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Letters are falling... 
Let W = {w1, w2, · · · , wN } be some finite set, e.g., the 
English alphabet {a, b, · · · , x, y, z}. 
Imagine a device that, at each use, emits one element of W 
drawn at random with probability Pr{‘output is wj ’} = pj . 
Each use of such a device is modeled by a RV W , with 
range equal to W and Pr{W  = wj } = pj . 
Imagine now that such a device can be reused an arbitrary 
number of times:  then we have an i.i.d. information 
source S , namely, a sequence (W1, W2, · · · , Wi, · · · ) of 
independent and identically distributed (i.i.d.) RVs Wi, all 
with the same range W and the same probability 
distribution Pr{Wi  = wj } = pj . 
The entropy rate of an i.i.d. information source S is 

H(S ) def H(p1, · · · , pN ). 
Question. Take to be the English alphabet.  What is 
the probability of emitting the particular sequence 
(h,e,l,l,o,w,o,r,l,d)? 
Answer. Pr{(h,e,l,l,o,w,o,r,l,d)} = 
Pr{h} × Pr{e} × Pr{l} × Pr{l} × Pr{o} · · · × Pr{d}. 

Fundamentals of Mathematical Informatics 
The Noiseless Coding Theorem for Information Sources 

Information sources 
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Imagine an i.i.d. information source that, at each use, emits one 
symbol chosen among eight possible ones a,b,c,d,e,f,g,h with 
probability distribution ( 1 , 1 , 1 ,  1  ,  1  ,  1  ,  1  , 1  ). 2 4 8 16 64 64 64 64 
Imagine now that we want to communicate the source output via a 
digital channel. 
Uniform binary encoding: three bits per symbol, i.e., ‘a’ 1→ 000, ‘b’ 
1→ 001, ‘c’ 1→ 010, ‘d’ 1→ 011, ‘e’ 1→ 100, ‘f’ 1→ 101, ‘g’ 1→ 110, ‘h’ 
1→ 111. 
But not all letters happen with the same probability! Can we exploit 
this? 
Better encoding: ‘a’ 1→ 0, ‘b’ 1→ 10, ‘c’ 1→ 110, ‘d’ 1→ 1110, ‘e’ 
1→ 111100, ‘f’ 1→ 111101, ‘g’ 1→ 111110, ‘h’ 1→ 111111. 
In average, we need to send only 2 bits per use of the source! 
Remark. The entropy of this source (remember the horse race?) is 
also equal to 2 bits... Is this a coincidence or not? Can we do better? 
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Information sources can be ‘compressed’ 

General communication scheme 
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Take an i.i.d.  information source S  whose single use is modeled by a RV W  with range 
=   w1, , wN and probability distribution Pr  W  = wj = pj .  The elements of 

are called source words. A finite string of source words is called a message. The set of all 
possible messages is denoted by W∗. 
Example. In the binary case W = {0, 1}, 
W∗ = {0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, · · · }. 
Consider now a D-ary alphabet Σ =  σ1, , σD   , and the set Σ∗  of all finite strings of 
elements of Σ. 
A D-ary encoding or code is a map f : W → Σ∗. The strings f (wi) are called the 

codewords, and the integers li  
def |f (wi)| are called the word lengths. 

The average length or rate of a code is defined as:  (f ) pili. 
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Given a code f : W → Σ∗, messages in W∗ are encoded word by word.  This defines the 
extended code f : W∗  → Σ∗. 
Example. Take W = {w1, w2, w3}. Given the four-word message m = w1w2w3w2 ∈ W∗ 
the corresponding extended code is f ∗(m) = f (w1)f (w2)f (w3)f (w2) ∈ Σ∗. 
If f ∗ is injective, the code f is called uniquely decodable or uniquely decipherable. 
A code f is called instantaneous or prefix code if there do not exist distinct words wi and 
wj  such that f (wi) is a prefix of f (wj ). 
Example. Take W = {e,r,s,t}, Σ = {0, 1}, and the encoding f : W → Σ∗ given by 

f (e) = 0, f (r) = 10, f (s) = 110, f (t) = 1110. 
 

Try to decode ‘11101000110’. (‘trees’) 
The above is an example of an instantaneous code. 
Instantaneous codes are all uniquely decodable. But not viceversa. 
Example. Take again W = {e,r,s,t}, Σ = {0, 1}, and the encoding g : W → Σ∗ given by 

g(e) = 0, g(r) = 01, g(s) = 01011, g(t) = 01011011. 
 

Try  to decode ‘01001011001011011’. (‘reset’) 
Prefix codes are ‘better’ because they can be decoded on line (i.e., without having to 
wait until the end of the  message). 

Encoding (compressor) 

Noiseless encoding: uniquely decodable codes and prefix 
codes 
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Theorem (Kraft’s Inequality). Consider a source with 
W = {w1, · · · , wN }, and a D-ary alphabet Σ = {σ1, · · · , σD}. Then, 
there exists a prefix code f : W → Σ∗ with word lengths l1, l2, · · · , lN  iff 

N 
i=1 D

­li � 1. 
Proof of the ‘if’ part.  Assume that the li’s satisfy Kraft’s inequality.  Rewrite it as 

L 
j=1 nj D­j  � 1, where L def maxi li  and nj  is the number of li’s equal to j. 

Since the elements of the sum are all positive, L nj D­j  � 1 ⇒ L­1 nj D­j  � 1 ⇒ · · · 
n2D­2 + n1D­1 � 1 n1D­1 � 1. 

The above inequalities suggest how to construct a prefix code with given word lengths. 
Since n1 � D, we can use the first n1 symbols in Σ as codewords of length 1. 
There are D n1  symbols left unused in Σ.  We can then form (D n1)D words of 
length 2 writing another letter to their right. 
Since n2 � (D ­ n1)D, we can choose n2 of them to become the next codewords.  
There are now D2 ­ n1D ­ n2 length 2 words left unused. Adding one new symbol at 
their right, we obtain D3  ­ n1D2 ­ n2D length 3 words. 
Since n3  � D3  ­ n1D2 ­ n2D, we can choose... 
... 

It is clear then that Kraft’s inequality, if obeyed, guarantees that a prefix code of given word 

lengths can be constructed. D 
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Proof of the ‘only if’ part. Consider a D-ary tree (each node has D children). 
Example:  the binary tree. 

 

Attach an element of Σ∗ to each node as in the figure above. The prefix condition requires that 
any node corresponding to a codeword ends there. 
Let L denote the maximum word length in the code (in the picture, L = 4). Consider all the 
nodes of the tree at level L.  A codeword at level li  has DL­li   descendants at level L.  Each of 
these descendants sets must be disjoint, and the total number of nodes in these sets must be 
less than or equal to DL.  Hence, summing up over all codewords, we have 

 

 
 
 

that is N 

 
 
D­li  � 1.  D 

N 

DL­li  � DL, 
i=1 

Existence of prefix codes 1/2 

Existence of prefix codes 1/2 
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Let S be an i.i.d. information source of words w1, · · · , wN with 
probabilities p1, · · · , pN , respectively, and entropy rate 
H(S ) = H(p1, · · · , pN ). Take also a D-ary alphabet Σ = {σ1, · · · , σD}. 

Theorem. Any D-ary prefix code f : W → Σ∗ must satisfy the following 
inequality: 

N 
def 

 
 

 

;? H(S ) . 
 

 
 

  
 

Moreover, there always exists a D-ary prefix code f¯ : W → Σ∗  such that 
 

H(S ) 
f < 

2 
+ 1. 

 
 

Conclusion. ‘Good’ D-ary prefix codes are those with rate bounded as 
H(S ) 
log2 D 

H(S ) 
log2 D + 1. 

 
  Francesco Buscemi  

 
 
 

 
 
 

Let f : W → Σ∗  be a D-ary prefix code for S .  Then, it must obey 
Kraft’s inequality, i.e., 

),N D­li � 1. 
 

For G = i=1 D­li , define the probability distribution qi 
 

 

= D­li /G. 

By the Key Lemma, 

H(S ) = H(p1, · · · , pN ) = − 
),N pi log2 pi � − 

),N pi log2 qi. 
 

But, by definition, log2 qi = − log2 G − li log2 D. 
Then, H(S ) � i pi(log2 G + li log2 D) = log2 G + (f ) log2 D. 
Since G � 1, log2 G � 0 and, therefore, H(S ) � (f ) log2 D, i.e., 

H(S ) 
(f ) ;? . 

The noiseless source coding theorem 

i 
i=1 2 

i=1 2 

Proof of the lower bound (converse part) 

def 

i 

� (f ) < 

D 
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Imagine that, for each pi, there exists an integer l̄i  such that D­l̄i 

l̄  = log2 pi . log2 D 

= pi, i.e., 

Then, Kraft’s inequality would be automatically satisfied, because D­l̄i  = i pi  = 1. 
Then, we would know that there exists (and we would know how to construct) a D-ary 
prefix code f̄  with word lengths l̄i. 
Its average length would be (f̄ ) = pil̄i  = log2 pi H(S ) 

i 

That would be optimal! We cannot go lower than that! 
The only problem is that, in general, the numbers l̄  = log2 Pi 

log2 D 

 
 
are not integer numbers, 

and hence are not valid word lengths! 
To avoid such a problem, choose li∗ =   l̄i for all i.  (The symbol   x   denotes the ‘ceiling’ 
of x, i.e., the smallest integer greater than or equal to x.) 

This implies that l̄i  � li∗ < l̄i + 1 for all i. 

Again, Kraft’s inequality is obeyed since 
i D­l∗i   � D­l̄i = 1. 

Only the average length is worse, because i pili∗ ;? i pil̄i, but not too much, because 
 

� 
p l∗ < 

� 
p (̄l 
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All prefix codes are uniquely decodable but not viceversa. 
So, if we are happy with uniquely decodable codes (possibly not prefix 
codes), can we perhaps achieve better rates of compression? 
The answer is no. 
Theorem (McMillan-Kraft).  A prefix code with word lengths 
l1, l2, · · · , lN exists iff a uniquely decodable code with the same word 
lenghts exists. 

Proof of the upper bound (achievability) 

i i 2 i 2 

i i 2 i 2 

Can we do better with uniquely decodable codes? 

i i log2 D log2 D 

i i D 

i 
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We proved that good D-ary codes are those with (f ) ∈
 
H(S ) , H(S ) + 1

 
 

 

The one-letter overhead is due to the fact that word lengths need to be integer numbers. 
However, a technique called block-coding allows us to spread the overhead over many 
source words at once, so that the overhead per source word goes to zero. 
Take an i.i.d. information source S of words in W = {w1, · · · , wN } with probabilities 
p1, · · · , pN , and group words two by two: we obtain the source S 2, with words in 
W2  = {w1w1, w1w2, · · · , w1wN , w2w1, w2w2, · · · , wN wN } and probabilities pij  = pipj . 

Good D-ary codes for S 2 are such that (f ) ∈
  

H(S 2) , H(S 2) + 1
 

 

But codes for S 2 encode two S -words in each code word! So, for such codes, we 

consider their average length per source word, i.e., f   ∈
  

1 H(S 2) , 1 H(S 2) + 1 
  

Since S is i.i.d., H(S 2) = 2H(S ). Hence, good codes of S 2 (called codes of 

block-length 2) are such that f   ∈
  

H(S ) , H(S ) + 1 
  

For block-length n, f   
 

 

∈ 
  

H(S ) , H(S ) + 1 
  

Therefore, for codes of increasingly larger block-length, i.e., for n → ∞, the average 
length per source word  converges to H(S ). 
Remark. Block-codes can get incredibly complicated as the block-length increases. 
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In the previous lecture, we argued that the entropy H(p1, · · · , pN ) 
measures ‘how uncertain’ is a RV. 
In this lecture we made this rigorous: the entropy H(p1, · · · , pN ) 
essentially is the optimal rate at which an i.i.d. information source 
outputting words with probabilities p1, · · · , pN can be compressed 
(using a binary prefix code). 

Block-coding to get sharper bounds 

Summary of lecture two 
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i.i.d. information source, entropy rate of a source, source words and 
messages, codes and codewords, average length of a code, uniquely 
decodable codes, prefix codes, Kraft’s inequality, Shannon’s noiseless 
source coding theorem, block-coding 
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