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The nonlinear evolution of the Rayleigh-Taylor instability (RTI) at a density shear layer trans-

verse to magnetic field in a collisionless plasma is investigated by means of a fully kinetic

Vlasov simulation with two spatial and two velocity dimensions. The primary RTI in the MHD

regime develops symmetrically in a coordinate axis parallel to gravity as seen in the previous

MHD simulations. The primary RTI in the Hall-MHD regime develops asymmetrically in a

coordinate axis parallel to gravity. A compressible flow is formed at the secondary density shear

layer by the Hall effect, which generates a strong scalar pressure gradient of ions. A Hall electric

field due to the diamagnetic current results in the asymmetric flow at the tip of the finger struc-

ture. In the primary RTI with the ion gyro kinetic effect, secondary RTI with a wavelength

shorter than the wavelength of the primary RTI is generated at the saturation stage of the pri-

mary RTI. A seed perturbation for the secondary RTI is excited by another secondary instability

due to the coupling between the electron stress tensor and the Hall electric field. The heat

flux term plays an important role in the time development of the total pressure. On the other

hand, the contribution of the ion stress tensor is small in both the electric current and the total

pressure. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4991409]

I. INTRODUCTION

The Rayleigh-Taylor instability (RTI) is a well-known

hydrodynamic instability in neutral fluid as well as in magne-

tized plasma, which grows at an interface between two fluids

when a light fluid supports a heavy fluid against an external

force such as gravity. It has been known from (neutral)

hydrodynamic simulations that the interface develops as ris-

ing bubbles of the light fluid between falling spikes (known

as finger/mushroom structures) of the heavy fluid. The pri-

mary RTI takes place in various situations in natural plasma,

such as in the atmosphere/ionosphere of stars/planets due to

gravity. The RTI is also generated as a secondary instability

of the Kelvin-Helmholtz instability (KHI) due to a centrifu-

gal force.1,2

The previous magneto-hydro-dynamic (MHD) simula-

tions have shown that the development of the RTI trans-

verse to the ambient magnetic field in collisionless

magnetized plasma is similar to that in the neutral fluid.3–5

The bubble and finger/mushroom structures formed by the

RTI develop symmetrically in a coordinate axis parallel to

gravity.

Numerical simulations of the RTI with non-MHD

effects have been performed by using the Hall MHD

code,6–9 the Finite-Larmor-Radius (FLR) MHD code,8–10

and the hybrid particle-in-cell (PIC) code.11,12 In these previ-

ous simulations, it has been shown that the RTI develops

asymmetrically in a coordinate axis parallel to gravity due to

“non-MHD” effects. In the previous simulation studies with

non-MHD effects, however, turbulent mixing of multiple RT

modes makes it difficult to identify non-MHD processes on

the asymmetric development of the RTI in the nonlinear

stage. This is because multiple wave modes with random

phases are imposed as an initial perturbation in extended

MHD simulations and multiple RT modes grow from ther-

mal noises/fluctuations due to a finite number of particles in

hybrid simulations.

“What are non-MHD effects?” is an open question in

plasma physics. Most plasma physicists believe that the ion

inertial (Hall) effect plays a role when the spatial scale of a

phenomenon is close to the ion inertial length and that the

ion gyro kinetic effect plays a role when the spatial scale of

a phenomenon is close to the ion gyro radius. A purpose of

the present study is to separate non-MHD effects from purely

ideal MHD effects in the nonlinear development of the RTI.

For this purpose, we impose a single wave mode as an initial

perturbation in a full kinetic simulation by using a Vlasov

code. We perform several simulation runs with different

plasma beta values by varying the ratio of the ion inertial

length or the ion gyro radius to the spatial scale of the RTI in

order to identify the Hall effect and the ion gyro kinetic

effect especially.

II. VLASOV SIMULATION SETUP

The Vlasov code used in the present study solves the

Vlasov equation (1) together with the Maxwell equations (2)

in two spatial and two velocity dimensions (x,y,vx,vy), which

has already been used for studies of the KHI13–15 and the

RTI16

@f

@t
þ v � @f

@x
þ q

m
Eþ v� Bð Þ � @f

@v
¼ 0; (1)
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1

c2

@E

@t
�r� Bþ l0J ¼ 0

@B

@t
þr� E ¼ 0

r � E� q
�0

¼ 0

r � B ¼ 0

9>>>>>>>>=
>>>>>>>>;
: (2)

The code adopts a non-oscillatory and conservative semi-

Lagrangian scheme17,18 with several improvements19,20 for

solving the Vlasov equation (1), which exactly satisfies the

continuity equation for charge,

@q
@t
þr � J ¼ 0: (3)

The Maxwell equations are solved with an implicit version

of the Finite-Difference-Time-Domain (FDTD) method.21

The code is well parallelized and its performance is tuned

for recent supercomputers.22 The detailed descriptions of the

simulation code are given in the references.

In the previous (extended-)MHD simulations,7–10 the

initial density shear layer was in the state of the one-

dimensional MHD equilibrium. The previous hybrid PIC

simulations used a discontinuous density layer with a step

function, which is not in an equilibrium state.11,12 The initial

condition of the present study is identical to our previous

Vlasov simulation,16 which satisfies one-dimensional time-

independent (steady-state) two-fluid equations for ions and

electrons. It is important to use a “stable” initial condition in

order to maintain the initial density shear layer for a long

simulation time, since we perform Vlasov simulation runs on

several hundreds of ion gyro period with a time step on the

electron plasma period.

Let us consider a four-dimensional phase space with

two spatial and two velocity dimensions (x,y,vx,vy) and

the gravity in the y direction. In the present coordinate

system, the out-of-plane electric field Ez component and

the in-plane magnetic field Bx and By components are not

considered since the out-of-plane current Jz component

does not exist. Here, we consider a one-dimensional equi-

librium for a density shear layer in which all the physical

quantities depend only on the y coordinate. Then, the time-

independent two-fluid equations for ions and electrons are

written as follows:

@Pe

@y
� eNe BzUxe þ Eyð Þ ¼ meNegy; (4)

@Pi

@y
þ eNi BzUxi þ Eyð Þ ¼ miNigy; (5)

@Ey

@y
¼ e

�0

Ni � Neð Þ; (6)

@Bz

@y
¼ el0 NiUxi � NeUxeð Þ; (7)

where Ux represents the bulk velocity of fluids in the x
direction.

A two-fluid equilibrium is given with the following

assumptions: Ni ¼ Neð� NÞ; @bi;e=@y ¼ 0 (where bi;e ¼

2l0Pi;e=B2
z ¼ 2x2

pi;eV2
ti;e=ðc2x2

ci;eÞ with Vt being the thermal

velocity), and

N y½ � ¼
NI � NII

2
tanh

y

L

� �
þ NI þ NII

2
; (8)

where L represents the half thickness of the density shear

layer. The subscripts I and II represent the upper and lower

boundaries, respectively. Solving for P, Bz, and Ux, we

obtain

Ps y½ � ¼
me þ mið Þbsgy

bi þ be þ 1

NI � NII

2
log e

y
L þ e�

y
L

� ��

þNI þ NII

2
y

�
þ P0s; (9)

Bz y½ � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l0Pi y½ �

bi

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l0Pe y½ �

be

s
; (10)

Uxi y½ � ¼
gy

eBz y½ �
mi �

me þ mið Þbi

bi þ be þ 1

� �
; (11)

Uxe y½ � ¼ �
gy

eBz y½ �
me �

me þ mið Þbe

bi þ be þ 1

� �
: (12)

Here, P0 is an integral constant which is determined such

that the pressure corresponds to PI at the upper boundary.

In the present study, we assume that NI=NII ¼ 9. The

simulation system is taken for 0 � x � 3L and �6L � y
� 6L with Nx � Ny ¼ 400� 1600 grid points. Thus, the grid

spacing in the configuration space is D ¼ 0:0075L ¼ 4kDi;I

for both x and y directions. The velocity space is taken

for �20Vti;e;I � vx;y;i;e � 20Vti;e;I for both ions and electrons,

with Nvx � Nvy ¼ 100� 100 grid points. Thus, the grid

spacing in the velocity space is Dvi;e ¼ 0:4Vti;e;I. It should

be noted that we adopt a reduced ion-to-electron mass ratio

mi=me ¼ 25 for computational efficiency. The periodic

boundary condition is imposed in the x direction, while the

physical quantities are fixed to their initial values at the

boundaries in the y direction.

In contrast to hybrid and full PIC simulations where

instabilities grow from thermal noises/fluctuations due to a

finite number of particles, Vlasov simulations need a seed

perturbation to initiate instabilities as fluid simulations do. In

the previous MHD simulations, multiple wave modes with

random phases are imposed as an initial perturbation. On the

other hand, we impose a single wave mode as an initial

perturbation

dUyi;e x; y½ � ¼ U0

cos kxx½ �

cosh2 y

L

� � (13)

with U0 ¼ 0:01Bz;I=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0miNI
p

and kx ¼ 2p=ð3LÞ (Mode 1).

We perform three different simulation runs with differ-

ent plasma beta values, as listed in Table I. As seen, we vary

the ratio of the half thickness of the initial density shear layer

to the ion inertial length (di) and the ion thermal gyro radius

(ri) at y¼ 0. The wavelength of the primary RT mode is
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kRTð¼ 3LÞ ¼ 12di ¼ 48ri in Run 1, kRT ¼ 3di ¼ 48ri in

Run 2, and kRT ¼ 12di ¼ 12ri in Run 3 at y¼ 0.

The spatial scale of boundary layers between the high-

density and low-density regions becomes smaller as the RTI

develops nonlinearly. Then, non-MHD effects are expected

to play a role in the nonlinear development of the RTI. Our

previous study showed that both the Hall effect and the

ion gyro kinetic effect are small on the nonlinear develop-

ment of the primary RTI in Run 1.16 Since the ion inertial

length in Run 2 is four times as long as that of that in Run 1,

it is expected that the Hall effect plays a role in the nonlinear

stage of Run 2. Since the ion gyro radius in Run 3 is four

times as long as of that in Run 1, it is expected that the ion

gyro kinetic effect plays a role in the nonlinear stage of Run

3. It should be noted that the linear growth rate can be modi-

fied by non-MHD effects, which is, however, not a scope of

the present study. The linear growth of the primary RTI is in

the MHD regime in the present simulation runs as we show

later.

The initial spatial profiles of N, Bz, P ¼ ðPi þ PeÞ, and

Uxi;e as functions of y are shown in Fig. 1. Here, Bz;I

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l0Ps;I=bs

p
. The initial profiles of N, Bz, and P are com-

mon when these quantities are normalized by NI, Bz,I, and PI,

respectively. On the other hand, the initial profile of the ion

and electron bulk velocities depends on the plasma beta, as

indicated by Eqs. (11) and (12).

The initial bulk velocities of the MHD fluid Ux in the

previous (extended-)MHD simulations7–10 were assumed to

be zero since the MHD equilibrium can take an arbitrary

bulk velocity for density shear layers. The initial bulk veloc-

ity of ions in the previous hybrid simulations11,12 was

neglected because of the step-like sharp gradient of the den-

sity shear layer on the spatial grid scale. On the other hand,

the initial bulk velocities of ions and electrons in full kinetic

simulations are non-zero due to the g� B drift and the

diamagnetic drift. The initial velocity distributions of the

ions and electrons for the present Vlasov simulation are iso-

tropic Maxwellian with the bulk (drift) velocity Uxi;e½y� and

the thermal velocity Vti;e½y� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pi;e½y�=mN½y�

p
. It should be

noted, therefore, that the present initial condition is not a

Vlasov equilibrium.

III. SIMULATION RESULT

Figure 2 shows the spatial profiles of ion density at dif-

ferent times in Runs 1–3. The RTI develops symmetrically

in a coordinate axis parallel to gravity in Run 1, and typical

bubble and finger/mushroom structures are formed as seen in

the previous MHD simulations. Secondary instabilities are

generated at the right-hand side of the finger/mushroom

structure at tx0 ¼ 6:5 and at the upper edge of the bubble at

tx0 ¼ 7:2 (where x0 �
ffiffiffiffiffiffiffiffiffiffi
gy=L

p
� xciI=23:3 in Run 1), but

these instabilities have been analyzed in our previous study16

and are not focused on here.

The time development of the RTI in Run 2 is similar

to that in Run 1 until tx0¼ 5.0 (where x0 � xciI=6:4).

The tip of the finger/mushroom structure turns to the right

(þ x direction) at tx0¼ 5.0. Then, a vortex with counter-

clockwise rotation is formed. It is noted that similar vortices

with counter-clockwise rotation are also seen in the previous

Hall-(FLR-)MHD simulation (see Fig. 8 in Ref. 12).

In Run 3, a smaller-scale fluctuation is generated at the

interface between the high-density and the low-density

regions at tx0¼ 4.0 (where x0 � xciI=11:5). It is noted that

similar small-scale structures are also seen in the previous

hybrid PIC simulation (see Fig. 17 in Ref. 12). These small-

FIG. 1. Initial spatial profiles of the density N, the magnetic field Bz, the scalar pressure P ¼ ðPi þ PeÞ, and the bulk velocity Uxi;e as functions of y.

TABLE I. Simulation parameters for different simulation runs.

Run bi;e dijy¼0 rijy¼0 gy=ðxpi;IVti;IÞ xci;I=xpi;I xpi;IDt

1 1/8 L=4 L=16 �0.001575 0.002 0.005

2 1/128 L L=16 �0.02075 0.002 0.005

3 2 L=4 L=4 �0.0004 0.0005 0.02
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scale structures, however, do not disturb the nonlinear devel-

opment of the RTI. The interchange of the high-density and

low-density plasma continues as seen at tx0¼ 7.2 of Run 3

in Fig. 2.

Figure 3 shows the time history of the Fourier amplitude

of the bulk velocity Uiy component at Mode 1 (kxL¼ 2.09) in

Runs 1–3. To obtain the spectral intensity in Fig. 3, we first

Fourier-transform Uiyðt; x; yÞ in the x direction and then inte-

grate Uiyðt; kx; yÞ over �0:83 � y=L � �0:77 in which the

MHD linear theory shows the maximum growth rate. The

growth rate of Mode 1 calculated from the MHD linear the-

ory is c � 0:827x0, which is shown by the dotted line. The

spectral intensity is normalized by Lx0.

In Runs 1 and 2, the primary RTI grows at the MHD lin-

ear growth rate and saturates at tx0 �5. In Run 3, the primary

RTI grows from the initial perturbation slightly smaller than

that in Runs 1 and 2 (since the initial perturbation is given

with respect to the Alfven velocity). The Fourier amplitude

grows almost at the MHD linear growth rate but oscillates at

the ion gyro frequency. The primary RTI saturates at tx0 �4

and then gradually grows through secondary (nonlinear) pro-

cesses. The final Fourier amplitude of Mode 1 in Runs 1–3 is

almost the same (jUyj � 10Lx0). Figures 2 and 3 show that

the timescale for the growth of the RTI in Runs 1–3 is almost

the same, when the space and the time are normalized by L
and x0, respectively. This also suggests that neither the Hall

effect nor the ion gyro kinetic effect play roles in the linear

growth of the primary RTI in Runs 1–3 (i.e., in the MHD

regime), as described in Sec. II.

A. Hall effect in Run 2

To study mechanisms for the asymmetric development

of the RTI in Run 2, we first analyze the electric field, espe-

cially the Ey component, which is a source of the ion convec-

tion in the x direction. We found that the electric field is

expressed by the sum of the MHD term, the Hall term, and

the pressure gradient term in Runs 1 and 2, i.e.,

E 	 �Ui � Bþ J � B

eN
�rPe

eN
: (14)

Note that the Ampere law (l0J ¼ r� B) is well satisfied.

Figure 4 shows the electric field Ey component and its

MHD, Hall, and electron pressure gradient terms at tx0 ¼ 5

in Runs 1 and 2. The MHD term is dominant in Run 1, while

the Hall term is strongly enhanced at the right-hand side of the

tip of the finger structure in Run 2. Note that the Hall term is

small during the linear evolution in Run 2. The electron pres-

sure gradient term is small in both Runs 1 and 2. The electric

field Ey component in Run 1 is antisymmetric in the coordi-

nate axis parallel to gravity, while electric field Ey component

in Run 2 is asymmetric due to the strong Hall term. The result

suggests that the motion of the tip of the finger structure in

theþ x direction is caused by the Hall electric field.

We next analyze the bulk velocity. We found that the

electron bulk velocity is expressed by the sum of the E� B
drift, the diamagnetic drift, and the g� B drift in Runs 1 and

2, i.e.,

Ue 	
E� B

jBj2
þ rPeð Þ � B

eNejBj2
� meg� B

ejBj2
: (15)

Noted that the stress terms in the electron pressure is very

small (the pressure tensor is expressed as Pe ’ PeI where

I is the unit tensor), suggesting that the electron gyro kinetics

is negligible. The ion bulk velocity, on the other hand, is

expressed by the following equation:

FIG. 2. Spatial profiles of ion density at different times in Runs 1 (top), 2

(middle), and 3 (bottom).

FIG. 3. Time history of the Fourier amplitude of the bulk velocity Uiy com-

ponent at Mode 1 (kxL ¼ 2:09) in Runs 1–3. The normalization is with

respect to Lx0. The theoretical MHD linear growth rate is shown by the dot-

ted line.
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Ui 	
E� Epð Þ � B

jBj2
� r � Pið Þ � B

eNijBj2
þ mig� B

ejBj2
: (16)

Here, Ep is the polarization electric field, which is almost

zero in Run 1 but is non-zero in Run 2. It is noted that the

polarization electric field is almost zero during the linear

evolution but is enhanced after the saturation since dUi=dt
is finite due to the nonlinear development of the RT

structure.

From Eqs. (15) and (16), we obtain the electric current

density as

J 	 �eN
Ep � B

jBj2
� r � P
ð Þ � B

jBj2
þ mi þ með ÞN

g� B

jBj2
: (17)

The first term in the right-hand side is the polarization cur-

rent (Jp), the second term is the diamagnetic current (Jd),

and the third term is the current due to the g� B drift (Jg).

Figure 5 shows the current density Jx component and its

diamagnetic term, gravity term, and polarization term at

tx0¼ 5 in Runs 1 and 2. In Run 1, the polarization term and

the gravity term are small, and the diamagnetic current is

most dominant. The electron component is dominant in the

total diamagnetic current, which becomes a source of the

electron-scale secondary KHI.16

In Run 2, the gravity term is stronger than in Run 1 and

exists inside the contour line of the ion density. This term is

also canceled out by the polarization current at the center

of the finger structure. There also exists a strong negative

FIG. 5. Current density Jx component

and its diamagnetic (Jxd), gravity (Jxg),

and polarization (Jxp) terms at tx0 ¼ 5

in Runs 1 (top) and 2 (bottom).

FIG. 4. Electric field Ey component

and its MHD, Hall, and electron pres-

sure gradient terms at tx0 ¼ 5 in Runs

1 (top) and 2 (bottom).
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diamagnetic current at the right-hand side of the tip of the

finger structure (outside the contour line of the on density),

which is due to the scalar pressure gradient of ions.

In both runs, the contribution of the stress term

(P � P� PI) is small, suggesting that the ion gyro kinetic

effect is small in Runs 1 and 2. These results also suggest

that the strong positive Hall electric field at the right-hand

side of the tip of the finger structure in Run 2 (which is seen

in Fig. 4) is generated by the ion diamagnetic current due to

the scalar pressure gradient.

The time development of the scalar pressure is described

by the following equation:

dPi

dt
¼ �cPi r � Uið Þ � c� 1ð Þ Pirð Þ � Ui �

c� 1

2
r � Qi;

(18)

where c¼ 2 in the present coordinate system. The first term

in the right-hand side is the compressible term, the second

term is the stress term, and the third term is the heat flux

term (where Qi � ðQxxxi þ Qxyyi;Qxxyi þ QyyyiÞ).
It is worth discussing the reason of the strong scalar

pressure gradient seen in Run 2. Figure 6 shows the ion sca-

lar pressure Pi and the corresponding compressible term,

stress term, and heat flux term in the time-dependent scalar

pressure equation at tx0¼ 4 in Runs 1 and 2. It is found that

the stress term is negligible in both runs. It is also found that

the structure of the ion scalar pressure is asymmetric in a

coordinate axis parallel to gravity in both runs.

In Run 1, the enhancement of the ion scalar pressure

gradient at the right-hand side of the finger structure

becomes a source of the secondary electron-scale KHI.16

Figure 6 clearly shows that the ion pressure at the right-hand

side of the finger structure is enhanced by the both the com-

pressible term and the heat flux term. In Run 2, on the other

hand, the ion pressure at the right-hand side of the finger

structure is enhanced by the compressible term rather than

the heat flux term.

The ion bulk velocity, the ion pressure, and the magnetic

field are modified by the Hall effect. However, these compo-

nents cannot be separated into the MHD term and the Hall

term as the electric field can be. Taking outer cross product

of Eq. (17) and B, we obtain

EHall 	 Ep þ
r � P
eN
� mi þ me

e
g: (19)

In Fig. 4, we see a shear component in the Hall electric field

EyHall component at the right-hand side of the tip of the fin-

ger in Run 2. In Fig. 5, we see a compressible component in

the polarization current Jxp component at the right-hand side

of the tip of the finger in Run 2. From Eq. (19), it is sug-

gested that the shear component of the Hall electric field is

related to the polarization electric field and that the strong

compressible flow in the bulk velocity Ux component is due

to the Hall effect.

The structure of the vortex with counter-clockwise rota-

tion seen in Run 2 (see Fig. 2) is similar to the structure of

KH vortices. Figure 7 shows the structure of the secondary

shear layer at the left-hand side and the right-hand side of

the finger structure at tx0¼ 5 in Runs 1 and 2. We show the

two-dimensional spatial profile of the ion density together

with the definition of the coordinate axes taken in the direc-

tions normal and tangential to the density shear layer in the

left panels. We also show the one-dimensional spatial pro-

files of the tangential ion velocity field Uf in the normal (n)

direction in the right panels.

The half thickness of the secondary velocity shear layer

formed by the primary RT at the right-hand side of the fin-

ger structure in Run 2 is obtained as LUi � 0:22L. Then, a

typical wavelength of the KHI is estimated as kKH � 4pLUi

¼ 2:76L. From Fig. 2, we estimate the spatial size of the

vortex as k � 2:9L, which is close to the wavelength of the

KHI due to the secondary velocity shear.

In Run 1, the structure of the secondary velocity shear

layer formed by the primary RTI is symmetric. This is why

FIG. 6. Ion scalar pressure Pi and the

corresponding compressible term,

stress term, and heat flux term in the

time-dependent scalar pressure equa-

tion at tx0 ¼ 4 in Runs 1 (top) and 2

(bottom).
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ion-scale secondary KHIs are generated at both sides of the

finger structure in the previous MHD simulations.3–5 In Run

2, the structure of the secondary velocity shear layer is asym-

metric. However, the magnitude of the velocity shear at the

left-hand side of the finger structure is almost the same as

that in Run 1. The magnitude of the velocity shear at the

right-hand side of the finger structure is about twice as large

as that at the left-hand side. This result suggests that the

growth rate of the KHI due to the secondary velocity shear is

on the same order, implying that there is a reason why the

secondary KHI is enhanced only at the right-hand side of

the finger structure in Run 2. Here, we propose that the

motion of the tip of the finger structure in the þx direction is

enhanced by the Hall electric field, which becomes a seed

perturbation of the secondary KHI.

B. Stress and heat flux effects in Run 3

In Run 3, a secondary perturbation with a spatial-scale

smaller than the primary RTI is seen at tx0¼ 4. The struc-

ture of the ion density formed by the nonlinear development

of the secondary perturbation is similar to that of the RTI,

although there is no initial perturbation at the wavelength of

this perturbation. To investigate the origin of this perturba-

tion, we show the current density Jy component together

with the contour lines of the ion density Ni at tx0¼ 2.8, 3.2,

and 3.6 in Fig. 8. Note that the Ampere law (l0J ¼ r� B)

is well satisfied. We found that there appears the perturbation

in the current density Jy component from tx0 ¼ 2:8. The per-

turbation exists along a contour line of the ion density

Ni ¼ 0:2NI, suggesting that the perturbation is excited below

the density shear layer. The wavelength of the perturbation is

estimated as k=L � 0:7 – 1 (Modes 3 and 4).

Since there exists a strong pressure/temperature gradient

at the location where the perturbation exists, it is expected

that a secondary instability is generated by a diamagnetic

current. The typical wavelength of the Lower-Hybrid Drift

Instability (LHDI) is estimated as kLHD � 2p
ffiffiffiffiffiffiffi
rire
p

.23 The

wavelength of the LHDI with the parameters (ri and re) at

y=L � �1 is obtained as kLHD � 1:05L, which is very close

to the wavelength of the perturbation seen in Run 3. To see

the frequency of the perturbation, we show the frequency-

wavenumber spectrum of the current density Jey component

obtained by Fourier transformation of Jyðt; x; y=L ¼ �1Þ for

2:77 � x0 � 3:11 and 0 � x=L � 3 in Fig. 9. The local ion

cyclotron frequency and lower-hybrid resonance frequency

at y=L ¼ �1 are xci ¼ 15:5x0 and xLHR ¼ 77:5x0, respec-

tively. It is found that the frequency of the perturbation at

Mode 4 (kxL ¼ 8:38) is close to the local electron cyclotron

frequency x � 375x0 � xce at y=L ¼ �1 rather than xLHR.

It should be noted, however, that the phase velocity of these

perturbations (vp � 48Lx0) is too fast for the Landau reso-

nance with the drifting ions (Uxi � �0:16Lx0). The direc-

tion of the phase velocity of the small-scale perturbations is

opposite to the direction of the drift velocity of ions. These

results suggest that the secondary instability does not corre-

spond to the electron cyclotron drift instability nor the LHDI

FIG. 8. Current density Jy component

at different times in Run 3. The dashed

lines show the contour lines of the ion

density Ni.

FIG. 7. Structure of the secondary shear layer at the left-hand side and the

right-hand side of the finger structure at tx0 ¼ 5 in Runs 1 (top) and 2 (bot-

tom). Two-dimensional spatial profile of the ion density together with the

definition of the coordinate axes taken in the directions normal and tangen-

tial to the density shear layer is shown in the left panels. One-dimensional

spatial profiles of the tangential ion velocity field Uf in the normal (n) direc-

tion are shown in the right panels.

FIG. 9. Frequency-wavenumber spectrum of the current density Jey compo-

nent obtained by Fourier transformation of Jyðt; x; y=L ¼ �1Þ for 2:77 �
x0 � 3:11 and 0 � x=L � 3.
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due to the Landau resonance but is due to an ion anomalous

cyclotron resonance x� nxci ¼ kxUxi with n¼ 25.

A recent three-dimensional full particle-in-cell simulation

of magnetic reconnection has demonstrated that the LHDI is

generated at the front of reconnection jets and that the LHDI

becomes a seed perturbation of the secondary ballooning/

interchange instability.24 We propose a similar mechanism for

the small-scale RTI as follows, although the generation mech-

anism of the secondary instability itself is still unclear. A per-

turbation of the velocity field with a short wavelength is

excited by a secondary instability in the direction normal to

the shear layer (in the direction parallel to the gravity). Then,

the RTI with a short wavelength, which is linearly unstable

but grows from the small initial perturbation, is enhanced by a

new seed perturbation due to a secondary instability. The RTI

with the short wavelength grows much faster than the second-

ary instability.

The plasma motion in the y direction is associated with

the electric field Ex component. We separate the electric field

into subcomponents based in Eq. (14) with the stress term.

Figure 10 shows the electric field Ex component and its

MHD, Hall, electron scalar pressure gradient, and electron

stress terms at tx0 ¼ 3:2 in Run 3.

In contrast to Runs 1 and 2, the electron scalar pressure

term has a larger contribution in Run 3. Both the electron

stress terms also play roles in the electric field Ex component.

It is clearly seen that the perturbation at Mode 4 appears in

the Hall term and the stress terms, although the magnitudes

of them are small at tx0 ¼ 3:2 due to the growth phase. It is

not surprising that the Hall term plays a role in the small-

FIG. 10. Electric field Ey component

and its MHD, Hall, electron scalar

pressure gradient, and electron stress

terms at tx0 ¼ 3:2 in Run 3.

FIG. 11. The ion pressure gradient

term @Pi=@x, the ion stress terms

@Pxxi=@x and @Pxyi=@y, the electron

pressure gradient term @Pe=@x, the

electron stress terms @Pxxe=@x and

@Pxye=@y of the diamagnetic current

Jyd component at tx0 ¼ 3:2 in Run 3.
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scale perturbation since the wavelength is close to the ion

inertial scale (kxdi � 0:3), although “ion gyro kinetic effects”

were expected to play roles from the simulation parameters.

In contrast to Run 2, however, the Hall term does not con-

tribute to the nonlinear development of the primary RTI

(Mode 1) but contribute to the growth of the small-scale per-

turbation by coupling with the electron stress terms. It is

expected that the small-scale perturbation does not grow in

Runs 1 and 2 since the electron stress term is negligible.

“What are ion gyro kinetic effects?” is an open question

in plasma physics. In the present study, we discuss kinetic

effects in terms of the stress tensor and the heat flux as

differences from the standard fluid (MHD) equations. In

Fig. 11, we separate the diamagnetic current Jyd component

into the ion scalar pressure gradient, ion stress, electron sca-

lar pressure gradient, and electron stress terms. It seems that

the scalar pressure gradient terms are a majority component

in the diamagnetic current Jyd component. However, the total

scalar pressure gradient rðPi þ PeÞ term has an amplitude

almost equal to that of the electron stress terms at Mode 4.

The small-scale perturbation is also supported by the elec-

tron stress terms @Pxxe=@x and @Pxye=@y, as also seen in

Fig. 10. Although the ion stress terms @Pxxi=@x and

@Pxyi=@y are finite, their contributions are unexpectedly

small.

Finally, we analyze the pressure equation (18) for both

ions and electrons. Figure 12 shows the scalar pressure and

the corresponding compressible term, stress term, and heat

flux term in the time-dependent scalar pressure equation for

ion and electrons at tx0¼ 3.2 in Run 3. Although the small-

scale perturbation is not clear in each scalar pressure of

ions and electrons in Fig. 12, the total scalar pressure

PiþPe has the perturbation at Mode 4. The perturbation at

Mode 4 is also seen in the compressible terms of both ions

and electrons. It is also found that both the ion and electron

stress terms do not contribute to the time development of

the scalar pressure, while both the ion and electron heat flux

terms have a large contribution. The magnitude of the elec-

tron heat flux term is much larger than that of the other

terms.

Although the “ion gyro kinetic” effect is expected to

play a role in the nonlinear stage of Run 3, the present simu-

lation result shows that the contribution of the ion stress

terms is small. On the other hand, the electron stress terms

unexpectedly play an important role in the excitation of a

small-scale perturbation by coupling with the Hall electric

field (i.e., electric current density/magnetic field). It is also

shown that both the ion and electron heat flux terms have a

large contribution to the time development of the scalar pres-

sure. The present result suggests that the heat flux is not neg-

ligible for discussing the “gyro kinetics.”

IV. CONCLUSIONS

A four-dimensional (two spatial dimensions and two

velocity dimensions) Vlasov simulation is performed to

study the non-MHD effects on nonlinear processes of the

RTI. In order to distinguish the ion inertial (Hall) effect

and the ion gyro kinetic effect, we performed three simula-

tion runs with the different ratio of the wavelength of the pri-

mary RT mode kRT to the ion inertial length di or the ion

gyro radius ri by changing the plasma beta. In the run with

kRT 
 di and kRT 
 ri, the RTI develops symmetrically in a

coordinate axis parallel to gravity as seen in the previous

MHD simulations.

In the run with kRT � di and kRT 
 ri, the RTI develops

asymmetrically in a coordinate axis parallel to gravity. A

compressible flow is formed at the secondary density shear

layer by the Hall effect, which generates a strong scalar pres-

sure gradient of ions. A Hall electric field is enhanced by

the diamagnetic current due to the pressure gradient, which

results in the asymmetric flow at the tip of the finger

FIG. 12. Scalar pressure and the corresponding compressible term, stress term, and heat flux term in the time-dependent scalar pressure equation for ions (top)

and electrons (bottom) at tx0 ¼ 3:2 in Run3.
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structure. The strong velocity field due to the Hall effect

enhances the ion-scale secondary KHI.

In the run with kRT 
 di and kRT � ri, a small-scale sec-

ondary RTI is excited at kxri � kxdi � 0:3 around the satura-

tion stage of the primary RTI. Electron scalar pressure and

stress terms play roles in the electric field. It is shown that

the electron stress term and the Hall term in the electric field

are dominant in the growth of the small-scale perturbation,

although the wavelength of the perturbation is much longer

than the electron gyro radius. It is expected that the small-

scale secondary RTI is generated from a seed perturbation

excited by a pressure/temperature gradient driven secondary

instability through an ion cyclotron resonance. However,

the detailed analysis on the generation of the secondary

instability is left as a future study. It is also found that the

contributions of the ion stress tensor for the nonlinear devel-

opment of the RTI are unexpectedly small, while the heat

flux tensor plays a role in the development of the ion scalar

pressure.

In conclusion, it is not easy to separate non-MHD

effects into the inertial, gyro kinetic, and other effects by a

single kinetic simulation, since the present simulation results

suggest that the Hall effect couples with non-MHD stress

tensors. Therefore, it is unclear whether the result of Run 2

is close to that of a Hall-MHD simulation. It is also unclear

whether the result of Run 3 is close to that of an electron-ion

two-fluid simulation with stress and heat flux tensors. Direct

comparison of the present study with these fluid simulations

is also left as a future study.
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