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General communication scheme
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The discrete memoryless channel (DMC)

In lecture one, we said that a RV X is like a ‘device’ that outputs an element from
a set {x1, · · · , xn} with probability Pr{X = xi} = pi.

Imagine now a ‘device’ that has an output and an input: it accepts strings of
symbols from its input alphabet Σ1 = {a1, · · · , am} and emits strings of symbols
from an output alphabet Σ2 = {b1, · · · , bn}.
A discrete memoryless channel (DMC) is given by: an input alphabet
Σ1 = {a1, · · · , am}, an output alphabet Σ2 = {b1, · · · , bn}, and a channel matrix
P = [[pij ]]ij (1 6 i 6 m, 1 6 j 6 n) of transition probabilities:

pij
def
= p(bj |ai)

def
= Pr{output is bj |input was ai}.

Therefore, pij > 0 for all i and j, and
∑
j pij = 1 for all i.

Memory trick. To remember which is the input and which is the output, think as
if pij = pi→j .

The channel is ‘discrete’ because input and output alphabets are discrete sets.

The channel is ‘memoryless’ because the channel matrix P remains the same for
repeated uses.
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Example: the binary erasure channel

In this case, Σ1 = {0, 1}, Σ2 = {0, 1,/}, and

P =

0 1 /
0 1− ε 0 ε

1 0 1− ε ε
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Example: the binary symmetric channel

In this case, Σ1 = Σ2 = {0, 1} and

P =

0 1

0 1− p p

1 p 1− p
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Input and output of a DMC as RVs

Let X be a RV with range X = {x1, · · · , xm} and probability distribution
(p1, · · · , pm).

Take now a DMC N with input alphabet X , output alphabet Y = {y1, · · · , yn},
and channel matrix P = [[pij ]].

What happens if we ‘feed’ X through N ?

Pr{‘output is yj ’} =
∑m
i=1 Pr{X = xi}pij =

∑m
i=1 pipij .

We obtain another RV Y , with range equal to Y and probability distribution
(q1, · · · , qn) where qj =

∑
i pipij .

I/O joint distribution

With the notation introduced above, the action of a DMC channel N on
an input RV X gives rise to a pair of dependent RVs (X,Y ) with joint
probability distribution given by

Pr{X = xi and Y = yj} = pipij .

Sometimes we write Y = N (X).
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r-th extension of a DMC: in series

What happens when we feed a string of r symbols (α1, · · · , αr) ∈ Σ
(r)
1 through a discrete

memoryless channel?

The r-th extension of a DMC is then itself a DMC from an input r-dimensional RV X with

range Σ
(r)
1 , to an output r-dimensional RV Y with range Σ

(r)
2 . The channel matrix is given by

the product of the transition probabilities:

Pr{Y = β1 · · ·βr|X = α1 · · ·αr}
def
= p(Y |X) = p(β1|α1) · · · p(βr|αr).
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r-th extension of a DMC: in parallel

We can also think of channel extensions this way:

We have now many copies of the same noisy channel acting ‘in parallel.’

Mathematically, serial and parallel extensions are equivalent.
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Example: sending a message through a binary symmetric
channel

Imagine that we want to send one word si, chosen at random among
eight possible words {s1, · · · , s8}, via a binary symmetric DMC.

First, we have to encode all words in binary alphabet (the channel
only accepts 0s and 1s!).

s1 7→ 000, s2 7→ 001, · · · , s8 7→ 111.

Here we use the third extension of the binary symmetric channel (the
input consists of three bits.)

What is the probability that the receiver gets the wrong word?
Pr{wrong word} = 1− Pr{correct word} = 1− (1− p)3 =
p(3− 3p+ p2). (For p = 0.5 is ≈ 0.88; for p = 0.1 is ≈ 0.27.)

Can we do better?
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First idea: repetition codes (repeating words)

Let’s try to send each word twice through the channel, i.e.,
s1 7→ 000 000, s2 7→ 001 001, · · · , s8 7→ 111 111.

As a decoding rule, if the receiver does not get the same word twice in succession, she
requests an immediate resending.

What is the probability of decoding error in this case, i.e., the probability that the receiver
gets the wrong word without detecting it?

First possibility: one error in the first three bits and one error, in the same position, in the
second three bits. This contributes with 3× p(1− p)2 × p(1− p)2 = 3p2(1− p)4.

Second possibility: two errors in the first three bits, and two errors, in the same positions,
in the second three bits. This contributes with 3× p2(1− p)× p2(1− p) = 3p4(1− p)2.

Third possibility: six errors in a row. This contributes with p6.

Total decoding error probability: p2(3− 12p+ 21p2 − 18p3 + 7p4). (For p = 0.5 is
≈ 0.11; for p = 0.1 is ≈ 0.02.)

But: it requires feedback from the receiver, for each letter sent.

But: with increasing length, the receiver will almost always request a resending.

Hence: zero total decoding error requires infinite repetitions (no reliable communication is
possible)
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Second idea: parity-check codes

Instead of just repeating codewords, we can try to exploit another idea.

Parity-check coding: it adds one extra bit (the ‘parity bit’) at the end of
each codeword, so that the sum of the digits is always even.

In our case, this gives:
s1 7→ 000 0, s2 7→ 001 1, s3 7→ 010 1, s4 7→ 011 0, · · · s8 7→ 111 1.

If the receiver gets four bits whose sum is odd, she requests an immediate
resending. (Hence the name, ‘parity-check.’)

What is the probability of decoding error in this case, i.e., the probability
that the receiver gets the wrong word without detecting it?

A wrong decoding happens if there were two or four errors, therefore the
decoding error probability is 6p2(1− p)2 + p4. (For p = 0.5 is ≈ 0.44; for
p = 0.1 is ≈ 0.05.)

But: this code requires feedback.

Remark: this simple idea can be improved, and it is at the basis of some
very important families of codes (Low Density Parity-Check, LDPC).
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Third idea: Shannon approach (definitions)

Take a DMC with Σ1 and Σ2 as input and output alphabets,
respectively.

An (M,n) code consists of the following:
1 An index set {1, 2, · · · ,M}.
2 An encoding function c : {1, 2, · · · ,M} → Σ

(n)
1 (i.e., each ci

def
= c(i) is

a string of n symbols in Σ1, e.g., ci = α1α2 · · ·αn).
3 A decoding function g : Σ

(n)
2 → {1, 2, · · · ,M}.

The collection C = {c1, · · · , cM} is called the codebook and its
elements are called the codewords. M (the number of codewords) is
the size of the code, while n (the length of each codeword) is its
length.
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Encoding-transmission-decoding: chain of RVs

The encoding-transmission-decoding process can be summarized as:

W
En−→X

Nn−→ Y
Dn−→ Ŵ

What does this mean?

W , the message: a RV with range {w1, · · · , wM} and probabilities p1, · · · pM .

En : W →X, the length-n encoding: a DMC with input alphabet {w1, · · · , wM},
output alphabet Σ

(n)
1 , and channel matrix given by

p(X|wi)
def
= Pr{X = α1 · · ·αn|W = wi} = δX,ci .

Nn : X → Y , the n-th extension of the communication channel: a DMC with
input alphabet Σ

(n)
1 , output alphabet Σ

(n)
2 , and channel matrix

p(Y |X)
def
= Pr{Y = β1 · · ·βn|X = α1 · · ·αn} = p(β1|α1) · · · p(βn|αn).

Dn : X → Ŵ , the decoding: a DMC with input alphabet Σ
(n)
2 , output alphabet

{w1, · · · , wM}, and channel matrix given by

p(wj |Y )
def
= Pr{Ŵ = wj |Y = β1 · · ·βn} = δg(β1···βn),j .

A decoding error happens whenever Ŵ 6= W . What is the probability that a
decoding error occurs?
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A picture
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Decoding error probability

How to compute the error probability, i.e. Pr{Ŵ 6= W}?

Pr{Ŵ 6= W} def
=

∑
j 6=i

M∑
i=1

Pr{Ŵ = wj ,W = wi}

=
M∑

i,j=1

Pr{Ŵ = wj ,W = wi} −
M∑
i=1

Pr{Ŵ = wi,W = wi}

= 1−
M∑
i=1

Pr{Ŵ = wi,W = wi}

= 1−
∑
i

∑
X

∑
Y

p(wi|Y )p(Y |X)p(X|wi)pi

= 1−
∑
i

∑
X

∑
Y

δg(Y ),ip(Y |X)δX,ci pi

= 1−
∑
i

∑
Y ∈g−1(i)

p(Y |ci)pi

The error probability crucially depends on the choice of the decoding function g.
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Ideal-observer (minimum error) decoding

Pr{Ŵ 6= W} = 1−
∑

j

∑
Y δj,g(Y )p(Y |cj)pj .

Rewrite p(Y |cj)pj as p(cj ,Y )
def
= Pr{cj sent and Y received}.

Rewrite it again as p(cj ,Y ) = p(cj |Y )pY , where

pY
def
= Pr{Y received} =

∑M
j=1 p(cj ,Y ).

Then, Pr{Ŵ 6= W} = 1−
∑

Y

∑
j δj,g(Y )p(cj |Y )pY .

Choose the decoding function g : Σ
(n)
2 → {1, 2, · · · ,M} in such a

way that p(cg(Y )|Y ) > p(cj |Y ), for all 1 6 j 6M .

Equivalently: g(Y ) = arg maxj p(cj |Y ).

This decoding method is called ideal-observer or minimum-error,
because it minimizes the error probability.

Meaning: upon receiving Y , use this piece of information to infer
the most probable codeword.

The ideal-observer decoding is optimal! However: the construction
depends on the choice of probabilities p1, · · · , pM , which is a serious
disadvantage.
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Maximum-likelihood decoding

Pr{Ŵ 6= W} = 1−
∑

j

∑
Y δj,g(Y )p(Y |cj)pj .

Choose a decoding function g : Σ
(n)
2 → {1, 2, · · · ,M} such that

p(Y |cg(Y )) > p(Y |cj), for all 1 6 j 6M .

Equivalently: g(Y ) = arg maxj p(Y |cj).

This decoding method is called maximum-likelihood (ML).

Meaning: upon receiving Y , decode it with the codeword ci that, if
sent, maximizes the probability of receiving Y .

Since, in general, p(Y |ci) 6= p(ci|Y ), ML decoding and ideal-observer
decoding may give different results.

Con: sub-optimal. Pro: independent of the pi’s, much easier to
implement.

Question: when do ML and ideal-observer decodings agree?
Answer: they agree if p1 = p2 = · · · = pM = 1

M .
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Example: minimum-error vs max-likelihood

Suppose you are at the receiver’s end of a binary symmetric channel
with error probability ε

def
= p0→1 = p1→0 = 9

10 .

Suppose you receive a ‘zero.’ What is the best guess for the input?

Since the channel introduce an error 90% of the times, one would say:
the best guess is that the input was ‘one.’

This is what a max-likelihood strategy says.

However, imagine that you know that the sender sends ‘zero’ with
probability p(in=0) = 19

20 and ‘one’ with p(in=1) = 1
20 .

Then, p(in=1|out=0) = p(in=1 and out=0)
p(out=0) = εp(in=1)

(1−ε)p(in=0)+εp(in=1) =
9
10

1
20

1
10

19
20

+ 9
10

1
20

= 9
28 ≈ 0.32.

Therefore p(in=0|out=0) = 1− p(in=1|out=0) ≈ 0.68.

According to the ideal-observer rule (the optimal one), the best guess
is that the input was ‘zero.’
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Minimum-distance decoding (Hamming distance)

Let Vn be the set of all binary sequences of length n.

Definition: given x,y ∈ Vn, their Hamming distance d(x,y) is defined as
the number of places in which x and y differ.

Example: take V4 and x = 0001 and y = 1011; then d(x,y) = 2 (first and
third digits are different).

Minimum-distance decoding: choose the decoding function

g : Σ
(n)
2 → {1, · · · ,M} such that d(Y , cg(Y )) 6 d(Y , cj), for all

1 6 j 6M .

Meaning: upon receiving Y , decode it with a codeword ci that is ‘as close
as possible’ to Y , according to the Hamming distance.

Min-Distance ≡ Max-Likelihood (for binary symmetric channels)

Proof. Let ε 6 1/2 the bit-flip probability of the channel. For any x,y ∈ Vn with
d(x,y) = k,

Pr{y received|x sent} = εk(1− ε)n−k,

which is maximum when k is minimum.
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Summary of lecture four

Discrete memoryless channels provide a simple (but very important)
model of communication channels

The coding problem is to design encoding-decoding methods that
allow the receiver to guess (with high reliability) the correct input,
avoiding errors.

The optimal decoding method is called ideal-observer decoding, but it
is not practical.

The maximum-likelihood and the minimum-distance decoding are
preferable.
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