Fundamentals of Mathematical Informatics

Communication through Noisy Channels

Francesco Buscemi

Lecture Four

General communication scheme

The discrete memoryless channel (DMC)

- In lecture one, we said that a RV X is like a 'device' that outputs an element from a set $\left\{x_{1}, \cdots, x_{n}\right\}$ with probability $\operatorname{Pr}\left\{X=x_{i}\right\}=p_{i}$.
- Imagine now a 'device' that has an output and an input: it accepts strings of symbols from its input alphabet $\Sigma_{1}=\left\{a_{1}, \cdots, a_{m}\right\}$ and emits strings of symbols from an output alphabet $\Sigma_{2}=\left\{b_{1}, \cdots, b_{n}\right\}$.
- A discrete memoryless channel (DMC) is given by: an input alphabet $\Sigma_{1}=\left\{a_{1}, \cdots, a_{m}\right\}$, an output alphabet $\Sigma_{2}=\left\{b_{1}, \cdots, b_{n}\right\}$, and a channel matrix $P=\llbracket p_{i j} \rrbracket_{i j}(1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n)$ of transition probabilities:

$$
p_{i j} \stackrel{\text { def }}{=} p\left(b_{j} \mid a_{i}\right) \stackrel{\text { def }}{=} \operatorname{Pr}\left\{\text { output is } b_{j} \mid \text { input was } a_{i}\right\} .
$$

Therefore, $p_{i j} \geqslant 0$ for all i and j, and $\sum_{j} p_{i j}=1$ for all i.

- Memory trick. To remember which is the input and which is the output, think as if $p_{i j}=p_{i \rightarrow j}$.
- The channel is 'discrete' because input and output alphabets are discrete sets.
- The channel is 'memoryless' because the channel matrix P remains the same for repeated uses.

Example: the binary erasure channel

In this case, $\Sigma_{1}=\{0,1\}, \Sigma_{2}=\{0,1, \otimes\}$, and

$P=$| | 0 | 1 | \odot |
| :---: | :---: | :---: | :---: |
| 0 | $1-\epsilon$ | 0 | ϵ |
| 1 | 0 | $1-\epsilon$ | ϵ |

Example: the binary symmetric channel

In this case, $\Sigma_{1}=\Sigma_{2}=\{0,1\}$ and

$P=$| | 0 | 1 |
| :---: | :---: | :---: |
| 0 | $1-p$ | p |
| 1 | p | $1-p$ |

Input and output of a DMC as RVs

- Let X be a RV with range $\mathcal{X}=\left\{x_{1}, \cdots, x_{m}\right\}$ and probability distribution $\left(p_{1}, \cdots, p_{m}\right)$.
- Take now a $\operatorname{DMC} \mathcal{N}$ with input alphabet \mathcal{X}, output alphabet $\mathcal{Y}=\left\{y_{1}, \cdots, y_{n}\right\}$, and channel matrix $P=\llbracket p_{i j} \rrbracket$.
- What happens if we 'feed' X through \mathcal{N} ?
- $\operatorname{Pr}\left\{{ }^{\prime}\right.$ output is $\left.y_{j}{ }^{\prime}\right\}=\sum_{i=1}^{m} \operatorname{Pr}\left\{X=x_{i}\right\} p_{i j}=\sum_{i=1}^{m} p_{i} p_{i j}$.
- We obtain another RV Y, with range equal to \mathcal{Y} and probability distribution $\left(q_{1}, \cdots, q_{n}\right)$ where $q_{j}=\sum_{i} p_{i} p_{i j}$.

I/O joint distribution

With the notation introduced above, the action of a DMC channel \mathcal{N} on an input $\mathrm{RV} X$ gives rise to a pair of dependent $\mathrm{RVs}(X, Y)$ with joint probability distribution given by

$$
\operatorname{Pr}\left\{X=x_{i} \text { and } Y=y_{j}\right\}=p_{i} p_{i j}
$$

Sometimes we write $Y=\mathcal{N}(X)$.

r-th extension of a DMC: in series

What happens when we feed a string of r symbols $\left(\alpha_{1}, \cdots, \alpha_{r}\right) \in \Sigma_{1}^{(r)}$ through a discrete memoryless channel?

The r-th extension of a DMC is then itself a DMC from an input r-dimensional RV \boldsymbol{X} with range $\Sigma_{1}^{(r)}$, to an output r-dimensional RV \boldsymbol{Y} with range $\Sigma_{2}^{(r)}$. The channel matrix is given by the product of the transition probabilities:
$\operatorname{Pr}\left\{\boldsymbol{Y}=\beta_{1} \cdots \beta_{r} \mid \boldsymbol{X}=\alpha_{1} \cdots \alpha_{r}\right\} \stackrel{\text { def }}{=} p(\boldsymbol{Y} \mid \boldsymbol{X})=p\left(\beta_{1} \mid \alpha_{1}\right) \cdots p\left(\beta_{r} \mid \alpha_{r}\right)$.

r-th extension of a DMC: in parallel

We can also think of channel extensions this way:

We have now many copies of the same noisy channel acting 'in parallel.' Mathematically, serial and parallel extensions are equivalent.

Example: sending a message through a binary symmetric channel

- Imagine that we want to send one word s_{i}, chosen at random among eight possible words $\left\{s_{1}, \cdots, s_{8}\right\}$, via a binary symmetric DMC.
- First, we have to encode all words in binary alphabet (the channel only accepts 0 s and $1 \mathrm{~s}!$).
- $s_{1} \mapsto 000, s_{2} \mapsto 001, \cdots, s_{8} \mapsto 111$.
- Here we use the third extension of the binary symmetric channel (the input consists of three bits.)
- What is the probability that the receiver gets the wrong word?
$\operatorname{Pr}\{$ wrong word $\}=1-\operatorname{Pr}\{$ correct word $\}=1-(1-p)^{3}=$
$p\left(3-3 p+p^{2}\right)$. (For $p=0.5$ is ≈ 0.88; for $p=0.1$ is ≈ 0.27.)
- Can we do better?

First idea: repetition codes (repeating words)

- Let's try to send each word twice through the channel, i.e.,

$$
s_{1} \mapsto 000000, s_{2} \mapsto 001001, \cdots, s_{8} \mapsto 111111
$$

- As a decoding rule, if the receiver does not get the same word twice in succession, she requests an immediate resending.
- What is the probability of decoding error in this case, i.e., the probability that the receiver gets the wrong word without detecting it?
- First possibility: one error in the first three bits and one error, in the same position, in the second three bits. This contributes with $3 \times p(1-p)^{2} \times p(1-p)^{2}=3 p^{2}(1-p)^{4}$.
- Second possibility: two errors in the first three bits, and two errors, in the same positions, in the second three bits. This contributes with $3 \times p^{2}(1-p) \times p^{2}(1-p)=3 p^{4}(1-p)^{2}$.
- Third possibility: six errors in a row. This contributes with p^{6}.
- Total decoding error probability: $p^{2}\left(3-12 p+21 p^{2}-18 p^{3}+7 p^{4}\right)$. (For $p=0.5$ is ≈ 0.11; for $p=0.1$ is ≈ 0.02.)
- But: it requires feedback from the receiver, for each letter sent.
- But: with increasing length, the receiver will almost always request a resending.
- Hence: zero total decoding error requires infinite repetitions (no reliable communication is possible)

Second idea: parity-check codes

- Instead of just repeating codewords, we can try to exploit another idea.
- Parity-check coding: it adds one extra bit (the 'parity bit') at the end of each codeword, so that the sum of the digits is always even.
- In our case, this gives:
$s_{1} \mapsto 0000, s_{2} \mapsto 0011, s_{3} \mapsto 0101, s_{4} \mapsto 0110, \cdots s_{8} \mapsto 1111$.
- If the receiver gets four bits whose sum is odd, she requests an immediate resending. (Hence the name, 'parity-check.')
- What is the probability of decoding error in this case, i.e., the probability that the receiver gets the wrong word without detecting it?
- A wrong decoding happens if there were two or four errors, therefore the decoding error probability is $6 p^{2}(1-p)^{2}+p^{4}$. (For $p=0.5$ is ≈ 0.44; for $p=0.1$ is ≈ 0.05.)
- But: this code requires feedback.
- Remark: this simple idea can be improved, and it is at the basis of some very important families of codes (Low Density Parity-Check, LDPC).

Third idea: Shannon approach (definitions)

- Take a DMC with Σ_{1} and Σ_{2} as input and output alphabets, respectively.
- An (M, n) code consists of the following:
(1) An index set $\{1,2, \cdots, M\}$.
(2) An encoding function $\boldsymbol{c}:\{1,2, \cdots, M\} \rightarrow \Sigma_{1}^{(n)}$ (i.e., each $\boldsymbol{c}_{i} \stackrel{\text { def }}{=} \boldsymbol{c}(i)$ is a string of n symbols in Σ_{1}, e.g., $\left.\boldsymbol{c}_{i}=\alpha_{1} \alpha_{2} \cdots \alpha_{n}\right)$.
(3) A decoding function $g: \Sigma_{2}^{(n)} \rightarrow\{1,2, \cdots, M\}$.
- The collection $\mathscr{C}=\left\{\boldsymbol{c}_{1}, \cdots, \boldsymbol{c}_{M}\right\}$ is called the codebook and its elements are called the codewords. M (the number of codewords) is the size of the code, while n (the length of each codeword) is its length.

Encoding-transmission-decoding: chain of RVs

The encoding-transmission-decoding process can be summarized as:

$$
W \xrightarrow{\mathcal{E}_{n}} \boldsymbol{X} \xrightarrow{\mathcal{N}_{n}} \boldsymbol{Y} \xrightarrow{\mathcal{D}_{n}} \hat{W}
$$

What does this mean?

- W, the message: a RV with range $\left\{w_{1}, \cdots, w_{M}\right\}$ and probabilities $p_{1}, \cdots p_{M}$.
- $\mathcal{E}_{n}: W \rightarrow \boldsymbol{X}$, the length- n encoding: a DMC with input alphabet $\left\{w_{1}, \cdots, w_{M}\right\}$, output alphabet $\Sigma_{1}^{(n)}$, and channel matrix given by $p\left(\boldsymbol{X} \mid w_{i}\right) \stackrel{\text { def }}{=} \operatorname{Pr}\left\{\boldsymbol{X}=\alpha_{1} \cdots \alpha_{n} \mid W=w_{i}\right\}=\delta_{\boldsymbol{X}, c_{i}}$.
- $\mathcal{N}_{n}: \boldsymbol{X} \rightarrow \boldsymbol{Y}$, the n-th extension of the communication channel: a DMC with input alphabet $\Sigma_{1}^{(n)}$, output alphabet $\Sigma_{2}^{(n)}$, and channel matrix $p(\boldsymbol{Y} \mid \boldsymbol{X}) \stackrel{\text { def }}{=} \operatorname{Pr}\left\{\boldsymbol{Y}=\beta_{1} \cdots \beta_{n} \mid \boldsymbol{X}=\alpha_{1} \cdots \alpha_{n}\right\}=p\left(\beta_{1} \mid \alpha_{1}\right) \cdots p\left(\beta_{n} \mid \alpha_{n}\right)$.
- $\mathcal{D}_{n}: \boldsymbol{X} \rightarrow \hat{W}$, the decoding: a DMC with input alphabet $\Sigma_{2}^{(n)}$, output alphabet $\left\{w_{1}, \cdots, w_{M}\right\}$, and channel matrix given by $p\left(w_{j} \mid \boldsymbol{Y}\right) \stackrel{\text { def }}{=} \operatorname{Pr}\left\{\hat{W}=w_{j} \mid \boldsymbol{Y}=\beta_{1} \cdots \beta_{n}\right\}=\delta_{g\left(\beta_{1} \cdots \beta_{n}\right), j}$.
- A decoding error happens whenever $\hat{W} \neq W$. What is the probability that a decoding error occurs?

A picture

Decoding error probability

- How to compute the error probability, i.e. $\operatorname{Pr}\{\hat{W} \neq W\}$?

$$
\begin{aligned}
\operatorname{Pr}\{\hat{W} \neq W\} & \stackrel{\text { def }}{=} \sum_{j \neq i} \sum_{i=1}^{M} \operatorname{Pr}\left\{\hat{W}=w_{j}, W=w_{i}\right\} \\
& =\sum_{i, j=1}^{M} \operatorname{Pr}\left\{\hat{W}=w_{j}, W=w_{i}\right\}-\sum_{i=1}^{M} \operatorname{Pr}\left\{\hat{W}=w_{i}, W=w_{i}\right\} \\
& =1-\sum_{i=1}^{M} \operatorname{Pr}\left\{\hat{W}=w_{i}, W=w_{i}\right\} \\
& =1-\sum_{i} \sum_{\boldsymbol{X}} \sum_{\boldsymbol{Y}} p\left(w_{i} \mid \boldsymbol{Y}\right) p(\boldsymbol{Y} \mid \boldsymbol{X}) p\left(\boldsymbol{X} \mid w_{i}\right) p_{i} \\
& =1-\sum_{i} \sum_{\boldsymbol{X}} \sum_{\boldsymbol{Y}} \delta_{g(\boldsymbol{Y}), i} p(\boldsymbol{Y} \mid \boldsymbol{X}) \delta_{\boldsymbol{X}, \boldsymbol{c}_{i}} p_{i} \\
& =1-\sum_{i} \sum_{\boldsymbol{Y} \in g^{-1}(i)} p\left(\boldsymbol{Y} \mid \boldsymbol{c}_{i}\right) p_{i}
\end{aligned}
$$

- The error probability crucially depends on the choice of the decoding function g.

Ideal-observer (minimum error) decoding

- $\operatorname{Pr}\{\hat{W} \neq W\}=1-\sum_{j} \sum_{\boldsymbol{Y}} \delta_{j, g(\boldsymbol{Y})} p\left(\boldsymbol{Y} \mid \boldsymbol{c}_{j}\right) p_{j}$.
- Rewrite $p\left(\boldsymbol{Y} \mid \boldsymbol{c}_{j}\right) p_{j}$ as $p\left(\boldsymbol{c}_{j}, \boldsymbol{Y}\right) \stackrel{\text { def }}{=} \operatorname{Pr}\left\{\boldsymbol{c}_{j}\right.$ sent and \boldsymbol{Y} received $\}$.
- Rewrite it again as $p\left(\boldsymbol{c}_{j}, \boldsymbol{Y}\right)=p\left(\boldsymbol{c}_{j} \mid \boldsymbol{Y}\right) p_{\boldsymbol{Y}}$, where $p_{\boldsymbol{Y}} \stackrel{\text { def }}{=} \operatorname{Pr}\{\boldsymbol{Y}$ received $\}=\sum_{j=1}^{M} p\left(\boldsymbol{c}_{j}, \boldsymbol{Y}\right)$.
- Then, $\operatorname{Pr}\{\hat{W} \neq W\}=1-\sum_{\boldsymbol{Y}} \sum_{j} \delta_{j, g(\boldsymbol{Y})} p\left(\boldsymbol{c}_{j} \mid \boldsymbol{Y}\right) p_{\boldsymbol{Y}}$.
- Choose the decoding function $g: \Sigma_{2}^{(n)} \rightarrow\{1,2, \cdots, M\}$ in such a way that $p\left(\boldsymbol{c}_{g(\boldsymbol{Y})} \mid \boldsymbol{Y}\right) \geqslant p\left(\boldsymbol{c}_{j} \mid \boldsymbol{Y}\right)$, for all $1 \leqslant j \leqslant M$.
- Equivalently: $g(\boldsymbol{Y})=\arg \max _{j} p\left(\boldsymbol{c}_{j} \mid \boldsymbol{Y}\right)$.
- This decoding method is called ideal-observer or minimum-error, because it minimizes the error probability.
- Meaning: upon receiving \boldsymbol{Y}, use this piece of information to infer the most probable codeword.
- The ideal-observer decoding is optimal! However: the construction depends on the choice of probabilities p_{1}, \cdots, p_{M}, which is a serious disadvantage.

Maximum-likelihood decoding

- $\operatorname{Pr}\{\hat{W} \neq W\}=1-\sum_{j} \sum_{\boldsymbol{Y}} \delta_{j, g(\boldsymbol{Y})} p\left(\boldsymbol{Y} \mid \boldsymbol{c}_{j}\right) p_{j}$.
- Choose a decoding function $g: \Sigma_{2}^{(n)} \rightarrow\{1,2, \cdots, M\}$ such that $p\left(\boldsymbol{Y} \mid \boldsymbol{c}_{g(\boldsymbol{Y})}\right) \geqslant p\left(\boldsymbol{Y} \mid \boldsymbol{c}_{j}\right)$, for all $1 \leqslant j \leqslant M$.
- Equivalently: $g(\boldsymbol{Y})=\arg \max _{j} p\left(\boldsymbol{Y} \mid \boldsymbol{c}_{j}\right)$.
- This decoding method is called maximum-likelihood (ML).
- Meaning: upon receiving \boldsymbol{Y}, decode it with the codeword \boldsymbol{c}_{i} that, if sent, maximizes the probability of receiving \boldsymbol{Y}.
- Since, in general, $p\left(\boldsymbol{Y} \mid \boldsymbol{c}_{i}\right) \neq p\left(\boldsymbol{c}_{i} \mid \boldsymbol{Y}\right)$, ML decoding and ideal-observer decoding may give different results.
- Con: sub-optimal. Pro: independent of the p_{i} 's, much easier to implement.
- Question: when do ML and ideal-observer decodings agree?

Answer: they agree if $p_{1}=p_{2}=\cdots=p_{M}=\frac{1}{M}$.

Example: minimum-error vs max-likelihood

- Suppose you are at the receiver's end of a binary symmetric channel with error probability $\epsilon \stackrel{\text { def }}{=} p_{0 \rightarrow 1}=p_{1 \rightarrow 0}=\frac{9}{10}$.
- Suppose you receive a 'zero.' What is the best guess for the input?
- Since the channel introduce an error 90% of the times, one would say: the best guess is that the input was 'one.'
- This is what a max-likelihood strategy says.
- However, imagine that you know that the sender sends 'zero' with probability $p(\mathrm{in}=0)=\frac{19}{20}$ and 'one' with $p(\mathrm{in}=1)=\frac{1}{20}$.
- Then, $p($ in $=1 \mid$ out $=0)=\frac{p(\mathrm{in}=1 \text { and out }=0)}{p(\text { out }=0)}=\frac{\epsilon p(\mathrm{in}=1)}{(1-\epsilon) p(\mathrm{in}=0)+\epsilon p(\mathrm{in}=1)}=$ $\frac{\frac{9}{10} \frac{1}{20}}{\frac{1}{10} \frac{19}{20}+\frac{9}{10} \frac{1}{20}}=\frac{9}{28} \approx 0.32$.
- Therefore $p(\mathrm{in}=0 \mid$ out $=0)=1-p(\mathrm{in}=1 \mid$ out $=0) \approx 0.68$.
- According to the ideal-observer rule (the optimal one), the best guess is that the input was 'zero.'

Minimum-distance decoding (Hamming distance)

- Let V_{n} be the set of all binary sequences of length n.
- Definition: given $\boldsymbol{x}, \boldsymbol{y} \in \mathrm{V}_{n}$, their Hamming distance $d(\boldsymbol{x}, \boldsymbol{y})$ is defined as the number of places in which \boldsymbol{x} and \boldsymbol{y} differ.
- Example: take V_{4} and $\boldsymbol{x}=0001$ and $\boldsymbol{y}=1011$; then $d(\boldsymbol{x}, \boldsymbol{y})=2$ (first and third digits are different).
- Minimum-distance decoding: choose the decoding function $g: \Sigma_{2}^{(n)} \rightarrow\{1, \cdots, M\}$ such that $d\left(\boldsymbol{Y}, \boldsymbol{c}_{g(\boldsymbol{Y})}\right) \leqslant d\left(\boldsymbol{Y}, \boldsymbol{c}_{j}\right)$, for all $1 \leqslant j \leqslant M$.
- Meaning: upon receiving \boldsymbol{Y}, decode it with a codeword \boldsymbol{c}_{i} that is 'as close as possible' to \boldsymbol{Y}, according to the Hamming distance.

Min-Distance \equiv Max-Likelihood (for binary symmetric channels)

Proof. Let $\epsilon \leqslant 1 / 2$ the bit-flip probability of the channel. For any $\boldsymbol{x}, \boldsymbol{y} \in \mathrm{V}_{n}$ with $d(\boldsymbol{x}, \boldsymbol{y})=k$,

$$
\operatorname{Pr}\{\boldsymbol{y} \text { received } \mid \boldsymbol{x} \text { sent }\}=\epsilon^{k}(1-\epsilon)^{n-k},
$$

which is maximum when k is minimum.

Summary of lecture four

- Discrete memoryless channels provide a simple (but very important) model of communication channels
- The coding problem is to design encoding-decoding methods that allow the receiver to guess (with high reliability) the correct input, avoiding errors.
- The optimal decoding method is called ideal-observer decoding, but it is not practical.
- The maximum-likelihood and the minimum-distance decoding are preferable.

Keywords of lecture four

discrete memoryless channel, binary symmetric channel, r-th extension of a DMC, repetition codes, parity-check codes, encoding-transmission-decoding scheme, decoding error probability, ideal-observer decoding, maximum-likelihood decoding, Hamming distance, minimum-distance decoding

