Fundamentals of Mathematical Informatics
 The Channel Capacity

Francesco Buscemi

Lecture Five

The information channel capacity: definition

- Consider a DMC \mathcal{N} with input alphabet $\mathcal{X}=\left\{x_{1}, \cdots, x_{m}\right\}$, output alphabet $\mathcal{Y}=\left\{y_{1}, \cdots, y_{n}\right\}$, and channel matrix $\llbracket p_{i j} \rrbracket(1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n)$.
- Let X be an input RV, with range equal to \mathcal{X} and probability distribution π_{i}.
- Feeding X through the channel \mathcal{N}, we obtain a pair of dependent $\mathrm{RVs}(X, Y)$, with range $\mathcal{X} \times \mathcal{Y}$ and joint probability distribution $\operatorname{Pr}\left\{X=x_{i}, Y=y_{j}\right\}=\pi_{i} p_{i j}$.
- From $\pi_{i} p_{i j}$, we then compute the mutual information

$$
I(X ; Y)=\sum_{i=1}^{m} \sum_{j=1}^{n} \operatorname{Pr}\left\{X=x_{i}, Y=y_{j}\right\} \log _{2} \frac{\operatorname{Pr}\left\{X=x_{i}, Y=y_{j}\right\}}{\operatorname{Pr}\left\{X=x_{i}\right\} \operatorname{Pr}\left\{Y=y_{j}\right\}}
$$

If the channel \mathcal{N} is fixed, $\llbracket p_{i j} \rrbracket$ is fixed too, and $I(X ; Y)$ is a function of the probability distribution π_{i} of X only.

The information channel capacity

The information capacity of the channel \mathcal{N} is defined as

$$
C(\mathcal{N}) \stackrel{\text { def }}{=} \max _{\left\{\pi_{i}\right\}} I(X ; Y)
$$

Example: the information capacity of the BSC

Consider a binary symmetric channel (BSC) with error probability γ. Then:

$$
\begin{aligned}
I(X ; Y) & =H(Y)-H(Y \mid X) \\
& =H(Y)-\sum_{x=0,1} p(x) H(Y \mid X=x) \\
& =H(Y)-\sum_{x=0,1} p(x)\{\underbrace{-\gamma \log _{2} \gamma-(1-\gamma) \log _{2}(1-\gamma)}_{\stackrel{\text { def }}{=} H(\gamma)}\} \\
& =H(Y)-H(\gamma) \\
& \leqslant 1-H(\gamma)
\end{aligned}
$$

On the other hand, choosing $p(0)=p(1)=1 / 2$, we obtain $\operatorname{Pr}\{Y=0\}=\operatorname{Pr}\{Y=1\}$, i.e., $H(Y)=1$.

Theorem: the capacity of the binary symmetric channel with error probability γ is equal to $C(\gamma)=1-H(\gamma)$.

Example: the information capacity of the BEC

Consider a binary erasure channel (BEC) with erasure probability γ. As for the binary symmetric channel, $I(X ; Y)=H(Y)-H(Y \mid X)=H(Y)-H(\gamma)$.
In order to compute $H(Y)$, we introduce the RV E, function of Y, defined as

$$
E= \begin{cases}0, & \text { if } Y \neq \Theta \\ 1, & \text { if } Y=\Theta\end{cases}
$$

Since E is function of $Y, H(E \mid Y)=0$. This implies that:

$$
\begin{aligned}
H(Y) & =H(Y, E)-H(E \mid Y) \\
& =H(Y, E) \\
& =H(E)+H(Y \mid E) \\
& =H(E)+\operatorname{Pr}\{E=0\} H(Y \mid E=0)+\operatorname{Pr}\{E=1\} H(Y \mid E=1) \\
& =H(\gamma)+(1-\gamma) H(X)+\gamma \cdot 0 \\
& =H(\gamma)+(1-\gamma) H(X)
\end{aligned}
$$

But then, $I(X ; Y)=H(Y)-H(\gamma)=H(\gamma)+(1-\gamma) H(X)-H(\gamma)=(1-\gamma) H(X)$.
The maximum is achieved when $H(X)=1$.
Theorem: the capacity of the binary erasure channel with erasure probability γ is equal to $C(\gamma)=1-\gamma$.

The operational channel capacity: definitions

Consider a DMC \mathcal{N} with input alphabet \mathcal{X} and output alphabet \mathcal{Y}.

- an (M, n)-code \mathscr{C} is given by an encoding $c:\{1,2, \cdots, M\} \rightarrow \mathcal{X}^{(n)}$ and a decoding $g: \mathcal{Y}^{(n)} \rightarrow\{1,2, \cdots, M\}$.
- the rate of an (M, n)-code is $R \stackrel{\text { def } \log _{2} M}{n}$, and is measured in 'bits per transmission.'
- (average) error probability: $\mathrm{e}(\mathscr{C}) \stackrel{\text { def }}{=} \frac{1}{M} \sum_{i=1}^{M} \operatorname{Pr}\left\{g\left(Y^{n}\right) \neq i \mid X^{n}=\boldsymbol{c}_{i}\right\}$.
- maximum error probability: $\hat{\mathrm{e}}(\mathscr{C}) \stackrel{\text { def }}{=} \max _{i} \operatorname{Pr}\left\{g\left(Y^{n}\right) \neq i \mid X^{n}=\boldsymbol{c}_{i}\right\}$.
- a rate R is (asymptotically) achievable, if, for any $\epsilon>0$, there exists a sequence of $\left(\left\lfloor 2^{n R}\right\rfloor, n\right)$-codes \mathscr{C}_{n} and an integer $n_{0}(\epsilon)$ such that, for any $n \geqslant n_{0}(\epsilon), \hat{\mathrm{e}}\left(\mathscr{C}_{n}\right) \leqslant \epsilon$. (That is, $\lim _{n \rightarrow \infty} \hat{\mathrm{e}}\left(\mathscr{C}_{n}\right)=0$.)

The (asymptotic) operational channel capacity

The operational capacity of the channel \mathcal{N} is defined as

$$
C^{\prime}(\mathcal{N}) \stackrel{\text { def }}{=} \sup _{R}\{R \text { achievable rate }\} .
$$

The noisy coding theorem for general DMCs

Information capacity \equiv (asymptotic) operational capacity
For any DMC \mathcal{N}, any rate $R<C$ is asymptotically achievable, i.e.,

$$
C(\mathcal{N})=C^{\prime}(\mathcal{N}) .
$$

[^0]
Coding theorem for the BSC: direct part

We will only prove this particular statement:

Coding theorem: achievability (direct part)

Given a binary symmetric channel with bit-flip probability $0 \leqslant \gamma<\frac{1}{2}$, for any choice of parameters $0<\delta \leqslant \frac{1}{2}-\gamma$ and $\eta>0$, there exists a sequence of $\left(M_{n}, n\right)$-codes \mathscr{C}_{n} such that

$$
\lim _{n \rightarrow \infty} \hat{e}\left(\mathscr{C}_{n}\right)=0,
$$

and

$$
M_{n}=\left\lfloor 2^{n[C(\gamma+\delta)-\eta]}\right\rfloor,
$$

i.e., any rate $R<C(\gamma)$ is asymptotically achievable.

Remark. The statement is restricted to the case $\gamma<1 / 2$: the case $\gamma>1 / 2$ is obtained by flipping all the bits received, while the case $\gamma=1 / 2$ is obtained by continuity.

Useful facts required for the proof

Chebyshev's inequality (for coin tosses)

Consider a coin with $\operatorname{Pr}\{$ head $\}=1-\operatorname{Pr}\{$ tail $\}=\gamma$. The probability that, in a sequence of n tosses, the number of heads H is strictly greater than $n \gamma$ is bounded as

$$
\operatorname{Pr}\{H \geqslant n \gamma+\Delta\} \leqslant \frac{n \gamma(1-\gamma)}{\Delta^{2}},
$$

for any $\Delta>0$.
Example: tossing 100 times a fair coin $(\gamma=1 / 2)$, the probability of obtaining 60 or more heads is at most 25%. For 70 heads, $\leqslant 11 \%$. For 90 heads, $\leqslant 2 \%$.

The tail inequality

For any $0 \leqslant \xi \leqslant 1 / 2$,

$$
\sum_{k=0}^{\lfloor\xi n\rfloor}\binom{n}{k} \leqslant 2^{n H(\xi)}
$$

Reminder: the symbol $\binom{n}{k}$ denotes the Newton binomial coefficient $\frac{n!}{k!(n-k)!}$ (note that $0!\stackrel{\text { def }}{=} 1$): it gives the number of k-element subsets of an n-element set.

Proof: (random) construction of the code

- Encoding:

(1) Fix integers M (the size of the code) and n (the length of the code): the codebook is an M-element subset of V_{n} (the set of all 2^{n} binary strings of length n).
(2) All codewords \boldsymbol{c}_{i} are drawn at random from $\mathrm{V}_{n}: \operatorname{Pr}\left\{\boldsymbol{c}_{i}=\boldsymbol{x}\right\}=2^{-n}$ for all $1 \leqslant i \leqslant M$ and for all $\boldsymbol{x} \in \mathrm{V}_{n}$. (For example, it could be $\boldsymbol{c}_{i}=\boldsymbol{c}_{j}$ for $i \neq j$; we do not care.)

- Decoding:

(1) Fix integer $r \geqslant 1$ and construct the sphere of Hamming radius r around each element $\boldsymbol{y} \in \mathrm{V}_{n}: S_{r}(\boldsymbol{y}) \stackrel{\text { def }}{=}\{\boldsymbol{z}: d(\boldsymbol{z}, \boldsymbol{y}) \leqslant r\}$.
(2) Upon receiving \boldsymbol{y}, if inside $S_{r}(\boldsymbol{y})$ is contained one and only one codeword \boldsymbol{c}_{j}, we decode \boldsymbol{y} with j. Otherwise an error is declared.

Proof: error probability analysis (part 1 of 3)

Remember: $\gamma<1 / 2$.

- Imagine that \boldsymbol{Y} is received: a decoding error happens if more than r bit-flip errors occurred (event A) or if there are two (or more) codewords in $S_{r}(\boldsymbol{Y})$ (event B).
- Since $\operatorname{Pr}\{A$ or $B\} \leqslant \operatorname{Pr}\{A\}+\operatorname{Pr}\{B\}$, we independently consider events A and B.
- Let us begin with $\operatorname{Pr}\{A\}=\operatorname{Pr}\{$ more than r bit-flip errors $\}$.
- $\operatorname{Pr}\{A\}$ is equal to the probability of obtaining more than r 'heads' with n tosses of a coin with $\operatorname{Pr}\{$ head $\}=\gamma$.
- Fix $\delta>0$ such that $\gamma+\delta \leqslant 1 / 2$ and take $r=\lfloor n \gamma+n \delta\rfloor$.
- By Chebyshev's inequality, $\operatorname{Pr}\{A\} \leqslant \frac{\gamma(1-\gamma)}{n \delta^{2}}$.
- Let us move onto $\operatorname{Pr}\{B\}$.

Proof: error probability analysis (part 2 of 3)

Remember: $\gamma<1 / 2,0<\delta \leqslant 1 / 2-\gamma$, and $r=\lfloor n \gamma+n \delta\rfloor$.

- How to evaluate $\operatorname{Pr}\{B\}=\operatorname{Pr}\left\{\right.$ two or more codewords in $\left.S_{r}(\boldsymbol{Y})\right\}$?
- How many distinct elements are in $S_{r}(\boldsymbol{Y})$? There is \boldsymbol{Y} itself... There are n distinct elements that differ from \boldsymbol{Y} in one place... There are the $\frac{n(n-1)}{2}$ distinct elements that differ from \boldsymbol{Y} in two places... In general, there are the $\binom{n}{k}$ distinct elements that differ from \boldsymbol{Y} in k places. Therefore, for any $\boldsymbol{Y} \in \mathrm{V}_{n}, S_{r}(\boldsymbol{Y})$ contains exactly $\sum_{k=0}^{r}\binom{n}{k}$ distinct elements.
- Therefore, for each $\boldsymbol{Y} \in \mathrm{V}_{n}$, the probability that a codeword belongs to $S_{r}(\boldsymbol{Y})$ can be exactly computed as $2^{-n} \sum_{k=0}^{r}\binom{n}{k}$.
- Given that one codeword, say \boldsymbol{c}_{j}, is in $S_{r}(\boldsymbol{Y})$, then
$\operatorname{Pr}\left\{\boldsymbol{c}_{1} \in S_{r}(\boldsymbol{Y})\right.$ or \cdots or $\boldsymbol{c}_{j-1} \in S_{r}(\boldsymbol{Y})$ or $\boldsymbol{c}_{j+1} \in S_{r}(\boldsymbol{Y})$ or \cdots or $\left.\boldsymbol{c}_{M} \in S_{r}(\boldsymbol{Y})\right\}$
$\leqslant \sum_{i \neq j} \operatorname{Pr}\left\{\boldsymbol{c}_{i} \in S_{r}(\boldsymbol{Y})\right\}$
$=(M-1) 2^{-n} \sum_{k=0}^{r}\binom{n}{k}<M 2^{-n} \sum_{k=0}^{r}\binom{n}{k} \leqslant M 2^{-n} 2^{n H(\gamma+\delta)}=M 2^{-n(1-H(\gamma+\delta))}$
$=M 2^{-n C(\gamma+\delta)}$.

Proof: error probability analysis (part 3 of 3)

- Until now, we have evaluated the (average) error probability of a randomly constructed (M, n)-code \mathscr{C} as follows:

$$
\mathrm{e}(\mathscr{C}) \leqslant \frac{\gamma(1-\gamma)}{n \delta^{2}}+M 2^{-n C(\gamma+\delta)}
$$

where n, M, and $0<\delta \leqslant \frac{1}{2}-\gamma$ are free parameters.

- This means that, for any $0<\delta \leqslant \frac{1}{2}-\gamma$, there always exists a sequence of random $\left(M_{n}, n\right)$-codes \mathscr{C}_{n} such that $\mathrm{e}\left(\mathscr{C}_{n}\right) \rightarrow 0$, but... provided that $M_{n} 2^{-n C(\gamma+\delta)} \rightarrow 0$.
- For example, for any arbitrarily small $\eta>0$, take $M_{n}=\left\lfloor 2^{n[C(\gamma+\delta)-\eta]}\right\rfloor$, so that $M_{n} 2^{-n C(\gamma+\delta)}=2^{-n \eta} \rightarrow 0$.
- Then, for any $\delta>0$, there exists a large enough n that achieves the rate $R_{n}=C(\gamma+\delta)-\eta$, for any arbitrarily small $\eta>0$.
- We still need to evaluate the maximum error probability!

Proof: from average error probability to maximum error probability

- Assume that $\mathrm{e}(\mathscr{C})=\frac{1}{M} \sum_{i=1}^{M} \operatorname{Pr}\left\{g\left(Y^{n}\right) \neq i \mid X^{n}=\boldsymbol{c}_{i}\right\} \leqslant \epsilon$.
- We can conclude that no more than $M / 2$ codewords in \mathscr{C} can be such that $\operatorname{Pr}\left\{g\left(Y^{n}\right) \neq i \mid X^{n}=c\right\}>2 \epsilon$.
- This implies that there exist at least $M / 2$ codewords in \mathscr{C} such that $\operatorname{Pr}\left\{g\left(Y^{n}\right) \neq i \mid X^{n}=c\right\} \leqslant 2 \epsilon$.
- So, if we know that there exists a sequence of $\left(M_{n}, n\right)$-codes \mathscr{C}_{n} with $\mathrm{e}\left(\mathscr{C}_{n}\right) \rightarrow 0$, we know that there exists a sequence of $\left(\frac{M_{n}}{2}, n\right)$-codes \mathscr{C}_{n}^{\prime} with $\hat{\mathrm{e}}\left(\mathscr{C}_{n}^{\prime}\right) \rightarrow 0$.
- Computing the rate of $\mathscr{C}_{n}^{\prime}: \frac{1}{n} \log _{2}\left(\frac{M_{n}}{2}\right)=\frac{1}{n}\left(\log _{2} M_{n}-1\right) \rightarrow \frac{1}{n} \log _{2} M_{n}$.
- This implies that, without decreasing the asymptotic rate, we can make the maximum error probability go to zero.
- In other words, for any $\delta, \eta>0$, the rate $R_{n}=C(\gamma+\delta)-\eta$ is asymptotically achievable.
- By taking the limits $\delta \rightarrow 0$ and $\eta \rightarrow 0$, any rate $R<C(\gamma)$ is asymptotically achievable.

Some remarks

- The proof shows that, for length n large enough, a good code can be constructed very easily, just by choosing the codewords at random.
- We pay this at the decoding stage: the receiver needs to use a table lookup scheme, i.e., a 'big book' where it's written what to do for each received \boldsymbol{y}, but the size of this book grows exponentially in n.
- Coding theory aims at constructing coding techniques that strike a good tradeoff between capacity and decoding efficiency.
- What happens if we try to transmit data at a rate $R>C$? Weak converse: the error probability cannot go to zero, i.e., for any sequence of $\left(M_{n}, n\right)$-codes with $\lim _{n} \frac{1}{n} \log _{2} M_{n}>C$, there exists $\epsilon_{0}>0$ such that $\mathrm{e}\left(\mathscr{C}_{n}\right)>\epsilon_{0}$, for all n. Strong converse: for any sequence of $\left(M_{n}, n\right)$-codes with $\lim _{n} \frac{1}{n} \log _{2} M_{n}>C$, $\mathrm{e}\left(\mathscr{C}_{n}\right) \rightarrow 1$.
- Remark: the theorem (and its converse) does not address the case $R=C$.

Summary of lecture five

- For any DMC channel, its information capacity is asymptotically achievable.
- The construction in the achievability proof involves a random coding argument.
- With random coding, coding is easy, decoding is hard.
- Actual codes try to balance rate and decoding efficiency.
- The capacity is a sharp transition point: error goes to zero for $R<C$, while it goes to one for $R>C$.

Keywords for lecture five

information channel capacity, operational channel capacity, the noisy coding theorem for DMCs, random coding argument

[^0]: - C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J., 27:379-423,623-656 (1948).
 - A. Feinstein, A new basic theorem of information theory. IER Trans. Inf. Theory, IT-4:2-22 (1954).
 - R.G. Gallager, A simple derivation of the coding theorem and some applications. IEEE Trans. Inf. Theory, IT-11:3-18 (1965).

