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This course will be about the theoretical foundations of information processing. Al-
ong this course, the word “information” will be used to denote the ability to distinguish between
alternatives. Such an ability can be encoded in a physical object, which can be communica-
ted from one place to another and transformed into another physical object. It is important
to introduce a “fundamental unit”, with respect to which one quantifies information. One bit
of information is an abstract quantity defined as the amount of information contained in the
answer to the question “which one between two alternatives?” M bits can (and are necessary
to) indicate one among 2M alternatives.

One abstract bit of information is always encoded in the state of a physical object, which
admits two distinguishable states. Information is acquired by performing an observation upon
the physical object carrying it. To understand how information can be acquired and processed
at the quantum level, we need to understand which states, which transformations, and
which observations are allowed by Quantum Theory (QT). We will find that the theory
of information constructed upon QT is substantially different from its classical analogue: tasks
like copying and deleting are generally impossible within QT, while new protocols like quantum
teleportation and super-dense coding will arise naturally.

+ Paragraphs denoted by the symbol “+” usually contains some remark, whose explanation is
only sketched, leaving the complete proof of the claim to the reader.

1 Basic mathematical tools

1.1 The space Cn with the dot-product

The mathematical framework of Quantum Theory is described by linear algebra. Therefore, it
is necessary to recall some basic notions in linear algebra.

Definition 1.1 (Matrices). Let m and n be two positive integer numbers. An m× n complex
matrix is an array of mn complex numbers cij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, arranged as

c11 c12 · · · c1n

c21 c22 · · · c2n
...

...
. . .

...
cm1 cm2 · · · cmn

 .

We will usually denote matrices by capital letters A,B,C, . . . . The set of allm×nmatrices forms
a linear space, in the sense that, given two m × n matrices A and B, their linear composition
αA+ βB, with α, β ∈ C, given by

αA+ βB = α


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

+ β


b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
bm1 bm2 · · · bmn



≡


αa11 + βb11 αa12 + βb12 · · · αa1n + βb1n
αa21 + βb21 αa22 + βb22 · · · αa2n + βb2n

...
...

. . .
...

αam1 + βbm1 αam2 + βbm2 · · · αamn + βbmn

 ,

is also a complex m × n matrix. Matrices can also be multiplied according to the matrix-
multiplication rule, i.e. given an m× n matrix A and an n× p matrix B, the matrix C := AB
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is defined as the m × p matrix with matrix elements cij given by cij =
∑n

k=1 aikbkj , for every
1 ≤ i ≤ m, 1 ≤ j ≤ p.

+ A complex number, then, can be seen as a 1× 1 complex matrix.

Definition 1.2 (Complex Vector Spaces). Let n be a positive integer number. The set of all
n× 1 complex matrices 

c1

c2
...
cn


forms an n-dimensional complex vector space, denoted by Cn, where addition and scalar multi-
plication are the same as for matrices. Elements of Cn are called (column) vectors and will be
usually denoted by lower-case Greek letters ψ, φ, χ, . . . . Any m × n matrix A induces a linear
operator A : Cn → Cm, whose action on vectors ψ in Cn is given by Aψ, understood as the
multiplication of an m× n matrix with an n× 1 matrix, resulting in an m× 1 matrix.

+ The so-called identity matrix on Cn is the n × n matrix with 1’s on its diagonal, and 0’s
everywhere else. The symbol used to denote such matrix is 1n.

+ The set of m× n complex matrices will be denoted by M(Cn,Cm). The set of square n× n
complex matrices will be denoted by M(Cn). The reason to adopt such notation will be made
clear later.

Definition 1.3 (Dot product). For a positive integer number n, let us consider the complex
vector space Cn. Given two vectors ψ, φ ∈ Cn,

ψ =


c1

c2
...
cn

 and φ =


d1

d2
...
dn

 ,

the dot product between ψ and φ, denoted as 〈ψ, φ〉, is defined as

〈ψ, φ〉 :=

n∑
i=1

c∗i di ∈ C.

According to the matrix multiplication rule, we have that

〈ψ, φ〉 =
(
c∗1 c∗2 · · · c∗n

)

d1

d2
...
dn

 .

Two vectors are called orthogonal if their dot product is equal to zero. The norm of a vector
ψ ∈ Cn is defined as ||ψ|| :=

√
〈ψ,ψ〉. �

Definition 1.4 (Standard basis). Let n be a positive integer number. The set of vectors
e = {ei : 1 ≤ i ≤ n}, where

ei :=


δ1i

δ2i
...
δni

 , with δkl =

{
1, k = l,

0, k 6= l,
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constitutes the so-called standard basis of Cn. Every vector ψ ∈ Cn can be expanded as
ψ =

∑n
i=1〈ei, ψ〉ei. �

+ It is easy to check that the set e defined above is a set of orthogonal vectors, all with
norm equal to 1. Vectors which are pairwise orthogonal and all norm-one are called, in short,
orthonormal.

1.2 Complex inner product spaces: Hilbert spaces

From a more formal level, it is useful to introduce the following notion of an abstract linear
space equipped with an inner product, generalizing the notion of the vector space Cn with the
dot product:

Definition 1.5 (Hilbert spaces). A (complex) Hilbert space is a vector space H over the field
of complex numbers C, equipped with a function, called inner (or scalar) product, 〈φ, ψ〉 ∈ C,
such that
1. 〈φ, ψ〉 = 〈ψ, φ〉∗ (hermitian symmetric);
2. 〈φ, c1ψ1 + c2ψ2〉 = c1〈φ, ψ1〉+ c2〈φ, ψ2〉 (right linear);
3. 0 ≤ 〈φ, φ〉 <∞, ∀φ ∈ H (positive semi-definite);
4. 〈φ, φ〉 = 0 if and only if φ = 0 (non-degenerate). �

+ For a mathematically rigorous definition, the following condition must be added: the norm
||φ|| :=

√
〈φ, φ〉 turns H into a complete metric space. Without going here into an explanation

of what this exactly means, we just notice that, in all the examples treated in this course, such
condition is always and automatically satisfied, so that we can effectively “forget” about it.

+ Note that, from properties 1 and 2, it follows that 〈c1φ1 + c2φ2, ψ〉 = c∗1〈φ1, ψ〉 + c∗2〈φ2, ψ〉,
i.e. the inner product is left anti-linear.

Definition 1.6. Two vectors φ, ψ ∈ H are called orthogonal if 〈φ, ψ〉 = 0. A vector ψ ∈ H is
called normalized if ||ψ|| :=

√
〈ψ,ψ〉 = 1.

Proposition 1.1 (Complete orthonormal system). A family {ψi}i of elements in a Hilbert space
H contitutes an orthonormal system (abbrev. ONS) if 〈ψi, ψj〉 = δij. For any orthonormal
system {ψi}i and any φ ∈ H,

||φ||2 ≤
∑
i

|〈ψi, φ〉|2.

If the equation above holds with equality for all φ ∈ H, then the orthonormal system {ψi}i is
called complete (abbrev. CONS). For any complete orthonormal system {ψi}i and any φ ∈ H,
the following expansion formula holds:

φ =
∑
i

〈ψi, φ〉ψi. � (1.1)

+ Everywhere in this course, we assume that for any Hilbert space H there exists a complete
orthonormal system with a finite number of elements. It can be proved that such a number is
uniquely defined. It is called the dimension of H, and it is denoted by dimH.

+ Canonical isomorphism. Let H a d-dimensional Hilbert space. Let us fix in H a complete
orthonormal system {ψi : 1 ≤ i ≤ d}. We can then construct an isomorphism H ↔ Cd as
follows:

ψi ←→ ei ≡


δ1i

δ2i
...
δdi

 . (1.2)
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By means of the expansion formula (1.1), the correspondence constructed above induces a one-
to-one correspondence between elements in H with elements in Cd as follows:

φ ←→


〈ψ1, φ〉
〈ψ2, φ〉

...
〈ψd, φ〉

 . (1.3)

With this correspondence, the inner product 〈, 〉 in H becomes the dot product in Cd. For these
reasons, in the following, every d-dimensional Hilbert space where a complete orthonormal
system has been fixed, will be considered as being, essentially, Cd with the dot product. We
will refer to such isomorphism as the canonical isomorphism.

Theorem 1.1 (Cauchy-Schwarz inequality). For any Hilbert space H and any ψ, φ ∈ H,

|〈ψ, φ〉| ≤ ||ψ|| ||φ|| . (1.4)

Proof. If ψ = 0 then the inequality holds. We will then assume ψ 6= 0. Let us define ω :=

φ − 〈ψ,φ〉
〈ψ,ψ〉ψ. By construction, then, 〈ψ, ω〉 = 0. But then, ||φ||2 =

∣∣∣∣∣∣ω + 〈ψ,φ〉
〈ψ,ψ〉ψ

∣∣∣∣∣∣2 = ||ω||2 +∣∣∣∣∣∣ 〈ψ,φ〉〈ψ,ψ〉ψ
∣∣∣∣∣∣2 ≥ |〈ψ,φ〉|2||ψ||4 ||ψ||

2, i.e. ||φ||2 ||ψ||2 ≥ |〈ψ, φ〉|2.

In proving the Cauchy-Schwarz inequality, we decomposed a given vector φ as a sum of two
vectors, ω+ 〈ψ,φ〉

〈ψ,ψ〉ψ, where the first one (i.e. ω) is orthogonal to ψ, while the second component

is parallel to ψ. It is then easy to recognize that the component 〈ψ,φ〉〈ψ,ψ〉ψ represents the orthogonal
projection of φ onto ψ:

Definition 1.7 (Orthogonal Projection). Let ψ ∈ H be a non-zero vector. Then, for any
φ ∈ H, the orthogonal projection of φ onto ψ is given by the action of the following operator:

Πψ(φ) :=
〈ψ, φ〉
〈ψ,ψ〉

ψ =

〈
ψ

||ψ||
, φ

〉
ψ

||ψ||
.

As a consequence of the right-linearity of the inner product, the operator Πψ is linear, i.e. for
any c1, c2 ∈ C and φ1, φ2 ∈ H, Πψ(c1φ1 + c2φ2) = c1Πψ(φ1) + c2Πψ(φ2).

1.3 Linear mappings and Dirac’s bra-ket notation

As we noticed in Definition 1.7, the orthogonal projection is linear in its input φ. More generally,
we have the following definition:

Definition 1.8. Let H and K be two Hilbert spaces. A mapping F : H → K is called linear
if, for any ψ1, ψ2 ∈ H and any c1, c2 ∈ C, F (a1ψ1 + a2ψ2) = a1F (ψ1) + a2F (ψ2).

Theorem 1.2 (Riesz representation theorem). For any linear mapping F : H → C (usually
called linear functional), there exists a unique φ ∈ H such that F (ψ) = 〈φ, ψ〉, for all ψ ∈ H.

Theorem 1.3. A linear mapping F is completely and uniquely specified by its action on a
complete orthonormal system {ψi}i of H. Conversely, given a complete orthonormal system
{ψi}i in H and any vectors {φi} in K, there exists a unique linear mapping F : H → K such
that F (ψi) = φi, for all i.
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Indeed, once the vectors F (ψi) ∈ K are specified, the action of F on any vector φ ∈ H is
uniquely given by means of the expansion formula (1.1):

F (φ) = F

(∑
i

〈ψi, φ〉ψi

)
=
∑
i

〈ψi, φ〉F (ψi) =
∑
i

〈ψi, φ〉φi. (1.5)

The above equation shows that any linear mapping F : H → K can be written as a sum of
elementary linear mappings f : H→ K of the form

f(•) := 〈ψ, •〉ω, (1.6)

where ψ ∈ H and ω ∈ K, and the symbol “•” is used to denote any input vector in H. The
“bra-ket notation” introduced by Dirac is very convenient to denote such elementary linear
mappings:

Definition 1.9 (Dirac bra-ket notation). Let H be a d-dimensional Hilbert space. For any
ψ ∈ H, the Dirac’s ket symbol |ψ〉 is used to denote the vector ψ, while the Dirac’s bra symbol
〈ψ| is used to denote the linear functional 〈ψ, •〉 : H → C. In an expression, when a bra and a
ket appear consecutively, i.e. 〈φ||ψ〉, one bar is dropped, and the resulting symbol 〈φ|ψ〉 (that
is, a bra(c)ket !) represents the inner product 〈φ, ψ〉. Correspondingly, an elementary linear
mapping as that in Eq. (1.6) can be conveniently represented as outer product as follows:

f ←→ |ω〉〈ψ|,

so that the action of f can be written as a multiplication of objects from left to right, i.e.

|ω〉〈ψ| |φ〉 = |ω〉〈ψ|φ〉 ←→ ω〈ψ, φ〉.

+ In terms of the correspondence H ↔ Cd, Dirac’s ket symbol |ψ〉 is represented by a column
vector as follows:

|ψ〉 ≡


c1

c2
...
cd

 ,

while Dirac’s bra symbol 〈ψ| is represented by a row vector as follows:

〈ψ| ≡
(
c∗1 c∗2 · · · c∗d

)
.

Therefore, while the correspondence ψ 7→ |ψ〉 is linear, i.e. |a1ψ1 + a2ψ2〉 = a1|ψ1〉+ a2|ψ2〉, the
correspondence φ 7→ 〈φ| is anti-linear, i.e. 〈b1φ1 + b2φ2| = b∗1〈φ1|+ b∗2〈φ2|.

+ From Eq. (1.5), any linear mapping F : H→ K can be written as a sum F =
∑

j |F (ψj)〉〈ψj |.
Let now {ωi}i be an orthonormal system in K. Let us expand F (ψj) =

∑
i〈ωi|F (ψj)〉ωi. Corre-

spondingly, we can write F =
∑

ij〈ωi|F (ψj)〉|ωi〉〈ψj |. According to the canonical isomorphism
H↔ Cn, K↔ Cm, the mapping F is represented by the m×n matrix [[fij ]

m
i=1]nj=1 ∈M(Cn,Cm),

where fij = 〈ωi|F (ψj)〉.

Example 1.1. How to write the identity mapping I : H→ H in Dirac’s notation? Let {ψi}ni=1

be a complete orthonormal system for H. Then the expansion formula (1.1) holds, i.e.

|φ〉 =
n∑
i=1

|ψi〉〈ψi|φ〉,
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for any φ ∈ H. Therefore, the identity mapping I : H → H can be written in bra-ket notation
as I =

∑
i |ψi〉〈ψi|. Notice that the choice of the orthonormal system {ψi}i does not matter:

let {ωi}i be another complete orthonormal system for H; then, again, I =
∑

i |ωi〉〈ωi|. As
expected, the matrix in M(Cn) corresponding to I is the identity matrix 1n.

Example 1.2. How to write the orthogonal projection on a vector ψ 6= 0? Remember
(see Definition 1.7) that Πψ(φ) = ||ψ||−2 〈ψ, φ〉ψ. Therefore, in bra-ket notation, Πψ(|φ〉) =
||ψ||−2 |ψ〉〈ψ|φ〉, i.e.

Πψ =
1

||ψ||2
|ψ〉〈ψ|.

Example 1.3. How to write the orthogonal projection on a subspace V ⊂ H? Let {vk}k an
orthonormal system spanning the subspace V . Then, the orthogonal projection onto ΠV : H→
V can be written as

ΠV =
∑
k

|vk〉〈vk|.

As in the case of the identity (Example 1.1), also here the choice of the orthonormal set spanning
V does not matter in the definition of ΠV .

1.4 Kernel, Image, and rank of a linear map

kernel, image, rank
isomorphisms

Exercise 1.1. What is the rank of an elementary linear mapping as that in Eq. (1.6)?

1.5 The algebra L (H)

The set L (H) is defined as the set of all linear mappings F : H → H. Such a set is in fact an
algebra, since it is a vector space with the natural composition rule G ◦ F .

+ Let d be the dimension of H. We saw before that, by fixing a complete orthonormal system
in H, H becomes equivalent to Cd, and the set L (H) becomes equivalent to the set M(Cd) of
d× d matrices of complex numbers. We will denote the complete orthonormal system fixed in
H as e = {ei : 1 ≤ i ≤ d}.

For any A ∈ L (H), the following definitions are given:

• the action of A on a ket |ψ〉 is defined as A|ψ〉 := |Aψ〉;

• A can be written as
∑

i,j a(i, j)|ei〉〈ej |, with a(i, j) ∈ C; the square d×d matrix of numbers
[[a(i, j)]]ij is the matrix representation (with respect to e) of A (the matrix representation
depends on the choice of basis);

• the kernel of A is the linear subspace KerA := {ψ ∈ H : Aψ = 0}; the nullity of A is defined
as the dimension of KerA; the support of A is the linear subspace SuppA := (KerA)⊥;
the range or image of A is the linear subspace RngA := {Aψ : ψ ∈ H}; the rank of
A is defined as r(A) := dimSuppA = dimRngA; the rank-nullity theorem states that
r(A) + dimKerA = d;

• the Hermite conjugate (or adjoint or dagger) operator A† is defined by the relation
〈φ,A†ψ〉 := 〈Aφ,ψ〉 = 〈ψ,Aφ〉∗, for all φ, ψ ∈ H; the adjoint of a product AB is equal to
B†A†;
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• A is normal if [A,A†] := AA† −A†A = 0, i.e. if A and A† commute;

• A is self-adjoint (or Hermitian) if A† = A; A is skew-Hermitian if A† = −A; any Hermitian
and skew-Hermitian operators are, in particular, normal;

• a self-adjoint operator A is an orthogonal projector if A2 = A and ||A|| = 1;

• A is unitary if AA† = A†A = 1; any unitary operator is, in particular, normal;

• the norm of a linear operator A is defined as ||A|| := max||ψ||=1 ||Aψ||;

• the complex conjugate (with respect to e) of A is defined as A∗ :=
∑

i,j a(i, j)∗|ei〉〈ej |
(complex conjugation depends on the choice of basis); the complex conjugation of a pro-
duct AB is equal to A∗B∗;

• the transpose (with respect to e) of A is defined as AT :=
∑

i,j a(i, j)|ej〉〈ei| (transposition

depends on the choice of basis); the transposition of a product AB is equal to BTAT ;

• the hermitian conjugate of a linear operator A can also be expressed as the linear opera-
tor corresponding to the matrix (A∗)T = (AT )∗; notice that, even though both complex
conjugation and transposition are basis dependent, the hermitian conjugate is basis inde-
pendent, as noticed above;

• Optional: the pseudoinverse A−1 is uniquely defined by the four conditions (i) AA−1A =
A; (ii) A−1AA−1 = A−1; (iii) (A−1A)† = A−1A; (iv) (AA−1)† = AA−1; A is invertible if
A−1A = AA−1 = I, in which case A−1 is called the inverse of A;

• the trace of A is defined as TrA :=
∑d

i=1〈ei|A|ei〉 =
∑

i a(i, i) (Theorem 1.4 below shows
that the trace is a basis-independent quantity); the trace is linear, i.e. Tr[a1A1 + a2A2] =
a1 TrA1 + a2 TrA2, for any A1, A2 ∈ L (H) and a1, a2 ∈ C; finally, one can directly verify
that Tr [A |ψ〉〈φ|] = 〈φ|A|ψ〉 = 〈φ,Aψ〉, for any A,ψ, φ.

+ If e = {ei} and f = {fi} are two complete orthonormal systems for H, then there exists a
unitary operator U ∈ L (H) such that fi = Uei, for all i.

Theorem 1.4 (Cyclicity and invariance of trace). The trace operation Tr satisfies
TrAB = TrBA, for any A,B ∈ L (H). This implies that TrA does not depend on
the choice of the basis e used to compute it.

Proof. Let us expand A and B as A =
∑

i,j a(i, j)|ei〉〈ej | and B =
∑

k,l b(k, l)|ek〉〈el|. Then,
AB =

∑
i,j,l a(i, j)b(j, l)|ei〉〈el| and BA =

∑
k,l,j b(k, l)a(l, j)|ek〉〈ej |, where we used the fact

that 〈ej |ek〉 = δj,k. This implies that TrAB =
∑

i,j a(i, j)b(j, i) =
∑

k,l b(k, l)a(l, k) = TrBA.
Now, suppose that we are given another orthonormal basis f = {f1, · · · , fd} for H. We know

that there exists a unitary operator U such that |fi〉 = U |ei〉, for all i. The trace of A computed
with respect to the basis f is equal to Trf A :=

∑
i〈fi|A|fi〉 =

∑
i〈ei|U †AU |ei〉 = TrU †AU =

TrAUU † = TrA.

Remark 1.1. Another way to introduce the trace operation, such that the independence of the
particular choice of basis is made apparent from the beginning, is to define

Tr[|u〉〈v|] = 〈v|u〉,

for any u, v ∈ H, and then extend this definition by linearity to any linear operator, via
decomposition (1.5).
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Theorem 1.5 (Conditions for equality). For any A,B ∈ L (H), the following are equivalent:

• A = B;

• Aψ = Bψ, for all ψ ∈ H;

• Tr[A |ψ〉〈φ|] = Tr[B |ψ〉〈φ|], for all ψ, φ ∈ H;

• Tr[A |ψ〉〈ψ|] = Tr[B |ψ〉〈ψ|], for all ψ ∈ H.

Proof. The first three conditions essentially represent the definition of the identity A = B. The
last condition is a consequence of the generalized polarization identity, which can be expressed
as

〈φ,Aψ〉 =
1

4

∑
a

a〈aφ+ ψ,A(aφ+ ψ)〉, a ∈ {1,−1, i,−i}. (1.7)

Remark 1.2. Up to here, and until the end of the notes, we take the underlying field to be the
set of complex numbers C. It seems important to notice, therefore, that some of the results
given so far holds only in such a case. For example, the last condition of Theorem 1.5 is not
equivalent to the other three if the underlying field is the set of real numbers R. This can be
easily seen by considering, e.g., the operator T (x, y) = (−y, x) acting on R2. Then, for any
ψ ∈ R2, 〈ψ|T (ψ)〉 = 0, even though T 6= 0.

1.6 The Spectral Theorem and other canonical forms

Theorem 1.6 (Spectral theorem, matrix form). A ∈ L (H) is normal, if and
only if there exists a unitary operator U and a diagonal (w.r.t. e) matrix Λ =
diag[λ1, λ2, · · · , λd], λi ∈ C, such that A = UΛU †. The diagonal entries of Λ are
the eigenvalues of A, and the columns of U are the corresponding eigenvectors and
they are orthonormal. If the same eigenvalue appears in Λ more than once, that ei-
genvalue is said to be degenerate. For each eigenvalue λi, the degeneracy parameter
νi is the number of times the eigenvalue λi appears in Λ.

+ A is self-adjoint if and only if λi ∈ R, for all i. A is unitary if and only if |λi| = 1, for all i.

+ One can restate the above theorem as follows: A ∈ L (H) is normal, if and only if there
exists a complete orthonormal system {ψk : 1 ≤ k ≤ d} in H such that A =

∑d
k=1 λk|ψk〉〈ψk|.

+ Any orthogonal projector A is self-adjoint, and hence it is, in particular, normal. Therefore, it
can be written as A =

∑d
j=1 λj |αj〉〈αj |, where the vectors αj ∈ H form a complete orthonormal

system. By the condition A2 = A, every λj must be either one or zero. Recalling that the rank
of A, denoted by r(A) is the dimension of SuppA, one can conclude that for any orthogonal
projector A, there exists a complete orthonormal system {αj : 1 ≤ j ≤ d} in H, such that

A can be written as A =
∑r(A)

j=1 |αj〉〈αj |. Conversely, for any given (not necessarily complete)
orthonormal system b = {βk : 1 ≤ k ≤ s}, the operator Πb :=

∑s
k=1 |βk〉〈βk| is the orthogonal

projector onto the subspace S = span{βk; 1 ≤ k ≤ s} ≡ SuppΠb = RngΠb.
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Remark 1.3. As a consequence of the Spectral Theorem, any normal operator A is unitarily
equivalent to its transpose AT . This can be easily proved by noticing that the condition A =
UΛU † implies that AT = U∗ΛUT , or, equivalently, Λ = UTATU∗, since ΛT = Λ. Then,
A = UUTATU∗U †. In general, however, this is not true. A counter-example is given in
[A. George and K. D. Ikramov, Lin. Alg. Appl. 349, 11-16 (2002)] as1 0 0

4 3 0
0 2 5

 . (1.8)

The proof relies on advanced techniques and intensive numerical search. For a complete cha-
racterization of matrices which are unitarily equivalent to their transpose, see [S. R. Garcia
and J. E. Tener, arXiv:0908.2107v3]. On the other hand, it is important to stress that A
and AT always have the same eigenvalues. (This is because det(A − λ1) = 0 if and only if
det(AT − λ1) = 0, since the determinant is invariant under transposition.) �

According to the Spectral Theorem above, a matrix A ∈ L (H) is normal, i.e. A†A = AA†, if
and only if there exists a complete orthonormal system {ψk : 1 ≤ k ≤ d} ⊂ H and a family of
complex numbers {λk : 1 ≤ k ≤ d} ⊂ C, such that A =

∑d
k=1 λk|ψk〉〈ψk|. We know that some

of the λk’s can be equal: we can always reorder the terms of the sum in such a way that, in
general, the list of the λk’s will look like the following:

λ1 = λ2 = · · · = λν1︸ ︷︷ ︸
µ1 rep. ν1 times

6= λν1+1 = · · · = λν1+ν2︸ ︷︷ ︸
µ2 rep. ν2 times

6= λν1+ν2+1 = · · ·︸ ︷︷ ︸
···

6= λ∑`−1
i=1 νi+1 = · · · = λd︸ ︷︷ ︸
µ` rep. ν` times

. (1.9)

According to this reordering, each eigenvalue λk of A is addressed by specifying two numbers, i.e.
a complex number µi and an integer j between 1 and νi. The eigevector ψk is correspondingly
denoted as ψ(µi,j). The general form of a normal operator A can then be written as:

A =
∑̀
i=1

νi∑
j=1

µi|ψ(µi,j)〉〈ψ(µi,j)|, (1.10)

where ` ≡ `(A) is the number of distinct eigenvalues of A.
The notation is further simplified by dropping the letter ψ in the bra’s and ket’s, and by taking
the first sum to run over all distinct eigenvalues of A, so that

A =
∑
µ

ν(µ)∑
j=1

µ|µ, j〉〈µ, j|. (1.11)

For each distinct eigenvalue µ of A, we introduce the following orthogonal projectors

ΠA(µ) :=

ν(µ)∑
j=1

|µ, j〉〈µ, j|, (1.12)

so that
A =

∑
µ

µΠA(µ). (1.13)

Theorem 1.7 (Spectral theorem, operator form). A ∈ L (H) is normal, if and only
if there exists a set of complex numbers {µi}i, with µi 6= µj, and a set of orthogonal
projectors {ΠA

i }i, with ΠA
i ΠA

j = δijΠ
A
i and

∑
i ΠA

i = I, such that

A =
∑
i

µiΠ
A
i .
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Theorem 1.8 (Simultaneous diagonalisation). A family of operators (Ak; k = 1, · · · ,K) is
simultaneous diagonalisable, i.e. there exists a unitary operator U such that Ak = UΛkU

† for
all k, if and only if the family is commutative, i.e. [Ak, Ak′ ] = 0, for all k and k′.

Definition 1.10 (Positive operators). The operator A is said to be positive if
〈ψ|A|ψ〉 ≥ 0, for all ψ ∈ H; A is said to be strictly positive if 〈ψ|A|ψ〉 > 0, for
all ψ ∈ H, ψ 6= 0.

Theorem 1.9 (Conditions for positivity). For any A ∈ L (H), the following are equivalent:

• A is positive;

• A is self-adjoint and all its eigenvalues are non-negative (strictly positive if and only if A
is strictly positive);

• A = B†B for some operator B;

• A = B2 for some positive operator B; such a B is unique and it is equivalently denoted
as A1/2 or

√
A.

+ For any operator A ∈ L (H), the operator A†A is positive. We can hence consider its square
root

√
A†A. The resulting positive operator is called the absolute value of A and it is denoted

by |A|.

+ A 2 × 2 self-adjoint matrix is positive, if and only if both its trace and determinant are
non-negative.

Theorem 1.10 (Singular-value decomposition (SVD)). For any A ∈ L (H), there exist unitary
operators U,W ∈ L (H) such that

A = UΣW, (1.14)

where Σ = diag[s1, s2, · · · , sd], si ∈ R, and s1 ≥ s2 ≥ · · · ≥ sd ≥ 0. The positive numbers si are
called the singular values of A.

+ For any A ∈ L (H), the singular values of A are the eigenvalues of |A|, repeated according
to their degeneracy and listed in decreasing order.

Theorem 1.11 (Polar decomposition). For any A ∈ L (H), there exists a unitary operators
U, V ∈ L (H) such that

A = U(A†A)1/2, A = (AA†)1/2V. (1.15)

Corollary 1.1. For any A ∈ L (H), there exists a unitary operator W ∈ L (H) such that
A†A = W (AA†)W †.

Proof. From eq. (1.15), for any A ∈ L (H), there exists a unitary U ∈ L (H) such that A =
U(A†A)1/2. This implies that AA† = U(A†A)1/2(A†A)1/2U † = U(A†A)U †. By choosing W =
U † the statement is proved.

Definition 1.11 (Schatten p-norms). Given an operator A ∈ L (H), the Schatten p-norm of
A is defined as

||A||p :=

 d∑
j=1

(sj(A))p

1/p

, 1 ≤ p ≤ ∞. (1.16)

From p-norms, we recover the usual operator norm ||A|| of A as ||A||∞ = s1(A). The 1-norm

||A||1 =
∑d

j=1 sj(A) = Tr |A| is also called trace-norm of A. The 2-norm ||A||2 =
√

Tr[A†A] is
also called the Hilbert-Schmidt or Frobenius norm. �
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Theorem 1.12. For any A,B ∈ L (H) and any 0 ≤ p ≤ ∞, ||A+B||p ≤ ||A||p + ||B||p
and ||AB||p ≤ ||A||p ||B||p. The analogue of the Cauchy-Schwarz inequality for operators is

|Tr[A†B]| ≤ ||A||2 ||B||2.

1.7 Some facts about L (H,K)

Let H1 and H2 be finite dimensional Hilbert spaces, possibly with d1 := dimH1 6= dimH2 := d2.
We denote the set of all linear operators from H1 to H2 by L (H1,H2). Let e = {e1, · · · , ed1}
and f = {f1, · · · , fd2} be the standard bases chosen for H1 and H2, respectively. Then, the set
L (H1,H2) becomes equivalent to the set M(Cd1 ,Cd2) of d2 × d1 complex matrices.

For any A ∈ L (H1,H2), the following definitions are given:

• the kernel of A is the linear subspace KerA := {ψ ∈ H1 : Aψ = 0} ⊆ H1; the support of
A is the linear subspace SuppA := (KerA)⊥ ⊆ H1; the range of A is the linear subspace
RngA := {Aψ : ψ ∈ H1} ⊆ H2; the rank of A is defined as r(A) := dim SuppA =
dimRngA;

• the operator norm of A is defined as ||A|| := max||ψ||=1 ||Aψ||;

• A can be written as
∑d2

i=1

∑d1
j=1 a(i, j)|fi〉〈ej |, with a(i, j) ∈ C; the rectangular d2 × d1

matrix of numbers [[a(i, j)]]ij is the matrix representation (w.r.t. e and f) of A (the matrix
representation depends on the choice of basis);

• for A ∈ L (H1,H2), the complex conjugate (w.r.t. e and f) A∗ ∈ L (H1,H2) of A
is defined as A∗ :=

∑
i,j a(i, j)∗|fi〉〈ej | (complex conjugation depends on the choice of

basis); if A ∈ L (H1,H2) and B ∈ L (H2,H3), (BA)∗ = B∗A∗ ∈ L (H1,H3);

• for A ∈ L (H1,H2), the transpose (w.r.t. e and f) AT ∈ L (H2,H1) of A is defined as
AT :=

∑
i,j a(i, j)|ej〉〈fi| (transposition depends on the choice of basis); if A ∈ L (H1,H2)

and B ∈ L (H2,H3), (BA)T = ATBT ∈ L (H3,H1);

• for A ∈ L (H1,H2), the Hermite conjugate (or adjoint) A† ∈ L (H2,H1) of A is defined by
the relation 〈φ,A†ψ〉 := 〈Aφ,ψ〉 = 〈ψ,Aφ〉∗, for all φ ∈ H1 and all ψ ∈ H2; the definition
of the adjoint is hence basis independent ; equivalently, using the notations introduced
above, A† = (A∗)T ; if A ∈ L (H1,H2) and B ∈ L (H2,H3), (BA)† = A†B† ∈ L (H3,H1);

• the pseudoinverse A−1 ∈ L (H2,H1) is uniquely defined by the four conditions (i)AA−1A =
A; (ii) A−1AA−1 = A−1; (iii) (A−1A)† = A−1A; (iv) (AA−1)† = AA−1; if dimH1 6=
dimH2 there is no notion of a full inverse;

• the trace operation is not defined for rectangular operators;

• conditions like normality and self-adjointness are defined only for square operators; hence,
there are no rectangular projectors, no rectangular positive operators, no rectangular
unitary operators;

• A ∈ L (H1,H2) is a partial isometry if both A†A and AA† are orthogonal projectors
in L (H1) and L (H2), respectively; A ∈ L (H1,H2) is an isometry (or an isometric
embedding) if A†A = I, where I denotes the identity map in L (H1).

While the Spectral Theorem is about square operators only, the Singular-value Decomposition
(SVD) and the Polar Decomposition can be given also for rectangular operators.
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Theorem 1.13 (Polar decomposition for rectangular operators). Let H1 and H2 be two Hilbert
spaces, and let d1 and d2 be their dimensions. For any A ∈ L (H1,H2), the following statements
hold:

1. if d1 ≤ d2, there exists an isometry W ∈ L (H1,H2) such that

A = WQ, (1.17)

where Q = (A†A)1/2 is a positive semidefinite operator in L (H1);

2. if d1 ≥ d2, there exists an isometry V ∈ L (H2,H1) such that

A = PV †, (1.18)

where P = (AA†)1/2 is a positive semidefinite operator in L (H2).

Corollary 1.2. Let A ∈ L (H1,H2). If d1 ≤ d2, there exists an isometry W ∈ L (H1,H2)
such that AA† = WA†AW †. If d1 ≥ d2, there exists an isometry V ∈ L (H2,H1) such that
A†A = V AA†V †. In other words, AA† and A†A have the same positive eigenvalues.

Theorem 1.14 (SVD for rectangular operators). For any A ∈ L (H1,H2), there exist unitary
operators V ∈ L (H2) and W ∈ L (H1) such that

A = V ΣW, (1.19)

where Σ ∈ L (H1,H2) is the d2 × d1 rectangular matrix defined as Σ =
∑d2

i=1

∑d1
j=1 sij |fi〉〈ej |,

with sij = 0 for i 6= j, and s11 ≥ s22 ≥ · · · ≥ sqq ≥ 0, where q = min{d1, d2}. The positive
numbers sii are called the singular values of A.

+ For any A ∈ L (H1,H2), the singular values sii are equal to the eigenvalues of (AA†)1/2,
repeated according to their degeneracy and listed in decreasing order.
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2 Mathematical description of quantum systems

2.1 Physical states and physical properties of quantum systems

The starting point of any empirical theory (i.e. a theory based on experiments and observations)
is to provide rules to describe the states of a physical system. As it is usually found on textbooks,
the first postulate is as follows:

Postulate 1 (Representations of quantum states). Any quantum system Q is associ-
ated with a unique Hilbert space HQ. Any state of Q is represented by a normalized
vector in HQ, i.e. ψ ∈ HQ such that 〈ψ|ψ〉 = 1.

Postulate 1 does not specify anything about the correspondence between states and vectors:
we are not told, for example, whether such a correspondence is one-to-one or not. In order to
clarify this important point, we first need to understand what does it mean that two states are
different. Intuitively, two states are (defined to be) different if there exists at least one physical
property that distinguish between the two. The problem is, however, that we do not know yet
what a physical property is in quantum theory.

The next postulate tells us how physical properties are represented in quantum theory. We
recall here the spectral decomposition (1.13) of self-adjoint operators A =

∑
µ µΠA(µ). We

further define, for any interval of the real line ∆ ⊆ R, the projector ΠA(∆) :=
∑

µ∈∆ ΠA(µ).
Since the eigenvalues of every observable A ∈ L (H) are finite,

ΠA(R) =
∑
µ

ΠA(µ) = 1, (2.1)

for every observable A.

Postulate 2 (Representation of physically measurable quantities). Any physical pro-
perty (or dynamical variable) of Q is represented in one-to-one correspondence by a
self-adjoint operator A ∈ L (HQ). Such operators are called the observables of Q. For
any physical property A of Q, the eigenvalues of A are the only possible values that a
measurement of the physical property A on Q can give.

Postulate 3 (Born statistical formula). Any observable A can be measured in any
state. In the case in which the state is represented by the vector ψ ∈ HQ, the measu-
rement of A returns a value in an interval ∆ ⊆ R with probability 〈ψ|ΠA(∆)|ψ〉. We
denote this probability by Pr{A ∈ ∆‖ψ}.

We can now refine Postulate 1 as follows: consider two vectors of HQ, ψ and φ, such that
φ = zψ, where z is a complex phase (i.e. z∗z = 1). The Born statistical formula tells us that

Pr{A ∈ ∆‖φ} =〈φ|ΠA(∆)|φ〉 = 〈zψ|ΠA(∆)|zψ〉 = z∗z〈ψ|ΠA(∆)|ψ〉 = 〈ψ|ΠA(∆)|ψ〉
=Pr{A ∈ ∆‖ψ},

for all intervals ∆ and all observables A. In other words, the two vectors ψ and φ will produce
exactly the same outcome statistics in any possible measurement, that is to say, both ψ and φ
represent the same physical state. We have therefore the following refinement of Postulate 1:

Postulate 1’ (Representations of quantum states). Any quantum system Q is asso-
ciated with a unique Hilbert space HQ. Any state of Q is represented, in one-to-one
correspondence, by a projector |ψ〉〈ψ|, ψ ∈ HQ with 〈ψ|ψ〉 = 1.
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By representing states by projectors, rather than vectors, we automatically get rid of the unp-
hysical overall phase, i.e. |ψ〉〈ψ| = |zψ〉〈zψ|, for any z ∈ C such that z∗z = 1. The Born
statistical formula too gets updated as follows:

Postulate 3’ (Born statistical formula). Any observable A can be measured in any
state. In the case in which the state is represented by the projector |ψ〉〈ψ|, the measu-
rement of A returns a value in an interval ∆ ⊆ R with probability Tr[ΠA(∆) |ψ〉〈ψ|].
We denote this probability by Pr{A ∈ ∆‖ψ}.

Example 2.1. Let us consider a two-dimensional quantum system Q, i.e. a quantum system
with Hilbert space H ∼= C2. Such a system is the simplest quantum system and it is called a
quantum bit, or, in short, qubit. Let the quantum system Q be in the state corresponding to

the vector ψ =

(
1
0

)
, i.e.

|ψ〉〈ψ| =
(

1 0
0 0

)
.

Suppose that we want to measure the observable

A =

(
a0 0
0 a1

)
,

with a0, a1 ∈ R, a0 6= a1. Postulate 3 tells us that Pr{A = a0‖ψ} = 1, while Pr{A = a1‖ψ} = 0.
This means that, in this case, a measurement of the physical quantity A will return the value a0

with certainty. In this case, hence, Quantum Theory can predict the result of the measurement.

Example 2.2. Let us consider the same observable A as in the example above, but the state

of the quantum system is now described by ψ = 1√
2

(
1
1

)
, i.e.

|ψ〉〈ψ| =
(

1/2 1/2
1/2 1/2

)
.

In this case, Postulate 3’ tells us that Pr{A = a0‖ψ} = Pr{A = a1‖ψ} = 1/2. This means that,
in this case, a measurement of the physical quantity A will return either the value a0 or the
value a1, each with 50% probability. In this case, hence, the possible value of the measurement
is completely random, even if we know the state of the quantum system in advance. In other
words, quantum theory cannot predict the result of the measurement, in this case.

+ From the previous examples, we learn that if we know that the state of a quantum system
Q, immediately before the measurement of an observable A, is an eigenvector |µ〉〈µ| of A, the
measurement of A on Q will return outcome µ with probability one. However, in general, it is
impossible to predict the outcome of a measurement, even if we know the observable A and the
state of the system ρ, exactly. In quantum theory, the outcome of a measurement is intrinsically
random.

Remark 2.1. In this course we consider only finite dimensional Hilbert spaces. This means
that we consider only finite dimensional quantum systems. What does it mean that a quantum
system is finite dimensional? From Postulates 2 and 3 above, a quantum system Q is finite
dimensional if and only if any physically measurable quantity of Q can assume only a finite
number of possible values. �
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2.2 Distinguishing states of quantum systems

Example 2.3 (Distinguishing quantum states). Suppose that a quantum system Q can rand-
omly be in a quantum state chosen between two possible ones, |ψ0〉〈ψ0| and |ψ1〉〈ψ1|. Is there an
observable on Q that we can measure so to determine in which state the system is? The problem
amounts to finding a measurable physical quantity (i.e. an observable) that, with probability
one, assumes values in disjoint intervals for |ψ0〉〈ψ0| and |ψ1〉〈ψ1|.

First case: the two states are orthogonal, i.e. 〈ψ0|ψ1〉 = 0. Then, it is easy to see that the
observable

A := α|ψ0〉〈ψ0|+ β|ψ1〉〈ψ1| (2.2)

satisfies our requirement, whenever α 6= β. Hence, if the states are orthogonal, there always
exists a measurement distinguishing them.

Second case: 〈ψ0|ψ1〉 = c0 6= 0. Then, we can linearly decompose |ψ1〉 as |ψ1〉 = c0|ψ0〉 +
(other terms). The state |ψ1〉〈ψ1| is then equal to

|ψ1〉〈ψ1| = |c0|2|ψ0〉〈ψ0|+ (other terms). (2.3)

Now, an observable A assumes a value in ∆ ⊆ R on |ψ0〉〈ψ0| with probability one if and only if
Tr[ΠA(∆) |ψ0〉〈ψ0|] = 1. Due to the decomposition (2.3) and the linearity of the trace, we have
that

Tr
[
ΠA(∆) |ψ1〉〈ψ1|

]
=|c0|2 Tr

[
ΠA(∆) |ψ0〉〈ψ0|

]
+ (other terms)

=|c0|2 + (other terms)

≥|c0|2

>0.

(2.4)

The above calculation shows that there is a non-zero probability that A assumes a value in the
same interval ∆ also on |ψ1〉〈ψ1|. This means that there is no observable that assumes values
in disjoint intervals for |ψ0〉〈ψ0| and |ψ1〉〈ψ1|, with probability one. Hence, if the states are not
orthogonal, there always exists a non-zero probability of mis-identification. �

It is not difficult to extend the same arguments to an arbitrary (finite) number of mixed states,
so that it is possible to prove the following:

Theorem 2.1 (Distinguishable states). A family of states (ψi)i is perfectly distinguishable if
and only if 〈ψi|ψj〉 = 0, for any i 6= j, i.e. they are all pairwise orthogonal.

2.3 Random samples of quantum systems

Let us now imagine a source of quantum particles, such that each particle can be in a state
|ψj〉〈ψj |, chosen among a family of possible vectors {ψ1, · · · , ψn} ⊂ H, with probability pj . We
say that each particle is a random sample from the ensemble ({pj}, {ψj}).

Theorem 2.2 (Random samples). Any random sample from the ensemble ({pj}, {ψj}) is as-
sociated with the operator ρ =

∑
j pj |ψj〉〈ψj |. In other words, there is no way to distinguish

among different ensembles having the same average state.

Proof. Any observable A, measured on a random sample of ({pj}, {ψj}), takes a value in the
interval ∆ with probability

Pr{A ∈ ∆‖({pj}, {ψj})} =
∑
j

pj Tr[ΠA(∆) |ψj〉〈ψj |]. (2.5)
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By linearity of the trace, Pr{A ∈ ∆‖({pj}, {ψj})} = Tr[ΠA(∆) ρ], with ρ =
∑

j pj |ψj〉〈ψj |.
Since this holds for any observable, the state of a random sample is correctly described by
ρ.

Since any operator ρ of the form ρ =
∑

j pj |ψj〉〈ψj | is positive (i.e. 〈v|ρ|v〉 ≥ 0 for all v ∈ H)
and has trace equal to one (i.e. Tr[ρ] = 1), we update Postulate 1 one final time as follows:

Postulate 1” (Representations of quantum states). Any quantum system Q is asso-
ciated with a unique Hilbert space HQ. Any state of Q is represented, in one-to-one
correspondence, by a positive operator ρ ∈ L (HQ), with Tr ρ = 1. Such operators are
equivalently called states, density operators, or density matrices of Q.

Definition 2.1. A state ρ ∈ L (H) is called pure if and only if the rank of ρ is equal to one.
This is equivalent to say that there exists a vector ψ ∈ H with ||ψ|| = 1 such that ρ = |ψ〉〈ψ|. If
ρ is not a pure state, then it is called mixed.

If the state we assign to a quantum system is pure, it means that we have perfect knowledge
about the system. Assigning a mixed state always implies that our knowledge of the system is
incomplete.

Proposition 2.1. A given density matrix ρ corresponds to a pure state if and only if ρ2 = ρ,
or equivalently, Tr[ρ2] = 1.

We can now formulate also Postulate 3 in its more general form:

Postulate 3” (Born statistical formula). Any observable A can be measured in any
state. In the case in which the state is represented by the density operator ρ, the
measurement of A returns a value in an interval ∆ ⊆ R with probability Tr[ΠA(∆) ρ].
We denote this probability by Pr{A ∈ ∆‖ρ}.

+ Given an observable A and a state ρ of a quantum system Q, while it is (in general) impossible
to compute the value that A assumes on Q, it is instead possible to compute the expected value
of A on Q. Such an “average” value, usually denoted by 〈A〉ρ and called the expectation value
of A on ρ, is defined as

〈A〉ρ := Tr[Aρ]. (2.6)

By expanding the observable as A =
∑

µ µΠA(µ), we have that 〈A〉ρ =
∑

µ µPr{A = µ‖ρ}.
This justifies the name “expectation value” given to 〈A〉ρ.

Example 2.4. Suppose, for example, that a source emits quantum particles randomly. The
only thing we know is that, half of the times (i.e. with probability 1/2), the particle’s state is

ρ1 =

(
1 0
0 0

)
,

half of the times is

ρ2 =

(
0 0
0 1

)
.

According to Theorem 2.2, Quantum Theory tells us that the state of every particle coming
out from the source is correctly described by the state

ρ̄ =
1

2

(
1 0
0 0

)
+

1

2

(
0 0
0 1

)
=

(
1/2 0
0 1/2

)
.
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Example 2.5. Again, as in the previous example, we have a source emitting quantum particles
randomly. This time, however, the source emits with probability 1/2 a particle in the state

σ1 =

(
1/2 1/2
1/2 1/2

)
,

with probability 1/2 a particle in the state

σ2 =

(
1/2 −1/2
−1/2 1/2

)
.

Even if the source is different from the source described in Example 2.4, the state of every
particle coming out from this source, according to Quantum Theory, is still given by

σ̄ =
1

2
σ1 +

1

2
σ2 =

(
1/2 0
0 1/2

)
= ρ̄.

Exercise 2.1. Find probabilities p1, p2, p3 = 1 − p1 − p2 and three quantum states τ1, τ2, τ3

such that p1τ1 + p2τ2 + p3τ3 = ρ̄, where ρ̄ is the same average state of the preceding examples.

+ According to Postulate 1, the state of a quantum system is described by a density matrix
ρ, i.e. a positive matrix with Tr ρ = 1. Since ρ is positive, it is also self-adjoint, so that we
can apply the Spectral Theorem 1.7 and write ρ in diagonal form ρ =

∑
j λj |ψj〉〈ψj |, where

λj are the eigenvalues and |ψj〉 are the corresponding orthonormal eigenvectors. Since ρ is
positive, λj ≥ 0, for all j. Since Tr ρ = 1,

∑
j λj = 1. These two conditions together mean that

the numbers λj form a probability distribution. Moreover, the matrices |ψj〉〈ψj | are themselves
density matrices, for all j. This means that Quantum Theory allows us to interpret any mixed
quantum state ρ as a random sample taken from a source emitting quantum particles in the
state |ψj〉〈ψj | with probability λj . A very important, very subtle point to stress now is that,
even if we can interpret any mixed state as a random sample, this does not mean that every
quantum system in a mixed state was actually produced as a random sampling. This feature of
Quantum Theory is a consequence of the phenomenon known as “quantum entanglement” (see
below).

Question 2.1 (Very difficult). Given a mixed state ρ ∈ L (H), how to characterize all the
ensembles of pure states ({pj}, {ψj}) such that ρ =

∑
j pj |ψj〉〈ψj |?
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2.4 Dynamics, composite quantum systems, quantum entanglement

Up to now, we learnt only how Quantum Theory describes the states and the physical properties
of quantum systems. However, we still know nothing about how a quantum system evolve in
time. This is the topic of the next postulate:

Postulate 4 (Schrödinger Equation). If a quantum system Q is isolated during the
time interval [t, t′], t ≤ t′, there exists a unitary operator U ∈ L (HQ), called the
time evolution operator, such that, if Q was in state ρ at time t, it will be in state
ρ′ = UρU † at time t′.

Remark 2.2. The name “Schrödinger Equation” given to Postulate 4 is not completely correct.
In fact, Postulate 4 describes how the state of a quantum system changes from an initial time t
to a final time t′: it deals hence with discrete time evolution. The equation originally proposed
by Schrödinger, however, deals with continuous time evolutions, and gives a rule to describe
how the state of a quantum system changes from an initial time t to a final time t+ dt, which
is infinitesimally close to t.

Remark 2.3. Postulate 4 tells us that any closed evolution is described by a unitary operator.
However, we usually assume that also the opposite is true: that to any unitary operator there
exists an arrangement that is able to implement it as a closed evolution. In other words, in
quantum computation one assumes that any unitary operator is a legitimate gate that can be
used in a logical circuit. See the following Example.

Example 2.6 (NOT and
√

NOT gates). As in classical computation, the NOT gate, i.e. x 7→
x⊕ 1 is important also in quantum computation. It is realized by the unitary matrix UNOT =(

0 1
1 0

)
. But in quantum computation we also have the square root of NOT, i.e. U√NOT =

1
2

(
1 + i 1− i
1− i 1 + i

)
, which has no analogue in classical computation.

The last postulate of Quantum Theory that tells us how to “put together” (or “combine”)
quantum systems into composite ones. This is very important: it is very often the case, in
fact, that a quantum system is not elementary, but composed of “smaller” building blocks (like
a molecule, for example, which is composed by atoms, which are in turn made of protons,
neutrons, and electrons, which are in turn..........). The following postulate, hence, provides us
the tools to “reverse engineer” such complex quantum systems, as compositions of interacting
parts.

+ However, before stating the postulate, we need to introduce the notion of “tensor product”
between vector spaces. Given the complex vector spaces Cm and Cn, let

v =


v1

v2
...
vm

 ∈ Cm and w =


w1

w2
...
wn

 ∈ Cn.
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The tensor product v ⊗ w (read “v tensor w”) is defined as the 1×mn matrix

v ⊗ w :=



v1


w1

w2
...
wn



v2


w1

w2
...
wn


...

vm


w1

w2
...
wn





≡



v1w1

v1w2
...

v1wn
v2w1

v2w2
...

vmwn


.

+ The following relations hold for any v, v1, v2 ∈ Cm, any w,w1, w2 ∈ Cn, and any c, c1, c2 ∈ C:

c(v ⊗ w) = cv ⊗ w = v ⊗ cw
(c1v1 + c2v2)⊗ w = c1v1 ⊗ w + c2v2 ⊗ w
v ⊗ (c1w1 + c2w2) = c1v ⊗ w1 + c2v ⊗ w2.

The tensor product space Cm ⊗ Cn is defined as the set containing all linear combinations of
tensor product vectors of the form v ⊗ w, for any v ∈ Cm and any w ∈ Cn. It is easy to see
that Cm ⊗ Cn ≡ Cmn.

+ What form have the linear operators acting on a tensor product vector space? Let A ∈
L (Cm) and B ∈ L (Cn) be written as

A =


a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
. . .

...
am1 am2 · · · amm

 and B =


b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
bn1 bn2 · · · bnn

 .

Then, the tensor product operator A⊗B is defined as

A⊗B : =



a11

b11 · · · b1n
...

. . .
...

bn1 · · · bnn

 · · · a1m

b11 · · · b1n
...

. . .
...

bn1 · · · bnn


...

. . .
...

am1

b11 · · · b1n
...

. . .
...

bn1 · · · bnn

 · · · amm

b11 · · · b1n
...

. . .
...

bn1 · · · bnn





≡


a11b11 a11b12 · · · a11b1n a12b11 a12b12 · · · a1mb1n
a11b21 a11b22 · · · a11b2n a12b21 a12b22 · · · a1mb2n

...
...

. . .
...

...
...

. . .
...

am1bn1 am1bn2 · · · am1bnn am2bn1 am2bn2 · · · ammbnn

 .
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+ The following relations hold for any A,A1, A2 ∈ L (Cm), any B,B1, B2 ∈ L (Cn), and any
c, c1, c2 ∈ C:

c(A⊗B) = cA⊗B = A⊗ cB
(c1A1 + c2A2)⊗B = c1A1 ⊗B + c2A2 ⊗B
A⊗ (c1B1 + c2B2) = c1A⊗B1 + c2A⊗B2.

(2.7)

The set of linear operators L (Cm⊗Cn) is defined as the set containing all linear combinations
of tensor product operators of the form A⊗B, for any A ∈ L (Cm) and any B ∈ L (Cn). Since,
as we noticed before, Cm⊗Cn ≡ Cmn, L (Cm⊗Cn) ≡ L (Cmn). Moreover, by treating L (Cm)
and L (Cn) as complex vector spaces by themselves, it is easy to see that L (Cm ⊗ Cn) =
L (Cmn) = L (Cm)⊗L (Cn).

We are now ready to state the last postulate:

Postulate 5 (Composition of quantum systems). Given two quantum systems Q and
R associated with Hilbert spaces HQ and HR, the composite bipartite system QR is
associated with the tensor product HQR = HQ ⊗ HR. The states of the compo-
site quantum system QR are in one-to-one correspondence with density matrices in
L (HQ ⊗HR). The physical properties of the composite quantum system QR are in
one-to-one correspondence with self-adjoint operators in L (HQ ⊗ HR). Any physi-
cal property of system Q, represented by the self-adjoint operator A ∈ L (HQ), is
identified with the observable A ⊗ 1R ∈ L (HQ ⊗HR) of the composite system QR.
Analogously, any physical property of system R, represented by the self-adjoint ope-
rator B ∈ L (HR), is identified with the observable 1Q ⊗ B ∈ L (HQ ⊗ HR) of the
composite system QR.

+ Let us suppose that HQ is an m-dimensional Hilbert space, and that HR is an n-dimensional
Hilbert space. By using the correspondence described in Eq. (1.2), we have that HQ

∼= Cm and
HR
∼= Cn. Then, HQ ⊗HR

∼= Cm ⊗ Cm.

+ By convention, the Dirac ket’s obtained from tensor product elements of HQ ⊗ HR, for
example ψ ⊗ φ, are equivalently written as |ψ ⊗ φ〉, or |ψ〉 ⊗ |φ〉, or even as |ψ〉|φ〉. The
corresponding bra’s can be written as 〈ψ ⊗ φ|, 〈ψ| ⊗ 〈φ|, or 〈ψ|〈φ|.

Exercise 2.2. Consider, for example, the case of C2⊗C2 ∼= C4. Now, consider the normalized
vector

y =
1

2


1
−1
−1
1

 ∈ C2 ⊗ C2.

Find vectors v, w ∈ C2 such that y = v ⊗ w. �

Exercise 2.3. Are all vectors in a tensor product space, for example Cm⊗Cn, in tensor product
form, for example v ⊗ w? Let’s consider again C2 ⊗ C2 ∼= C4. Given the normalized vector

z =
1√
2


1
0
0
1

 ∈ C2 ⊗ C2,
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find vectors v, w ∈ C2 such that z = v ⊗ w. �

Postulate 5 tells not only how to combine quantum systems, but also how to “split” them. It
gives us a rule that answer the following question: “If I know the density matrix describing the
joint state of a composite quantum system, how to derive the density matrix correctly describing
the state of each component?”

+ Suppose, for example, that the state of a composite system QR is described by the density
matrix ρQR ∈ M(Cm ⊗ Cn). From Postulate 5, we know that any physical property (i.e. self-
adjoint operator) A ∈ L (Cm) of Q is associated with the physical property (i.e. self-adjoint
operator) A′ := A ⊗ 1n ∈ L (Cm ⊗ Cn) of QR. What is the relation between A of Q and A′

fo QR? Suppose that the spectral decomposition of A is A =
∑

µ µΠA(µ). By equation (2.7),

A′ := A⊗1n =
[∑

µ µΠA(µ)
]
⊗1n =

∑
µ µ
[
ΠA(µ)⊗ 1n

]
. This implies that A′ has the same set

of eigenvalues of A, and that the corresponding spectral projectors are EA
′
(µ) = ΠA(µ)⊗ 1n.

Postulate 5 states the following: measuring the observable A′ on the composite system QR is
equivalent to measuring the observable A on Q alone. In other words, the probability that the
observable A takes a value µ in Q, is equal to the probability that the observable A′ = A⊗ 1n
takes the same value µ in QR. Therefore, given that the composite system QR is in state ρQR,
Postulate 5 implicitly determines the correct state ρQ of the system Q by the relation:

Tr
[
ΠA(µ) ρQ

]
≡ Pr{A = µ‖ρQ}

”Post. 5”
= Pr{A′ = µ‖ρQR} ≡ Tr

[
EA

′
(µ) ρQR

]
. (2.8)

The above equation, that must hold for all self-adjoint operators A ∈ L (Cm) and for all
eigenvalues µ of each A, determines a set of linear equations that uniquely identify the density
matrix ρQ, representing the state of Q.

We now introduce the following definition:

Definition 2.2 (Partial trace). Given a tensor product space Cm ⊗ Cn, the operation partial
trace over Cn

TrCn : M(Cm ⊗ Cn)→M(Cm), (2.9)

is defined on tensor product operators of the form A⊗B by the relation

TrCn [A⊗B] = ATr[B]. (2.10)

In terms of outer products, the above definition becomes TrA[|uA〉〈vA|⊗|wB〉〈zB|] = 〈vA|uA〉|wB〉〈zB|.
Definition (2.10) is then extended, by linearity, to all operators in L (Cm⊗Cn). Of course, the
following holds:

Tr[ZAB] = TrA

{
TrB[ZAB]

}
= TrB

{
TrA[ZAB]

}
. �

Example 2.7 (Partial trace of a generic matrix). Let us consider a linear operator C ∈ L (Cm⊗
Cn), which we write as an (m× n)× (m× n) matrix

C =


c11 c12 · · · c1,mn

c21 c22 · · · c2,mn
...

...
. . .

...
cmn,1 cmn,2 · · · cmn,mn

 . (2.11)
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We can divide the matrix C into an m×m matrix of n× n matrices, i.e.

C =


C11 C12 · · · C1,m

C21 C22 · · · C2,m
...

...
. . .

...
Cm,1 Cm,2 · · · Cm,m

 , (2.12)

where, for example, C11 =

c11 · · · c1n
...

. . .
...

cn1 · · · cnn

. Then, according to our definition of partial trace,

TrCm [C] =
m∑
i=1

Cii ∈ L (Cn), (2.13)

and

TrCn [C] =


Tr[C11] Tr[C12] · · · Tr[C1,m]
Tr[C21] Tr[C22] · · · Tr[C2,m]

...
...

. . .
...

Tr[Cm,1] Tr[Cm,2] · · · Tr[Cm,m]

 ∈ L (Cm). � (2.14)

+ One can prove that Eq. (2.8) holds for any observable A ∈ L (Cm) if and only if ρQ =
TrR[ρQR] ≡ TrCn [ρQR].

The following proposition summarizes a property of partial trace, which turns out to be very
useful when performing calculations:

Proposition 2.2. The operation of partial trace satisfies the following property:

TrB[(XA ⊗ 1B) ZAB (YA ⊗ 1B)] = XA TrB[ZAB]YA. (2.15)

Going back to Postulate 5: we are now able to reformulate it in the following way:

Postulate 5’. Given two quantum systems Q and R associated with Hilbert spaces
HQ and HR, the composite bipartite system QR is associated with the tensor product
HQR = HQ⊗HR. The states of the composite quantum system QR are in one-to-one
correspondence with density matrices in L (HQ ⊗ HR). The physical properties of
the composite quantum system QR are in one-to-one correspondence with self-adjoint
operators in L (HQ⊗HR). Moreover, given that the composite system is in state ρQR,
the state of system Q is given by ρQ := TrR[ρQR]. Analogously, the state of system R
is given by ρR := TrQ[ρQR].

Remark 2.4 (Discarding subsystems). The operation partial trace describe that we are discarding
part of a composite system. We hence say “Perform the partial trace over subsystem R” and
mean “Discard subsystem R”.

+ We can now easily prove why the vector considered in Exercise 2.3 cannot be written as a

tensor product v ⊗ w. Let us first introduce the vectors |e0〉 =

(
1
0

)
and |e1〉 =

(
0
1

)
. Then,

|z〉 =
1√
2
|e0〉 ⊗ |e0〉+

1√
2
|e1〉 ⊗ |e1〉. (2.16)
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Let us compute the matrix |z〉〈z| as follows:

|z〉〈z|

=
1

2
(|e0 ⊗ e0〉+ |e1 ⊗ e1〉) (〈e0 ⊗ e0|+ 〈e1 ⊗ e1|)

=
1

2
(|e0〉〈e0| ⊗ |e0〉〈e0|+ |e0〉〈e1| ⊗ |e0〉〈e1|+ |e1〉〈e0| ⊗ |e1〉〈e0|+ |e1〉〈e1| ⊗ |e1〉〈e1|)

=
1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 .

(2.17)

The matrix |z〉〈z| ∈ L (C2 ⊗ C2) is, in fact, a density matrix, i.e. a positive operator and
with unit trace. This means that |z〉〈z| corresponds to a possible state a composite quantum
system, say QR, obtained as a combination of Q (with HQ

∼= C2) and R (with HR
∼= C2). We

notice, in particular, that the matrix |z〉〈z| describes a pure state, since |z〉〈z|2 = |z〉〈z| (see
Proposition 2.1).
What are the reduced states obtained from ρQR = |z〉〈z|? By the definition of partial trace, the
reduced state of Q is given by

TrR[|z〉〈z|] =
1

2
(|e0〉〈e0|+ |e1〉〈e1|) =

1

2
12. (2.18)

The reduced state of |z〉〈z|QR on Q is described by a mixed state! (Just check that (1/2)2 =
1/4.) This gives a proof that the vector |z〉 cannot be written as a tensor product of two vectors.
In fact, the reduced state of a tensor product state, like |ψ ⊗ φ〉〈ψ ⊗ φ|, would be pure as well.
However, for |z〉〈z|, the reduced state is mixed.

States like that of Exercise 2.3 are called entangled :

Definition 2.3. Let |ΨAB〉〈ΨAB| be a pure state in HA ⊗HB. Then, |ΨAB〉〈ΨAB| is called
entangled if and only if |ΨAB〉 = |vA〉 ⊗ |wB〉, for some normalized vectors vA ∈ HA and
wB ∈ HB. Otherwise, |ΨAB〉〈ΨAB| is called separable.

Proposition 2.3. A pure bipartite state |ΨAB〉〈ΨAB| is separable if and only if, for ρA =
TrB[|ΨAB〉〈ΨAB|], ρ2

A = ρA.

There exist mixed entangled states as well (see Definition 2.4 below), but the theory in this
case is much more complicated. In particular, there are no easy ways, in general, to decide
whether a given mixed bipartite state is entangled or separable. The following few paragraphs
provide a sketch of some basic ideas.

Theorem 2.3 (Purification of mixed states). For any density matrix ρ ∈ M(Cm), there exists
a normalized vector |Ψρ〉 ∈ Cm ⊗ Cm such that

ρ = TrCm [|Ψρ〉〈Ψρ|] . (2.19)

Proof. Let ρ =
∑m

i=1 λi|ψi〉〈ψi|, λi ≥ 0,
∑m

i=1 λi = 1, be a diagonalization of ρ. Let {|ej〉 : 1 ≤
j ≤ m} be a complete orthonormal system in Cm. Then, the vector in Cm ⊗ Cm defined by

|Ψρ〉 :=

m∑
i=1

√
λi(|ψi〉 ⊗ |ei〉), (2.20)

is normalized, i.e. 〈Ψρ|Ψρ〉 = 1, and such that Eq. (2.19) holds.
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A very useful result is the following:

Theorem 2.4 (Schmidt decomposition). For any vector z in the tensor space Cm ⊗ Cn, there
always exists a complete orthonormal system {ei}i ∈ Cm and a complete orthonormal system
{fj}j ∈ Cn such that

z =
∑
k

rk(ek ⊗ fk), (2.21)

where 0 ≤ rk ∈ R. The number of non-zero coefficients rk appearing in (2.21) is called the
Schmidt number of z and it is uniquely defined for any vector z ∈ Cm ⊗ Cn.

+ A direct consequence of the Schmidt decomposition is that, given a pure state |Ψ〉〈Ψ| ∈
M(Cm⊗Cn), the reduced states TrCm [|Ψ〉〈Ψ|] and TrCn [|Ψ〉〈Ψ|] have the same eigenvalues and
the same degeneracy indices.

The example studied in Exercise 2.3 explicitly shows that there exist vectors in tensor product
spaces that cannot be written in tensor product form. Such vectors are called entangled. From
entangled vectors, one defines entangled states as follows:

Definition 2.4 (Separable and Entangled Mixed States). Given a composite bipartite system
QR, a state ρQR ∈ L (HQ ⊗ HR) is called separable if and only if there exist pure states
|ψj〉〈ψj | ∈ L (HQ) and pure states |φj〉〈φj | ∈ L (HR), such that

ρQR =

J∑
j=1

pj

(
|ψj〉〈ψj |Q ⊗ |φj〉〈φj |R

)
, (2.22)

where J is finite and pj ’s are probabilities, i.e. pj ≥ 0,
∑J

j=1 pj = 1. Any state, which is not
separable, is called entangled.

Remark 2.5. The phenomenon of entanglement is a purely quantum feature: two quantum
particles, when in an entangled state, should be considered as a single quantum system, in the
sense that a composite system in an entangled state is not simply the sum of its constituents.
The example given in Exercise 2.3 taught us that having perfect knowledge about the state
of the composite system does not imply (in general) any knowledge about the states of the
constituents, in sharp contradiction with common sense.
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3 Processing of quantum systems: quantum processors and
quantum instruments

We are now ready to learn how quantum systems can be manipulated. This is the starting
point to the understanding of how information can be encoded, transmitted, and decoded in a
quantum information processing device.

Postulates 3, 4, and 5 tell that the following operations are allowed by quantum theory:

1. Preparation: one can prepare any quantum system in any chosen state

2. Composition: two (or more) quantum systems can always be composed together to form
a composite quantum system

3. Erasure: one can always discard quantum systems, in any preferred order

4. Closure: any quantum system (composite or not) can always be perfectly isolated during
a chosen time interval and made evolve according to any chosen unitary operator

5. Measurement: one can measure any observable of any quantum system

The above basic operations are at the basis of the so-called quantum circuit model of quantum
information processing.

Example 3.1 (Evolution of open quantum systems). How do open quantum systems evolve?
Postulate 4, by itself, tells us how closed, i.e. perfectly isolated, quantum systems evolve.
However, such an assumption is rarely satisfied in the real world, even classically (think of,
e.g., thermalization or friction). The idea is that, in principle, we can consider a quantum
system together with all the systems with which it is interacting, so that the composite system
is actually an isolated system.

Figure 1: Simplest model of an open evolution.

The simplest way to model the time evolution of an open (i.e. non isolated) quantum system Q,
initially in state ρQ, is as follows (see Figure 1): we first prepare another quantum system R in
some initial state σR. We then compose Q with R and isolate them for a time interval ∆t. The
composite system QR, initially in state ρQ⊗σR, after time ∆t has evolved to U∆t(ρQ⊗σR)U †∆t,
where U∆t is a unitary operator in L (HQ⊗HR), according to Postulate 4. Finally, the quantum
system R is discarded. The overall operation on Q is mathematically written as follows:

ρQ 7→ ρ′Q = TrR

[
U∆t(ρQ ⊗ σR)U †∆t

]
. � (3.1)

26

D
R
A
FT



+ We now extend the correspondence in equation (3.1) to a mapping E as follows:

E(X) := TrR

[
U∆t(X ⊗ σR)U †∆t

]
, (3.2)

where X ∈ L (HQ) is any linear operator. The situation is like the one depicted in Figure 2:
we are now considering the apparatus consisting of σR, the unitary operator, and the partial
trace as a black box, or a quantum processor, performing some kind of operation on the quantum
system Q. Which are the properties of such a mapping?

Figure 2: A quantum “processor”, with one input wire (or the left) and one output wire (on
the right).

1. The map E : L (HQ) → L (HQ) is linear : the tensor product, the unitary operator and
the partial trace are all linear, so that their composition is linear as well.

2. The map E is trace-preserving, i.e. Tr[E(X)] = Tr[X], for all X ∈ L (HQ). This property
can be proved by using the cyclicity property of the trace (Theorem 1.4) as follows:

Tr[E(X)] = Tr[U∆t(X ⊗ σR)U †∆t] = Tr[U †∆tU∆t(X ⊗ σR)]. Since the operator U∆t is

unitary, U †∆tU∆t = 1QR, so that Tr[E(X)] = Tr[X ⊗σR] = Tr[X] Tr[σR]. Finally, since σR
is a state, Tr[σR] = 1, which implies that Tr[E(X)] = Tr[X], for all X ∈ L (HQ).

3. It is positive: if ρQ is a density matrix, E(ρQ) must be a density matrix, because we
constructed the map E using only operations which are allowed by the postulates of
quantum theory. By linearity then, for any positive operator P ∈ L (HQ), the operator
E(P ) is also a positive operator, i.e. the map E is linear, trace-preserving, and preserves
positivity.

+ Actually, there is more than positivity! In fact, instead of considering the initial quantum
system Q on its own, we could imagine to input into our black box a subsystem of a com-
posite quantum system Q1Q2, as shown in Figure 3. In this case, we obtain the following
transformation:

ρQ1Q2 7→ ρ′Q1Q2
= TrR

[
(1Q1 ⊗ U∆t)(ρQ1Q1 ⊗ σR)(1Q1 ⊗ U

†
∆t)
]
. (3.3)

The above transformation can also be written as

ρ′Q1Q2
= (idQ1 ⊗EQ2)(ρQ1Q2), (3.4)
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Figure 3: Why complete positivity?

where idQ1 : L (HQ1)→ L (HQ1) is the identity map (different from the identity matrix!!), i.e.
id(X) = X, for all X ∈ L (HQ1). Then, following the same arguments, the map idQ1 ⊗EQ2 is
again linear , trace-preserving, and positive. In fact, it is positive for any choice of Q1! This
property, which is a property of the map E, is called complete positivity.

Theorem 3.1 (Unitary Representation of Quantum Processors). Given a quantum
processor acting on quantum system Q, i.e. given a linear, trace-preserving, completely
positive map E : L (HQ) → L (HQ), there always exist an auxiliary quantum system
R with Hilbert space HR, a density matrix σR ∈ L (HR), and a unitary operator
U ∈ L (HQ ⊗HR), such that

E(ρQ) = TrR

[
U(ρQ ⊗ σR)U †

]
, (3.5)

for all density matrices ρQ ∈ L (HQ). Moreover, the density matrix σR can always be
chosen to be a pure state, i.e. σ2

R = σR.

Remark 3.1. The evolution of an open quantum system Q during a time interval ∆t, can always
be represented by a quantum processor acting on the initial state. A closed system is a particular
case of an open system. In that case, E∆t(ρ) = U∆tρQU

†
∆t, for any state ρQ of Q. �

Example 3.2 (No-Cloning Theorem). Is the linearity condition important? (to be continued)

Example 3.3 (Partial Transposition). As an example of a linear, trace-preserving map which
is positive but not completely positive, consider, for any X ∈ M(Cm), the transposition map
T : X 7→ XT . First, let us check that the three properties of linearity, trace-preservation, and
positivity are satisfied:

1. linearity: (c1X + c2Y )T = c1X
T + c2Y

T , for all X,Y ∈M(Cm) and c1, c2 ∈ C;

2. trace-preserving: the trace of an operator X equals the sum of the diagonal elements
of a matrix representation of X; since the transposition operation does not modify the
diagonal elements, it also preserves the trace;

3. positivity: let P be a positive operator; this implies that P is normal, i.e. P † = P ; due
to Remark 1.3, P T is unitarily equivalent to P , that is, there exists a unitary operator
U ∈M(Cm) such that P T = U †PU ; hence, P T is positive if and only if P is positive.
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However, the transposition map is not completely positive. As a counter-example, let us consider
again the bipartite pure entangled state |z〉〈z| written in Eq. (2.17). In that example, we had
a composite Hilbert space, made up of two two-dimensional parts C2 ⊗ C2. We apply the
transposition only on the first component, i.e. we apply the map T1 ⊗ id2,

(T1 ⊗ id2)(|z〉〈z|) =
1

2


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (3.6)

Now, if we find that the above matrix is not positive, i.e. has at least one negative eigenvalue,
then we know that the map T1⊗ id2 does not preserve positivity, since the initial operator |z〉〈z|
is positive (it is a density matrix!). If true, this would imply that the map T is not completely
positive.
First of all, we notice that the matrix (T1 ⊗ id2)(|z〉〈z|) is self-adjoint, so it has a complete set

of eigenvectors. Let us now consider the action of (T1⊗ id2)(|z〉〈z|) on the vector |χ〉 =


0
1
−1
0

.

We find that

1

2


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




0
1
−1
0

 = −1

2


0
1
−1
0

 . (3.7)

We hence discovered that the vector |χ〉 is an eigenvector of (T1 ⊗ id2)(|z〉〈z|) corresponding to
the negative eigenvalue −1/2. Hence, the matrix (T1⊗ id2)(|z〉〈z|) is not positive, and the map
T is not completely positive, even though linear, trace-preserving, and positive. �

Question 3.1 (reduced dynamics of a C-NOT gate). In classical information, given two bits
a ∈ {0, 1} and b ∈ {0, 1}, the two-bit gate C-NOT (controlled-NOT) acts as follows

(a, b)
C-NOT7−→ (a, b⊕ a). (3.8)

The first bit is called the control bit, the second bit is the target bit. If the value of the control
bit is 0, then the target bit is left unchanged. If the value of the control bit is 1, then the target
bit is flipped, i.e. if it was 0 it is mapped in 1, and viceversa. Noteworthy is the fact that the
control bit is left unchanged.
In quantum computation, the operation generalizing the C-NOT gate is defined as follows. The
two bits are replaced by two qubits (see Example 2.1), i.e. two quantum systems C (control)
and T (target), with Hilbert spaces HC

∼= C2 and HT
∼= C2. The quantum C-NOT gate is

described by the following unitary operator:

UCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (3.9)

In the conventional C-NOT gate, we noticed that the control bit is left unchanged. Is this the
case also for the quantum C-NOT gate? Let us consider the situation in which the target qubit

is initialized in the state ρT =

(
1 0
0 0

)
. In this case, the transformation that the control qubit
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undergoes is described by the following linear, trace-preserving, completely positive map:

ρC 7−→ TrT

{
UCNOT

[
ρC ⊗

(
1 0
0 0

)
T

]
U †CNOT

}
. (3.10)

How to write the above transformation in a more explicit form? �

Theorem 3.2 (Kraus Representation of Quantum Processors). A map E : M(Cm)→
M(Cn) is linear, trace-preserving and completely positive (in short, CPTP) if and
only if there exists a finite family of (m×n) matrices {Ek; 1 ≤ k ≤ K}, satisfying the

normalization condition
∑K

k=1E
†
kEk = 1m, such that, for all states ρ ∈M(Cm),

E(ρ) =
K∑
k=1

EkρE
†
k. (3.11)

Remark 3.2 (Very useful for advanced applications). Any completely positive, trace preserving
linear map can always be written in the Kraus form (3.11). Any linear map L : M(Cm)→M(Cn)
can always be written as L(ρ) =

∑
k AkρBk, where Ak ∈ L (Cm,Cn) Bk ∈ M(Cn,Cm): such a

linear map is trace-preserving if and only if
∑

k BkAk = 1m. A linear map L : M(Cm)→M(Cn)

maps self-adjoint matrices into self-adjoint matrices if and only if L(ρ) =
∑

k ckAkρA
†
k, with

Ak ∈ L (Cm,Cn) and ck ∈ R.
A natural question is the following: is there a “generalized Kraus form” for positive (possibly
not completely positive) linear maps? No! Only when dimHQ = 2, then any positive map

P : M(C2)→M(C2) can be decomposed as P(ρ) =
∑

k EkρE
†
k +

∑
k′ Fk′ρ

TF †k′ . �

Exercise 3.1 (C-NOT gate, continued). With a little effort, we should now be able to answer
Question 3.1. Our aim is to write the Kraus representation of the map

ρC 7−→ TrT

{
UCNOT

[
ρC ⊗

(
1 0
0 0

)
T

]
U †CNOT

}
. (3.12)

A simple computation shows that the map acts as follows:

ρC =

(
r11 r12

r21 r22

)
E7−→ E(ρC) =

(
r11 0
0 r22

)
, (3.13)

for all ρC ∈ L (HC). In Kraus representation, this can be written as

E(ρC) =

(
1 0
0 0

)
ρC

(
1 0
0 0

)
+

(
0 0
0 1

)
ρC

(
0 0
0 1

)
. (3.14)

Exercise 3.2 (Operator-sum representation). Here we derive the Kraus form, Theorem 3.2,
for quantum processors. The ingredients we need to perform the calculation are the following:

1. a preferred basis {ψi} in HQ

2. a preferred basis {φj} in HR

3. the diagonal form
∑

λ λ|λ〉〈λ|R of σR
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4. the expansion of U as U =
∑

i,i′
∑

j,j′ uij,i′j′ |ψi ⊗ φj〉〈ψi′ ⊗ φj′ |

We then have

TrR[U(ρQ ⊗ σR)U †]

=
∑
λ

λTrR

[
U(ρQ ⊗ |λ〉〈λ|R)U †

]

=
∑
λ

λ
∑
i,i′

∑
j,j′

uij,i′j′ TrR

(|ψi〉〈ψi′ |ρQ)⊗

|φj〉 〈φj′ |λ〉︸ ︷︷ ︸
cj′λ∈C

〈λ|R

 U †


=
∑
λ

λ
∑
i,i′,j,j′

uij,i′j′cj′λ TrR

[
(|ψi〉〈ψi′ |ρQ)⊗ |φj〉〈λ|R U †

]

=
∑
λ

λ
∑
i,i′,j,j′

uij,i′j′cj′λ
∑

ι,ι′,υ,υ′

u∗ι′υ′,ιυ TrR

(|ψi〉〈ψi′ |ρQ|ψι〉〈ψι′ |)⊗

|φj〉 〈λ|φυ〉︸ ︷︷ ︸
dλυ=c∗υλ

〈φυ′ |R




=
∑
λ

λ
∑
i,i′,j,j′

uij,i′j′cj′λ
∑

ι,ι′,υ,υ′

u∗ι′υ′,ιυc
∗
υλ TrR [(|ψi〉〈ψi′ |ρQ|ψι〉〈ψι′ |)⊗ |φj〉〈φυ′ |]

=
∑
λ

λ
∑
i,i′,j,j′

uij,i′j′cj′λ
∑

ι,ι′,υ,υ′

u∗ι′υ′,ιυc
∗
υλδj,υ′ |ψi〉〈ψi′ |ρQ|ψι〉〈ψι′ |

=
∑
λ

λ
∑
i,i′,j,j′

uij,i′j′cj′λ
∑
ι,ι′,υ

u∗ι′j,ιυc
∗
υλ|ψi〉〈ψi′ |ρQ|ψι〉〈ψι′ |

=
∑
i,i′

∑
ι,ι′

∑
λ

∑
j,j′

∑
υ

λuij,i′j′cj′λu
∗
ι′j,ιυc

∗
υλ|ψi〉〈ψi′ |ρQ|ψι〉〈ψι′ |

=
∑
i,i′

∑
ι,ι′

∑
λ

∑
j,j′

λuij,i′j′cj′λ
∑
υ

u∗ι′j,ιυc
∗
υλ︸ ︷︷ ︸

aι′ιjλ

|ψi〉〈ψi′ |ρQ|ψι〉〈ψι′ |

=
∑
i,i′

∑
ι,ι′

∑
λ

∑
j

λ
∑
j′

uij,i′j′cj′λ︸ ︷︷ ︸
a∗
ii′jλ

aι′ιjλ|ψi〉〈ψi′ |ρQ|ψι〉〈ψι′ |

=
∑
λ

∑
j

√λ∑
i,i′

a∗ii′jλ|ψi〉〈ψi′ |


︸ ︷︷ ︸

Ajλ

ρQ

√λ∑
ι,ι′

aι′ιjλ|ψι〉〈ψι′ |


︸ ︷︷ ︸

A†jλ

.

(3.15)

After this lengthy, though straightforward calculation, we finally arrive at the form

TrR[U(ρQ ⊗ σR)U †] =
∑
λ

∑
j

AjλρQA
†
jλ, (3.16)

for a suitable family of operators Ajλ ∈ L (HQ). �
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3.1 Read-out stage: quantum measurement processes

In building a quantum processor, up to now we only used the operations of preparation, com-
position, erasure, and closure. We still didn’t use the fact that measurements can be also
performed: any non-trivial computation needs to terminate with the read-out of the computa-
tion results! (Indeed, what would be the point of performing a computation, if the results are
not observed?)

Figure 4: Any quantum processor is represented by a completely positive, trace-preserving
linear map E : L (Hin)→ L (Hout). Still, in this picture, there is no measurement taking place.

The read-out stage always corresponds to the measurement of some physical quantity: if
the measurement gives value µ, for example, then we say that the computation terminated and
returned the result f(µ), where f is some appropriate function. For example, when we say that
we are reading a bit recorded on a hard disk drive, we are actually measuring the direction of
a magnetic dipole, and saying that the bit is zero or one, depending on (i.e. as a function of)
the measured value.

The same happens in quantum information theory. Figure 5 depicts a situation often en-
countered: an input state ρ is fed into a circuit composed by various quantum processors,
representing time-evolutions, computations, or arbitrarily complicated combinations of both.
After the processors has performed their action, in order to obtain some information about the
result of the computation, a measurement (let’s say, the measurement of some observable A) is
performed on the output produced.

Now, let us imagine a quantum processor whose output is a composite quantum system, for
example QR, as shown in Figure 6. Let us imagine that only the output branch labeled by R
is measured. The question is the following: since the measurement is performed only on the
R subsystem, is subsystem Q affected by it? If so, what happens to subsystem Q after the
measurement on R is performed?

The postulates of quantum theory imply the following:

Theorem 3.3. Let the state of a composite quantum system QR be represented by the density
matrix ωQR. Let ωQ = TrR[ωQR] and ωR = TrQ[ωQR] be the reduced states for subsystems Q
and R, respectively. Suppose that the measurement of an observable of R, represented by the
self-adjoint operator AR ∈ L (HR) with spectral decomposition AR =

∑
µ µΠA

R(µ), is performed.

Then, the probability that an outcome µ is observed is given by Tr
[
ωR ΠA

R(µ)
]
. Correspondingly,

if an outcome µ is observed, the subsystem Q is left in a state, which depends on µ according
to the following formula:

ωQ(µ) =
1

Tr
[
ωR ΠA

R(µ)
] TrR

{
ωQR

[
1Q ⊗ΠA

R(µ)
]}
. (3.17)
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Figure 5: A measurement is the ending point of a quantum process. Here a measurement of the
physical quantity represented by the self-adjoint operator A =

∑
µ µΠA(µ) is performed after an

arbitrary quantum processor acted upon the input state ρ. Before performing the measurement,
it is generally impossible to predict the measurement outcome: only the probabilities with which
each outcome will be obtained, i.e. Pr{A = µ‖ρ} = Tr[ρΠA(µ)], can be computed. Only after
the measurement has been performed and the outcome µ̄ has been obtained, one can say that
the physical quantity A is equal to µ̄, and that the result of the computation is obtained.

Figure 6: A measurement of the physical quantity A performed only on one branch of the
computation. The state that correctly describes the remaining branch Q in general will depend
on the outcome of the measurement performed on R. The formula to compute such a state is
given in Theorem 3.3.

Example 3.4 (Averaging outcomes = Discarding). We already encountered the concept of
expectation value of an observable, see equation (2.6), which has been defined as the average of
the possible outcomes of a measurement. Theorem 3.3 suggests that it is possible to compute,
in a similar way, the average state in which subsystem Q is left after a measurement performed
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on R. Such a state can be computed as follows:

ωQ =
∑
µ

Pr{AR = µ‖ωR}ωQ(µ)

=
∑
µ

Tr
[
ωR ΠA

R(µ)
] 1

Tr
[
ωR ΠA

R(µ)
] TrR

{
ωQR

[
1Q ⊗ΠA

R(µ)
]}

=
∑
µ

TrR
{
ωQR

[
1Q ⊗ΠA

R(µ)
]}

= TrR

{
ωQR

(
1Q ⊗

[∑
µ

ΠA
R(µ)

])}
= TrR[ωQR],

where the last step follows from the fact that
∑

µ ΠA
R(µ) = 1R, always, as argued in equa-

tion (2.1). Remarkably, the density matrix ωQ does not depend on the observable A measured
on R. We conclude that averaging the state of Q over the measurement outcomes is completely
equivalent to discarding subsystem R, without performing any measurement on it.

The setup represented in Figure 6, composed by a quantum processor and a partial measure-
ment, can also be seen as a new kind of quantum processor: we call this a quantum instrument.
A quantum instrument is a quantum processor with two outputs: a quantum output (the sy-
stem Q in Figure 6), which can be fed into the next computational step, and a classical output
(the measurement outcome µ), which can be used to condition (in a structure like if[...]

then[...]) the next computational step. A typical quantum circuit with quantum processors
and quantum instruments will look as in Figure 7.

Figure 7: A typical quantum circuit composed by quantum processors (blue) and quantum
instruments (green). Continuous lines correspond to computational branches carrying quantum
systems, dashed lines correspond to computational branches carrying classical information (i.e.
a measurement outcome).

+ Of course, a quantum processor can be seen as a particular quantum instrument, i.e. a
quantum instrument with only one possible outcome. Hence, we can treat quantum processors
and quantum instruments on the same footing – however, for the sake of clarity, we will keep
calling them with different names.

We conclude by stating, without proof, the following characterization of quantum instruments,
generalizing the Kraus representation for quantum processors given in Theorem 3.2:
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Theorem 3.4 (Kraus form for quantum instruments). A quantum instrument is defined by:

1. an m-dimensional input quantum system (associated with Cm) and an n-dimensional out-
put quantum system (associated with Cn);

2. a set X of possible outcomes µ;

3. for each outcome µ, a family of m× n matrices {Eµ,k; 1 ≤ k ≤ Kµ} such that

∑
µ∈X

Kµ∑
k=1

E†µ,kEµ,k = 1m. (3.18)

Then, if the system fed into the quantum instrument is in state ρ ∈ L (Cm), the probability of
obtaining an outcome µ is given by

Pr{µ‖ρ} = Tr

ρ Kµ∑
k=1

E†µ,kEµ,k

 , (3.19)

and the corresponding output quantum state ρ′(µ) ∈ L (Cn) is given by

ρ′(µ) =
1

Pr{µ‖ρ}

Kµ∑
k=1

Eµ,kρE
†
µ,k. (3.20)

+ It should be clear that, in the case of an instrument with only one possible outcome (i.e.
with the set X containing only one element), Theorem 3.4 above reduces to Theorem 3.2.

Appendix: the idea of indirect measurement model

Example 3.5 (Indirect measurement model). According to our everyday intuition, we see
that, when we measure a physical quantity of a physical system (like temperature, weight,
etc), the physical system is there before, during, and after the measurement process. However,
Postulate 3 of Quantum Theory tells us only about how to compute the probability distribution
according to which outcomes are obtained, without mentioning what happens to the quantum
system which is measured. Postulate 3 only states that, if a direct measurement is performed
on a quantum system, an outcome is obtain with a certain probability: in a sense, then, the
quantum system itself, after the measurement, is no more there in the formalism. Is this really
the case?

The answer to this question comes from the calculations we just computed. The idea is that,
in quantum theory, we always have to imagine to act operationally. What really happens during
a measurement process, for example, the weighing of an apple? We take an apple, we put it on
a (digital) scale, and we read a number on the screen. Hence, what we directly measure (i.e.
read) when we weigh an apple is not the weight of the apple, but the numbers that appear on
the scale’s screen. We then hope that the numbers produced by the scale are correlated with
the “true” weight of the objects we put on it, in the sense that, if we read 100 grams on the
scale, we hope that the apple also weighs 100 grams (or something very close to such a value).
Hence, when we weigh an apple using a scale, we are indirectly measuring the weight of the
apple, by measuring (i.e. reading) the state of the scale’s screen. (Actually—this, again, is not
completely true, since the scale’s screen itself is read via our retina, which collects the light
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scattered on it; the retina, in turns, converts the light signals into electric signals in the optical
nerve, and so on.........)

If we think carefully, then, every physical measurement process is in fact an indirect me-
asurement process. The word “measurement” used in Postulate 3 is better to be understood
as a mere theoretical abstraction and should be clearly distinguished from a physical measure-
ment process. In order to do so, from now on we will use the terminology direct measurement
to denote “abstract measurements”, otherwise all measurement processes will be meant to be
“physical” (i.e. indirect).

The operational picture is the following: suppose that we want to measure an observable
of the quantum system Q (let’s say, a “quantum apple”). In order to do that, we make the
quantum apple interact with an auxiliary quantum system R (a “quantum scale”), and then
we directly measure a suitable observable of the quantum scale, whose values we know being
correlated with the weight of the quantum apple. Then, the auxiliary direct measurement
performed on the quantum scale randomly produces an outcome (according to Postulate 3) and
removes the quantum scale from the formalism, leaving only the quantum apple together with
the outcome of the measurement of its weight. Therefore, it makes perfect sense to speak about
the state of a quantum system after a measurement process. �

36

D
R
A
FT



4 Two primitive protocols: quantum teleportation and quan-
tum super-dense coding

4.1 Quantum teleportation

As a paramount application of what we have learned until now, we will describe the task of
quantum teleportation in detail. Teleportation here has not to be understood as the teleportation
appearing in some science-fiction movies, where objects (or persons!) are “teleported” from a
place to another almost instantaneously. The process called quantum teleportation is able to
transfer the state of a quantum system here to another quantum system there, however far this
is, simply by communicating a limited amount of classical data.

Figure 8: Quantum teleportation: two agents A and B have to transmit an unknown quantum
state by using a classical communication channel only.

The scenario of quantum teleportation is the following: there are two agents A (Alice) and
B (Bob) which have to successfully complete a mission. The mission starts at time t = t0. At
that time, the agent Alice is given a quantum system Q. Both Alice and Bob don’t know the
state (i.e. they do not know the density operator representing the state) of Q. The agents’
mission is to exactly transmit the state of Q from Alice to Bob, by communicating only through
a classical communication channel (i.e. Alice cannot “send” the quantum system Q to Bob).

Is there a way to accomplish the mission?

In order to model the protocol used by Alice and Bob, we will exploit the formalism of quantum
processors and quantum instruments that we introduced in Section 3. The situation is depicted
in Figure 9: Alice has the quantum system Q and her own quantum computer A, while Bob has
only his own quantum computer B. They can apply any possible quantum processor and any
possible quantum instrument on their respective systems, but they can exchange only classical
information, i.e. they can exchange only the outcomes they obtain from the computations
they choose (in the picture, the “wires” between Alice and Bob are only dashed wires, i.e.
computational branches carrying only classical information, see Figure 7).
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Figure 9: By running a computation that exchanges only classical information (i.e. measurement
outcomes), Alice and Bob are required to “teleport” the state ρ from system Q (in Alice’s hands)
to system B (in Bob’s hands).

Let us start with the simple case in which the quantum systemQ is a qubit (see Example 2.1),
i.e. a two-dimensional quantum system HQ

∼= C2, and its state is pure, i.e. such that ρQ =
|ψ〉〈ψ|Q where |ψ〉 ∈ C2 is a normalized vector (see Definition 2.1). Let us write

|ψ〉 =

(
c0

c1

)
, (4.1)

for some c0, c1 ∈ C, such that |c0|2 + |c1|2 = 1.

+ The key point is that the rules forbid Alice and Bob to exchange quantum states from
time t0 onwards—but nothing prevent Alice and Bob to meet before t0, let’s say at some time
t = t−1 < t0.

Let us imagine that, at time t−1 < t0, Alice and Bob met, and prepared a composite (bipartite)
quantum system AB, with Hilbert space HAB = HA ⊗HB

∼= C2 ⊗C2, in the pure state |z〉〈z|,
where

|z〉 =
1√
2


1
0
0
1

 . (4.2)

(The density matrix |z〉〈z| has already been explicitly computed in equation (2.17).) After the
quantum system AB has been prepared in the state |z〉〈z|, Alice keeps the A subsystem, leaving
the B subsystem to Bob. Alice and Bob then separate and reach their destination. We can
imagine that this is actually the prequel to our story. How can Alice and Bob use the quantum
system AB to achieve their mission?

The following construction, known as quantum teleportation, first appeared in 1993, in a
very famous paper. At t = t0, Alice holds systems Q (in the unknown state |ψ〉〈ψ|) and A
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Figure 10: The circuit that teleports quantum states from Alice to Bob.

(her share of |z〉〈z|). First, she applies on systems Q and A a control-NOT (introduced in
Question 3.1). We recall that the unitary operator corresponding to a C-NOT gate is given by

UCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

In the case considered here, the control qubit is represented by system Q, while the target qubit
is represented by system A.

After Alice applied the C-NOT gate on her qubits, the state of the composite system QAB is
given by (see Figure 10)

|Φ1〉〈Φ1|QAB = (UCNOT ⊗ 12) (|ψ〉〈ψ|Q ⊗ |z〉〈z|AB) (UCNOT ⊗ 12)† .

The explicit calculation of |Φ1〉〈Φ1|QAB can be obtained from the form of the vector |Φ1〉QAB,
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which is given as follows:

|Φ1〉QAB =UCNOT ⊗ 12 (|ψ〉Q ⊗ |z〉AB)

=UCNOT ⊗ 12

 c0√
2

(
1
0

)
Q

⊗


1
0
0
1


AB

+
c1√

2

(
0
1

)
Q

⊗


1
0
0
1


AB



=UCNOT ⊗ 12

 1√
2


c0

0
c1

0


QA

⊗
(

1
0

)
B

+
1√
2


0
c0

0
c1


QA

⊗
(

0
1

)
B



=
1√
2



c0

0
0
c1


QA

⊗
(

1
0

)
B

+
1√
2


0
c0

c1

0


QA

⊗
(

0
1

)
B



=
1√
2

c0

(
1
0

)
Q

⊗


1
0
0
1


AB

+ c1

(
0
1

)
Q

⊗


0
1
1
0


AB

 .

(4.3)

After this, Alice further applies on system Q alone the unitary operation H represented by the
matrix

H =
1√
2

(
1 1
1 −1

)
. (4.4)

At this point, the state of composite system QAB is given by |Φ2〉〈Φ2|QAB, where the vector
|Φ2〉QAB is given by the following equation

|Φ2〉QAB =(H ⊗ 14)|Φ1〉QAB

=
1

2

c0

(
1
1

)
Q

⊗


1
0
0
1


AB

+ c1

(
1
−1

)
Q

⊗


0
1
1
0


AB

 . (4.5)

Simply by re-grouping the terms, the above state can also be written as follows:

|Φ2〉QAB

=
1

2




1
0
0
0


QA

⊗
(
c0

c1

)
B

+


0
1
0
0


QA

⊗
(
c1

c0

)
B

+


0
0
1
0


QA

⊗
(
c0

−c1

)
B

+


0
0
0
1


QA

⊗
(
−c1

c0

)
B

 .
(4.6)

In the above equation, we recognize the vectors appearing in the QA subsystem as the standard
basis of C4, which was denoted in Definition 1.4 as follows:

|e00〉 =


1
0
0
0

 , |e01〉 =


0
1
0
0

 , |e10〉 =


0
0
1
0

 , |e11〉 =


0
0
0
1

 . (4.7)
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We moreover introduce in C2 the following vectors:

|ϕ00〉 =

(
c0

c1

)
, |ϕ01〉 =

(
c1

c0

)
, |ϕ10〉 =

(
c0

−c1

)
, |ϕ11〉 =

(
−c1

c0

)
, (4.8)

so that equation (4.6) can be rewritten as

|Φ2〉QAB =
1

2

∑
µ∈{00,01,10,11}

|eµ〉QA ⊗ |ϕµ〉B. (4.9)

Notice that the vectors |eµ〉 are orthonormal, in the sense that 〈eµ|eµ′〉 = δµ,µ′ (for the definition
of δ function, go back to Definition 1.4). The vectors |ϕµ〉 are all normalized, since 〈ϕµ|ϕµ〉 =
|c0|2 + |c1|2 = 1 for all µ, however, they are not orthogonal. The state of the composite system
QAB at this point can be written as follows:

|Φ2〉〈Φ2|QAB =
1

4

∑
µ∈{00,01,10,11}

∑
µ′∈{00,01,10,11}

|eµ〉〈eµ′ |QA ⊗ |ϕµ〉〈ϕµ′ |B. (4.10)

Next, Alice measures the observable OQA on the composite system QA, represented by the
self-adjoint matrix

OQA =


`00 0 0 0
0 `01 0 0
0 0 `10 0
0 0 0 `11

 , (4.11)

with `µ ∈ R. The only condition we impose on OQA is that `00 6= `01 6= `10 6= `11, so that
the spectral projectors ΠO(`µ) appearing in equation (1.13) are equal to |eµ〉〈eµ|, for all µ ∈
{00, 01, 10, 11}.
According to Postulate 3 and Postulate 5, Alice obtains the outcome `µ with probability

Pr{OQA = `µ} = Tr
[
(ΠO(`µ)⊗ 12) |Φ2〉〈Φ2|QAB

]
=

1

4
,

(4.12)

for all µ ∈ {00, 01, 10, 11}. The corresponding state at Bob’s side (i.e. the state that des-
cribes Bob’s particle right after Alice obtained the outcome `µ) is given by the formula (see
Theorem 3.3)

ωB(`µ) =
1

Pr{OQA = `µ}
TrQA

[
(ΠO(`µ)⊗ 12) |Φ2〉〈Φ2|QAB

]
= 4 TrQA

[
(ΠO(`µ)⊗ 12) |Φ2〉〈Φ2|QAB

]
= |ϕµ〉〈ϕµ|B.

(4.13)

+ We have now to stop for a while and clearly understand what is going on. In fact, it seems
that, exactly at the same moment in which Alice reads the outcome `µ on her measurement ap-
paratus, Bob’s state is changed from TrQA[|Φ2〉〈Φ2|QAB] = 12

2 (i.e. a mixed state), to |ϕµ〉〈ϕµ|B
(i.e. a pure state). It is like if Alice’s decision of performing a measurement on her side can
instantaneously influence the system at Bob’s side! Can this be true? Of course not! Why?

41

D
R
A
FT



The solution to the above question is a consequence of the fact that Bob does not know which
outcome Alice obtained, before she tells him. This is due to the fact that, as we stressed already
many times, the outcomes of a measurement are random, and cannot be computed in advance.
So, until Bob does not receive from Alice the information about which outcome she obtained,
it is correct to say that the quantum system B is either in state |ϕ00〉〈ϕ00|, or |ϕ01〉〈ϕ01|, or
|ϕ10〉〈ϕ10|, or |ϕ11〉〈ϕ11|B, each of them occurring with probability p = 1/4. In other words, the
fact that Alice is performing a measurement on her share, makes the quantum system in Bob’s
hands to be a random sample (see Theorem 2.2) from the ensemble

({
pµ = 1

4

}
, {|ϕµ〉〈ϕµ|}

)
.

Then, Theorem 2.2 states that the quantum system at Bob’s side, before Bob receives the
information about Alice’s outcome, is correctly described by the state

ωB =
1

4

∑
µ

|ϕµ〉〈ϕµ|B

=
∑
µ

TrQA
[
(ΠO(`µ)⊗ 12) |Φ2〉〈Φ2|QAB

]

= TrQA




[∑

µ

ΠO(`µ)

]
︸ ︷︷ ︸

14

⊗12

 |Φ2〉〈Φ2|QAB


= TrQA [(14 ⊗ 12) |Φ2〉〈Φ2|QAB]

= TrQA [ |Φ2〉〈Φ2|QAB ]

=
12

2
.

(4.14)

As the above calculation shows, the state of Bob’s system is not changed simply by the fact
that Alice is performing a measurement! Only if Alice communicates to Bob which outcome
`µ she obtained, only then, after Bob received such information, he can correctly say that the
state of quantum system B is |ϕµ〉〈ϕµ|B.

Question 4.1. In our story, how much information (measured in bits) must Alice send to Bob
in order to communicate her measurement outcome?

So, let us suppose that Alice indeed communicates to Bob her outcome: she can do this,
since Alice and Bob are allowed to sends email to each other. Now, to be practical, let Alice’s
outcome be, for example, `10. The corresponding state of Bob, after he knows the outcome

value, is |ϕ10〉〈ϕ10|, where |ϕ10〉 =

(
c0

−c1

)
. We recall that the unknown state that Alice wants

to send to Bob is |ψ〉〈ψ|, with |ψ〉 =

(
c0

c1

)
. So, what Bob has to do (when he knows that Alice’s

outcome was `10) is to apply on his share B the unitary operator represented by the matrix

W10 =

(
1 0
0 −1

)
, (4.15)

so that
W10|ϕ10〉〈ϕ10|W †10 = |ψ〉〈ψ|, (4.16)

as required to accomplish the mission! In the general case in which Alice obtained the outcome
`µ and Bob’s quantum system is in state |ϕµ〉〈ϕµ|, it is very easy to show that there always
exists a unitary operator Wµ that Bob can apply so that the final state is |ψ〉〈ψ|.
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+ Write the matrices representing the unitary operators Wµ, for all µ ∈ {00, 01, 10, 11}.

Hence, quantum teleportation is possible! Summarizing, for the success of the protocol, we
required two assumptions:

1. Alice and Bob must have prepared and share the entangled state |z〉〈z| in advance (i.e.
before the protocol starts);

2. Alice must communicate to Bob the outcome of her measurement, and Bob has to apply
an operation conditionally on the information he receives.

+ Since quantum teleportation needs classical information to be transmitted (condition 2
above), and information can travel at most at the speed of light, this fact limits the speed
of quantum teleportation to be less than (or at most equal to) the speed of light.

Question 4.2. We considered only the case in which Alice is given a pure state. Is it difficult
to extend the previous discussion so to consider the general case of mixed states?
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4.2 Quantum super-dense coding

In the previous section we studied how pre-shared entanglement, in the form of the density
matrix |z〉〈z| in Eq. (2.17), enables two parties to transfer the state of a two-dimensional quan-
tum system by sending two bits of classical information. The “resource balance” of quantum
teleportation is the following:

pre-shared entanglement + transmission of 2 classical bits →
transmission of 1 qubit

We will now see that also the converse is true: pre-shared entanglement enables two parties to
transfer two bits of classical information by sending only a two-dimensional quantum system.
The protocol achieving this task is called “super-dense coding” and its resource balance is the
following:

pre-shared entanglement + transmission of 1 qubits →
transmission of 2 classical bits

The task is the following: Alice and Bob (the same agents as before!) are far apart when,
at time t = t0, Alice is given two bits of classical information (i.e. an integer from 0 to 3, or, in
binary notation, one pair among 00,01,10,11) and she is requested to communicate these to Bob
by sending only one qubit. This means that Bob, receiving only one qubit from Alice, must be
able to perfectly recover which one among the four alternatives {00, 01, 10, 11} Alice was given
at t = t0.

First idea: Alice tries to carefully encode each alternative ij ∈ {00, 01, 10, 11} on suitably chosen
density matrices ρij ∈ M(C2), prepare a qubit in the state ρij corresponding to the message
she receives at t = t0, and send this to Bob. Bob, in order to read the message “ij”, has to be
able to perfectly distinguish among the four density matrices {ρ00

A , ρ
01
A , ρ

10
A , ρ

11
A } chosen by Alice.

But, as we learned in Example 2.3, this cannot be done: the quantum system A is a qubit, i.e.
a two-dimensional quantum system, for which at most two perfectly distinguishable states exist
at a time.

A solution for Alice and Bob exists, and it is called super-dense coding. The protocol of
super-dense coding works as follows: as we did already in the case of quantum teleportation,
we imagine that, at a previous time t−1 < t0, Alice and Bob meet and share a bipartite
quantum system AB, with Hilbert space HAB

∼= C2 ⊗ C2, prepared in the pure state |z〉〈z|AB
of equation (2.17). (Notice that we already exploited the same state in the protocol of quantum
teleportation!) After the system AB has been prepared in the state |z〉〈z|AB, Alice keeps the
A subsystem, leaving the B subsystem to Bob.

Fast forward: we are now at time t = t0, when Alice receives a letter µ ∈ {00, 01, 10, 11}.
Depending on the value of µ, Alice applies on her share A one of the unitary operators Uµ ∈
M(C2) defined as follows:

U00 =

(
1 0
0 1

)
, U01 =

(
1 0
0 −1

)
, U10 =

(
0 1
1 0

)
, U11 =

(
0 1
−1 0

)
. (4.17)

After Alice applied the correct unitary operator, the state of the composite system AB is given
by

|Ψµ〉〈Ψµ|AB = (Uµ ⊗ 1B) |z〉〈z|AB
(
U †µ ⊗ 1B

)
, (4.18)
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where the vectors |Ψµ〉 ∈ C4 are as follows:

|Ψ00〉 =
1√
2


1
0
0
1

 , |Ψ01〉 =
1√
2


1
0
0
−1

 , |Ψ10〉 =
1√
2


0
1
1
0

 , |Ψ11〉 =
1√
2


0
−1
1
0

 . (4.19)

We recall that Alice is allowed to send one qubit to Bob. She then sends subsystem A, so that
Bob holds the whole composite system AB (a four-dimensional quantum system), which at this
point is in state |Ψµ〉〈Ψµ|AB, depending on the message given to Alice. How can Bob learn the
value of µ?

Exercise 4.1. Prove that 〈Ψµ|Ψµ′〉 = δµ,µ′ .

After Bob received the qubit A from Alice, he applies on AB the unitary matrix

W =
1√
2


1 0 0 1
1 0 0 −1
0 1 1 0
0 1 −1 0

 . (4.20)

The action of W on the four vectors |Ψµ〉 is the following:

W |Ψ00〉 =


1
0
0
0

 ,W |Ψ01〉 =


0
1
0
0

 ,W |Ψ10〉 =


0
0
1
0

 ,W |Ψ11〉


0
0
0
1

 , (4.21)

i.e. the four vectors |Ψµ〉 are transformed into the elements |eµ〉 of the standard basis of C4.
After this transformation, Bob measures an observable OAB represented by the self-adjoint
matrix

OAB =


`00 0 0 0
0 `01 0 0
0 0 `10 0
0 0 0 `11

 , (4.22)

with `µ ∈ R. The only condition we impose on OAB is that `00 6= `01 6= `10 6= `11, so that
the spectral projectors EO(`µ) appearing in equation (1.13) are equal to |eµ〉〈eµ|, for all µ ∈
{00, 01, 10, 11}. (Notice that the same observable appeared also in the teleportation protocol!)

According to Postulate 3, if the message Alice transmitted was µ, Bob will obtain the outcome
`µ′ with probability

Pr{OAB = `µ′} = Tr
[
EO(`µ′) |eµ〉〈eµ|AB

]
= δµ,µ′ ,

(4.23)

i.e. if Bob obtains the outcome µ, he is sure that the message Alice wanted to transmit is µ.
Again, mission accomplished!

Summarizing, the protocol we described above, called super-dense coding (see also Figure 11),
is closely related to quantum teleportation—it is, in a sense, its reverse:
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Figure 11: The circuit that implements super-dense coding from Alice to Bob.

• by quantum teleportation, Alice is able to transfer one qubit to Bob, by sending him only
two bits of classical information. This is possible if Alice and Bob share in advance a
suitable entangled pure state |z〉〈z|AB.

• by super-dense coding, Alice is able to communicate two bits of classical information to
Bob, by sending him only one qubit. This is possible if Alice and Bob share in advance a
suitable entangled pure state |z〉〈z|AB.

4.3 Optimality of quantum teleportation and quantum super-dense coding

proof by nesting
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