Fundamentals of Mathematical Informatics

 Existence of Optimal Source CodesFrancesco Buscemi

Lecture Three

Reminder from lecture two: Kraft's inequality and the noiseless source coding theorem

Let \mathscr{S} be an i.i.d. information source with word set $\mathcal{W}=\left\{w_{1}, \cdots, w_{N}\right\}$, probability distribution $\left(p_{1}, \cdots, p_{N}\right)$, and entropy rate $H(\mathscr{S}) \stackrel{\text { def }}{=} H\left(p_{1}, \cdots, p_{N}\right)$. Let Σ be a D-ary alphabet $\left\{\sigma_{1}, \cdots, \sigma_{D}\right\}$.

Kraft's Inequality

There exists a prefix code $f: \mathcal{W} \rightarrow \Sigma^{*}$ with word lengths $l_{1}, l_{2}, \cdots, l_{N}$ iff $\sum_{i=1}^{N} D^{-l_{i}} \leqslant 1$.

Noiseless source-coding theorem

Any D-ary prefix code $f: \mathcal{W} \rightarrow \Sigma^{*}$ must satisfy the following inequality:

$$
\langle f\rangle \stackrel{\text { def }}{=} \sum_{i=1}^{N} p_{i} l_{i} \geqslant \frac{H(\mathscr{S})}{\log _{2} D}
$$

Moreover, there always exists a D-ary prefix code $\bar{f}: \mathcal{W} \rightarrow \Sigma^{*}$ such that

$$
\langle\bar{f}\rangle<\frac{H(\mathscr{S})}{\log _{2} D}+1
$$

Reminder from lecture two: proof of direct part of noiseless source-coding theorem

- Imagine that, for each p_{i}, there exists an integer \bar{l}_{i} such that $D^{-\bar{l}_{i}}=p_{i}$, i.e., $\bar{l}_{i}=-\frac{\log _{2} p_{i}}{\log _{2} D}$.
- If that is true, then we know that there exists (and we know how to construct) a D-ary prefix code \bar{f} with word lengths \bar{l}_{i}, because Kraft's inequality is automatically satisfied: $\sum_{i} D^{-\bar{l}_{i}}=\sum_{i} p_{i}=1$.
- The average length of such a code is $\langle\bar{f}\rangle=\sum_{i} p_{i} \bar{l}_{i}=\sum_{i} p_{i}\left(-\frac{\log _{2} p_{i}}{\log _{2} D}\right)=\frac{H(\mathscr{S})}{\log _{2} D}$, which is already optimal.
- Problem: the lengths \bar{l}_{i} are not, in general, integer numbers!
- To avoid such a problem, choose $l_{i}^{*}=\left\lceil\bar{l}_{i}\right\rceil$ for all i. (The symbol $\lceil x\rceil$ denotes the 'ceiling' of x, i.e., the smallest integer greater than or equal to x.)
- This implies that $\bar{l}_{i} \leqslant l_{i}^{*}<\bar{l}_{i}+1$ for all i.
- Again, Kraft's inequality is obeyed since $\sum_{i} D^{-l_{i}^{*}} \leqslant \sum_{i} D^{-\bar{l}_{i}}=1$.
- Only the average length is worse, because $\sum_{i} p_{i} l_{i}^{*} \geqslant \sum_{i} p_{i} \bar{l}_{i}$, but not too much, because

$$
\sum_{i} p_{i} l_{i}^{*}<\sum_{i} p_{i}\left(\bar{l}_{i}+1\right)=\frac{H(\mathscr{S})}{\log _{2} D}+\sum_{i} p_{i}=\frac{H(\mathscr{S})}{\log _{2} D}+1
$$

Shannon codes

- From the proof, we can get a 'good' code if we choose the word lengths such that $l_{i}=\left\lceil-\log _{2} p_{i}\right\rceil=\left\lceil\log _{2} \frac{1}{p_{i}}\right\rceil$. (In this lecture we will mostly consider binary codes.)

- Such codes are called Shannon codes.

- Shannon codes, even being 'good' in average, can be quite bad for single codewords.
- Example. Let $\mathcal{W}=\left\{w_{1}, w_{2}\right\}$ with $p_{1}=\frac{127}{128}$ and $p_{2}=\frac{1}{128}=2^{-7}$. Then, $l_{1}=\lceil 0.003\rceil=1$ and $l_{2}=7$. However, we can perfectly encode both w_{1} and w_{2} using just one bit.
- In this lecture we will study an optimal construction, called Huffman coding, that circumvents this problem.
- Remark. Shannon codes and Huffman codes are variable-length codes (i.e., the word lengths l_{i} vary with i).

Huffman codes: first example

- Consider a source with | w_{1} | w_{2} | w_{3} | w_{4} | w_{5} |
| :---: | :---: | :---: | :---: | :---: |
| 0.25 | 0.25 | 0.2 | 0.15 | 0.15 | and entropy $H(\mathscr{S}) \approx 2.285$
- Keep grouping the two least likely words, until only two words are left.

Start with w_{4} and w_{5}| w_{1} | w_{2} | w_{3} | $w_{4} \& w_{5}$ |
| :---: | :---: | :---: | :---: |
| | 0.25 | 0.25 | 0.2 |

Then group w_{2} and w_{3}

w_{1}	$w_{2} \& w_{3}$	$w_{4} \& w_{5}$
0.25	0.45	0.3

Then group w_{1} and $w_{4} \& w_{5}$| $w_{1} \&\left(w_{4} \& w_{5}\right)$ | $w_{2} \& w_{3}$ |
| :---: | :---: |
| 0.55 | 0.45 |

- Assign codewords working backward, as in the figure:

- The code is

w_{1}	w_{2}	w_{3}	w_{4}	w_{5}
00	10	11	010	011

- The average length is $2(0.25)+2(0.25)+2(0.2)+3(0.15)+3(0.15)=2.3$.

Huffman codes: second example

- The source is

w_{1}	w_{2}	w_{3}	w_{4}
$1 / 3$	$1 / 3$	$1 / 4$	$1 / 12$

- First solution: \begin{tabular}{|c|c|c|}
\hlinew_{1} \& w_{2} \& $w_{3} \& w_{4}$

\cline { 2 - 4 } \& $1 / 3$ \& $1 / 3$

\hline

\rightarrow

\hline$w_{1} \& w_{2}$ \& $w_{3} \& w_{4}$

\hline $2 / 3$ \& $1 / 3$

\hline
\end{tabular}\rightarrow

w_{1}	w_{2}	w_{3}	w_{4}
00	01	10	11

- Average length is 2 .
- Second solution: \begin{tabular}{|c|c|c|c|}
w_{1} \& w_{2} \& $w_{3} \& w_{4}$

\cline { 2 - 5 } \& $1 / 3$ \& $1 / 3$ \& $1 / 3$

\hline

\rightarrow

\hlinew_{1}

\hline $1 / 3$

\hline
\end{tabular}

w_{1}	w_{2}	w_{3}	w_{4}
0	10	110	111

- Average length is: $1(1 / 3)+2(1 / 3)+3(1 / 4)+3(1 / 12)=2$.
- Huffman coding is not always unique. Question: is the average length always the same in such cases? Why? Answer: yes, it must be the same, because Huffman coding is optimal! (We will see this in a minute.)

Again: Shannon codes versus Huffman codes

- Take again the previous example:

w_{1}	w_{2}	w_{3}	w_{4}
$1 / 3$	$1 / 3$	$1 / 4$	$1 / 12$

- The second Huffman code we constructed was

w_{1}	w_{2}	w_{3}	w_{4}
0	10	110	111

- Remember the Shannon coding technique: it assigns codewords of length $l_{i}=\left\lceil\log _{2} \frac{1}{p_{i}}\right\rceil$.
- Look at the source word w_{3} : Huffman coding assigns a codeword of length 3, Shannon coding assigns a codeword of length 2.
- But the average length for Huffman is 2, while for Shannon is $\frac{2}{3}\left\lceil\log _{2} 3\right\rceil+\frac{1}{4}\left\lceil\log _{2} 4\right\rceil+\frac{1}{12}\left\lceil\log _{2} 12\right\rceil=\frac{2}{3}(2)+\frac{1}{4}(2)+\frac{1}{12}(4)=13 / 6>2$.
- While for single codewords either Huffman or Shannon can be shorter, Hufmann coding is always shorter on average. (Actually it is always the shortest, because Huffman coding is optimal-as we are going to see next.)
- Conclusion. We are looking at the average rate, not at the single word lengths.

Optimality of Huffman coding (proof idea)

Taken from: Cover \& Thomas, Elements of Information Theory (Second Ed.), p. 124.

(a)

(c)
(b)

(d)

- Take a source \mathscr{S} of five words with probabilities $p_{1} \geqslant p_{2} \geqslant \cdots \geqslant p_{5}$.
- Consider some prefix code for \mathscr{S}, like the one in (a).
- We can 'prune' branches without siblings and get (b).
- We then order codewords so that shorter codewords are on top, longer are at the bottom of the tree: we get (c).
- We finally reorder codewords from top to bottom, according to their probabilities: we get (d).
- What are the properties of the code in (d)?
(1) All branches have a sibling.
(2) If $p_{i}>p_{j}$ then $l_{i} \leqslant l_{j}$.
- Recursive/iterative consistency: grouping together two least likely words, (1) and (2) still hold.
- Codes satisfying the above conditions are optimal.
- Huffman codes are, by construction, optimal.
- Remark. There are many optimal codes: for example, inverting bits $(0 \leftrightarrow 1)$ of an optimal code gives another optimal code.

D-ary Huffman codes

- They are like binary Huffman codes, but we group the D (instead of two) least likely source words at each step.
- So, each step has $D-1$ words less than the previous one.
- The last step has exactly D words.
- Therefore: the initial number of source words N must be such that $N=D+k(D-1)$, for some $k \in \mathbb{N}$. Equivalently, $(N-1)$ must be an integer multiple of $(D-1)$.
- Question: what happens otherwise? Answer: otherwise we append extra 'dummy' source words each having zero probability of occurrence.

D-ary Huffman codes: an example

- Find a ternary $(D=3)$ Huffman code for

w_{1}	w_{2}	w_{3}	w_{4}	w_{5}	w_{6}
0.25	0.25	0.2	0.1	0.1	0.1

- $N=6$, therefore $(N-1) \neq k(D-1)$.
- We append an extra dummy word, ©, so the source becomes | w_{1} | w_{2} | w_{3} | w_{4} | w_{5} | w_{6} | Θ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.25 | 0.25 | 0.2 | 0.1 | 0.1 | 0.1 | 0.0 |
- We then proceed | w_{1} | w_{2} | w_{3} | w_{4} | $\left(w_{5} \& w_{6} \& \odot\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| 0.25 | 0.25 | 0.2 | 0.1 | 0.2 |
-

w_{1}	w_{2}	$\left(w_{3} \&\left(w_{5} \& w_{6} \& \odot\right) \& w_{4}\right)$
0.25	0.25	0.5

- We obtain

that is

w_{1}	w_{2}	w_{3}	w_{4}	w_{5}	w_{6}	\odot
0	1	20	22	210	211	212

- Average length is $0.25(1)+0.25(1)+0.2(2)+0.1(2)+0.1(3)+0.1(3)+0.0(3)=1.7$.
- The entropy bound is $\frac{H(\mathscr{S})}{\log _{2} 3} \approx 1.678$.

Summary of lecture three

- Shannon codes, used to prove the noiseless coding theorem, are 'good' but they are not optimal (i.e., they are not the shortest codes available).
- Huffman coding provides an algorithm to construct optimal codes for any given information source.
- In practice, however, Huffman coding by itself is pretty much useless: much more sophisticated methods are required.

Keywords of lecture three

Shannon codes, 'good' codes versus optimal codes, binary and D-ary Huffman codes

