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Molecular kinetic analysis of a local equilibrium Carnot cycle
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We identify a velocity distribution function of ideal gas particles that is compatible with the local equilibrium
assumption and the fundamental thermodynamic relation satisfying the endoreversibility. We find that this
distribution is a Maxwell-Boltzmann distribution with a spatially uniform temperature and a spatially varying
local center-of-mass velocity. We construct the local equilibrium Carnot cycle of an ideal gas, based on this
distribution, and show that the efficiency of the present cycle is given by the endoreversible Carnot efficiency
using the molecular kinetic temperatures of the gas. We also obtain an analytic expression of the efficiency at
maximum power of our cycle under a small temperature difference. Our theory is also confirmed by a molecular
dynamics simulation.
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I. INTRODUCTION

Global equilibrium between the working substance and the
heat reservoir as the reversibility condition is essential for the
thermodynamic cycle of heat engines to attain the maximum
efficiency (Carnot efficiency) [1,2]. Denoting by Qh (Qc) the
heat from the hot (cold) heat reservoir with the temperature
T R

h (T R
c ) (T R

h > T R
c ) during the isothermal processes, we can

express the global equilibrium as the Clausius equality applied
to the Carnot cycle,

Qh

T R
h

+ Qc

T R
c

= 0, (1)

from which the efficiency η ≡ W
Qh

of the heat-energy conver-
sion into work W ≡ Qh + Qc is given by the Carnot value

1 − T R
c

T R
h

≡ ηC. For this global equilibrium to hold, the heat

engine should run along the cycle infinitely slowly (quasistatic
limit) and hence output zero power (work per unit time).

Curzon and Ahlborn (CA) [3] considered the efficiency
at maximum power η∗ as a more practical figure of merit.
(The same subject was also considered by some authors
even earlier. See [4,5] for historical perspectives on the
origin of the efficiency at maximum power and references
therein.) CA assumed that their heat engine cycle (CA cycle)
satisfies Fourier’s law of heat transport and the so-called
endoreversibility condition [6], which is written explicitly for
a cycle as

Qh

Th

+ Qc

Tc

= 0, (2)

where Th (Tc) is the well-defined temperature of the working
substance in contact with the hot (cold) heat reservoir during
the isothermal process at a finite rate. From this, the efficiency
of the CA cycle is given by the temperatures of the working
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substance as

η = 1 − Tc

Th

, (3)

which we call the endoreversible Carnot efficiency. This
suggests that the efficiency of the endoreversible heat engine is
still expressed by the Carnot-like expression, depending only
on the temperatures of the working substance. CA showed that
Eq. (3) at the maximum power becomes

η∗ = 1 −
√

T R
c

T R
h

= 1 −
√

1 − ηC = ηC

2
+ η2

C

8
+ O(η3

C), (4)

which we call the CA efficiency. This result gave birth to the
field of finite-time thermodynamics [7–9] that studies various
thermodynamic systems performing finite-time transforma-
tions based on the endoreversibility. Since the universality
of Eq. (4) was addressed in [10] based on linear irreversible
thermodynamics, the efficiency at maximum power has been
investigated as a fundamental problem in nonequilibrium
thermodynamics [11–25].

In a recent paper [26], the present authors showed that
a physical origin of the endoreversibility Eq. (2), which
is usually simply assumed in finite-time thermodynamics,
can be attributed to a special case of a local equilibrium
assumption (see also [6,19] for similar ideas). Here, we
refer to the local equilibrium assumption as an assumption
where a total system is not in a global equilibrium state
sharing the same intensive thermodynamic variables, while
each partial system is in an equilibrium state with locally
defined thermodynamic variables [27]. The endoreversibility
condition can then be regarded as the special case of this local
equilibrium assumption applied to the heat engine constituted
with the working substance and the heat reservoir: The whole
working substance itself is assumed to be in a local equilibrium
state with the well-defined temperature T without spatial
variation, where this temperature is different from that of the
heat reservoir in a local equilibrium state, while the global
equilibrium between them is violated. In this case, the
following fundamental thermodynamic relation holds for the
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thermodynamic variables of the working substance,

dU = T dS − pdV, (5)

where S, U , p, and V are the entropy, internal energy, pressure,
and volume of the working substance, respectively. Indeed,
it can be shown that the endoreversibility condition Eq. (2)
holds automatically by applying the following closed-cycle
condition to the cycle with constant temperatures during the
isothermal processes as the CA cycle:∮

dS =
∮

dQ

T
= 0. (6)

In this sense, we may say that the local equilibrium is an essen-
tial feature of the CA cycle as the endoreversible heat engine in
such a manner that the global equilibrium is an essential feature
of the Carnot cycle as the reversible heat engine [26]. However,
how such a macroscopic and phenomenological description
using the fundamental thermodynamic relation in a finite-time
process can be established from a statistical mechanics point
of view using a state distribution of the working substance
is still not obvious, which would be of crucial importance to
strengthen the foundation of finite-time thermodynamics.

In the present paper, from a molecular kinetic analysis, we
identify a velocity distribution of ideal gas particles as the
simplest case of the working substance that is consistent with
the local equilibrium assumption and the fundamental ther-
modynamic relation Eq. (5) satisfying the endoreversibility.
Based on this distribution, we construct a local equilibrium
Carnot cycle and study the efficiency at maximum power of
our cycle by comparing it to the CA efficiency. We also perform
a molecular dynamics simulation to confirm the validity of our
theory.

The rest of the paper is organized as follows. In Sec. II,
as a preparation, we introduce our molecular kinetic model of
an ideal gas system in a cylinder with a moving piston and
derive the velocity distribution of the gas particles. In Sec. III,
we construct our local equilibrium Carnot cycle based on the
preparation in Sec. II and study the efficiency at maximum
power. The molecular dynamics simulation is also given in
this section. We discuss and summarize the present paper in
Sec. IV.

II. MOLECULAR KINETIC MODEL

A. Ideal gas system in cylinder with moving piston

As a preparation for constructing our local equilibrium
Carnot cycle, we first develop the molecular kinetics of the
working substance in a cylinder with a moving piston. We
assume a two-dimensional (2D) ideal gas as the working
substance for simplicity and assume that the temperature T

of the gas can be defined uniquely and the density of the gas
is always uniform without spatial variation. Imagine that N

ideal gas particles with mass m are in a rectangular cylinder
with dimensions l × L (Fig. 1). At the bottom of the cylinder
(x = 0) is a thermal wall with length Lth, which realizes
contact with the heat reservoir at the temperature T R during an
isothermal process. When a particle with velocity v = (vx,vy)
collides with the thermal wall, its velocity stochastically
changes to v′ = (v′

x,v
′
y) according to a normalized probability

FIG. 1. Schematic illustration of 2D ideal gas particles confined
in a rectangular cylinder l × L with a piston on the head at x = l. The
piston moves at a constant velocity u = dl

dt
. The thermal wall with

length Lth that mimics the interaction with the heat reservoir is set
on the bottom of the cylinder at x = 0. The local center-of-mass x

velocity of the particles v̄x(x) is shown to change linearly from 0 at
x = 0 (bottom of the cylinder) to u at x = l (moving piston).

distribution [28] (Maxwell boundary condition [29]),

fth(v′) = 1√
2π

(
m

kBT R

)3/2

v′
x exp

[
−m

(
v′

x
2 + v′

y
2)

2kBT R

]
, (7)

where 0 < v′
x < ∞ and −∞ < v′

y < ∞. This reflecting rule
ensures that the temperature of the static gas becomes T R

(see also [30,31] and references therein for different types of
thermal walls). The heat flowing into the working substance
per collision is calculated as the kinetic energy change before
and after the collision, given by

m(|v′|2 − |v|2)

2
. (8)

At the top of the cylinder (x = l) is a moving piston. When
a particle with v collides with the piston moving with the
constant velocity u ≡ dl

dt
, where t is the time, the particle

velocity changes as v → v′ = (−vx + 2u, vy), where the mass
of the piston is assumed to be sufficiently larger than that of the
particle and the collision is perfectly elastic. The work done
on the piston per collision is calculated in the same way as the
heat in Eq. (8) as follows:

− m(|v′|2 − |v|2)

2
= 2mu(vx − u). (9)

Any particle collision with other parts of the cylinder and the
particle-particle collisions are assumed to be perfectly elastic.

Here, we note that by our assumption, the gas must relax to a
local equilibrium with a constant temperature T (u), depending
on u, much faster than the global equilibrium between the gas
and the heat reservoir is realized. This is justified under the
assumption of weak coupling between the working substance
and the heat reservoir, where the time scale of the equilibration
inside the gas is much faster than the time scale of the
energy exchange between the gas and the heat reservoir. With
this separation of the time scales, we can regard that the
equilibration process of the gas into the local equilibrium state
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with the uniform temperature by heat conduction inside the
gas is instantaneous and that the dynamics of the gas during
the isothermal process is reduced to that of the temperature.
This would be realized in the case of a thermal wall with a
sufficiently short length as Lth � L in the present setup [13],
where the collision frequency with the thermal wall becomes
much lower than that of the interparticle collisions. In addition,
our ideal gas should be precisely regarded as a “weakly
interacting nearly ideal gas,” meaning that the equilibration
inside the gas is caused by interparticle collisions [13].

B. Velocity distribution with local center-of-mass velocity

The local center-of-mass x velocity v̄x(x) of the particles
located at position x = (x,y) can be uniquely determined
according to the following argument. Let us consider that the
length of the cylinder changes as l′ = l + u�t = l(1 + u

l
�t)

after an infinitesimal time duration �t . We also consider a
partial system x × L inside the cylinder l × L, where the x

length of the partial system also changes as x ′ = x + v̄x(x)�t

with the local center-of-mass x velocity v̄x(x) during �t .
Before the displacement, the density of the entire system agrees
with the density of the partial system with its particle number
Nx as N

lL
= Nx

xL
from the uniformity of the density over the

entire system. Assuming that the particle number of the partial
system after the displacement N ′

x is conserved as N ′
x = Nx ,

and using the uniformity of the density over the entire system
after the displacement as N

l′L = N ′
x

x ′L , we can obtain the relation
x ′
l′ = x

l
. We then obtain

x ′ = l′

l
x = x + x

l
u�t, (10)

which identifies v̄x(x) as

v̄x(x) = x

l
u (0 � x � l). (11)

We can also validate Eq. (11) based on the inviscid Navier-
Stokes equations (see the Appendix).

If we look at the particle velocities at position x in the
moving frame with the local center-of-mass velocity v̄ =
(v̄x(x),0), that is, under a variable transformation v → ṽ ≡
v − v̄ = (vx − v̄x(x),vy), the velocity distribution measured
in this frame should be equal to the usual Maxwell-Boltzmann
distribution with T as

fMB(ṽ,T ) = m

2πkBT
exp

[
−m

(
ṽ2

x + ṽ2
y

)
2kBT

]
, (12)

where T can be regarded as the molecular kinetic temperature
defined by the averaged kinetic energy per degree of freedom
measured in the moving frame as

kBT

2
≡

∫
m

2
ṽ2

xfMB(ṽ,T )d ṽ =
∫

m

2
ṽ2

yfMB(ṽ,T )d ṽ. (13)

Then, as the Jacobian associated with the variable transfor-
mation is unity, we obtain the velocity distribution f (v) of
the ideal gas particles at position x from f (v) ≡ fMB(vx −
v̄x(x),vy,T ) as

f (v) = m

2πkBT
exp

{
−m

[
(vx − v̄x(x))2 + v2

y

]
2kBT

}
. (14)

The spatially nonuniform shape of this distribution is re-
markable as the temperature and the density of the gas
are assumed to be spatially uniform inside the cylinder.
Equation (14) is expected to recover the ordinary Maxwell-
Boltzmann distribution with T = T R in the quasistatic limit
u → 0, where the global equilibrium between the working
substance and the heat reservoir holds.

C. First law of thermodynamics as time-evolution
equation of temperature

We introduce the first law of thermodynamics (the law
of energy conservation) as a time-evolution equation of the
temperature of the gas by calculating the total energy of
the gas, heat flow, and power based on Eq. (14) as follows:
The energy density e(x) of the gas at position x is given by

e(x) ≡ N

V

∫
dv

m
(
v2

x + v2
y

)
2

f (v)

= N

V
kBT + N

V

m

2
v̄x(x)2, (15)

where V ≡ Ll is the volume of the cylinder. By performing a
spatial integral, we obtain the total energy E of the gas as

E =
∫ l

0
dx

∫ L

0
dye(x) = NkBT + Nm

6
u2. (16)

The first term is the internal energy U of the 2D ideal gas at
temperature T , while the second term is the kinetic energy of
the fluid.

The heat flow from the thermal wall at the bottom of the
cylinder is obtained by using Eq. (14) at x = 0 [32]:

f (v)|x=0 = m

2πkBT
exp

[
−m

(
v2

x + v2
y

)
2kBT

]
. (17)

By using this distribution, we obtain the following expression
of the heat flow according to the procedure developed in [13]:
We first count the number of particles nin that collide with the
thermal wall per unit time as

nin ≡
∫ 0

−∞
dvx

∫ ∞

−∞
dvy

N

V
Lth(−vx)f (v)|x=0

= LthN

2πV

√
2πkBT

m
. (18)

The energy qin flowing from the colliding particles into the
thermal wall per unit time is also calculated as

qin ≡
∫ 0

−∞
dvx

∫ ∞

−∞
dvy

N

V
Lth

m
(
v2

x + v2
y

)
2

(−vx)f (v)|x=0

= 3LthNkBT

4πV

√
2πkBT

m
. (19)

Because the number of the reflected particles nout per unit time
should be equal to nin, we can calculate the energy flowing
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into the working substance as

qout ≡ nin

∫ ∞

0
dv′

x

∫ ∞

−∞
dv′

y

m
(
v′

x
2 + v′

y
2)

2
fth(v′)

= 3LthNkBT R

4πV

√
2πkBT

m
(20)

by using Eq. (7). Then the heat flow q ≡ qout − qin is obtained
as

q =
√

2πkBT

m

3LthNkB(T R − T )

4πV
≡ κ(T R − T ), (21)

where we have defined the following thermal conductance:

κ ≡
√

2πkBT

m

3LthNkB

4πV (t)
. (22)

This depends on time t through the volume change even if
the temperature T does not change with time. Therefore,
although Eq. (21) has the form of the linear Fourier’s law
of heat transport, it is different from the setup in the original
CA cycle, where κ is assumed not to depend on T and t [3].

To calculate the power as the work done on the piston per
unit time, we use Eq. (14) at x = l:

f (v)|x=l = m

2πkBT
exp

{
−m

[
(vx − u)2 + v2

y

]
2kBT

}
. (23)

Then the power w is calculated by using this distribution and
the work per collision Eq. (9) as

w =
∫ ∞

−∞
dvy

∫ ∞

u

dvx2mu(vx − u)2 N

V
Lf (v)|x=l

= NkBT

V
Lu = p

dV

dt
, (24)

which is expressed by the product of the pressure and the time
derivative of the volume, where we used the equation of state
for the ideal gas p = NkBT

V
.

By using Eqs. (16), (21), and (24), we finally obtain the first
law of thermodynamics dU

dt
= NkB

dT
dt

= q − w as

NkB
dT (t)

dt
= κ(t)[T R − T (t)] − NkBT (t)

V (t)

dV (t)

dt
, (25)

which serves as the time-evolution equation of the temperature
of the gas. We can also validate Eq. (25) based on the inviscid
Navier-Stokes equations (see the Appendix). We note that
reducing the dynamics of the gas into the time-evolution
equation of the spatially uniform temperature in this way is
an approximation based on the separation of the time scales
(see the last paragraph in Sec. II A), where validity of the
results obtained under this approximation should be verified
by a molecular dynamics simulation.

III. LOCAL EQUILIBRIUM CARNOT CYCLE

A. Construction of cycle

We construct the local equilibrium Carnot cycle of the ideal
gas based on the preparation in Sec. II. Hereafter, the suffix i

(i = h,c) denotes the quantity during the isothermal processes
in contact with the heat reservoir with the temperature T R

i .

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  1.2  1.4  1.6  1.8  2  2.2

quasistatic cycle
local equilibrium cycle

FIG. 2. (Normalized) pressure-volume (p−V ) diagram of the
local equilibrium Carnot cycle of the 2D ideal gas under the
parameters N = 100, kB = m = L = 1, T R

h = 1, T R
c = 0.7, V1 = 1,

V2 = 1.5, Lth,h = Lth,c = 0.05, and uh = −uc = 2×10−3. The thin
curve represents the quasistatic (global equilibrium) cycle. The

bold curve represents the local equilibrium cycle, where p = NkBT st
i

V

with Eq. (31) during the isothermal processes and Eq. (32) during
the adiabatic processes. Ṽj denotes the switching volume of the
local equilibrium Carnot cycle as in Eq. (27) and Vj denotes the
corresponding volume of the quasistatic cycle.

We require that the local equilibrium Carnot cycle should
recover the quasistatic Carnot cycle in the quasistatic limit
ui → 0. We denote by Vj (j = 1, . . . ,4) the volume at
which we switch each thermodynamic process of the qua-
sistatic cycle. The quasistatic Carnot cycle consists of the
following successive thermodynamic processes (Fig. 2):
(i) the isothermal expansion process in contact with the heat
reservoir with T R

h (V1 → V2); (ii) the adiabatic expansion
process (V2 → V3); (iii) the isothermal compression process
(V3 → V4) in contact with the heat reservoir with T R

c ;
(iv) the adiabatic compression process (V4 → V1). Because
the adiabatic equation of the 2D ideal gas T V = const. holds
for the quasistatic adiabatic process, Vj ’s depend on each other
as

V3 = T R
h

T R
c

V2, V4 = T R
h

T R
c

V1, (26)

showing that the independent variables are only V1 and V2

when we fix the temperatures T R
h and T R

c .
Denoting by Ṽj the volume at which we switch each

thermodynamic process depending on the constant piston
velocity and defining the cylinder length l̃j at the switching
volume as l̃j ≡ Ṽj /L, we design our local equilibrium cycle
consisting of the successive thermodynamic processes as
follows (Fig. 2): (i) the isothermal expansion process with
piston velocity uh in contact with the heat reservoir with T R

h

(Ṽ1 → Ṽ2) [the duration of this process is th ≡ (l̃2 − l̃1)/uh,
and the temperature of the working substance always takes the
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steady value T st
h ≡ Th(uh) (� T R

h )]; (ii) the adiabatic expan-
sion process with duration γ th (Ṽ2 → Ṽ3); (iii) the isothermal
compression process with piston velocity uc in contact with
the heat reservoir with T R

c (Ṽ3 → Ṽ4) [the duration of this
process is tc ≡ (l̃4 − l̃3)/uc, and the temperature of the working
substance always takes the steady value T st

c ≡ Tc(uc) (� T R
c )];

(iv) the adiabatic compression process with duration γ tc
(Ṽ4 → Ṽ1). In this design, the total duration completing the
adiabatic processes is proportional to th + tc, as assumed in
[3]. While there may be many ways of switching each process
for Ṽj to recover Vj in the quasistatic limit ui → 0, we adopt
the following switching volumes depending on ui through T st

i :

Ṽ1 = T R
h

T st
h

V1, Ṽ2 = T R
h

T st
h

V2, Ṽ3 = T R
c

T st
c

V3, Ṽ4 = T R
c

T st
c

V4.

(27)

Because, as shown below, the adiabatic equation T V = const.
holds irrespective of ui , the adiabatic processes of the local
equilibrium cycle as switched by Eq. (27) always overlap
with the quasistatic adiabatic ones (see Fig. 2) [26], and they
end with the steady temperatures of the succeeding isothermal
processes.

To obtain the steady temperature T st
i , we consider the time-

evolution equation of the gas in Eq. (25) during the isothermal
processes:

NkB
dTi(t)

dt
= κi(t)

[
T R

i − Ti(t)
] − NkBTi(t)

V (t)

dV (t)

dt
. (28)

We can obtain the steady solution T st
i of Eq. (28) that satisfies

dTi (t)
dt

= 0, solving a quadratic equation in T st
i ,

T R
i − T st

i = ui

Ai

√
T st

i , (29)

where we used Eq. (22) and

Ai ≡
√

2πkB

m

3Lth,i

4πL
, (30)

where we consider heat-reservoir dependence of Lth, which
also leads to heat-reservoir dependence of the thermal con-
ductance κ in Eq. (22) as [3]. The solution of Eq. (29) is given
by

T st
i = T R

i − ui

2Ai

√
4T R

i + u2
i

A2
i

+ u2
i

2A2
i

, (31)

where we have chosen the minus sign as a physically relevant
solution. In the quasistatic limit ui → 0, we can see that T st

i

agrees with T R
i of the heat reservoir, as expected. This exact

relation between the steady temperature and the piston velocity
is a merit obtained by our microscopic formulation using
the specific working substance, which cannot be obtained by
general but phenomenological approaches [3,26].

Since the first term on the right-hand side of Eq. (28)
vanishes in the adiabatic processes, we obtain the adiabatic
relation between T and V as T V = const. holding irrespective
of ui , by directly solving Eq. (28). From this we can validate
Eq. (27). The relation

pV 2 = const. (32)

also follows from the equation of state p = NkBT
V

as is used to
depict the adiabatic curves in Fig. 2.

The entropy of the ideal gas with temperature T is
calculated by using f (v) in Eq. (14) from the Gibbs entropy
formula as

S(T ,V ) = −NkB

∫
f (v)

V
ln

f (v)

V
dvdx

= NkB ln T + NkB ln V + S0, (33)

where S0 is a constant independent of T and V . It is then easy
to confirm

qi(t) = κi(t)(T
R
i − T st

i ) = T st
i

dS

dt
(34)

from Eqs. (22), (29), and (33). From this definition of the
entropy, it turns out that the switching volumes in Eq. (27)
maintain the entropy change during the isothermal process at
any piston velocity ui as �Sh ≡ NkB ln Ṽ2

Ṽ1
= NkB ln V2

V1
≡ �S

and �Sc ≡ NkB ln Ṽ4

Ṽ3
= NkB ln V4

V3
= −�S, where we used

Eq. (26) [26].

B. Efficiency and power

The net heat from the heat reservoir during each isothermal
process is calculated as

Qi =
∫ ti

0
κi(t)

(
T R

i − T st
i

)
dt = T st

i �Si, (35)

where we used Eq. (34). This is the local-equilibrium
counterpart of the quasistatic heat T R

i �Si , with T R
i being

replaced with T st
i of the working substance [26]. From Eq. (35)

and �Sh = −�Sc = �S, the efficiency of the present local
equilibrium Carnot cycle is given by

η = 1 + Qc

Qh

= 1 − T st
c

T st
h

, (36)

which corresponds to the endoreversible expression of Eq. (3)
in the present model, revealing that Ti in Eq. (3) is the steady
value of the molecular kinetic temperature of the working
substance as defined in Eq. (13).

By using Eqs. (26), (27), and (29), we can express the power
of our cycle by using T st

i without ui as [3]

P ≡ W

(1 + γ )(th + tc)
=

(
T st

h − T st
c

)
�S

(1 + γ )
(

l̃2−l̃1
uh

+ l̃4−l̃3
uc

)

=
AhAc�S

√(
T R

c − y
)(

T R
h − x

)
(�T R − x + y)xy

(1 + γ )(l2 − l1)T R
h

(
Acy

√
T R

c − y − Ahx

√
T R

h − x
) ,

(37)

where we have defined x ≡ T R
h − T st

h , y ≡ T R
c − T st

c , and
�T R ≡ T R

h − T R
c .

C. Efficiency at maximum power

In principle, by maximizing the power Eq. (37) as ∂P
∂x

=
∂P
∂y

= 0 as done in the original CA paper [3], we can obtain the
efficiency at maximum power of our cycle. This is, however,
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difficult to perform analytically in general. Therefore, we focus
here on the case of a small temperature difference �T R for
this analytic treatment as a guideline. In this case, we obtain
the power instead of Eq. (37) as

P = AhAc�S

(1 + γ )(l2 − l1)
√

T̄ R

(�T R − x + y)xy

Acy − Ahx
, (38)

to the lowest order of �T R, x, and y, where T̄ R ≡ (T R
h +

T R
c )/2. By maximizing the power Eq. (38) as ∂P

∂x
= ∂P

∂y
= 0,

we easily obtain the x and y values at maximum power as

x∗ =
√

Ac�T R

2(
√

Ah + √
Ac)

, y∗ = −
√

Ah�T R

2(
√

Ah + √
Ac)

. (39)

Then the maximum power and the efficiency at maximum
power turn out to be

P ∗ = AhAc�S

4(1 + γ )(l2 − l1)
√

T̄ R

�T R2

(
√

Ah + √
Ac)2

, (40)

η∗ = 1 − T R
c − y∗

T R
h − x∗ = ηC

2 − ηC

1+
√

Ah
Ac

, (41)

respectively. This expression of η∗ is essentially the same as the
Schmiedl-Seifert efficiency in a stochastic heat engine model
[12]. By expanding Eq. (41) with respect to ηC, we obtain

η∗ = ηC

2
+ η2

C

4
(

1 +
√

Ah

Ac

) + O
(
η3

C

)
. (42)

The linear order agrees with that of the CA efficiency Eq. (4),
which has been shown to be the upper bound of η∗ in the
linear response regime [10]. This bound is attained by heat
engines with the tight-coupling property between the heat and
the motion fluxes without heat leakage [10], which is satisfied
in our present model. The quadratic order also recovers that
of the CA efficiency Eq. (4) under the symmetric condition of
Ah = Ac, i.e., Lth,h = Lth,c from Eq. (30) [15]. The efficiency
of the same form as Eq. (41) has also previously been obtained
such as in the low-dissipation Carnot cycle [16], the minimally
nonlinear irreversible heat engine [17], and the heat engine
based on the weighted thermal flux [18], which describe
heat engines to the lowest degree of nonequilibrium from the
quasistatic limit.

The reason why we have obtained Eq. (41) rather than the
CA efficiency Eq. (4) can be considered as follows. A crucial
difference between our model and the CA model is that the
steady temperature during the isothermal process Eq. (31)
as a function of the piston velocity is available owing to
the time-evolution equation Eq. (28) in our case. Because
the approximation Eq. (38) is equivalent to considering
only the lowest correction to the quasistatic limit in Eq. (31)

as T st
i 	 T R

i − ui

Ai

√
T R

i together with the quasistatic-case
switching volumes Eq. (26) for a small temperature difference
�T R, it is natural that it yields the efficiency like Eq. (41)
as similar to the other models [16–18] rather than the
CA efficiency. As the temperature difference increases, we
expect that the higher-order terms of the piston velocity in
Eq. (31) together with the piston-velocity-dependent switching

 0
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 0  0.2  0.4  0.6  0.8  1

Carnot
CA
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FIG. 3. Efficiency at maximum power η∗ under the symmetric
condition of Ah = Ac as a function of ηC = 1 − T R

c , with T R
h = 1.

The numerical curve indicates η∗ obtained by maximizing Eq. (37)
with respect to x and y numerically.

volumes Eq. (27) that are not adopted in the other models may
give rise to a discrepancy between our model and the other
models.

In Fig. 3, we show η∗ obtained by maximizing Eq. (37)
with respect to x and y numerically and the analytical result
Eq. (41) in the case of Ah = Ac. The CA efficiency in Eq. (4) is
also shown for comparison. We can confirm that the numerical
value agrees with Eq. (41) and the CA efficiency for the small
temperature difference, while it begins to deviate from these
efficiencies as the temperature difference increases.

D. Verification by molecular dynamics simulation

To verify the validity of our theory, we performed an
event-driven molecular dynamics (MD) simulation [33] of our
local equilibrium Carnot cycle by regarding the 2D ideal gas
particles as low-density hard discs [13] with diameter d.

In Fig. 4, we show the local center-of-mass x velocity v̄x(xk)
obtained from the simulation as follows. When the cylinder
length is lm < l < lm + �l during the isothermal expansion
processes, where lm is the starting point of measurement
and �l is a small displacement, we divide the cylinder
l × L into small cells Xk × L in the x direction with Xk =
[Xmin

k ,Xmax
k ] ≡ [ l

Ncell
(k − 1), l

Ncell
k] (k = 1, . . . ,Ncell). At ev-

ery particle-particle collision event that occurs during lm <

l < lm + �l along repeated cycles, we measure the x velocity
of the particles belonging to each cell. We define the local
center-of-mass x velocity at the kth cell v̄x(xk) as the average
of all the x velocities measured in the kth cell, where xk ≡
Xmin

k +Xmax
k

2 . We can see that v̄x(xk) agrees with the theoretical
line Eq. (11) well.

In Fig. 5, we also compare the efficiency and power obtained
by summing the heat and work per collision Eqs. (8) and (9)
by an MD simulation with the theoretical values Eqs. (36) and
(37) using T st

i in Eq. (31) for the case of uh = −uc, which
show a good agreement over the whole working regime.
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MD simulation
theory

piston velocity

FIG. 4. Local center-of-mass x velocity of the gas particles
obtained from an MD simulation. The same parameters as in Fig. 2
are used with γ = 0.5, d = 0.01, lm = l̃1 	 1.069, �l = 0.1, and
Ncell = 10. We used 262400 cycles for the average (see the main
text). The theoretical line is given by Eq. (11) with l = lm.

IV. DISCUSSION AND SUMMARY

We previously studied a finite-time Carnot cycle of 2D
ideal gas [13] based on molecular kinetics in a setup similar
to that in the present work. Although in that work we used
a usual Maxwell-Boltzmann distribution with a well-defined
temperature T of the gas as the velocity distribution of the
particles, it was just an assumption without considering the
spatial variation of the distribution. Because of the lack of
this spatial variation, the fundamental thermodynamic relation
as Eq. (5) did not hold for the model in [13]. Moreover,
we constructed the finite-time Carnot cycle by switching
each thermodynamic process at the same volumes as in
the quasistatic cycle. This led to an extra heat transfer for
relaxation of the working substance to a steady temperature
during the isothermal processes, which do not exist in the
original CA cycle [3]. In the present local equilibrium Carnot
cycle, we have overcome these difficulties in [13] by deriving
the velocity distribution with reasonable spatial variation
Eq. (14) and by appropriately switching each thermodynamic

(a) (b)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.001  0.002  0.003  0.004  0.005

theory
MD simulation

Carnot efficiency
 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0  0.001  0.002  0.003  0.004  0.005

theory
MD simulation

FIG. 5. (a) Efficiency and (b) power as functions of uh = −uc ≡
u. The same parameters as in Fig. 2, except the piston velocity are
used with γ = 0.5 and d = 0.01. We used 3200–76160 cycles for the
average. The theoretical Carnot efficiency is ηC = 0.3.

process depending on the piston velocity so that such an extra
heat transfer does not occur.

In the present paper, we identified the velocity distri-
bution Eq. (14) of 2D ideal gas as the working substance
that is compatible with the local equilibrium assumption
and the fundamental thermodynamic relation satisfying the
endoreversibility. We found that this distribution is the
Maxwell-Boltzmann distribution with the spatially uniform
temperature and the spatially varying local center-of-mass
velocity Eq. (11). Based on this distribution, we obtained
the time-evolution equation of the temperature of the gas.
We then constructed the local equilibrium Carnot cycle by
using the steady solution of the equation. We confirmed that
the efficiency of the present local equilibrium Carnot cycle is
given by the endoreversible Carnot efficiency using the steady
values of the molecular kinetic temperatures of the working
substance during the isothermal processes. We also studied the
efficiency at maximum power of our cycle and showed that it
is given by the Schmiedl-Seifert efficiency [12] under a small
temperature difference. We have numerically confirmed the
local center-of-mass velocity Eq. (11) by performing an MD
simulation. We expect that our theory gives a nonequilibrium
statistical mechanics basis for the endoreversible heat engines
and finite-time thermodynamics.
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APPENDIX: CONSISTENCY WITH INVISCID
NAVIER-STOKES EQUATIONS

We validate the local center-of-mass x velocity Eq. (11)
derived in Sec. II B and the first law of thermodynamics
Eq. (25) derived in Sec. II C based on the following fluid-
mechanical argument. Dynamics of a 2D compressible inviscid
fluid is determined by the mass-, momentum-, and energy-
conservation equations [34]

∂ρ

∂t
+ ∇ · (ρv̄) = 0, (A1)

∂(ρv̄)

∂t
+ ∇ · (ρv̄v̄) + ∇p = 0, (A2)

∂e

∂t
+ ∇ · [(e + p)v̄ + J] = 0, (A3)

respectively. Here, v̄(x,t) is the fluid velocity corresponding to
our local center-of-mass velocity, ρ(x,t) is the mass density,
p(x,t) is the pressure, e(x,t) is the energy density, and
J(x,t) is the heat flux. To be more specific, the fluid is
a 2D ideal gas with p(x,t) = ρ(x,t)

m
kBT (x,t) and e(x,t) =

p(x,t) + 1
2ρ(x,t)v̄2(x,t), where p(x,t) serves as the internal

energy density of the 2D ideal gas. We assume that the fluid
is uniform in the y direction and the y component of the fluid
velocity vanishes as v̄(x,t) = (v̄x(x,t),0). Equation (A2) can
then be reduced to a 1D inviscid Navier-Stokes equation,

∂v̄x

∂t
+ v̄x

∂v̄x

∂x
+ 1

ρ

∂p

∂x
= 0, (A4)
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where we used Eq. (A1). By assuming a spatially uniform mass
density and temperature as the endoreversibility condition as

ρ(x,t) = ρ(t) = mN

Ll(t)
, (A5)

T (x,t) = T (t), (A6)

we can directly solve Eq. (A4) as follows: The separation of
variables v̄x(x,t) = F (x)G(t) yields

dF

dx
= u, (A7)

− 1

G2

dG

dt
= u, (A8)

where u is an arbitrary constant independent of x and t . By
solving Eqs. (A7) and (A8), we obtain F (x) = ux + C1 and
G(t) = 1

ut+C2
, where C1 and C2 are integral constants. By

imposing F (0) = 0 and G(0) = 1
l0

, we obtain

v̄x(x,t) = ux

ut + l0
, (A9)

which agrees with the local center-of-mass velocity Eq. (11)
by regarding u and l0 as the constant piston velocity and the
initial position of the piston, respectively. We can confirm that
x component Eq. (A9) and vanishing y component of the fluid
velocity also satisfy Eq. (A1).

We next consider the energy conservation equation
Eq. (A3). From the endoreversibility condition Eqs. (A5) and
(A6) and Eq. (A9), Eq. (A3) becomes

NkB

V

dT

dt
= −∇ · J − NkBT

V l

dl

dt
. (A10)

By performing a spatial integral on both sides of this equation,
we obtain

NkB
dT

dt
= q − p

dV

dt
, (A11)

where we defined q ≡ ∫ L

0 Jx(0,y,t)dy and used Jy(x,0,t) =
Jy(x,L,t) = Jx(l,y,t) = 0 except at the thermal wall of the
cylinder. Equation (A11) corresponds to the first law of
thermodynamics Eq. (25), where the detailed form of q has
been determined by the molecular kinetics.
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