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S1 Force balance equation and Maxwell construction

We here derive the force balance equation of a DNA brush and show that the Maxwell

construction provides the necessary condition of the coexistence of swollen and collapsed

DNA chains. We treat DNA chains that are end-grafted to a surface with grafting density σ.

These DNA chains are composed of N chain segments of Kuhn length leff . The free energy

per unit area of a DNA brush has the form
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The �rst term of eq. (S1) is the free energy due to entropic elasticity of DNA chains per

unit area. The second term is the free energy due to the interactions between DNA chain

segments. The third term is the work done by applied pressure. The fourth term is the

elastic free energy of the grafting surface. The �fth term is the gradient energy, which is

the excess interaction energy due to the gradient of the brush height and the nucleosome

occupancy (see also ref.1). This free energy is minimized with respect to the brush height

h and the nucleosome occupancy nhis is determined by the transcription dynamics and the

dynamics of nucleosome assembly.

The Kuhn length leff has the form

leff = la(1− γnhis), (S2)

where la is the Kuhn length of vacant DNA chain segments and γ is the constant that

accounts for the fact that DNA chain segments are reeled around histone proteins when

nucleosomes are assembled. The second virial coe�cients, won, wint, and woff , account for

the (nucleosome)-(nucleosome) interactions, the (nucleosome)-(vacant DNA segment) inter-

actions, and the (vacant DNA segment)-(vacant DNA segment) interactions, respectively.
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The (nucleosome)-(nucleosome) interactions are attractive (won < 0), and the (vacant DNA

segment)-(vacant DNA segment) interactions are repulsive (woff > 0). u is the third virial

coe�cient that accounts for the three-body interactions between nucleosomes. Φon and Φoff

are the local concentrations of nucleosomes and vacant DNA chain segments and have the

forms

Φon =
σN

h
nhis (S3)

Φoff =
σN

h
(1− nhis). (S4)

K is the bending rigidity of the grafting surface and ∇ is the two dimensional gradient

in the lateral direction. χ⊥ is the constant that accounts for the gradient energy and is

−w (= 2wint − won − woff) in a lattice model.1

The fourth and �fth terms of eq. (S1) are interfacial terms that are zero in the bulk of

domains. Minimizing the free energy, eq. (S1), with respect to the brush height h leads to

the form
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Eq. (S5) is equal to eq. (10) in the main article. The �fth term is signi�cant only for

relatively large values of the nucleosome occupancy, nhis ∼ 1. Rewriting the second, third,

and fourth terms leads to the form
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where w, n+, and n− have the forms

w = won + woff − 2wint (S7)
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w
. (S8)
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We used eq. (S6) to derive �g. 3 in the main article.

The brush height h and the nucleosome occupancy nhis is a function of position at inter-

faces between domains and the fourth and �fth terms of eq. (S1) are not zero at interfaces.

Applying the variational principle with respect to the brush height h to the free energy

density leads to the force balance equation
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The bulk component of osmotic pressure Π⊥(h) has the form
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We used a relationship
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to derive eq. (S9). We here approximately treat the nucleosome occupancy as a function

of the brush height h to derive eq. (S11). This treatment is slightly di�erent from the

derivation of eq. (S5), where the nucleosome occupancy nhis is treated as independent of the

brush height h.

We treat the 1d interface between domains of collapsed and swollen phases and thus the

brush height is a function of the position x across the interface. Multiplying dh(x)/dx to
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both sides of eq. (S9) leads to the form

d
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The work W⊥(h) has the form

W⊥(h) = −
∫ h

hswo

dhΠ⊥(h), (S13)

where hswo is the brush height in the bulk of the domains of the swollen phase. Eq. (S12) is

e�ective across the interface, including the bulk of the swollen and collapsed domains. This

leads to the form
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where hcol is the brush height in the bulk of the domains of collapsed phase, because the

brush height is uniform in the bulk of domains. The last equality of eq. (S14) leads to the

Maxwell construction in the form

∫ hcol

hswo

dhΠ⊥(h) = 0. (S15)

Although we here take into account the elastic energy of the grafting surface and the standard

gradient energy to treat the interface, one can show that the Maxwell construction is e�ective

for cases in which the free energy has other types of gradient terms as long as these gradient

terms do not change the form of the �rst integral of the force balance equation in the bulk

of domains.
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S2 Chemical potentials and lateral osmotic pressure of

DNA chains

In the layer structure, a part of swollen chains is in the interstitial region between collapsed

chains (indicated by the subscript `c') and the other part of swollen chains di�uses in the

region above the collapsed chains (indicated by the subscript `s'). For cases in which the

dynamics of DNA chain conformation is faster than the transcription dynamics and the

dynamics of nucleosome assembly, the partition of swollen chains between these two regions

is determined by the equality of chemical potentials, see �g. S1. The free energy density

(per unit area) of swollen chains in the interstitial region has the form
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where Nc is the number of chain segments in the interstitial region and hc is the height of

the collapsed chains, see also eq. (S1). The chemical potential of these chains thus has the

form
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The free energy density (per unit area) of swollen chains in the region above collapsed

chains has the form

fs
T

=
3

2

σϕh2
s

Nsl2eff
+ 3

1− ϕ

Nsl2eff
+

1

2
w
σϕ2N2

s

hs

(nhis − n+)(nhis − n−) +
1

3
u
σ3ϕ3N3

s

h2
s

+
Πapp

T
hs, (S18)

see also eq. (S1). hs is the height of the region above the collapsed chain and Ns (≡ 1−Nc)
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is the number of chain segments in this region. The area occupied by swollen chains in this

region is (ϕσ)−1 per chain and may be comparable to (the square of) the radius of gyration

of these chains, for cases in which the fraction ϕ of swollen chains is relatively small, see �g.

S1. We thus take into account the second term of eq. (S18), which is the entropic elasticity

with respect to the lateral excursions of swollen chains (to the region above collapsed chains).

This term is derived by using the fact that the free energy due to the chain conformational

entropy in the lateral direction (that is 2d) is 3kBT
Nl2

eff
R2 per chain and the area R2 occupied by

a chain is con�ned to (ϕσ)−1 due to the repulsive interactions with the neighboring swollen

chains. The factor (1 − ϕ) has been added by hand to make sure that the second term in

eq. (S18) vanishes in the limit of a classical polymer brush (ϕ = 1) where the swollen chains

cannot perform excursions in the lateral direction.

The chemical potential of swollen chains in the region above the swollen chains has the

form
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The numberNc of chain segments in the interstitial region between collapsed chains is derived

by the equality of the chemical potential of chain segments, µs = µc (see eqs. (S17) and

(S19)). The lateral osmotic pressure Π∥ of swollen chains is derived in the form
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The minimum of the fraction ϕ of swollen chains is derived by the condition, Π∥(ϕ) = 0;

for smaller values of the fraction ϕ, swollen chains cannot occupy the space above collapsed
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chains and thus pressure Πapp is not applied to some of the collapsed chains (unless the

grafting surface bends signi�cantly).

The force balance equation of swollen chains has the form
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see also eq. (S6). Substituting eq. (S21) into eq. (S20) leads to the form

Π̃∥(ϕ) =
N
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1

(1− γnhis)2

[
ϕ′h̃2

s −
1

σh2
Alx

]
, (S22)

where we used rescaled height h̃s (≡ hs/hAlx) and rescaled lateral osmotic pressure Π̃∥(ϕ) (≡

Π∥(ϕ)/ΠAlx). The second term in the square bracket is the contribution of the lateral entropic

elasticity of swollen chains and the �rst term is the other contributions. The lateral entropic

elasticity is thus negligible for cases in which the grafting density is very large, σh2
Alx ≫ 1.

S3 Work done by the applied pressure

In the main article, we treat a process of i) applying pressure to a fraction (1− ϕ) of chains

in a uniformly swollen brush to collapse these chains and ii) let the other chains di�use in

the space above the collapsed chains. The work done by an external force in this process has

the form

W (ϕ) = W⊥(ϕ) +W∥(ϕ). (S23)

The work W⊥(ϕ) is done in the process i) and has the form

W⊥(ϕ) = −(1− ϕ)A
∫ hc

h∗
s+hc

dhΠ⊥(h). (S24)
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The work W∥(ϕ) is done in the process ii) and has the form

W∥(ϕ) = −
∫ A

ϕA
dA′ Π∥(ϕ)hs(ϕ) +
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dh′
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T
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The �rst term of eq. (S25) is the work done by the lateral osmotic pressure Π∥(ϕ) in the

process ii) and the second term is the work done by the applied pressure Πapp because the

height hs(ϕ) + hc of the swollen chains changes in this process. A′ in eq. (S25) is the area

occupied by swollen chains. Transforming the integration variable A′ to ϕA/ϕ′ leads to the

form
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S4 Numerical calculations

We here summarize the details of the numerical calculations that were performed to derive

�g. 6 in the main article. The other �gures were derived in a similar manner. The work

W (ϕ) that is necessary to change a uniform swollen brush to a layered brush is calculated by

using the procedure shown in sec. 2 in the main article. We derive the fraction ϕ of swollen

chains by numerically �nding the global minimum of the work W (ϕ) (see also eq. (17) in

the main article).

When the rescaled rate constant η0 (de�ned by eq. (22) in the main article) is smaller

than a threshold value η0TP, the fraction ϕ at the global minimum of the work is unity for

any values of applied pressure (see �g. S3a). The work W (ϕ) shows another minimum for

relatively large values of the rescaled rate constant η0. The value of the work at this minimum

is larger than zero as long as the rescaled rate constant η0 is smaller than the threshold value

η0TP. This implies that the layer structure is not stable for these values of the rescaled
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rate constant η0. The DNA brush rather shows lateral phase separation. We thus used the

Maxwell construction to derive the binodal curve that predicts the phase separation (see the

green curve in �g. 6). This construction ensures that the work that is necessary to change a

uniform swollen brush to a uniform collapsed brush is zero at the two-phase coexistent state.

For the rescaled rate constant η0 that is larger than the threshold value η0TP, the work

at the new minimum becomes zero at a threshold applied pressure Πth1 (see �g. S3b).

The work W (ϕ) at the minimum decreases with increasing applied pressure. Eventually, it

becomes equal to the work to change a uniform swollen brush to a collapsed brush at another

threshold applied pressure Πth2. This implies that the layer structure is stable for applied

pressures that are larger than the �rst threshold pressure Πth1 and smaller than the second

threshold pressure Πth2. These threshold pressures are shown by the blue curve in �g. 6

in the main article. These two threshold pressures and the binodal curve (for small values

of the rescaled rate constant) intersect at the threshold rescaled rate constant η0TP. This

intersection is the triple point, at which a uniform swollen brush, a uniform collapsed brush,

and the layer structure are all stable.

The fraction ϕ of swollen chains at the minimum of the work W (ϕ) for Πapp = Πth1

(where the minimum of the work W (ϕ) becomes zero, see above) increases with increasing

the rescaled rate constant η0. It becomes unity at another threshold value η0tri of the rescaled

rate constant (see the green curve in �g. S3c). At the threshold rate constant, the �rst and

second derivative of the work W (ϕ) becomes zero at ϕ = 1 for the �rst threshold pressure

Πth1. Indeed, this is the tricritical point. For a rescaled rate constant η0 that is larger than

the tricritical value, the minimum of the work is at ϕ = 1 for the �rst threshold pressure

Πth1 (see �g. S3d). The fraction ϕ at the minimum continuously decreases from unity with

increasing applied pressure.
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S5 Interfaces between swollen and collapsed chains

The interactions between chain segments and the entropy with respect to the lateral excursion

of chains are modulated at the interfaces between swollen chains and collapsed chains. One

may think that these interfacial e�ects destabilize the layer structure, which includes a rather

large number of interfaces. We here show how the modulation of interactions and entropy

at interfaces changes the phase diagram of DNA brushes. For simplicity, we here neglect

the entropic elasticity with respect to lateral excursions of swollen chains (see the �rst term

of eqs (16) and the second term of eq. (19) in the main article). We take into account the

interfacial e�ects by using a simple form of excess work

Wint(ϕ) = χ⊥hcσ
1/2Aϕ(1− ϕ) + χ∥(1− ϕ)σA, (S27)

which is necessary to make the interfaces.

The �rst term of eq. (S27) is the work to make the vertical interfaces between collapsed

chains and swollen chains at the interstitial region and the second term is the work to make

the lateral interfaces between collapsed chains and swollen chains at the space above the

collapsed chains. With eq. (S27), we treat the work to make a unit area of interfaces

as constant. The constants χ⊥ and χ∥ account for the work to make vertical and lateral

interfaces, respectively, and play an analogous role in interfacial tensions. The number of

vertical interfaces is proportional to σAϕ(1−ϕ), see ref.1 The number of lateral interfaces is

proportional to the area σA(1− ϕ) occupied by the collapsed chains because we treat cases

in which the space above these chains is occupied by swollen chains. To reduce the number

of parameters, we use rescaled constants χ̃⊥ (≡ σ1/2χ⊥/(ΠAlxhAlx)) and χ̃∥ (≡ σχ∥/ΠAlx) in

the following.

We �rst treat cases in which the (rescaled) vertical interfacial tension χ̃⊥ is very small.

When the (rescaled) lateral interfacial tension χ̃∥ is relatively large, the phase diagram of a

DNA brush has features that are qualitatively similar to cases in which the lateral entropic
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elasticity is signi�cant (see �g. S6a). The values of the rescaled rate constant η0 at the

triple point and tricritical point increase with increasing the lateral interfacial tension χ̃∥

(see the solid curves in S6b), just like decreasing the grafting density (see �g. 8 in the

main article). This is because the lateral interfacial tension χ̃∥ suppresses the lateral osmotic

pressure of swollen chains, just like the lateral entropic elasticity, although the functional

forms of the work due to these contributions are di�erent. This implies that the fact that

DNA brushes show tricritical points is relatively generic and is not very sensitive to the type

of contributions (and thus the details of the functional form) that oppose the lateral osmotic

pressure of swollen chains.

The DNA brush shows a tricritical point for a value of the lateral interfacial tension

χ̃∥ that is larger than a threshold value (see �g. S6b). The threshold lateral tension χ̃∥

decreases with increasing the vertical interfacial tension χ̃⊥ and eventually becomes zero

at a threshold value of the vertical tension χ̃⊥. For cases in which the lateral tension χ̃∥

is zero, the phase diagram of the DNA brush is qualitatively similar to cases in which the

lateral entropic elasticity is negligible, as long as the vertical tension χ̃⊥ is smaller than the

threshold value. For vertical tensions χ̃⊥ larger than the threshold value, the DNA brush

shows a tricritical point at a value η0tri of the rescaled rate constant, but neither shows triple

points nor lateral phase separation (see �g. S7a and b). This situation is very di�erent from

cases in which the lateral tension χ̃∥ is relatively large. For rescaled rate constants η0 larger

than the critical value η0tri, the fraction ϕ of swollen chains continuously changes from unity

at the �rst threshold pressure Πth1 (see also �g. S8). This results from the fact that the

vertical interfacial tension does not suppress the lateral osmotic pressure. It rather increases

the work that is necessary to collapse chains and thus tends to increase the fraction ϕ of

swollen chains.
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Figure S1: Segments of swollen chains are partitioned into the interstitial region between
collapsed chains (this region is indicated by the subscript `c') and the region above the
collapsed chains (this region is indicated by the subscript `s'). hs and hc are the heights of the
corresponding regions. Ns and Nc are the number of segments in these regions (Ns+Nc = N).
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Figure S2: The fraction ϕ of swollen chains at Πapp = Π1 (solid) and Π2 (broken) is shown
as functions of the rescaled rate constant η0 for cases in which the grafting density is very
large, σh2

Alx ≫ 1. The value of ϕ is maximum at Πapp = Π1 and is minimum at Πapp = Π2 .
The values of parameters that are used for the calculations are n+ = 0.99, n− = −0.1,
4uNσ/(3|w|hAlx) = 0.002, vσN/hAlx = 0.8, and γ = 0.7.
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Figure S3: The work W (ϕ) that is necessary to change a uniform swollen brush to a layered
brush is shown as functions of the fraction ϕ of swollen chains for cases in which the grafting
density is relatively small (σh2

Alx = 10.0). The values of the rescaled rate constant η0 are
1.55 (a), 1.62 (b), 1.73 (c), and 1.8 (d). The values of parameters that are used for the
calculations are n+ = 0.99, n− = −0.1, 4uNσ/(3|w|hAlx) = 0.002, vσN/hAlx = 0.8, γ = 0.7,
and σh2

Alx = 10.0. Color codes indicate the calculations for di�erent values of applied
pressure. Applied pressure increases in the order of cyan, black, light green, and magenta:
a. Πapp/ΠAlx = 3.5 (cyan), 3.7 (light green), 3.9 (black), 4.0 (magenta), b. Πapp/ΠAlx = 3.3
(cyan), 3.469 (black), 3.7 (magenta), c. Πapp/ΠAlx = 3.0 (cyan), 3.15764 (light green), 3.3
(black), 3.5 (magenta), d. Πapp/ΠAlx = 2.9 (cyan), 3.1 (black), 3.3 (magenta).
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Figure S4: The nucleosome occupancy nhis (a), the brush height h/hAlx (b), the rescaled
transcription rate η (c), and the partition Nc/N of the segments of swollen chains to the
interstitial region between collapsed chains (d) are shown as functions of applied pressure
for cases in which the grafting density is very large σh2

Alx ≫ 1. Applied pressure is rescaled
by the values, Π1 and Π2 , at the spinodal curves. The values of swollen chains are shown
by the solid curves and the values of collapsed chains are shown by the broken curve. The
values of the rescaled rate constant that are used for the calculations are η0 = 1.0 (black),
2.0 (cyan), 3.0 (magenta). The values of parameters that are used for the calculations are
n+ = 0.99, n− = −0.1, 4uNσ/(3|w|hAlx) = 0.002, vσN/hAlx = 0.8, and γ = 0.7. These
values of parameters correspond to �g. 5 in the main article.
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Figure S5: The nucleosome occupancy nhis (a), the brush height h/hAlx (b), the rescaled
transcription rate η (c), and the partition Nc/N of the segments of swollen chains to the
interstitial region between collapsed chains (d) are shown as functions of applied pressure
for cases in which the grafting density is relatively small σh2

Alx = 10.0. Applied pressure is
rescaled by the values, Πth1 and Πth2, at the binodal curves. The values of swollen chains are
shown by the solid curves and the values of collapsed chains are shown by the broken curve.
The values of the rescaled rate constant that are used for the calculations are η0 = 1.65
(blue) and 2.0 (orange). The values of parameters that are used for the calculations are
n+ = 0.99, n− = −0.1, 4uNσ/(3|w|hAlx) = 0.002, vσN/hAlx = 0.8, and γ = 0.7. These
values of parameters correspond to �g. 7 in the main article.
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Figure S6: a. The phase diagram of a DNA brush is shown as a function of the rescaled rate
constant η0 and applied pressure Πapp/ΠAlx for χ̃⊥ = 0 and χ̃∥ = 0.3 (see the discussion below
eq. (S27) for the de�nition of χ̃⊥ and χ̃∥). The green line shows the applied pressure, at
which the DNA brush shows lateral phase separation. The blue and orange lines delineate the
region, in which the layer structure is stable. The brush shows �rst order phase transitions
(with respect to the fraction ϕ of swollen chains) at the blue line and second order phase
transitions at the orange lines. The �lled circle shows the critical point and the un�lled circle
shows the tricritical point. The intersection between the green and blue curves is the triple
point (`TP'). b. The values of rescaled rate constant η0 at the triple point (emerald green)
and tricritical point (purple) are shown as functions of the constant χ̃∥ for χ̃⊥ = 0.0 (solid),
1.0 (broken), and 3.0 (dotted). The other parameter values are n+ = 0.99, n− = −0.1,
ũ = 0.002, ṽ = 0.8, and γ = 0.7.
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Figure S7: a. The phase diagram of a DNA brush is shown as a function of the rescaled rate
constant η0 and applied pressure Πapp/ΠAlx for χ̃⊥ = 3.5 and χ̃∥ = 0.0 (see the discussion
below eq. (S27) for the de�nition of χ̃⊥ and χ̃∥). The blue and orange lines delineate the
region, at which the DNA brush shows the layer structure. The blue and orange lines indicate
�rst order phase transition and second order phase transition (with respect to the fraction
ϕ of swollen chains), respectively. The threshold applied pressure, Πth1 and Πth2, is equal to
the spinodal pressure, Πsp1 and Πsp2, at the blue solid line and is larger than the spinodal
pressure at the blue broken line or the orange line. The critical point is shown by the �lled
circle and the tricritical point is shown by the un�lled circle. b. The values of the rescaled
rate constant η0 at the tricritical point (purple) is shown as a function of the constant χ̃⊥ for
χ̃∥ = 0. The blue curve shows the values of the rescaled rate constant η0 at the intersection
between the blue solid and broken lines in a. The values of parameters that are used for the
calculations are n+ = 0.99, n− = −0.1, ũ = 0.002, ṽ = 0.8, and γ = 0.7.
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Figure S8: The fraction ϕ of swollen chains is shown as a function of applied pressure Πapp

(rescaled by the threshold pressure Πth1 and Πth2) for cases in which the interfacial tensions
are χ̃⊥ = 3.5 and χ̃∥ = 0. The values of the rescaled rate constant η0 are η0 = 2.0 (blue
solid), 2.5 (blue broken), and 3.0 (orange). The values of parameters that are used for the
calculations are n+ = 0.99, n− = −0.1, 4uNσ/(3|w|hAlx) = 0.002, vσN/hAlx = 0.8, and
γ = 0.7. These values correspond to �g. 10a in the main article.
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