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Abstract 

Previous studies showed that overexposure to manganese causes parkinsonism, a disorder of 

dopaminergic neurons. Previous studies also showed that activity of c-RET kinase controls dopamine 

production through regulation of tyrosine hydroxylase (TH) expression, suggesting the involvement 

of c-RET in the development of parkinsonism. To our knowledge, however, there is no report 

showing a correlation between manganese-mediated parkinsonism and c-RET. In this study, we 

examined the effect of manganese on the expression and/or activation levels of c-RET and TH in 

human TH-expressing cells (TGW cells). We first found that treatment with 30 µM and 100 µM 

manganese resulted in reduction of c-RET transcript level and degradation of c-RET protein through 

promotion of ubiquitination. We then examined the biological significance of manganese-mediated 

decrease of c-RET protein expression. Decreased TH expression with decreased c-RET kinase activity 

was observed in c-RET protein-depleted TGW cells by treatment with manganese (30 µM) as well as 

by c-RET siRNA transfection. Since TH protein has been shown to be involved in the 

dopamine-producing pathway in previous studies, our results indicate the possibility that 

manganese-mediated reduction of TH expression and phosphorylation via decreased expression of 

c-RET protein in neural cells is involved in parkinsonism induced by manganese. 
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Introduction 

Excessive exposure to manganese has been reported to cause respiratory, immune and 

neuronal disorders (Antonini et al. 2012; Han et al. 2009; Olanow 2004). Chronic inhalation of 

manganese in workplaces such as mining and welding workplaces has been shown to be associated 

with a neuronal disorder known as manganism, which has symptoms similar to those of idiopathic 

Parkinson’s disease (parkinsonism). Patients with manganism are thought to have neuronal damage in 

the substantia nigra that leads to deficiency of the neurotransmitter dopamine for the striatum (Huang 
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et al. 1989; Kwakye et al. 2015; Mena et al. 1970; Mena et al. 1967; Rosenstock et al. 1971).  

It has been reported that c-RET encoding a receptor tyrosine kinase (RTK) is the receptor for 

glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs). To activate c-RET, GFLs 

bind with high affinity to coreceptors, GFRαs, and then this GFL-GFRα complex binds to c-RET 

(Baloh et al. 1997; Kato et al. 2002). Previous studies in animals revealed a correlation between 

c-RET and Parkinson’s disease. Decreased expression of c-RET, GFRα1 and GFRα2 was observed in 

a model for Parkinson’s disease (Marco et al. 2002). Deletion of c-RET in the nigrostriatal 

dopaminergic system in mice caused progressive degeneration of dopaminergic neurons in the 

substantia nigra pars compacta (Kramer et al. 2007). Previous studies in humans showed that GDNF, 

a ligand for c-RET, is a good tool to decrease symptoms of Parkinson’s disease (Barker 2006). 

Previous biochemical studies also showed that activation of c-RET stimulated by GDNF increases the 

expression of tyrosine hydroxylase (TH), a rate-limiting enzyme of the dopamine-producing pathway 

(Xiao et al. 2002). Moreover, c-RET is expressed not only in dopaminergic neurons and motor 

neurons but also in the brain including the hippocampus and cerebral cortex, which are affected by 

manganese exposure (Burazin and Gundlach 1999; Gould et al. 2008; Kern et al. 2010). 

Despite those previous results, there is no information showing a correlation between 

manganese-mediated parkinsonism and c-RET. In this study, we hypothesized that manganese causes 

the development of parkinsonism via modulation of the expression and function of c-RET and 

subsequently that for TH. Since a human TGW cell line is one of the representative cell lines in which 

GDNF-mediated activation of c-RET directly affects levels of TH expression and phosphorylation 

(Tenenbaum and Humbert-Claude 2017; Xiao et al. 2002), we tried to certify the hypothesis using 

TGW cells in this study. 

 
Materials and Methods 

Cell culture and reagents 
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Human TGW neuroblastoma cells obtained from Human Science Health Research Resources 

Bank were cultured according to the method described previously (Kato et al. 2011). Briefly, TGW 

cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% fetal 

bovine serum (FBS) and 1% penicillin/streptomycin (WAKO) at 37ºC in 5% CO2. Manganese (II) 

chloride (Sigma), epoxomicin (PEPTIDE INSTITUTE, INC.) and GDNF (R&D Systems) were used 

as manganese, a pharmacological inhibitor for proteasome and a ligand for c-RET, respectively. TGW 

cells were exposed to manganese after being cultured with 1% FBS for 6 hrs. 

 

Immunoblotting 

Immunoblotting was performed according to the method described previously (Kato et al. 

2004). Rabbit polyclonal antibodies against RET (IBL), phosphorylation of tyrosine 905 (Y905) in 

RET (Cell Signaling Technology), phosphorylation of serine (Ser40) in TH (Cell Signaling 

Technology), and TH (Abcam) and mouse a monoclonal antibody against α-tubulin (Sigma) were 

used as first antibodies. Since Y905 is a representative tyrosine to regulate c-RET kinase activity 

(Baloh et al. 1997; Kato et al. 2002), we substituted phosphorylated levels of Y905 in c-RET protein 

for phosphorylated levels of c-RET protein. Densitometric analysis of immunoblot bands was 

performed using the software program WinROOF (MITANI Corporation) following a previous report 

(Ohgami et al. 2010). 

 

Immunoprecipitation  

After TGW cells had been extracted with NP40 buffer (50 mM Tris-buffered saline, pH 7.4, 

1% Nonidet P-40, 10% glycerol, 200 mM phenylmethylsulfonyl fluoride, 200 mM, 10 µg/L aprotinin), 

500 µg of proteins was used for immunoprecipitation with a UbiQapture™-Q kit (Enzo Life Sciences) 

following the manufacturer’s protocol.  

 

Real-time PCR 
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Real-time PCR analysis was performed by the method previously described (Ohshima et al. 

2010). The primers used for TH were designed following a previous report (Lambooy et al. 2003). 

 

Small-interfering RNA transfection 

TGW cells were transiently transfected with control siRNA (Invitrogen Life Tech) or c-RET 

siRNA (Hokkaido System Science) using Lipofectamine RNAiMAX (Invitrogen Life Tech) 

according to the manufacturer’s protocol. The sequence of c-RET siRNA was designed following a 

previous report (Koga et al. 2010).  

 

Statistical analysis 

Statistical analyses using Dunnett’s test, Tukey-Kramer’s test and Student’s t-test were 

performed following the method previously described (Kato et al. 2011). The JMP Pro10 software 

package (SAS Institute Inc.) was used for statistical analyses. The significance level was set at p< 

0.05. 

 

Results 

Effects of manganese on levels of c-RET protein and transcript. 

We examined the effect of manganese on expression levels of c-RET protein in TGW cells. A 

previous study showed that manganese concentration in human toenails had a distribution ranging 

from 0.05 to 10.41 µg/g (0.9-189 µM) (Laohaudomchok et al. 2012). Previous studies also 

showed that manganese concentrations in human hairs had distributions ranging from 0.4 to 49.6 µg/g 

(7.2-901.8 µM) (Bader et al. 1999) and 0.3 to 20.0 µg/g (5.5-363.6 µM) (Bouchard et al. 2007). TGW 

cells were treated with 30-100 µM manganese in this study (Figure 1). Treatment with 30, 60 and 100 

µM manganese for 18 hours resulted in decreases in c-RET protein expression levels by 46%, 78% 

and 98%, respectively (Figure 1a and b). Shrinkage was observed for TGW cells treated with 30 or 
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100 µM manganese (arrowheads in Figure 1c), but there was no significant difference between the 

viability of untreated cells and that of cells treated with manganese (Figure 1d). 

We next examined the effect of treatment with 30 µM manganese for 18 and 42 hours on 

c-RET expression in TGW cells (Figure 2a-c). Interestingly, treatment with 30 µM manganese for 18 

and 42 hours resulted in decreases in expression levels of c-RET protein by 49% and 89%, 

respectively (Figure 2a and b). The expression levels of c-RET transcript were decreased by only 26% 

and 58% by treatment with 30 µM manganese for 18 and 42 hours, respectively (Figure 2c). 

Correspondingly, the expression levels of c-RET protein were decreased by 69% and 99% by 

treatment with 100 µM manganese for 12 and 18 hours, respectively (Figure 2d and e). On the other 

hand, the expression levels of c-RET transcript were decreased by 30% and 56% by treatment with 

100 µM manganese for 12 and 18 hours, respectively (Figure 2f). Our results showed that 

manganese-mediated decreases in expression levels of c-RET protein were greater than those of 

c-RET transcript. These results suggest that posttranslational degradation of c-RET protein as well as 

decrease in the level of c-RET transcript seems to be correlated with the manganese-mediated 

decrease in expression level of c-RET protein. 

We next examined whether posttranslational degradation of c-RET protein is induced by 

treatment with manganese. A previous study showed that phosphorylated c-RET protein treated with 

GDNF was proteasome-dependently degraded after ubiquitination (Pierchala et al. 2006). Therefore, 

we first examined whether c-RET protein in TGW cells treated with 30 µM manganese is 

proteasome-dependently degraded (Figure 3a and b). Manganese-mediated decrease in c-RET protein 

was inhibited by treatment with epoxomicin, a proteasome inhibitor (Figure 3a and b). We next 

examined whether manganese promotes ubiquitination of c-RET protein, since ubiquitination is the 

initial step for protein degradation via the ubiquitin/proteasome pathway (Tu et al. 2012). 

Ubiquitinated c-RET protein was found in TGW cells treated with manganese but not in untreated 

TGW cells (Figure 3c and d). These results suggest that posttranslational modification of c-RET 
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protein via the ubiquitin/proteasome pathway in addition to decrease in the level of c-RET transcript 

are involved in manganese-mediated decrease in c-RET protein.  

 

Biological significance of manganese-mediated decrease in c-RET protein expression level. 

We next examined the biological significance of decreased c-RET protein expression level. 

The expression level of c-RET protein in c-RET siRNA-transfected TGW cells (siRNA-mediated 

c-RET-depleted cells) was decreased by 53% compared to that in control siRNA-transfected TGW 

cells (control cells) (lanes 1 and 2 in Figure 4a and b). The phosphorylation level of c-RET protein 

and the protein and transcript levels of TH expression in the absence of GDNF were undetectably low 

in both siRNA-mediated c-RET-depleted cells and control cells (lanes 1 and 2 in Figure 4a, c, s and e). 

Levels of c-RET protein expression, TH protein and transcript expression, and phosphorylated c-RET 

protein were increased in both siRNA-mediated c-RET-depleted cells and control cells in the presence 

of GDNF (Figure 4a-e). More importantly, expression levels of TH protein and transcript in 

siRNA-mediated c-RET-depleted cells were significantly lower than those in control cells in the 

presence of GDNF (lanes 3 and 4 in Figure 4a, d and e). 

We finally examined expression levels of c-RET protein and TH protein and transcript and 

the phosphorylated levels of c-RET protein and TH protein in 30 µM manganese-treated and 

untreated TGW cells in the presence or absence of GDNF. As shown in Figures 1-3, the level of 

c-RET protein expression in cells treated with manganese (manganese-mediated c-RET-depleted 

cells) was lower than that in untreated cells (control cells) in either the presence or absence of GDNF 

(Figure 5a and b). The levels of phosphorylated c-RET protein and TH protein and the expression 

levels of TH protein and transcript in the absence of GDNF were undetectably low in both 

manganese-mediated c-RET-depleted cells and control cells (lanes 1 and 3 in Figure 5a, c-g). Levels 

of c-RET protein expression, phosphorylated c-RET, and TH protein and transcript expression were 

increased by treatment with GDNF in both manganese-mediated c-RET-depleted cells and control 

cells (Figure 5a-e). More importantly, levels of phosphorylated c-RET protein, phosphorylated 
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(Ser40) and total TH protein and transcript expression of TH in manganese-mediated c-RET-depleted 

cells were significantly lower than those in control cells in the presence of GDNF (lanes 2 and 4 in 

Figure 5a, c-g). Thus, our results showed a decreased level of TH with a decreased level of c-RET 

phosphorylation in manganese-mediated c-RET-depleted cells as well as in siRNA-mediated 

c-RET-depleted cells. 

 

Discussion 

In this study, we demonstrated for the first time that manganese not only decreases the 

amount of c-RET transcript but also promotes proteasome-dependent degradation of c-RET protein, 

resulting in a decrease in the level of c-RET protein expression in human TGW cells. Since 

manganese-mediated reduction of c-Ret protein expression was also found in rat PC-12 cells, which 

spontaneously express c-Ret (Pelicci et al. 2002) Kumasaka et al. unpublished observation), 

manganese might decrease c-RET/Ret protein expression in neuronal cells. We then demonstrated that 

decreases in the levels of c-RET phosphorylation and TH expression and phosphorylation occurred in 

accordance with a decrease in c-RET protein expression (Figure 6). Since c-RET has been reported to 

be associated with the dopamine-producing pathway through enhancement of transcription of TH, 

which encodes the initial and rate-limiting enzyme in dopamine biosynthesis (Mijatovic et al. 2007), 

TH has been used as one of the indicators to determine the level of dopamine production (Hurley et al. 

2003). Moreover, decreased TH expression level has been reported in the rat brain overexposed to 

manganese (Zhang et al. 1999). There have been various in vivo and in vitro studies in which TH 

protein and phosphorylation levels and activity were evaluated (Guilarte et al. 2008; Peres et al. 2016; 

Posser et al. 2009; Zhang et al. 2011). However, it was difficult to evaluate correlations between the 

GDNF/c-RET pathway and TH expression/phosphorylation in previous studies because the cell lines 

or tissues used in previous studies constantly express TH protein. Since TH expression in TGW cells 

used in this study is initiated by GDNF treatment (see Figure 4), our results demonstrated a 

correlation between the GDNF/c-RET pathway and TH expression/phosphorylation. Taken together, 



 

 9 

the results indicate the possibility that manganese-mediated decrease in c-RET protein expression is 

involved in parkinsonism via decreased c-RET activity and TH protein expression/phosphorylation. 

Thus, this study suggested a novel mechanism for manganese-mediated parkinsonism (Figure 6).  

Previous studies showed that manganese causes not only parkinsonism (Perl and Olanow 

2007) but also various neuropsychological deficiencies with dysfunction of the dopamine system such 

as hyperactive behaviors (Bouchard et al. 2007), learning deficit (Zhang et al. 1995) and cognitive 

deficit (Bouchard et al. 2007). Since c-RET has been reported to be associated with the pathway of 

dopamine production through promotion for TH transcript (Mijatovic et al. 2007), our results showing 

manganese-mediated decreases in c-RET protein expression and activity and subsequent reduction of 

TH expression indicate the possibility that manganese is involved not only in parkinsonism but also in 

various neural disorders derived from dysfunction of the dopamine system through dysfunction of 

c-RET. In addition, patients with amyotrophic lateral sclerosis (ALS) as well as parkinsonism have 

been reported in New Guinea and Papua islands, where the well drinking water contains high 

concentrations of manganese (Nishida 2003). However, it remains unclear whether there is a 

correlation between manganese and ALS. Since decreased c-RET expression in motor neurons of the 

lumbar spinal cord has been reported in model mice for ALS (Ryu et al. 2011), our results showing 

manganese-mediated dysfunction of c-RET indicate the possibility that manganese is also partially 

correlated with development of ALS via c-RET molecules. 

Our results showed manganese-mediated suppression of c-RET mRNA expression. Previous 

studies showed that manganese affects the activity of metal-responsive transcription factors (Brett et 

al. 2008; Casalino et al. 2007; Rodionov et al. 2006). Therefore, manganese-mediated repression of 

c-RET mRNA expression might be caused by modification of the activity of manganese-responsive 

transcription factors for c-RET. Our results also showed the involvement of manganese-mediated 

posttranslational modification in reduction of c-RET protein. Previous studies showed that 

ubiquitination precedes the degradation of many receptors, transporters and channels (Kamsteeg et al. 

2006; Miranda and Sorkin 2007; Miranda et al. 2005). An abnormal ubiquitin system causes cancer, 
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inflammatory and autoimmune diseases, and neurodegenerative disorders (Colland 2006; Diehl et al. 

2010; Lee et al. 2008; Lim and Lim 2011; Wang and Maldonado 2006). Previous studies also 

showed that manganese is involved in activation of the ubiquitin system (Sidoryk-Wegrzynowicz et 

al.). CBL-B is a representative ubiquitin ligase that is involved in regulation of c-RET protein 

expression (Pierchala et al. 2006; Scott et al. 2005). However, the expression level of CBL-B protein 

in TGW cells was decreased by treatment with 30 µM manganese (Kumasaka et al. unpublished 

observation). Manganese-mediated decrease in c-RET protein expression in TGW cells was also 

observed in CBL-B depleted TGW cells (Kumasaka et al. unpublished observation). Our results 

suggest that CBL-B has a limited role in the manganese-mediated decrease in c-RET protein. It is 

important to clarify the mechanism for manganese-mediated ubiquitination of c-RET in the future.  

In conclusion, we proposed the possibility of a linkage between manganese-mediated neural 

disorders and dysfunction of c-RET and partially clarified the molecular mechanism. 
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Figure Legends 

Fig. 1 Manganese-mediated decrease of c-RET protein expression levels. After incubation in the 

medium containing 1% FBS for 6 hrs, TGW cells were treated with the indicated concentrations of 

manganese for 18 hrs. Protein expression levels of c-RET in the cells untreated (lane 1) and treated 

with 30 µM (lane 2), 60 µM (lane 3) and 100 µM (lane 4) of manganese are presented (a). c-RET 

protein was detected as two protein bands, a band of 175 kDa (mature glycosylated form) and a band 

of 155 kDa (immature glycosylated form) (a) as shown in a previous report (Kato et al. 2000). 

Expression levels of α-TUBULIN (α-TUB) protein are presented as an internal control (a). After 

calculating c-RET protein expression levels for α-TUBULIN protein expression levels by 

densitometric analysis, levels of c-RET expression with manganese treatment (lanes 2-4) are 

presented as relative ratios (means ± SD; n=3) to that in the untreated control (lane 1) (b). 

Morphology of TGW cells not treated with or treated with manganese (30 and 100 µM) (c) and 

viability of TGW cells untreated (lane 1) and treated with 30 µM (lane 2) and 100 µM (lane 3) of 

manganese for 18 hrs are presented (d). Scale bar: 10 µm. * *, significantly different (**, p<0.01) by 

Dunnett’s test. 

 

Fig. 2 Comparison of manganese-mediated decreases in the expression levels of c-RET protein and 

transcript. After incubation in the medium containing 1% FBS for 6 hrs, TGW cells were treated with 

30 µM (a-c) and 100 µM (d-f) of manganese for the indicated period (hours) (a-f). Expression levels 

of α-TUBULIN (α-TUB) protein are presented as an internal control (a). After calculating c-RET 

protein expression levels for α-TUBULIN protein expression levels by densitometric analysis, levels 

of c-RET expression (b and e) with 30 µM manganese treatment for 18 hrs (lane 2 in b) and 42 hrs 

(lane 3 in b) and with 100 µM manganese treatment for 12 hrs (lane 2 in e) and 18 hrs (lane 3 in e) are 

presented as relative ratios (means ± SD; n=3) to that for 0 hrs (lane 1 in b and e). Levels of c-RET 

transcript expression (c and f) with 30 µM manganese treatment for 18 hrs (lane 2 in c) and 42 hrs 

(lane 3 in c) and with 100 µM manganese treatment for 12 hrs (lane 2 in f) and 18 hrs (lane 3 in f) are 
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presented as relative ratios (means ± SD; n=3) to that for 0 hrs (lane 1 in c and f). * and **, 

significantly different (*, p<0.05; **, p<0.01) by Dunnett’s test. 

 

Fig. 3 Mechanism of manganese-mediated decrease of c-RET protein. After incubation in the medium 

containing 1% FBS for 6 hrs, TGW cells were treated with 30 µM manganese (Mn) for 18 hrs. Then 

the cells were treated with 3 µM epoxomicin (Epox) for 6 hrs (a and b). Protein expression levels of 

c-RET (a and b) in the cells untreated (lanes 1 and 2) or treated (lanes 3 and 4) with epoxomicin in the 

presence (lanes 2 and 4) or absence (lanes 1 and 3) of manganese are presented. Expression levels of 

α-TUBULIN (α-TUB) protein are presented as an internal control (a). After calculating c-RET protein 

expression levels for α-TUBULIN protein expression levels by densitometric analysis, levels of 

c-RET expression in the cells treated with epoxomicin and/or manganese (lanes 2-4 in b) are 

presented as relative ratios (means ± SD; n=3) to that in the untreated control (lane 1 in b). Expression 

levels of ubiquitinated c-RET protein (top) and constitutive c-RET protein (bottom) in cells in the 

presence (lane 2) or absence (lane 1) of 30 µM manganese are presented (c). After calculating 

ubiquitinated c-RET protein expression levels for constitutive c-RET protein expression levels by 

densitometric analysis, levels of ubiquitinated c-RET protein expression in untreated cells (lane 1) are 

presented as relative ratios (means ± SD; n=3) to that in cells treated with manganese (lane 2) (d). **, 

significantly different (**, p<0.01) by Tukey-Kramer’s test (b) and Student’s t-test (d). 

 

Fig. 4 Depleted c-RET-mediated decrease of TH expression. After transfection of control siRNA or 

c-RET siRNA (siRET), TGW cells were incubated in D-MEM with 10% FBS for 42 hrs. Then the 

cells were cultured in the presence or absence of GDNF (25 ng/ml) for 18 hrs after incubation in the 

medium containing 1% FBS for 6 hrs and were analyzed by immunoblotting (a) and real-time PCR 

(e). Expression levels of c-RET (a and b) and TH (a and d) proteins and phosphorylated c-RET 

(p-c-RET; a and c) in control siRNA (lanes 1 and 3 in a-d) and c-RET siRNA (lanes 2 and 4 in 

a-d)-transfected TGW cells in the presence (lanes 3 and 4 in a-d) or absence (lanes 1 and 2 in a-d) of 
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GDNF are presented. After calculating levels of c-RET protein expression (b), phosphorylated c-RET 

(c) and TH protein expression (d) for α-TUBULIN (α-TUB) protein expression levels by 

densitometric analysis, those in the cells treated with c-RET siRNA and/or GDNF (lanes 2-4 in b, 

lanes 1, 2 and 4 in c and d) are presented as relative ratios (means ± SD; n=3) to that in control 

siRNA-transfected cells in the absence (lane 1 in b) or presence (lane 3 in c and d) of GDNF. 

Expression levels of TH transcript in TGW cells treated with siRNA and/or GDNF (lanes 1, 2 and 4 in 

e) are presented as relative ratios (means ± SD; n=3) to that in control siRNA-transfected cells in the 

presence of GDNF (lane 3 in e). * and **, significantly different (*, p<0.05; **, p<0.01) by 

Tukey-Kramer’s test. 

 

Fig. 5 Decreased TH expression and phosphorylation levels by manganese-mediated depletion of 

c-RET. After incubation in the medium containing 1% FBS for 6 hrs, TGW cells were treated with 30 

µM manganese (Mn) for 24 hrs. Then the cells were cultured in the presence or absence of GDNF (25 

ng/ml) for 18 hrs and were analyzed by immunoblotting (a and f) and real-time PCR (e). Expression 

levels of c-RET (a and b) and TH (a and d) proteins and phosphorylated c-RET (p-c-RET; a and c) in 

30 µM manganese-treated (lanes 3 and 4 in a-d) and untreated (lanes 1 and 2 in a-d) TGW cells in the 

presence (lanes 2 and 4 in a-d) or absence (lanes 1 and 3 in a-d) of GDNF are presented. After 

calculating levels of c-RET protein expression (b), phosphorylated c-RET (c) and TH protein 

expression (d) for α-TUBULIN (α-TUB) protein expression levels by densitometric analysis, those in 

the cells treated with manganese and/or GDNF (lanes 2-4 in b, lanes 1, 3 and 4 in c and d) are 

presented as relative ratios (means ± SD; n=3) to that in untreated control cells (lane 1 in b) or in cells 

treated with GDNF (lane 2 in c and d). Expression levels of TH transcript in the cells treated with 30 

µM manganese and/or GDNF (lanes 1, 3 and 4 in e) are presented as relative ratios (means ± SD; 

n=3) to that in cells treated with GDNF (lane 2 in e). Phosphorylation and expression levels of TH (f) 

in 30 µM manganese-treated (lanes 3 and 4 in f and g) and untreated (lanes 1 and 2 in f and g) TGW 

cells in the presence (lanes 2 and 4 in f and g) or absence (lanes 1 and 3 in f and g) of GDNF are 
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presented. After calculating levels of phosphorylated TH (g) for α-TUBULIN (α-TUB) protein 

expression levels by densitometric analysis, those in the cells treated with manganese and/or GDNF 

(lanes 1, 3 and 4 in g) are presented as relative ratios (means ± SD; n=3) to that in untreated control 

cells (lane 1 in g). **, significantly different (**, p<0.01) by Tukey-Kramer’s test. 

 

Fig. 6 A scheme for a novel mechanism of manganese-mediated parkinsonism via c-RET molecules. 

Manganese-mediated reduction of c-RET transcript and degradation of c-RET protein through 

ubiquitination in TGW cells secondarily decreases levels of c-RET kinase activity and TH protein 

expression and phosphorylation. Since a previous study showed that TH protein is involved in the 

dopamine-producing pathway (Xiao et al. 2002), manganese-mediated reduction of c-RET protein 

may cause dopamine-depleted diseases including parkinsonism. 
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