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Abstract 50 

Plant genomes encode a variety of short peptides acting as signaling molecules. Since 51 

the discovery of tomato systemin, a myriad of peptide signals, ranging in size, structure, 52 

and modifications, have been found in plants. Moreover, new peptides are still being 53 

identified. Surprisingly, non-plant organisms, especially pathogens, also produce 54 

peptides which exert hormonal activities against host plants by hijacking their 55 

endogenous reception systems. In this review, we focus on short secretory peptides 56 

ranging from 5 to 20 amino acids. We first summarize recent advances in understanding 57 

relationships between the bioactivities and structures of plant peptide hormones. 58 

Subsequently, we introduce the topic of peptides produced by non-plant organisms. 59 

Lastly, we describe artificial peptides synthesized in laboratories, which possess 60 

intriguing bioactive properties beyond those of natural peptide hormones. 61 

 62 

Keywords: CLE; Ligand; LRR-RK; Pathogens; Peptide hormone; Receptor  63 
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Introduction 64 

In this mini-review, we aim to discuss how molecular structures of plant peptide 65 

hormones have been shaped and how one can design artificial peptide hormones with 66 

novel biological functions. Since the discovery of tomato systemin (Pearce et al., 1991), 67 

a number of different classes of peptide signals have been identified. They act 68 

extracellularly through recognition by their receptors on the plasma membrane of target 69 

cells. Based on 1) mature peptide structures and 2) modes of trafficking into the 70 

extracellular space, these peptide signals, or plant peptide hormones, are classified into 71 

three groups: secreted small peptides, non-secreted small peptides and secreted 72 

cysteine-rich peptides (CRP) (Matsubayashi 2014). The first two are both 73 

approximately 5-20 amino acid in length and do not undergo intramolecular disulfide 74 

bonding while the CRPs are consisted of 50-100 amino acid and have relatively fixed 75 

structure due to intracellular disulfide bridges (Ohki et al. 2011). In this mini-review, 76 

we focus on the short peptides, all of which are perceived by leucine-rich repeat 77 

receptor kinases (LRR-RK). Interestingly, such peptide signals are also made by 78 

phytopathogens to hijack functions of host plants. In the first and second sections, we 79 

will describe variations found in plants and parasitic phytopathogens, respectively. 80 

Since this paper focuses on molecular structures of peptides, especially in dicots, please 81 

refer to other literature for latest information and discussion on biological functions of 82 

peptide signals in diverse plant species including monocots (Grienenberger and Fletcher 83 

2015, Higashiyama and Takeuchi 2015, Je et al. 2016, Okamoto et al. 2016, Somssich 84 

et al. 2016, Zipfel and Oldroyd 2017, Stegmann et al. 2017). In addition to the naturally 85 

occurring mechanisms shaping these peptide hormones, we will introduce synthetic 86 

approaches to design novel bio-active peptides in the last section. 87 
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 88 

1. Made in plants 89 

1-1. Peptide classes, receptors and structural insights 90 

Small peptide signals of plants include systemin, PSK (phytosulfokine), HypSys 91 

(hydroxyproline-rich glycopeptide systemin), Pep1, CLE (CLAVATA3/EMBRYO 92 

SURROUNDING REGION-related)/TDIF (tracheary element differentiation inhibitory 93 

factor), PSY (plant peptide containing sulfated tyrosine), CEP (C-terminally encoded 94 

peptide), RGF/CLEL/GLV (root meristem growth factor/CLE-like/GOLVEN), PIP 95 

(PAMP-INDUCED PEPTIDE), IDA (INFLORESCENCE DEFICIENT IN 96 

ABSCISSION), CIF (Casparian strip integrity factor) subclasses (Pearce et al. 1991, 97 

Matsubayashi and Sakagami 1996, Pearce et al. 2001, Huffaker et al. 2006, Ito et al. 98 

2006, Ohyama et al. 2008, Ohyama et al. 2009, Matsuzaki et al. 2010, Okamoto et al. 99 

2013, Hou et al. 2014, Schardon et al. 2016, Doblas et al. 2017, Nakayama et al. 2017). 100 

They are encoded in the genome as precursor proteins and mature into active forms via 101 

post-translational processing including proteolytic cleavage by proteases (Tamaki et al. 102 

2011, Engineer et al. 2014, Schardon et al. 2016) and modifications of specific residues 103 

by modifying enzymes (Hieta and Myllyharju 2002, Tiainen et al. 2005, Yuasa et al. 104 

2005, Komori et al. 2009, Ogawa-Ohnishi et al. 2013) such as tyrosine sulfation, proline 105 

hydroxylation and hydroxyproline arabinosylation. 106 

 Receptors for these peptides have been identified genetically and biochemically 107 

(Butenko et al. 2014). The major receptor class is the leucine-rich repeat receptor 108 

kinases (LRR-RKs, Shiu and Bleecker 2001). LRR-RKs are single 109 

transmembrane-domain kinases containing extracellular LRRs which can participate in 110 

versatile molecular recognition. The receptors for CLE/TDIF (Ogawa et al. 2008, 111 
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Hirakawa et al. 2008), IDA (Santiago et al. 2016), CEP (Tabata et al., 2014), Pep1 112 

(Yamaguchi et al. 2006), RGF (Shinohara et al. 2016), PIP1 (Hou et al. 2014) and CIF 113 

(Doblas et al. 2017, Nakayama et al. 2017) are in the subclass XI of the LRR-RK family, 114 

while the PSK receptor PSKR is in the subclass X (Matsubayashi et al. 2002). Binding 115 

of the peptide hormones to their receptors is thought to recruit additional co-receptor for 116 

the activation of downstream signaling events by trans-phosphorylation between kinase 117 

domains in proximity (Fig. 1A). Co-crystal structures of several peptide-receptor pairs 118 

have been solved recently (Song et al. 2016a). The extracellular region of the receptors 119 

contains LRR, which forms a superhelix structure providing the structural backbone to 120 

form an interaction surface to a corresponding peptide ligand. In each peptide-receptor 121 

complex, a peptide molecule is stretched along the inner surface of the superhelix (Fig. 122 

1B). Generally, peptide ligands act as a molecular glue to stabilize the interaction 123 

between each corresponding receptor and its co-receptor (Fig. 1A and 1B) (Santiago et 124 

al. 2016, Morita et al. 2016, Zhang et al. 2016, Song et al. 2016b). Interestingly, in the 125 

case of the PSK perception by PSKR, the peptide binding to the receptor triggers its 126 

allosteric change, which allows the binding of the co-receptor SERK (SOMATIC 127 

EMBRYOGENESIS RECEPTOR KINASE) to PSKR (Wang et al. 2015). In some 128 

cases, LRR-RKs may work with other classes of proteins to perceive peptide signals 129 

and/or trigger intracellular signaling, such as single-transmembrane LRR proteins 130 

harboring only extracellular LRRs without intracellular kinase domains (Jeong et al 131 

1999, Nadeau and Sack 2002) and transmembrane kinase proteins containing only 132 

intracellular kinase domains without extracellular LRRs (Müller et al 2008) (Fig. 1C). 133 

However, the mechanisms of direct peptide recognition and signal transduction by these 134 

proteins remain to be understood precisely (Bleckmann et al 2010, Zhu et al 2010, 135 
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Kinoshita et al 2010, Nimchuk et al. 2011, Bommert et al 2013, Stahl et al 2013, Ishida 136 

et al 2014). 137 

 At the binding surface of peptide hormone and receptor, both the main and side 138 

chains of the peptide form multiple hydrogen bonds and/or hydrophobic contacts with 139 

the receptor. In some cases, side chain modifications of peptide ligands directly interact 140 

with receptor residues like the PSK-PSKR pair that involves two sulfate groups of PSK 141 

in the interaction surface (Wang et al. 2015). The sulfate group of RGF1 is recognized 142 

by the RxGG motif that is conserved among RGF receptors (Song et al. 2016b). The 143 

hydroxyproline residue of IDA peptide forms hydrogen bonds with the receptor 144 

(Santiago et al. 2016). By contrast, hydroxyprolines of CLE peptides do not directly 145 

interact with their receptors (Morita et al. 2016, Zhang et al. 2016). Further 146 

arabinosylation of hydroxyprolines is found in some CLEs, and the arabinosylation is 147 

important for bioactivity (Ohyama et al. 2009, Okamoto et al. 2013, Xu et al. 2015). A 148 

proposed role for the arabniosylation is to force a conformational distortion on the 149 

peptide backbone in a highly directional manner, conferring a significant increase in 150 

affinity with the corresponding receptors (Shinohara and Matsubayashi 2013). 151 

The reported co-crystal structures of subclass XI LRR-RKs and their peptide 152 

ligands also show that the conserved RxR motif of the receptors are involved in the 153 

interaction with the free carboxyl group of the last residue of TDIF/CLE41, Pep1, RGF1 154 

or IDA (Song et al. 2016a), which is in agreement with the report on the SOL1 155 

(SUPPRESSOR OF LLP1 1) protease required for the maturation of functional CLE19 156 

peptide by cleaving off the C-terminal extension in its precursor (Tamaki et al. 2011). 157 

 Collectively, shapes of peptide hormones and their recognition by 158 

corresponding receptors have been coordinately elaborated during their molecular 159 
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evolution. 160 

 161 

1-2. Diversification under evolutionary constraints  162 

Thus far, all identified plant peptide hormones are encoded in a gene family. Each 163 

family contains small variations in the mature ligand sequences. Such minor variations 164 

could be formed under certain evolutionary pressures in their molecular evolution. 165 

Contribution of each amino acid residue in peptide hormones can be examined by 166 

structure-activity relationship analysis using mutated peptides. A typical method is 167 

alanine-scanning in which every residue of a peptide hormone is substituted one by one 168 

with alanine. If the alanine substitution of a certain residue affects the bioactivity, the 169 

side chain of the residue must play an important role in exerting the specific bioactivity. 170 

For example, the 6th glycine of TDIF/CLE41 peptide is important for its kinked 171 

structure that is recognized by its receptor TDR/PXY, and indeed the substitution of the 172 

glycine into alanine abolishes the bioactivity (Ito et al. 2006, Morita et al. 2016). 173 

 On the other hand, some residues can play a role to avoid activating unwanted 174 

signaling. Very recently, an intriguing example of this case was reported (Hirakawa et 175 

al. 2017). The CLE-family peptides are classified into two subfamilies; one group 176 

(A-type) that can affect the shoot and root meristems and the other (B-type) that affects 177 

the vascular meristem (Cock and McCormick 2001, Ito et al. 2006, Whitford et al. 178 

2008). B-type CLEs have the characteristic serine residue at the 11th position in the 179 

mature form (Fig. 2) that is conserved only among the B-type peptides within the CLE 180 

family (Oelkers et al. 2008, Hirakawa and Bowman 2015). Surprisingly, the mutation of 181 

the 11th serine into histidine results in the acquisition of the A-type activity without 182 

losing the original B-type activity (Fig. 2). Such a striking property has been overlooked 183 
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by the previous alanine scanning, which classified the 11th serine as a "dispensable" 184 

residue for bioactivity (Ito et al. 2006). These suggest that the 11th serine may be kept 185 

unchanged to avoid unwanted signaling which disrupts well-organized signaling 186 

network for growth and development. 187 

 188 

2. Made in pathogens 189 

Homologs of plant peptide hormones are found in phytopathogen genomes, which may 190 

be acquired either via convergent evolution or horizontal gene transfer from host plants 191 

(Olsen and Skriver 2003). Parasitic nematodes enter the plant root and alter its tissue 192 

structure to form feeding cells/tissues such as syncytia and giant cells (Mitchum et al. 193 

2012). For this purpose, parasitic nematodes secrete effector proteins to hijack 194 

developmental systems of host plants. The first example of secretory peptide mimics 195 

produced by parasitic nematodes is HgCLE1/syv46 of soybean cyst nematode 196 

Heterodera glycines, which shows similarity to the A-type CLE peptides of host plants 197 

(Wang et al. 2001, Olsen and Skriver 2003). HgCLE1 is expressed mainly in the 198 

esophageal gland and released into plant cells via stylet (Wang et al. 2005). The 199 

precursor protein of HgCLE1 peptide contains a domain essential for its subcellular 200 

trafficking into apoplast, allowing the nematode-derived CLE peptide to interact with 201 

the extracellular domains of target receptors in host plants (Wang et al. 2010, Replogle 202 

et al. 2011). In addition to the A-type CLE peptides, B-type CLE homologs were also 203 

reported recently in Heterodera schachtii (Guo et al. 2017). Since A-type and B-type 204 

CLEs synergistically promote vascular thickening in plants (Whitford et al. 2008), the 205 

nematodes may have exploited this synergistic effects for maximizing their successful 206 

parasitism. Interestingly, the CLE peptide sequences in nematodes are slightly different 207 
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from plant CLE peptides (Fig. 2, Yamaguchi et al. 2016), which may reflect differences 208 

in maturation processes between nematode and plant CLE peptides. In addition to short 209 

CLE peptides, functional homologues of the CRP-type peptide hormone RALF (rapid 210 

alkalinization factor), are also found in fungal pathogens (Masachis et al. 2016, Thynne 211 

et al. 2016). Significance of differences in peptide sequences between homologs derived 212 

from plants and pathogens has not been well understood. As-yet-uncovered constraints 213 

may have existed in the evolution of the plant-pathogen interaction. 214 

 215 

3. Made in laboratories 216 

As mentioned above, natural peptide hormones are made in living organisms and have 217 

been optimally shaped under evolutionary pressures. By contrast, chemical synthesis in 218 

laboratories does not have such restrictions and thus could enable new design principles 219 

for functional peptides. In theory, engineering of artificial bioactive molecules could be 220 

accomplished for any type of hormones. For example, one may imagine a molecule 221 

which exerts both auxin and cytokinin activities by simply coupling indole-3-acetic acid 222 

and kinetin. However, considering the structural information on the ligand binding 223 

pockets of the auxin and cytokinin receptors (Tan et al. 2007, Hothorn et al. 2011), this 224 

imaginary bi-functional molecule is difficult to be designed. On the other hand, 225 

synthesis of bi-functional peptides that bind and activate two distinct CLE receptors was 226 

reported recently (Hirakawa et al. 2017). CLV3 and CLE25 both belong to A-type CLE 227 

peptides and affect the shoot and root meristems. They have 4 amino acid substitutions 228 

to each other (Fig. 2). Surprisingly, systematic swapping of these residues led to the 229 

discovery of a synthetic peptide that exerts the B-type activity in addition to the original 230 

A-type activity (Fig. 2: CLV3-KIN that has the CLV3 backbone with K, I and N 231 
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substitutions derived from CLE25) by interacting with both A-type and B-type CLE 232 

receptors. As mentioned above in the section 1-2, TDIF/CLE41 can also acquire 233 

bi-functionality by an amino acid substitution (Fig. 2: CLE41-H). These studies suggest 234 

that building blocks for designing unnatural bi-functional peptides (such as CLV3-KIN 235 

and CLE41-H) exist in the natural diversity in the genome. Further identification of 236 

such cryptic bio-activities will be a future challenge toward engineering cell-cell 237 

signaling in plants. 238 

Peptides are chains of amino acids linked by amide bonds (peptide bonds). 239 

Peptide-like molecules with different main chain structures are collectively called 240 

peptidomimetics. Peptidomimetics have been developed especially in the field of drug 241 

discovery pursuing enhanced in vivo stability and activity (Vagner et al. 2008). A 242 

previous study adopted this approach to understand the structure-activity relationship of 243 

CLE peptides, and the 9th proline residue was substituted with a series of N-modified 244 

peptoids, such as sarcosine (N-methylglycine), to control the bioactivity (Kondo et al. 245 

2011). Besides peptoids, synthetic routes for new molecular designs of peptidomimetics 246 

have been explored not only for pure chemistry but also for development of 247 

bio-engineering approaches. By harnessing diversity in molecular structures of 248 

peptides/peptidomimetics, which may also include unnatural side chains, we may be 249 

able to expand toolkits for peptide hormone studies toward creating unprecedented 250 

bioactivities.  251 
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Figure Legend 524 

 525 

Fig. 1. A proposed action of a peptide hormone and its receptor/co-receptor pair in 526 

the ‘molecular glue’ model. 527 

(A) A receptor (red) interacts with its co-receptor (blue) only in the presence of a 528 

peptide hormone (brown). Upon the peptide binding, it is considered that the receptor 529 

and co-receptor can phosphorylate each other, triggering the intracellular signaling. 530 

(B) Co-crystal structure of the IDA peptide (yellow) and LRR domains of its receptor 531 

HAESA (red) and co-receptor SERK1 (blue) (PBD accession number: 5IYX) (Santiago 532 

et al. 2016) is shown as an example of the peptide/receptor/co-receptor complex. The 533 

structure was illustrated using the NGL viewer in the Protein Data Bank website. 534 

(C) LRR proteins without kinase domains (green) may participate in direst recognition 535 

of ligands with LRR-RK receptors (red). Also, transmembrane kinases without 536 

extracellular domains (purple) may act to trigger intracellular signal transduction 537 

coordinately with LRR-RK receptors (red).  538 

 539 

Fig. 2. CLE peptide hormones made in plants, pathogens and laboratories. 540 

Amino acid sequences of representative CLE peptides are shown. CLE peptides 541 

produced by plants and pathogens are classified into A and B types depending on their 542 

activities. CLE peptides in one group do not exert the activity of the other group, 543 

indicating that there exists a strict specificity barrier (green) between the two groups. 544 

However, it was recently reported that some artificial CLE peptides synthesized in 545 

laboratories by human beings show both activities beyond the specificity barrier 546 

(Hirakawa et al. 2017) as indicated by open pink arrows. Solid pink arrows indicate the 547 



 - 26 - 

flows to design the synthetic bi-functional peptides. Black bold fonts indicate 548 

characteristic 11th residues. Pink bold fonts indicate swapped residues to create the 549 

bi-functional peptides. See the main text for the detailed explanation. 550 






