
Fundamentals of Mathematical Informatics
Existence of Optimal Source Codes

Francesco Buscemi

Lecture Three

Francesco Buscemi Fundamentals of Mathematical Informatics Lecture Three 1 / 12

Reminder from lecture two: Kraft’s inequality and the
noiseless source coding theorem

Let S be an i.i.d. information source with word set W = {w1, · · · , wN}, probability

distribution (p1, · · · , pN ), and entropy rate H(S )
def
= H(p1, · · · , pN ). Let Σ be a D-ary

alphabet {σ1, · · · , σD}.

Kraft’s Inequality

There exists a prefix code f :W → Σ∗ with word lengths l1, l2, · · · , lN iff
∑N

i=1D
−li 6 1.

Noiseless source-coding theorem
Any D-ary prefix code f :W → Σ∗ must satisfy the following inequality:

〈f〉 def
=

N∑
i=1

pili >
H(S )

log2D
.

Moreover, there always exists a D-ary prefix code f̄ :W → Σ∗ such that

〈f̄〉 <
H(S )

log2D
+ 1.

Francesco Buscemi Fundamentals of Mathematical Informatics Lecture Three 2 / 12



Reminder from lecture two: proof of direct part of
noiseless source-coding theorem

Imagine that, for each pi, there exists an integer l̄i such that D−l̄i = pi, i.e.,

l̄i = − log2 pi
log2 D

.

If that is true, then we know that there exists (and we know how to construct) a D-ary
prefix code f̄ with word lengths l̄i, because Kraft’s inequality is automatically satisfied:∑

iD
−l̄i =

∑
i pi = 1.

The average length of such a code is 〈f̄〉 =
∑

i pi l̄i =
∑

i pi(−
log2 pi
log2 D

) =
H(S )
log2 D

, which is

already optimal.

Problem: the lengths l̄i are not, in general, integer numbers!

To avoid such a problem, choose l∗i =
⌈
l̄i
⌉

for all i. (The symbol dxe denotes the ‘ceiling’
of x, i.e., the smallest integer greater than or equal to x.)

This implies that l̄i 6 l∗i < l̄i + 1 for all i.

Again, Kraft’s inequality is obeyed since
∑

iD
−l∗i 6

∑
iD
−l̄i = 1.

Only the average length is worse, because
∑

i pil
∗
i >

∑
i pi l̄i, but not too much, because

∑
i

pil
∗
i <

∑
i

pi(l̄i + 1) =
H(S )

log2D
+
∑
i

pi =
H(S )

log2D
+ 1. �

Francesco Buscemi Fundamentals of Mathematical Informatics Lecture Three 3 / 12

Shannon codes

From the proof, we can get a ‘good’ code if we choose the word

lengths such that li = d− log2 pie =
⌈
log2

1
pi

⌉
. (In this lecture we will

mostly consider binary codes.)

Such codes are called Shannon codes.

Shannon codes, even being ‘good’ in average, can be quite bad for
single codewords.

Example. Let W = {w1, w2} with p1 = 127
128 and p2 = 1

128 = 2−7.
Then, l1 = d0.003e = 1 and l2 = 7. However, we can perfectly
encode both w1 and w2 using just one bit.

In this lecture we will study an optimal construction, called Huffman
coding, that circumvents this problem.

Remark. Shannon codes and Huffman codes are variable-length
codes (i.e., the word lengths li vary with i).

Francesco Buscemi Fundamentals of Mathematical Informatics Lecture Three 4 / 12



Huffman codes: first example

Consider a source with
w1 w2 w3 w4 w5

0.25 0.25 0.2 0.15 0.15
and entropy H(S ) ≈ 2.285

Keep grouping the two least likely words, until only two words are left.

Start with w4 and w5
w1 w2 w3 w4&w5

0.25 0.25 0.2 0.3

Then group w2 and w3
w1 w2&w3 w4&w5

0.25 0.45 0.3

Then group w1 and w4&w5
w1&(w4&w5) w2&w3

0.55 0.45

Assign codewords working backward, as in the figure:

The code is
w1 w2 w3 w4 w5

00 10 11 010 011

The average length is 2(0.25) + 2(0.25) + 2(0.2) + 3(0.15) + 3(0.15) = 2.3.

Francesco Buscemi Fundamentals of Mathematical Informatics Lecture Three 5 / 12

Huffman codes: second example

The source is
w1 w2 w3 w4

1/3 1/3 1/4 1/12
with entropy H(S ) ≈ 1.855

First solution:
w1 w2 w3&w4

1/3 1/3 1/3
→ w1&w2 w3&w4

2/3 1/3
→

w1 w2 w3 w4

00 01 10 11

Average length is 2.

Second solution:
w1 w2 w3&w4

1/3 1/3 1/3
→ w1 w2&(w3&w4)

1/3 2/3
→

w1 w2 w3 w4

0 10 110 111

Average length is: 1(1/3) + 2(1/3) + 3(1/4) + 3(1/12) = 2.

Huffman coding is not always unique. Question: is the average length always the same in
such cases? Why? Answer: yes, it must be the same, because Huffman coding is optimal!
(We will see this in a minute.)

Francesco Buscemi Fundamentals of Mathematical Informatics Lecture Three 6 / 12



Again: Shannon codes versus Huffman codes

Take again the previous example:
w1 w2 w3 w4

1/3 1/3 1/4 1/12

The second Huffman code we constructed was
w1 w2 w3 w4

0 10 110 111

Remember the Shannon coding technique: it assigns codewords of length

li =
⌈
log2

1
pi

⌉
.

Look at the source word w3: Huffman coding assigns a codeword of length
3, Shannon coding assigns a codeword of length 2.

But the average length for Huffman is 2, while for Shannon is
2
3dlog2 3e+

1
4dlog2 4e+

1
12dlog2 12e =

2
3 (2) +

1
4 (2) +

1
12 (4) = 13/6 > 2.

While for single codewords either Huffman or Shannon can be shorter,
Hufmann coding is always shorter on average. (Actually it is always the
shortest, because Huffman coding is optimal—as we are going to see next.)

Conclusion. We are looking at the average rate, not at the single word
lengths.

Francesco Buscemi Fundamentals of Mathematical Informatics Lecture Three 7 / 12

Optimality of Huffman coding (proof idea)

Taken from: Cover & Thomas, Elements of

Information Theory (Second Ed.), p.124.

Take a source S of five words with probabilities
p1 > p2 > · · · > p5.

Consider some prefix code for S , like the one in (a).

We can ‘prune’ branches without siblings and get (b).

We then order codewords so that shorter codewords
are on top, longer are at the bottom of the tree: we
get (c).

We finally reorder codewords from top to bottom,
according to their probabilities: we get (d).

What are the properties of the code in (d)?

1 All branches have a sibling.

2 If pi > pj then li 6 lj .

Recursive/iterative consistency: grouping together
two least likely words, (1) and (2) still hold.

Codes satisfying the above conditions are optimal.

Huffman codes are, by construction, optimal.

Remark. There are many optimal codes: for example,
inverting bits (0↔ 1) of an optimal code gives
another optimal code.

Francesco Buscemi Fundamentals of Mathematical Informatics Lecture Three 8 / 12



D-ary Huffman codes

They are like binary Huffman codes, but we group the D (instead of
two) least likely source words at each step.

So, each step has D − 1 words less than the previous one.

The last step has exactly D words.

Therefore: the initial number of source words N must be such that
N = D + k(D − 1), for some k ∈ N. Equivalently, (N − 1) must be
an integer multiple of (D − 1).

Question: what happens otherwise? Answer: otherwise we append
extra ‘dummy’ source words each having zero probability of
occurrence.

Francesco Buscemi Fundamentals of Mathematical Informatics Lecture Three 9 / 12

D-ary Huffman codes: an example

Find a ternary (D = 3) Huffman code for
w1 w2 w3 w4 w5 w6
0.25 0.25 0.2 0.1 0.1 0.1

N = 6, therefore (N − 1) 6= k(D − 1).

We append an extra dummy word, ,, so the source becomes
w1 w2 w3 w4 w5 w6 ,
0.25 0.25 0.2 0.1 0.1 0.1 0.0

We then proceed
w1 w2 w3 w4 (w5&w6&,)
0.25 0.25 0.2 0.1 0.2

w1 w2 (w3&(w5&w6&,)&w4)
0.25 0.25 0.5

We obtain

that is
w1 w2 w3 w4 w5 w6 ,
0 1 20 22 210 211 212

Average length is 0.25(1) + 0.25(1) + 0.2(2) + 0.1(2) + 0.1(3) + 0.1(3) + 0.0(3) = 1.7.

The entropy bound is
H(S )
log2 3

≈ 1.678.

Francesco Buscemi Fundamentals of Mathematical Informatics Lecture Three 10 / 12



Summary of lecture three

Shannon codes, used to prove the noiseless coding theorem, are
‘good’ but they are not optimal (i.e., they are not the shortest codes
available).

Huffman coding provides an algorithm to construct optimal codes for
any given information source.

In practice, however, Huffman coding by itself is pretty much useless:
much more sophisticated methods are required.

Francesco Buscemi Fundamentals of Mathematical Informatics Lecture Three 11 / 12

Keywords of lecture three

Shannon codes, ‘good’ codes versus optimal codes, binary and D-ary
Huffman codes

Francesco Buscemi Fundamentals of Mathematical Informatics Lecture Three 12 / 12


