2), are determined by minimizing the free energy fyo with respect to A|(z) and A ().
Minimizing the free energy fy with respect to A(z) leads to the force balance equation in

the lateral direction

Lo ()2 <2A|(2)A§q + AH(Z)Xéﬂﬂ—z - Xf(z)Aqu2> — Tsai(¢) = 0. (6)
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The first term in the round bracket of eq. (6) shows elastic forces due to the stretching of
network in the radial direction, the second term is due to the hoop stress, and the third term
is due to the shear elastic stress. These elastic forces are balanced by the osmotic pressure
s01(¢). We derive the solution of the force balance equation in the form Aj(z) =1+ 0 (2)

(6A(2) < 1) by the leading order terms with respect to the power expansion of hg/ry and



shear strain . This leads to the form

A2 y? h
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This is because the hoop stress towards the rotation axis deforms the network until it is
balanced by the shear stress.
With eq. (7), the normal stress has the form

N hg_»

0L = 6(¢eqHsol(¢eq) - Hsol(¢eq))r_g’y (8)
by the leading order term with respect to ho/ro. Eq. (8) predicts that the normal stress
decreases considerably by the redistribution of solvent, but it is still positive for cases in
which the gel is swollen in a good solvent, y < 0. This is because although the hydrostatic
pressure is relaxed by the solvent redistribution, network polymers are attracted towards
the rotation axis by the hoop stress and generate pressure due to the Poisson effect. This
result is in contrast to the conclusions of the phenomenological theory by de Cagny et al.,
which states that any gels generate negative normal stress at the long timescale.? Our result
implies that the direction of the normal stress at the equilibrium depends on the form of the
elastic energy.

Motivated by the network theories,?™

we take into account the finite extensibility of
polymers in the gel in an extension of our theory. The Gent model is a simple model that
takes into account the finite extensibility of polymers by using a phenomenological parameter

Jm.? With this model, the elastic energy fu. of the network has the form

i GU Jl
fela — 9 Jm IOg <1 Jm> . (9)

Eq. (9) returns to the neo-Hookean model for J; < J,,. We use eq. (9), instead of eq. (3),

for the elastic energy fe, of the network (in eq. (2)) and derive the normal stress of the gel



in a similar manner to the cases of neo-Hookean model.
At the short timescale, the normal stress has the form of eq. (5) and is positive. In

contrast, for the long timescale, the normal stress has the form

1 Goeq 1

o, = 5 A (1 — S(qu — ]-)/Jm) §(¢eq sol(¢eq) sol(¢eq))72 (10)

by the leading order term with respect to hy/ry. The derivation of eq. (10) is shown in the
ESL. Eq. (10) returns to eq. (8) for .J,, — oo. Eq. (10) predicts that the normal stress
decreases to a negative value for cases in which the polymers in the network are greatly
stretched in the swelling process, 3()\2Ql —1)/Jm ~ 1. This is due to the large tension gener-
ated by already pre-stretched polymers; although there are both stretched and compressed
polymers by the twist deformation, the tensile forces generated by stretched polymers are
larger than the contractile forces generated by compressed polymers because they are pre-
stretched. This mechanism was proposed by Meng et al., although their theory did not take
into account solvent explicitly.* Our theory predicts that both solvent redistribution and
large pre-stretching of polymers are necessary for gels to generate negative normal stress.
The polyacrylamide gels that were used in the experiments by de Cagny et al. might have
been swollen beyond the neo-Hookean regime.

Eq. (10) predicts that the normal stress of gels at the long timescale decreases with

increasing the swelling ratio A, or decreasing the aspect ratio hy/ro and eventually becomes

3X2,/Im

o300 —1) /T when the gels are swollen in a good solvent, see fig. 2. This
eq m

negative for %gl <
prediction may be accessible by experiments that measure the normal stress of flexible poly-
mer gels as a function of the swelling ratio A\, and/or the aspect ratio ho/ro. One can
systematically change the swelling ratio Aeq of gels of polyelectrolytes by changing the con-
centration of added salt. However, one should be careful about the fact that the persistence

length of polyelectrolytes also depends on salt concentration. Polyelectrolyte gels may also

show volume phase transitions by changing temperature!® and our theory predicts that these



ho/ro

Figure 2: The maximum value of the aspect ratio hy/r¢, with which gels generate negative
normal stress, is shown as a function of the swelling ratio A\e, for J,, = 9.0 (black), 24.0
(magenta), 45.0 (cyan). This phase diagram is valid for small values of the volume fraction
$eq Oof polymer network, see sec. S2 in ESIL.

gels generate negative normal stress near the critical point (at which IT. | (¢eq) ~ 0), see the
second term of eq. (10).

We used the neo-Hookean and Gent models to treat the elasticity of the polymer network.
More elaborate forms of the elastic energy may be necessary to predict the normal stress
in quantitative agreement with experiments.!! Aside from such details, we believe that our
theory captures the essential features of polymer gels — the solvent redistribution and the
finite extensibility of polymer network. An experimental test of our theory may thus advance
our understanding of the physical mechanisms involved in the negative normal stress of

polymer gels.
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e Derivation of eq. (9).

e Derivation of fig. 2.
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