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The discrete memoryless channel (DMC)

@ In lecture one, we said that a RV X is like a ‘device’ that outputs an element from
a set {x1,---,xn} with probability Pr{X = z;} = p;.

@ Imagine now a ‘device’ that has an output and an input: it accepts strings of
symbols from its input alphabet ¥ = {a1, - ,am} and emits strings of symbols
from an output alphabet o = {b1, - , b, }.

@ A discrete memoryless channel (DMC) is given by: an input alphabet
¥1 ={a1, -+ ,am}, an output alphabet X5 = {b1,--- ,b,}, and a channel matrix
P = IIpij]]ij (1 <i<m,1<j < n) of transition probabilities:

Dij d:efp(bj|az-) & Pr{output is b;|input was a;}.

Therefore, p;; > 0 for all 7 and j, and Zj pij = 1 for all 3.

@ Memory trick. To remember which is the input and which is the output, think as
if pij = pisj-

@ The channel is ‘discrete’ because input and output alphabets are discrete sets.

@ The channel is ‘memoryless’ because the channel matrix P remains the same for
repeated uses.
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Example: the binary erasure channel
qQ
\/G/

In this case, 31 = {0,1}, 3» = {0,1,®}, and

P=|0]|1—¢ 0 €
1 0 1—€] €
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Example: the binary symmetric channel

P

In this case, 31 = 39 = {0,1} and

P={0]|1-—p P
1) p |1-p
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Input and output of a DMC as RVs

@ Let X be a RV with range X = {x1, -+ ,zm} and probability distribution

(pla T ,pm)
@ Take now a DMC N with input alphabet X, output alphabet Y = {y1, - ,yn},
and channel matrix P = [p;;].

@ What happens if we ‘feed’ X through N7?

® Pr{outputis y;'} = > 00, Pr{X = zi}pi; = 317, pipis.

@ We obtain another RV Y, with range equal to ) and probability distribution
(g1, qn) where g; = 3, pipij.

|/O joint distribution

With the notation introduced above, the action of a DMC channel A/ on
an input RV X gives rise to a pair of dependent RVs (X,Y') with joint
probability distribution given by

Pr{X =z; and Y = y;} = pipi;.

Sometimes we write Y = NV (X).

v
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r-th extension of a DMC: in series

What happens when we feed a string of r symbols (a1, -+ ,ar) € EY) through a discrete
memoryless channel?

N\
i \

o

OLT ©0\ OCS ?<2—~>

a \\ i

The r-th extension of a DMC is then itself a DMC from an input r-dimensional RV X with

range Egr), to an output r-dimensional RV Y with range Zgr). The channel matrix is given by

the product of the transition probabilities:

Pr{Y =1 B|X = a1+ ar} E p(Y]X) = p(Bi]er) - p(Brlar).

Francesco Buscemi Fundamentals of Mathematical Informatics Lecture Four 7/21

r-th extension of a DMC: in parallel

We can also think of channel extensions this way:

We have now many copies of the same noisy channel acting ‘in parallel.’

Mathematically, serial and parallel extensions are equivalent.
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Example: sending a message through a binary symmetric

channel

@ Imagine that we want to send one word s;, chosen at random among
eight possible words {s1,--- ,ss}, via a binary symmetric DMC.

@ First, we have to encode all words in binary alphabet (the channel
only accepts Os and 1s!).

@ s1 — 000,s2 — 001,--- 58— 111.

@ Here we use the third extension of the binary symmetric channel (the
input consists of three bits.)

@ What is the probability that the receiver gets the wrong word?
Pr{wrong word} = 1 — Pr{correct word} =1 — (1 — p)3 =
p(3 —3p+p?). (For p=0.51is ~ 0.88; for p = 0.1 is ~ 0.27.)

@ Can we do better?
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First idea: repetition codes (repeating words)

@ Let's try to send each word twice through the channel, i.e.,
s1 — 000000, s2 — 001001, -+ ,s8 — 111 111.

@ As a decoding rule, if the receiver does not get the same word twice in succession, she
requests an immediate resending.

@ What is the probability of decoding error in this case, i.e., the probability that the receiver
gets the wrong word without detecting it?

@ First possibility: one error in the first three bits and one error, in the same position, in the
second three bits. This contributes with 3 x p(1 — p)2 x p(1 — p)? = 3p?(1 — p)*.

@ Second possibility: two errors in the first three bits, and two errors, in the same positions,
in the second three bits. This contributes with 3 x p?(1 — p) x p?(1 — p) = 3p*(1 — p)?.

@ Third possibility: six errors in a row. This contributes with p©.

@ Total decoding error probability: p?(3 — 12p + 21p? — 18p3 + Tp*). (For p = 0.5 is
~ 0.11; for p = 0.1 is =~ 0.02.)

@ But: it requires feedback from the receiver, for each letter sent.
@ But: with increasing length, the receiver will almost always request a resending.

@ Hence: zero total decoding error requires infinite repetitions (no reliable communication is
possible)
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Second idea: parity-check codes

@ Instead of just repeating codewords, we can try to exploit another idea.

@ Parity-check coding: it adds one extra bit (the ‘parity bit') at the end of
each codeword, so that the sum of the digits is always even.

@ In our case, this gives:
s1+— 0000,s0 — 0011,s3 — 0101,s84 +— 0110,---sg +— 1111.

@ If the receiver gets four bits whose sum is odd, she requests an immediate
resending. (Hence the name, ‘parity-check.")

@ What is the probability of decoding error in this case, i.e., the probability
that the receiver gets the wrong word without detecting it?

@ A wrong decoding happens if there were two or four errors, therefore the
decoding error probability is 6p?(1 — p)? + p*. (For p = 0.5 is ~ 0.44; for
p=0.11is =~ 0.05.)

@ But: this code requires feedback.

@ Remark: this simple idea can be improved, and it is at the basis of some
very important families of codes (Low Density Parity-Check, LDPC).
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@ Take a DMC with X7 and Y5 as input and output alphabets,
respectively.

@ An (M,n) code consists of the following:

Q An indexset {1,2,---, M}.

@ An encoding function e: {1,2,--- ,M} — Egn) (i.e., each ¢; £ ¢(4) is
a string of n symbols in X1, e.g., ¢; = ajas -+ - ).

© A decoding function g : Eén) —{1,2,--+ ,M}.

@ The collection € = {c1,--- ,cpr} is called the codebook and its
elements are called the codewords. M (the number of codewords) is
the size of the code, while n (the length of each codeword) is its
length.
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Encoding-transmission-decoding: chain of RVs

The encoding-transmission-decoding process can be summarized as:

En N Dy 12
W > X »Y s W

What does this mean?

@ W, the message: a RV with range {w1, -+ ,wan} and probabilities p1,---par.
@ &, : W — X, the length-n encoding: a DMC with input alphabet {w1,--- ,wa},
output alphabet Eg”), and channel matrix given by

p(X|w;) &f Pr{X =a1-an|W=w} =0x,,-

@ N, : X =Y, the n-th extension of the communication channel: a DMC with

input alphabet 25’”, output alphabet 2;7”, and channel matrix
def

p(Y|X) =Pr{Y =1 fu|X =1 an} = p(Bilar) - p(Bnlom).

@ D, : X — W, the decoding: a DMC with input alphabet Eé"), output alphabet

{w1,-- ,wn}, and channel matrix given by
def 2
p(w;|Y) = Pr{W = w;|Y = B1--- Bn} = 0g(8,---B,).5-

@ A decoding error happens whenever 144 # W. What is the probability that a
decoding error occurs?
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encoding noisy channel decoding
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Decoding error probability

@ How to compute the error probability, i.e. Pr{WW # W}?

M
Pr{W # W} défZZPr{W = w;, W = w;}

j#i i=1

M M
= Z Pr{W = w;, W = w;} — ZPr{W = w;, W = w;}
=1

i,j=1

M
ZI—ZPY{WZwi,WZwi}

—1- Z DO p(wiY)p(Y | X)p(X|w:)pi

@ The error probability crucially depends on the choice of the decoding function g.
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|deal-observer (minimum error) decoding

o Pr{lV # W} =1-3%".>yd;,xp(Y]|cj)p;.

o Rewrite p(Y'|¢;)p; as p(c;, Y) = Pr{c; sent and Y received}.

@ Rewrite it again as p(c;,Y ) = p(c¢;|Y )py, where
py = Pr{Y received} = Zﬁlp(cj, Y).

© Then, Pr{W #W} =1->"y Zj 0j,9v)P(c;|Y )py .

@ Choose the decoding function g : Egn) — {1,2,--- , M} in such a
way that p(c,yv)|Y) = p(¢;|Y), forall 1 < j < M.

e Equivalently: ¢g(Y') = argmax; p(c;|Y).

@ This decoding method is called ideal-observer or minimum-error,
because it minimizes the error probability.

@ Meaning: upon receiving Y, use this piece of information to infer
the most probable codeword.

@ The ideal-observer decoding is optimal! However: the construction

depends on the choice of probabilities p1,--- , pas, which is a serious
disadvantage.
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Maximum-likelihood decoding

° Pr{W +F#W}l=1- Zj Yy 5j,g(Y)p(Y|Cj)pj'

@ Choose a decoding function g : Egn) — {1,2,--- , M} such that
p(Yleyvy) =2 p(Yle;), forall 1 <j < M.

e Equivalently: ¢g(Y') = argmax; p(Y|c;).

@ This decoding method is called maximum-likelihood (ML).

@ Meaning: upon receiving Y, decode it with the codeword c¢; that, if
sent, maximizes the probability of receiving Y.

@ Since, in general, p(Y|c;) # p(c;|Y), ML decoding and ideal-observer
decoding may give different results.

@ Con: sub-optimal. Pro: independent of the p;'s, much easier to

implement.
@ Question: when do ML and ideal-observer decodings agree?
: ' O — 1
Answer: they agree if p1 =p2 = -+ =py = ;.
Francesco Buscemi Fundamentals of Mathematical Informatics Lecture Four 17 / 21

@ Suppose you are at the receiver's end of a binary symmetric channel
with error probability € d:efpo_>1 = P10 = 1%.

@ Suppose you receive a ‘zero.” What is the best guess for the input?

@ Since the channel introduce an error 90% of the times, one would say:
the best guess is that the input was ‘one.’

@ This is what a max-likelihood strategy says.

@ However, imagine that you know that the sender sends ‘zero’ with

probability p(in=0) = 33 and ‘one’ with p(in=1) = 5.

. A\ __ p(in=1 and out=0) ep(in=1) o
® The;'1p<ln_1|OUt_0> - p(out=0) T (1—€)p(in=0)4ep(in=1) ~—
T T = 2 ~ 0.32
10 20 " 10 20
@ Therefore p(in=0Jout=0) = 1 — p(in=1|out=0) ~ 0.68.
@ According to the ideal-observer rule (the optimal one), the best guess
is that the input was ‘zero.’
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Minimum-distance decoding (Hamming distance)

@ Let V,, be the set of all binary sequences of length n.

@ Definition: given x,y € V,,, their Hamming distance d(x, y) is defined as
the number of places in which @ and y differ.

@ Example: take V4 and « = 0001 and y = 1011; then d(x,y) = 2 (first and
third digits are different).

@ Minimum-distance decoding: choose the decoding function
g: 25 = {1,---, M} such that d(Y, ¢ y)) < d(Y,¢;), for all
1<j< M.

@ Meaning: upon receiving Y, decode it with a codeword c; that is ‘as close
as possible’ to Y, according to the Hamming distance.

Min-Distance = Max-Likelihood (for binary symmetric channels)

Proof. Let € < 1/2 the bit-flip probability of the channel. For any x,y € V,, with

d(x,y) =k,
Pr{y received|x sent} = €"(1 — )" %,

which is maximum when &k is minimum.

v
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Summary of lecture four

@ Discrete memoryless channels provide a simple (but very important)
model of communication channels

@ The coding problem is to design encoding-decoding methods that
allow the receiver to guess (with high reliability) the correct input,
avoiding errors.

@ The optimal decoding method is called ideal-observer decoding, but it
Is not practical.

@ The maximum-likelihood and the minimum-distance decoding are
preferable.
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