Fundamentals of Mathematical Informatics The Channel Capacity

Francesco Buscemi

Lecture Five

Francesco Buscemi

Fundamentals of Mathematical Informatics

Lecture Five 1 / 16

The information channel capacity: definition

- Consider a DMC \mathcal{N} with input alphabet $\mathcal{X} = \{x_1, \cdots, x_m\}$, output alphabet $\mathcal{Y} = \{y_1, \cdots, y_n\}$, and channel matrix $\llbracket p_{ij} \rrbracket$ $(1 \leq i \leq m, 1 \leq j \leq n)$.
- Let X be an input RV, with range equal to \mathcal{X} and probability distribution π_i .
- Feeding X through the channel \mathcal{N} , we obtain a pair of dependent RVs (X, Y), with range $\mathcal{X} \times \mathcal{Y}$ and joint probability distribution $Pr\{X = x_i, Y = y_j\} = \pi_i p_{ij}$.
- From $\pi_i p_{ij}$, we then compute the mutual information

$$I(X;Y) = \sum_{i=1}^{m} \sum_{j=1}^{n} \Pr\{X = x_i, Y = y_j\} \log_2 \frac{\Pr\{X = x_i, Y = y_j\}}{\Pr\{X = x_i\} \Pr\{Y = y_j\}}.$$

If the channel \mathcal{N} is fixed, $[\![p_{ij}]\!]$ is fixed too, and I(X;Y) is a function of the probability distribution π_i of X only.

The information channel capacity

The information capacity of the channel ${\mathcal N}$ is defined as

$$C(\mathcal{N}) \stackrel{\text{def}}{=} \max_{\{\pi_i\}} I(X;Y).$$

Lecture Five 2 / 16

Example: the information capacity of the BSC

Consider a binary symmetric channel (BSC) with error probability γ . Then:

$$\begin{split} I(X;Y) &= H(Y) - H(Y|X) \\ &= H(Y) - \sum_{x=0,1} p(x)H(Y|X=x) \\ &= H(Y) - \sum_{x=0,1} p(x)\{\underbrace{-\gamma \log_2 \gamma - (1-\gamma) \log_2(1-\gamma)}_{\substack{\text{def} \\ \equiv H(\gamma)}}\} \\ &= H(Y) - H(\gamma) \\ &\leqslant 1 - H(\gamma). \end{split}$$

On the other hand, choosing p(0) = p(1) = 1/2, we obtain $\Pr\{Y = 0\} = \Pr\{Y = 1\}$, i.e., H(Y) = 1.

Theorem: the capacity of the binary symmetric channel with error probability γ is equal to $C(\gamma) = 1 - H(\gamma)$.

Francesco Buscemi

Fundamentals of Mathematical Informatics

Lecture Five

3 / 16

Example: the information capacity of the BEC

Consider a binary erasure channel (BEC) with erasure probability γ . As for the binary symmetric channel, $I(X;Y) = H(Y) - H(Y|X) = H(Y) - H(\gamma)$. In order to compute H(Y), we introduce the RV E, function of Y, defined as

$$E = \begin{cases} 0, \text{ if } Y \neq \textcircled{o}, \\ 1, \text{ if } Y = \textcircled{o}. \end{cases}$$

Since E is function of Y, H(E|Y) = 0. This implies that:

$$\begin{split} H(Y) &= H(Y, E) - H(E|Y) \\ &= H(Y, E) \\ &= H(E) + H(Y|E) \\ &= H(E) + \Pr\{E = 0\}H(Y|E = 0) + \Pr\{E = 1\}H(Y|E = 1) \\ &= H(\gamma) + (1 - \gamma)H(X) + \gamma \cdot 0 \\ &= H(\gamma) + (1 - \gamma)H(X). \end{split}$$

But then, $I(X;Y) = H(Y) - H(\gamma) = H(\gamma) + (1 - \gamma)H(X) - H(\gamma) = (1 - \gamma)H(X)$. The maximum is achieved when H(X) = 1.

Theorem: the capacity of the binary erasure channel with erasure probability γ is equal to $C(\gamma) = 1 - \gamma$.

Lecture Five 4 / 16

The operational channel capacity: definitions

Consider a DMC \mathcal{N} with input alphabet \mathcal{X} and output alphabet \mathcal{Y} .

- an (M, n)-code \mathscr{C} is given by an encoding $c : \{1, 2, \cdots, M\} \to \mathcal{X}^{(n)}$ and a decoding $g : \mathcal{Y}^{(n)} \to \{1, 2, \cdots, M\}$.
- the rate of an (M,n)-code is $R \stackrel{\text{\tiny def}}{=} \frac{\log_2 M}{n}$, and is measured in 'bits per transmission.'
- (average) error probability: $e(\mathscr{C}) \stackrel{\text{\tiny def}}{=} \frac{1}{M} \sum_{i=1}^{M} \Pr\{g(Y^n) \neq i | X^n = c_i\}.$
- maximum error probability: $\hat{\mathbf{e}}(\mathscr{C}) \stackrel{\text{\tiny def}}{=} \max_i \Pr\{g(Y^n) \neq i | X^n = c_i\}.$
- a rate R is (asymptotically) achievable, if, for any ε > 0, there exists a sequence of ([2^{nR}], n)-codes C_n and an integer n₀(ε) such that, for any n ≥ n₀(ε), ê(C_n) ≤ ε. (That is, lim_{n→∞} ê(C_n) = 0.)

The (asymptotic) operational channel capacity

The operational capacity of the channel $\ensuremath{\mathcal{N}}$ is defined as

$$C'(\mathcal{N}) \stackrel{\text{\tiny def}}{=} \sup_{R} \{ R \text{ achievable rate} \}.$$

Francesco Buscemi

Fundamentals of Mathematical Informatics

Lecture Five 5 / 16

The noisy coding theorem for general DMCs

Information capacity \equiv (asymptotic) operational capacity For any DMC \mathcal{N} , any rate R < C is asymptotically achievable, i.e.,

$$C(\mathcal{N}) = C'(\mathcal{N}).$$

- C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J., 27:379-423,623-656 (1948).
- A. Feinstein, *A new basic theorem of information theory*. IER Trans. Inf. Theory, **IT-4**:2-22 (1954).
- R.G. Gallager, *A simple derivation of the coding theorem and some applications*. IEEE Trans. Inf. Theory, **IT-11**:3-18 (1965).

Coding theorem for the BSC: direct part

We will only prove this particular statement:

Coding theorem: achievability (direct part)

Given a binary symmetric channel with bit-flip probability $0 \le \gamma < \frac{1}{2}$, for any choice of parameters $0 < \delta \le \frac{1}{2} - \gamma$ and $\eta > 0$, there exists a sequence of (M_n, n) -codes \mathscr{C}_n such that

$$\lim_{n \to \infty} \hat{\mathbf{e}}(\mathscr{C}_n) = 0,$$

and

$$M_n = \left\lfloor 2^{n[C(\gamma+\delta)-\eta]} \right\rfloor,\,$$

i.e., any rate $R < C(\gamma)$ is asymptotically achievable.

Remark. The statement is restricted to the case $\gamma < 1/2$: the case $\gamma > 1/2$ is obtained by flipping all the bits received, while the case $\gamma = 1/2$ is obtained by continuity.

Francesco Buscemi

Fundamentals of Mathematical Informatics

Lecture Five 7 / 16

Useful facts required for the proof

Chebyshev's inequality (for coin tosses)

Consider a coin with $Pr{head} = 1 - Pr{tail} = \gamma$. The probability that, in a sequence of n tosses, the number of heads H is strictly greater than $n\gamma$ is bounded as

$$\Pr\{H \ge n\gamma + \Delta\} \leqslant \frac{n\gamma(1-\gamma)}{\Delta^2},$$

for any $\Delta > 0$.

Example: tossing 100 times a fair coin ($\gamma = 1/2$), the probability of obtaining 60 or more heads is at most 25%. For 70 heads, $\leq 11\%$. For 90 heads, $\leq 2\%$.

The tail inequality

For any $0\leqslant\xi\leqslant1/2$,

$$\sum_{k=0}^{\lfloor \xi n \rfloor} \binom{n}{k} \leqslant 2^{nH(\xi)}.$$

Reminder: the symbol $\binom{n}{k}$ denotes the Newton binomial coefficient $\frac{n!}{k!(n-k)!}$ (note that $0! \stackrel{\text{def}}{=} 1$): it gives the number of k-element subsets of an n-element set.

• Encoding:

- Fix integers M (the size of the code) and n (the length of the code): the codebook is an M-element subset of V_n (the set of all 2ⁿ binary strings of length n).
- 2 All codewords c_i are drawn at random from V_n : $\Pr\{c_i = x\} = 2^{-n}$ for all $1 \leq i \leq M$ and for all $x \in V_n$. (For example, it could be $c_i = c_j$ for $i \neq j$; we do not care.)

Decoding:

- Fix integer $r \ge 1$ and construct the sphere of Hamming radius r around each element $\boldsymbol{y} \in V_n$: $S_r(\boldsymbol{y}) \stackrel{\text{def}}{=} \{ \boldsymbol{z} : d(\boldsymbol{z}, \boldsymbol{y}) \le r \}.$
- 2 Upon receiving y, if inside $S_r(y)$ is contained one and only one codeword c_j , we decode y with j. Otherwise an error is declared.

Francesco Buscemi

Fundamentals of Mathematical Informatics

Lecture Five 9 / 16

Proof: error probability analysis (part 1 of 3)

Remember: $\gamma < 1/2$.

- Imagine that Y is received: a decoding error happens if more than r bit-flip errors occurred (event A) or if there are two (or more) codewords in $S_r(Y)$ (event B).
- Since $\Pr{A \text{ or } B} \leq \Pr{A} + \Pr{B}$, we independently consider events A and B.
- Let us begin with $Pr{A} = Pr{more than r bit-flip errors}$.
- Pr{A} is equal to the probability of obtaining more than r 'heads' with n tosses of a coin with Pr{head} = γ.
- Fix $\delta > 0$ such that $\gamma + \delta \leqslant 1/2$ and take $r = \lfloor n\gamma + n\delta \rfloor$.
- By Chebyshev's inequality, $\Pr\{A\} \leq \frac{\gamma(1-\gamma)}{n\delta^2}$.
- Let us move onto $\Pr\{B\}$.

Proof: error probability analysis (part 2 of 3)

Remember: $\gamma < 1/2$, $0 < \delta \leqslant 1/2 - \gamma$, and $r = \lfloor n\gamma + n\delta \rfloor$.

• How to evaluate $Pr{B} = Pr{two or more codewords in S_r(Y)}?$

- How many distinct elements are in S_r(Y)? There is Y itself... There are n distinct elements that differ from Y in one place... There are the ⁿ⁽ⁿ⁻¹⁾/₂ distinct elements that differ from Y in two places... In general, there are the ⁿ(k) distinct elements that differ from Y in k places. Therefore, for any Y ∈ V_n, S_r(Y) contains exactly ∑^r_{k=0} ⁿ(k) distinct elements.
- Therefore, for each Y ∈ V_n, the probability that a codeword belongs to S_r(Y) can be exactly computed as 2⁻ⁿ ∑^r_{k=0} (ⁿ_k).
 Given that one codeword say as is in S (Y) then

Given that one codeword, say
$$C_j$$
, is in $S_r(\mathbf{Y})$, then

$$\Pr\{\mathbf{c}_1 \in S_r(\mathbf{Y}) \text{ or } \cdots \text{ or } \mathbf{c}_{j-1} \in S_r(\mathbf{Y}) \text{ or } \mathbf{c}_{j+1} \in S_r(\mathbf{Y}) \text{ or } \cdots \text{ or } \mathbf{c}_M \in S_r(\mathbf{Y})\}$$

$$\leq \sum_{i \neq j} \Pr\{\mathbf{c}_i \in S_r(\mathbf{Y})\}$$

$$= (M-1)2^{-n} \sum_{k=0}^r \binom{n}{k} < M2^{-n} \sum_{k=0}^r \binom{n}{k} \leq M2^{-n} 2^{nH(\gamma+\delta)} = M2^{-n(1-H(\gamma+\delta))}$$

$$= M2^{-nC(\gamma+\delta)}.$$

```
Francesco Buscemi
```

Fundamentals of Mathematical Informatics

Lecture Five 11 / 16

Proof: error probability analysis (part 3 of 3)

• Until now, we have evaluated the (average) error probability of a randomly constructed (M, n)-code \mathscr{C} as follows:

$$\mathbf{e}(\mathscr{C}) \leqslant \frac{\gamma(1-\gamma)}{n\delta^2} + M2^{-nC(\gamma+\delta)},$$

where n, M, and $0 < \delta \leq \frac{1}{2} - \gamma$ are free parameters.

- This means that, for any $0 < \delta \leq \frac{1}{2} \gamma$, there always exists a sequence of random (M_n, n) -codes \mathscr{C}_n such that $e(\mathscr{C}_n) \to 0$, but... provided that $M_n 2^{-nC(\gamma+\delta)} \to 0$.
- For example, for any arbitrarily small $\eta > 0$, take $M_n = \lfloor 2^{n[C(\gamma+\delta)-\eta]} \rfloor$, so that $M_n 2^{-nC(\gamma+\delta)} = 2^{-n\eta} \to 0$.
- Then, for any $\delta > 0$, there exists a large enough n that achieves the rate $R_n = C(\gamma + \delta) \eta$, for any arbitrarily small $\eta > 0$.
- We still need to evaluate the maximum error probability!

Proof: from average error probability to maximum error probability

- Assume that $e(\mathscr{C}) = \frac{1}{M} \sum_{i=1}^{M} \Pr\{g(Y^n) \neq i | X^n = c_i\} \leqslant \epsilon$.
- We can conclude that no more than M/2 codewords in $\mathscr C$ can be such that $\Pr\{g(Y^n) \neq i | X^n = c\} > 2\epsilon$.
- This implies that there exist at least M/2 codewords in \mathscr{C} such that $\Pr\{g(Y^n) \neq i | X^n = c\} \leq 2\epsilon$.
- So, if we know that there exists a sequence of (M_n, n) -codes \mathscr{C}_n with $e(\mathscr{C}_n) \to 0$, we know that there exists a sequence of $(\frac{M_n}{2}, n)$ -codes \mathscr{C}'_n with $\hat{e}(\mathscr{C}'_n) \to 0$.
- Computing the rate of \mathscr{C}'_n : $\frac{1}{n}\log_2(\frac{M_n}{2}) = \frac{1}{n}(\log_2 M_n 1) \rightarrow \frac{1}{n}\log_2 M_n$.
- This implies that, without decreasing the asymptotic rate, we can make the maximum error probability go to zero.
- In other words, for any $\delta, \eta > 0$, the rate $R_n = C(\gamma + \delta) \eta$ is asymptotically achievable.
- By taking the limits $\delta \to 0$ and $\eta \to 0$, any rate $R < C(\gamma)$ is asymptotically achievable. Francesco Buscemi Fundamentals of Mathematical Informatics Lecture Five 13 / 16

Some remarks

- The proof shows that, for length n large enough, a good code can be constructed very easily, just by choosing the codewords at random.
- We pay this at the decoding stage: the receiver needs to use a table lookup scheme, i.e., a 'big book' where it's written what to do for each received y, but the size of this book grows *exponentially* in n.
- Coding theory aims at constructing coding techniques that strike a good tradeoff between capacity and decoding efficiency.
- What happens if we try to transmit data at a rate R > C? Weak converse: the error probability cannot go to zero, i.e., for any sequence of (M_n, n)-codes with lim_n ¹/_n log₂ M_n > C, there exists ε₀ > 0 such that e(C_n) > ε₀, for all n. Strong converse: for any sequence of (M_n, n)-codes with lim_n ¹/_n log₂ M_n > C, e(C_n) → 1.
- **Remark**: the theorem (and its converse) does not address the case R = C.

- For any DMC channel, its information capacity is asymptotically achievable.
- The construction in the achievability proof involves a random coding argument.
- With random coding, coding is easy, decoding is hard.
- Actual codes try to balance rate and decoding efficiency.
- The capacity is a sharp transition point: error goes to zero for R < C, while it goes to one for R > C.

Fundamentals of Mathematical Informatics

Lecture Five

15 / 16

Keywords for lecture five

information channel capacity, operational channel capacity, the noisy coding theorem for DMCs, random coding argument