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The Information Theory

Great scientific theories, like great symphonies and great novels,
are among man’s proudest—and rarest—creations. What sets
the scientific theory apart from and, in a sense, above the other
creations is that it may profoundly and rapidly alter man’s view
of his world. Within the last five years a new theory has appeared
that seems to bear some of the same hallmarks of greatness. It
may be no exaggeration to say that man’s progress in peace, and
security in war, depend more on fruitful applications of
information theory than on physical demonstrations, either in
bombs or power plants, that Einstein’s famous equation works.”

from “The Information Theory,” Fortune, pp. 136-158, Dec. 1953,

five years after the publication of Shannon’s seminal paper (1948).
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Example: predicting a roll of a die

Let us consider a six-face die { , , , , , }.
The die is called fair if Pr{ } = Pr{ } = · · · = Pr{ } = 1

6 .

Imagine now a biased die, made so that Pr{ } = 0.95 and
Pr{ } = · · · = Pr{ } = 0.01.

Question. Which die is ‘more uncertain,’ (1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 , ) or

(0.95, 0.01, 0.01, 0.01, 0.01, 0.01)?

Imagine now two other biased dice with different biases, for example,
(1

3 ,
1
3 ,

1
12 ,

1
12 ,

1
12 ,

1
12) and (1

3 ,
1
4 ,

1
5 ,

1
12 ,

1
12 ,

1
20).

Question. Which die is ‘more uncertain’ now?
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Random variables and their entropy

A random variable (RV) X is like a ‘device’ that outputs an element of a set

X = {x1, x2, · · · , xn} (called the range of X) with probability Pr{X = xi}
def
= pi.

The entropy of a RV X with probability distribution (p1, · · · , pn) is defined as

H(X)
def
= H(p1, · · · , pn)

def
= −

n∑
i=1

pi log2 pi.

The unit of entropy is called ‘bit.’

Remark: the entropy depends only on the probability distribution, not on the
range.

When computing the entropy, we use the convention 0 log2 0 = 0: events that
never happen do not contribute to the entropy, namely,
H(p1, · · · , pn, 0) = H(p1, · · · , pn).
For the dice of the previous example,
H( 1

3
, 1

3
, 1

12
, 1

12
, 1

12
, 1

12
) ≈ 2.25 < H( 1

3
, 1

4
, 1

5
, 1

12
, 1

12
, 1

20
) ≈ 2.31.

Next week, we will see why (and in which sense) this fact tells us that the die
( 1

3
, 1

4
, 1

5
, 1

12
, 1

12
, 1

20
) is ‘more uncertain’ than ( 1

3
, 1

3
, 1

12
, 1

12
, 1

12
, 1

12
).
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Example: a lottery

Consider an urn with four balls
{

A , A , B , C
}

. A part from

the labels, the balls are identical.

Imagine to draw one ball at random and read the label: how to model
the associated random variable?

There are four identical balls: each one is picked with probability 1/4.

Two balls are marked with the letter A: the probability of getting the
letter A is therefore 1/4 + 1/4 = 1/2.

The probability of getting B or C is 1/4 in both cases.

Therefore, this situation is modeled by a random variable X with
three possible outcomes, X = {x1 ≡ ‘A’, x2 ≡ ‘B’, x3 ≡ ‘C’}, and
p1 = 1/2, p2 = p3 = 1/4.

The associated entropy is equal to:
H(X) = H(1

2 ,
1
4 ,

1
4) = −1

2 log2
1
2 −

1
2 log2

1
4 = 1.5 bits.
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Example: a horse race

Imagine a horse race with eight horses: Star, Dakota, Cheyenne,
Spirit, Misty, Cowboy, Blaze, and Lucky.

Imagine that each one can win the race with probabilities:
Pr{‘Star wins’} = 1

2
,

Pr{‘Dakota wins’} = 1
4

,

Pr{‘Cheyenne wins’} = 1
8

,

Pr{‘Spirit wins’} = 1
16

,

Pr{‘Misty wins’} = Pr{‘Cowboy wins’} = Pr{‘Blaze wins’} = Pr{‘Lucky wins’} = 1
64

.

The result of this race is modeled by a RV X with eight possible
outcomes {x1 = ‘Star’, x2 = ‘Dakota’, x3 = ‘Cheyenne’, x4 =
‘Spirit’, x5 = ‘Misty’, x6 = ‘Cowboy’, x7 = ‘Blaze’, x8 = ‘Lucky’} and
probability distribution p1 = 1

2 , p2 = 1
4 , p3 = 1

8 , p4 = 1
16 ,

p5 = p6 = p7 = p8 = 1
64 .

The associate entropy is equal to
H(X) = −1

2 log2
1
2 −

1
4 log2

1
4 −

1
8 log2

1
8 −

1
16 log2

1
16 −

1
16 log2

1
64 = 2

bits.
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Properties of the entropy function

Positivity. H(p1, · · · , pn) ≥ 0, and H(p1, · · · , pn) = 0 iff

∃k̄ : pi =

{
1, if i = k̄

0, if i 6= k̄.
(In Kronecker’s notation, pi = δi,k̄).

Symmetry. For any permutation π of {1, 2, · · · , n},
H(p1, · · · , pn) = H(pπ(1), · · · , pπ(n)).

Key Lemma. Given a probability distribution (p1, · · · , pn),
H(p1, · · · , pn) ≤ −

∑
i pi log2 qi, for all probability distributions

(q1, · · · , qn), with equality iff q1 = p1, · · · , qn = pn.
Proof. Since loge x ≤ x− 1, we have loge(qk/pk) ≤ (qk/pk)− 1, so that∑

i pi loge(qi/pi) ≤
∑

i qi −
∑

i pi = 0. But then, the identity log2 x = (loge x)/(loge 2)

implies −
∑

i pi log2 pi
def
= H(p1, · · · , pn) ≤ −

∑
i pi log2 qi. �

Theorem. H(p1, · · · , pn) ≤ log2 n, with equality iff
p1 = p2 = · · · = pn = 1/n.
Proof. Apply the Key Lemma to the case q1 = q2 = · · · = qn = 1/n. �

The probability distribution p1 = p2 = · · · = pn = 1
n is called uniform

distribution.
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Dependent RVs

Consider a pair of RVs (X,Y ) with joint probability distribution

Pr{X = xi and Y = yj}
def
= tij .

The marginal distributions are defined as:
ri

def
= Pr{X = xi independently of the value of Y } =

∑
j tij and

sj
def
= Pr{Y = yj independently of the value of X} =

∑
i tij .

X and Y are called independent iff tij = risj for all i, j.
Theorem. H(X,Y ) ≤ H(X) +H(Y ), with equality iff X and Y are
independent.
Proof. First, H(X) +H(Y ) = −

∑
i ri log2 ri −

∑
j sj log2 sj = −

∑
i(
∑

j tij) log2 ri −∑
j(
∑

i tij) log2 sj = −
∑

ij tij(log2 ri + log2 sj) = −
∑

ij tij log2(risj). By the Key

Lemma, −
∑

ij tij log2(risj) ≥ −
∑

ij tij log2 tij , namely, H(X) +H(Y ) ≥ H(X,Y ).

Moreover, the Key Lemma states that equality holds iff tij = risj for all i, j, namely, iff

X and Y are independent. �

The difference H(X) +H(Y )−H(X,Y ) ≥ 0 can hence be used to
measure ‘how dependent’ two RV are. (See also slide 14,
‘Information.’)
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Example: shapes and colors

Take the set {2,#,2,#} which is: {red, blue} × {2,#}.
Two RVs, X for the color and Y for the shape.

For example, Pr{red circle} = Pr{‘X = red’ and ‘Y = #’}.
Question: what is the marginal probability for X (the color)?

For example,

Pr{X = red} = Pr{red square}+ Pr{red circle}
= Pr{‘X = red’ and ‘Y = 2’}+ Pr{‘X = red’ and ‘Y = #’}

=
∑

y∈{2,#}
Pr{‘X = red’ and ‘Y = y’}.

Question. Let the probability distribution for {2,#,2,#} be
(1

4 ,
1
4 ,

1
4 ,

1
4). Are shape and color independent? (Yes.)

Question. What about (0.49, 0.01, 0.01, 0.49)? (No.)

Question. And what about ( 3
15 ,

2
15 ,

6
15 ,

4
15)? (Yes.)
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Example: red shirts

Consider a population of 100 people: 60 women and 40 men.
Suppose that, in such a population, 10 men and 30 women are
wearing a red shirt. Imagine to pick one person at random.

The probability of picking one woman is
Pr{‘woman’} = 60/100 = 0.6. (Of course, Pr{‘man’} = 0.4.)

The probability of picking one person wearing a red shirt is
Pr{‘red’} = (10 + 30)/100 = 0.4. (Of course,
Pr{‘other color’} = 0.6.)

If the chosen person is a woman, the probability that she is wearing a
red shirt is Pr{‘red’|‘woman’} = 30/60 = 0.5.

If the chosen person is a man, the probability that he is wearing a red
shirt is Pr{‘red’|‘man’} = 10/40 = 0.25.

Question. What is the probability that the chosen person is a woman
wearing a red shirt?

Question. If the chosen person is not wearing a red shirt, what is the
probability that such person is a man?
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Conditional probabilities

Consider a pair of RVs (X,Y ) with joint probability distribution
Pr{X = xi and Y = yj} = tij and marginal distributions Pr{X = xi} = ri and
Pr{Y = yj} = sj .

The conditional probabilities are given by:

Pr{X = xi|Y = yj}
def
= Pr{X = xi given that Y = yj} =

tij
sj

and

Pr{Y = yj |X = xi}
def
= Pr{Y = yj given that X = xi} =

tij
ri

.

Sum rule:
∑

i Pr{X = xi|Y = yj} = 1 for all j and∑
j Pr{Y = yj |X = xi} = 1 for all i.

In the previous example:
Pr{‘woman in red’} = Pr{‘woman’ and ‘red’} = Pr{‘red’|‘woman’} × Pr{‘woman’} =
0.5× 0.6 = 0.3.

In the previous example:

Pr{‘man’|‘other color’} =
Pr{‘man’ and ‘other color’}

Pr{‘other color’} =
Pr{‘other color’|‘man’}×Pr{‘man’}

1−Pr{‘red’} =

(1−Pr{‘red’|‘man’})×Pr{‘man’}
1−Pr{‘red’} =

(1−0.25)×0.4
1−0.4

= 0.75×0.4
0.6

= 0.5. (Indeed, there are exactly

30 women and 30 men who are not wearing a red shirt.)

Notice: Pr{‘man’|‘other color’} 6= Pr{‘other color’|‘man’}. The interpretation of
conditional probabilities sometime leads to interesting paradoxes: search for, e.g., the
‘Prosecutor’s fallacy’ and the ‘Monty Hall problem’.
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Conditional entropy

Consider a pair of RVs (X,Y ) with joint probability distribution
Pr{X = xi and Y = yj} = tij and marginal distributions
Pr{X = xi} = ri and Pr{Y = yj} = sj .

The conditional entropy of X given Y is defined as:

H(X|Y )
def
=

∑
j

sjH(X|Y = yj)

where
H(X|Y = yj) = −

∑
i Pr{X = xi|Y = yj} log2 Pr{X = xi|Y = yj}.

Theorem. H(X|Y ) = H(X,Y )−H(Y ).
Proof. H(X|Y ) = −

∑
j sj(

∑
i
tij
sj

log2
tij
sj

) = −
∑

ij tij(log2 tij − log2 sj) =

−
∑

ij tij log2 tij +
∑

ij tij log2 sj = H(X,Y ) +
∑

j(
∑

i tij) log2 sj =

H(X,Y ) +
∑

j sj log2 sj = H(X,Y )−H(Y ). �
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Properties of the conditional entropy

By definition H(X|Y ) =
∑

j sjH(X|Y = yj), i.e., it is the average of
positive quantities H(X|Y = yj).

Hence, H(X|Y ) = 0 iff H(X|Y = yj) = 0 for all j, namely, iff the
value of X is always certain given the value of Y .

Theorem. H(X|Y ) ≥ 0, with equality iff there exists a function
f : Y → X such that X = f(Y ).
Proof. H(X|Y ) is non-negative because, by definition, it is the average of non-negative

quantities. This, in particular, implies that H(X|Y ) = 0 iff H(X|Y = yj) = 0 for all j.

This means that, for each j, there exists k̄(j) such that Pr{X = xi|Y = yj} = δi,k̄(j). In

other words, if Y = yj , then, with probability one, X = xk̄(j). This is what we mean

when saying that ‘X is function of Y .’ More formally: X = f(Y ), where f : Y → X is

defined by f(yj)
def
= xk̄(j). �

Theorem. H(X|Y ) = H(X) iff X and Y are independent.
Proof. Since H(X|Y ) = H(X,Y )−H(Y ), the condition H(X|Y ) = H(X) holds iff

H(X,Y )−H(Y ) = H(X) or, equivalently, iff H(X,Y ) = H(X) +H(Y ). But before we

showed that H(X,Y ) = H(X) +H(Y ) iff X and Y are independent. �
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Information

We define the mutual information of X and Y as

I(X;Y )
def
= H(X) +H(Y )−H(X,Y )

= H(X)−H(X|Y )

= H(Y )−H(Y |X).

Theorem.
1 I(X;Y ) = I(Y ;X)
2 0 ≤ I(X;Y ) ≤ min{H(X), H(Y )}
3 I(X;Y ) = 0 iff X and Y are independent
4 I(X;Y ) = H(X) iff ∃f : Y → X such that X = f(Y )
5 I(X;Y ) = H(Y ) iff ∃g : X → Y such that Y = g(X)

Proof. Point (1): by definition. Point (2), lower bound: proved before (slide 8). Point
(2), upper bound: because, due to positivity of the conditional entropy,

I(X;Y )
def
= H(X)−H(X|Y ) ≤ H(X) and I(X;Y )

def
= H(Y )−H(Y |X) ≤ H(Y ). Point

(3): proved before (slide 8). Point (4): because I(X;Y ) = H(X) iff H(X|Y ) = 0, i.e., iff
X = f(Y ). Point (5): because I(X;Y ) = H(Y ) iff H(Y |X) = 0, i.e., iff Y = g(X). �
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Summary of lecture one

Q: How uncertain is X? A: Compute the entropy

H(X) = −
∑
i

Pr{X = xi} log2 Pr{X = xi}

Q: How uncertain is X knowing Y ? A: Compute the conditional entropy

H(X|Y ) = −
∑
ij

Pr{X = xi, Y = yj} log2

Pr{X = xi, Y = yj}
Pr{Y = yj}

= H(X,Y )−H(Y )

Q: How much information about X is contained in Y ? How much
information about Y is contained in X? How much dependent are X and
Y ? A: Compute the mutual information

I(X;Y ) = H(X)−H(X|Y )

= H(Y )−H(Y |X)

= H(X) +H(Y )−H(X,Y )
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