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Dynamic Analysis of Three Snake Robot Gaits

Ryo Ariizumi, Member, IEEE, and Fumitoshi Matsuno, Member, IEEE

Abstract—In the present paper, a dynamic analysis is pre-
sented, comparing three snake-like robot gaits: lateral undula-
tion, sidewinding locomotion and sinus-lifting motion. To simplify
calculations, sidewinding locomotion and sinus-lifting motion are
considered planar movements. Vertical movements are assumed
to be small but play a critical role in change where contacts
are made. Thus, the normal forces acting on grounded links
and the torques applied to pitch joints can be calculated by
solving equilibrium equations. The trade-off between locomotion
speed and energy efficiency is studied for all three gaits, at eight
different environmental settings distinguished by friction coef-
ficients. Simulation results reveal that sinus-lifting motion and
sidewinding locomotion are generally more energy efficient gaits
than is lateral undulation. More specifically, if the anisotropy in
friction is large enough, sinus-lifting motion is the most energy
efficient gait; otherwise, sidewinding locomotion is more efficient.
However, there are some critical speeds at which the most efficient
gait changes, in some environmental settings.

Index Terms—Snake robot, Sidewinding locomotion, Sinus-
lifting motion, Energy efficiency

I. INTRODUCTION

S
NAKE robots can realize various types of movement,

taking advantage of their slim body shape and numerous

degrees of freedom. Using this flexibility, they can traverse

various environments, negotiate obstacles and even move un-

derwater [1]–[4]. Therefore, they are potentially highly useful

for tasks including inspection of pipelines and disaster sites.

However, appropriate analysis and control of such a complex

system with many degrees of freedom is challenging. Despite

this, biological snakes can move over almost any terrain in

the real world. Therefore, many researchers are now trying to

learn from biological snake gaits to use in snake robots. In

turn, we can improve our understanding of biological snakes

through studies of robotic ones [5].

Snakes have attracted much attention because of their

unique method of locomotion without any legs. However, a

reasonable explanation for the serpentine locomotion, called

lateral undulation, did not appear until the first quantitative

study on snake locomotion was performed by Gray in the

1940’s [6]. Based on experiments and measurements of snake

gaits, he suggested that forces acting normally to the sides of

the body are essential for propulsion by lateral undulation.

Gray later suggested that snakes in nature generate their

propulsive force by using an anisotropic feature of friction

between their surface and the environment [7]. Baio et al. [8]

discussed the possibility that they also use lubricant to achieve

locomotion. From the viewpoint of robotics, Liljebäck et al. [9]
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proved that, if viscous friction is assumed, anisotropy in

friction is essential for movement of a planar snake robot to

be controllable. Hirose [10] modeled a snake as a serial-link

mechanism whose links are subject to the velocity constraint

that they do not slip sideways. He also proposed the serpenoid

curve as the shape of a snake. The serpenoid curve has become

the de facto standard for the body shape of snake robots [11]–

[15]. Justification for use of the serpenoid curve comes not

only from biological inspections but also from a control

perspective. It has been shown that a body shape similar to

the serpenoid curve is generated by solving an optimal control

problem [16]. In the literature, the weighted norms of joint

angles, angular velocities and angular accelerations are used

as the stage cost.

Among the various types of snake locomotion, some are

three dimensional, lifting up some parts of body instead of

the whole body being in contact with the ground. Sinus-lifting

motion is one such gait and is used by many kinds of biological

snake. Because this is considered to be more efficient than

lateral undulation [10], this gait has also been studied by

researchers of snake robots [11]–[14]. These previous studies

have mainly investigated the energy efficiency of sinus-lifting

motion compared with that of lateral undulation. The motion is

approximated as a planar movement and simulations based on

simplified dynamic models are discussed. In [14], the authors

chose links to be grounded to minimize energy consumption.

Their results showed that, through such an optimization, a

contact pattern similar to sinus-lifting motion can be generated.

Sidewinding locomotion is also well-known to researchers

of snake robots as an efficient type of locomotion. In the

first study on sidewinding locomotion by a robot, by Burdick

et al. [17], the authors proposed a body shape to realize

sidewinding-like locomotion without slipping by a hyper-

redundant manipulator. Kelly and Murray [18] described the

movement using differential geometry notation, assuming that

there is no inertial effect and the net viscous friction is zero. In

these works, although sidewinding locomotion is assumed one

of the most efficient gaits, they contain no quantitative data on

the energy efficiency of the motion. Moreover, the method to

determine body shape proposed in [17] leads to discontinuities

in curvature, which result in inefficient use of motor torque.

In [19], sidewinding locomotion is generated as the result of

the maximization of speed through genetic programming. Al-

though this may seem to prove the superiority of sidewinding

locomotion over other forms of snake gaits, the authors used

an isotropic friction model. Under these conditions, it would

be impossible for lateral undulation or sinus-lifting motion to

outperform the sidewinding locomotion.

Sidewinding locomotion has been employed in several

snake-like robots [20]–[24]. Tesch et al. [25] made snake

robots and investigated the energy consumption associated
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with three kinds of locomotion: sidewinding locomotion, 
rolling, and linear propagation. However, because their robots 
were not equipped with any mechanism to realize anisotropic 
friction, it was impossible to realize or investigate lateral undu-

lation and sinus-lifting motion. In [26], the authors studied the 
dynamics of sidewinding locomotion on slopes in a biological 
snake compared with that in a snake robot. From observational 
studies, they suggested a strategy for a snake robot to use 
sidewinding locomotion to ascend a steep slope. However, 
little research exists into quantitative comparisons between 
sidewinding locomotion and either lateral undulation or sinus-

lifting motion. This is due to the high calculation cost of sim-

ulating sidewinding locomotion, unlike lateral undulation and 
sinus-lifting motion, which can be accurately simulated using 
only kinematics and by assuming a no side-slip constraint.

There are many sophisticated approximations for modeling 
snake robots. For example, in [27], the authors modeled 
the joints as prismatic, and derived approximate equations 
of motion. In [28], based on the prismatic joint model, the 
authors used the averaging method to derive the relationship 
between the net velocity and the joint angle parameters, where 
joint angles were parametrized using the serpenoid curve. 
These approximations work well for control purposes, as 
they greatly reduce the calculation cost, making them feasible 
for use in real-time control, and feedback can attenuate any 
modeling errors. In other studies, to enable more advanced 
control techniques, differential geometry is also often adopted 
as in [29], [30]. However, such methods are not necessarily 
suitable for our purpose.

In the present paper, using various simulations, we compare 
the energy efficiency of sidewinding locomotion with that 
of lateral undulation and sinus-lifting motion. As all three 
gaits are used to move on even surfaces, we are interested in 
the circumstances in which one gait outperforms the others, 
in terms of energy efficiency at a certain locomotion speed. 
The dynamic equations are derived for horizontal movement, 
assuming anisotropic viscous friction. The movements in the 
direction of gravity are assumed to be small enough to be 
considered quasi-static. Using these assumptions, all three 
gaits can be handled by the same model with a reason-

able calculation cost. Simulation results show clear trade-

offs between speed and energy efficiency in all three gaits. 
By plotting energy efficiency against the locomotion speed, 
the relationship between these trade-offs is illustrated by the 
boundary of the distribution of points. The points on these 
boundaries—Pareto fronts, from the optimization point of 
view—define the best possible energy efficiency as a function 
of locomotion speed. Intersections of fronts indicate critical 
speeds at which the most energy efficient gait switches from 
one to another. The trade-off between speed and power has 
an inverse trend compared with that of energy efficiency as 
investigated in the present study. The speed–power relationship 
was investigated in [31] for lateral undulation, but comparison 
with other gaits has not been reported, to our knowledge.

Some parts of the present paper appeared in [32]; however, 
the present paper differs in the following ways: The present 
paper includes more detailed descriptions of the equations 
of motion for a planar snake robot, and of the equilibrium

Fig. 1. During sinus-lifting motion [33], a snake lifts only some parts of its
body

Ground Contact track

Lifted part
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part

Direction of

net movement

Fig. 2. In sidewinding locomotion, a snake makes contact with ground at
two or three points that are at rest. These grounded parts are ‘peeled’ from
the front at the same time following body segments are grounded

equations used to calculate pitch torques and normal forces.

We also include sinus-lifting motion in our analysis, since

we considered it a very important gait for snake robots.

The present paper also includes more accurate and detailed

simulation results than the previous version, supporting and

adding to our original conclusions.

The remainder of the paper is organized as follows. In

Section II, sinus-lifting motion and sidewinding locomotion

are explained briefly. A dynamic model of a planar snake robot

is described in Section III, along with the equilibrium relations

used to determine pitch torque and normal force. Simulation

results are shown in Section V, including an explanation of

sidewinding locomotion simulation, and a definition of energy

efficiency. Finally, Section VI concludes the paper.

II. SINUS-LIFTING MOTION AND SIDEWINDING

LOCOMOTION

Sinus-lifting motion, shown in Fig. 1, is a commonly used

snake gait for when a snake is moving at high speed [10]. In

Fig. 3. A sidewinder rattlesnake (Crotalus cerastes) moving towards the left
of the picture [34]. The snake’s body is grounded at two points; most of the
body is lifted
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this locomotion, the snake lifts up some body parts where the 
curvature is large, to reduce energy dissipation due to friction 
without losing the propulsion force attained from body parts 
with low curvature.

In [10], it is suggested that a snake uses sinus-lifting 
motion to reduce slippage. Tanaka et al. [11] studied optimal 
grounding pattern of a wheeled snake robot to reduce con-

straint force through exhaustive search. The authors showed 
that this optimization will lead to sinus-lifting-like motion 
only when the amplitude of body bending is small, which 
is inconsistent with observations of biological snakes. The 
results suggested that the minimization of lateral constraint 
force, which was thought to be important to improve the 
efficiency of locomotion, may not be the critical factor for 
sinus-lifting motion. Toyoshima et al. [14] proposed energy 
efficiency optimizations, and showed that these criteria result 
in sinus-lifting-like motion with a large bending amplitude, as 
seen in biological snakes.

Sidewinding locomotion (Fig. 2) is a typical gait for desert 
snakes, such as the sidewinder rattlesnake, Crotalus cerastes 
(Fig. 3). When sidewinding, a snake’s body usually contacts 
the ground at only two or three segments. The ground-contact 
segments propagate toward the rear of the snake’s body. These 
segments are at rest relative to the ground and leave a series 
of parallel straight tracks on the ground. From an obser-

vational study of the sidewinder rattlesnake, Mosauer [34] 
suggested that sidewinding locomotion is particularly suited 
for movement over sandy terrain at high speed and for long 
periods. Gray [6] stated that, from the study on sidewinding 
locomotion of the grass snake, Tropidonotus natrix, snakes use 
sidewinding locomotion on smooth surfaces.

III. MODEL OF THE SNAKE ROBOT

In this section, we derive a dynamic model of a planar 
snake robot using the Euler–Lagrange method. We assume that 
viscous friction acts between the robot and the environment. 
Further, the friction is assumed to be small in the direction 
parallel to links and large in the perpendicular direction. This 
setting is very common in research on snake robots [9], [16], 
and has been shown to facilitate reasonable simulation of 
the movement of snake robots. Because of the assumption 
of anisotropy, lateral undulation and sinus-lifting motion can 
also be simulated using the same dynamic model, although 
anisotropy is nonessential for sidewinding locomotion. The 
Coulomb friction model is also used in some snake robot 
studies [31]. Although the quantitative properties of gait per-

formance change if Coulomb friction is considered, we have 
empirically confirmed that the qualitative properties do not 
change. Moreover, inclusion of Coulomb friction clutters the 
discussion with two additional variables. Therefore, we do not 
include Coulomb friction in the present paper.

Another method of deriving the dynamic model based on 
Newton–Euler method can be found in [15], [31]; however, we 
consider the Newton–Euler method to be more prone to errors, 
since it is less methodical and requires a deep understanding 
of forces acting on each link and joint. In [35], the authors 
propose the Gibbs–Appell method to derive the equations of

motion for a snake robot with lateral constraints. Although

the Gibbs–Appell method is well suited to model robots with

non-holonomic constraints, there are few advantages when

modeling snake robots. After deriving the equations of motion

for planar movement, the equilibrium equations required to

calculate normal forces and pitch torques are described. Then,

using the joint toques gained by solving those equations,

energy consumption at each joint is explained.

A. Notation

We consider a snake robot with n links of equal length

connected by n− 1 2-DOF active joints (in the order of yaw

and pitch from the front), as shown in Fig. 4. To keep the

model uncluttered, we assume that movements in the direction

of gravity are small enough for the inertial effect in this

direction to be neglected. We leave the consideration of upright

movement to our future research. However, given that the lift-

up of some biological snakes such as the grass snake is also

not so large, as suggested in [6], this simplification is not so

unrealistic. The lifted links of the snake robot are regarded as

having no friction force from the ground; grounded links are

regarded as the links on which a friction force acts (Fig. 5).

Notation used in the present paper is defined as follows:

l : Half of the length of each link

θi : Orientation of link i
φi : Yaw angle of joint i. φi = θi+1 − θi

(xh, yh) : Position of the head

w : w = [xh yh θ1]
T

xi : Position vector of the center of link i,
expressed as xi = [xi yi]

T

x, y : x = [x1 · · · xn]
T , y = [y1 · · · yn]

T

θ,φ : θ = [θ1 · · · θn]
T , φ = [φ1 · · · φn−1]

T

q̄ : General coordinate. q̄ = [xh yh θT ]T

The local coordinate of link i is fixed on the center of mass

(CM) of link i, with xi axis and yi axis, which incline by θi
from global x and y respectively.

Vector valued trigonometric functions with vector valued

inputs are defined as follows:

cosθ =
[

cos θ1 cos θ2 · · · cos θn
]T

,

sinθ =
[

sin θ1 sin θ2 · · · sin θn
]T

.
(1)

Diagonal matrices whose diagonal components are trigono-

metric functions are defined as follows:

Cθ = diag(cos θ1, cos θ2, · · · , cos θn),

Sθ = diag(sin θ1, sin θ2, · · · , sin θn).
(2)
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Yaw joint

Pitch joint

Fig. 4. Schematic of a snake robot (top view) with n links and n−1 2-DOF
joints. The head position is (xh, yh), the center of mass (CM) of link i is
located at (xi, yi), the orientation of link i is θi, and the angle of yaw of
joint i is φi.

Fig. 5. Handling of the lifting effect. We model lifted links as links that are
not subject to any force from the ground

B. Dynamic Model of Planar Snake Robot

The CM of the links is calculated as






















x1 = xh + l cos θ1

x2 = xh + 2l cos θ1 + l cos θ2
...

xn = xh +
∑n−1

i=1 2l cos θi + l cos θn

, (3)























y1 = yh + l sin θ1

y2 = yh + 2l sin θ1 + l sin θ2
...

yn = yh +
∑n−1

i=1 2l sin θi + l sin θn

. (4)

This can be summarized into the following vector notation:
{

x = exh + lK cosθ

y = eyh + lK sinθ
, (5)

where K and the vector e are defined as follows:

K =











1 0 · · · 0
2 1 · · · 0
...

...
. . .

...

2 2 · · · 2 1











∈ R
n×n, (6)

e = [1 1 · · · 1]T ∈ R
n. (7)

By differentiating both sides of (5) with respect to time, the

velocity relationship can be obtained as

ẋ = eẋh − lKSθθ̇ =
[

e 0 −lKSθ

]

˙̄q = Jq̄x ˙̄q,

ẏ = eẏh + lKCθθ̇ =
[

0 e lKCθ

]

˙̄q = Jq̄y ˙̄q,

θ̇ =
[

On×2 In
]

˙̄q,

(8)

where Ik is a k × k identity matrix and

Jq̄x =
[

e 0 −lKSθ

]

,

Jq̄y =
[

0 e lKCθ

]

.
(9)

Because motion in the vertical direction is assumed to be so

small that it can be neglected, the Lagrangian of the robot

comprises only its kinetic energy T

T =
1

2
(ẋTM ẋ+ ẏTM ẏ + θ̇TJ θ̇) =

1

2
˙̄qT H̄ ˙̄q, (10)

where M and J are the matrices with mass and moments of

inertia, respectively, of links on their diagonal components.

Inertia matrix H̄ is defined as follows:

H̄ := JT
q̄xMJq̄x + JT

q̄yMJq̄y + J̄ , (11)

J̄ =

[

O2 O2×n

On×2 J

]

,

which is a symmetric positive-definite matrix.

Viscous friction is assumed to act only on the CM of a link

given that the integration of the friction force in the case of

pure rotation leads to the formula given in [31]. The viscous

coefficients between the environment and the link i are cx,i
in the xi direction, cy,i in the yi direction and cθ,i in the

rotational direction. Let the rotation matrix which relates the

local frame of link i and the global frame be GRi, then the

dissipation function for link i is

Ri =
1

2
ẋT
i

GRi

[

cx,i 0
0 cy,i

]

(GRi)
T ẋi +

1

2
cθ,iθ̇

2
i . (12)

By adding them for all of the links, the dissipation function

for the entire robot can be derived as

R =
1

2
˙̄qT (Ctr + Crot) ˙̄q =

1

2
˙̄qT C̄ ˙̄q, (13)

where

Ctr = JT
q̄xy

[

CxC
2
θ + CyS

2
θ (Cx − Cy)SθCθ

(Cx − Cy)SθCθ CxS
2
θ + CyC

2
θ

]

Jq̄xy,

(14)

Crot = diag(0, 0, cθ,1, · · · , cθ,n), (15)

Jq̄xy =
[

JT
q̄x JT

q̄y

]T
, (16)

Cx = diag(cx,1, · · · , cx,n), (17)

Cy = diag(cy,1, · · · , cy,n). (18)

Then, Lagrange’s equations of motion are written as

d

dt

(

∂T

∂ ˙̄q

)T

−

(

∂T

∂q̄

)T

+

(

∂R

∂ ˙̄q

)T

= Ēτ , (19)

where Ē ∈ R
n×(n−1) is a coefficient matrix and τ ∈ R

n−1 is

torque applied to the yaw joints. The first term of the left-hand

side is

d

dt

(

∂T

∂ ˙̄q

)

= ¨̄qT H̄ + ˙̄qT ˙̄H

= ¨̄qT H̄ + ˙̄qT
(

J̇T
q̄xMJq̄x + JT

q̄xMJ̇q̄x

+ J̇T
q̄yMJq̄y + JT

q̄yMJ̇q̄y

)

, (20)
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which leads to the following result:

d

dt

(

∂T

∂ ˙̄q

)

= ¨̄qT H̄ + ˙̄qT
{

˙̄Q
(

J T
x MJq̄x + J T

y MJq̄y
)

+
(

JT
q̄xMJx + JT

q̄yMJy

) ˙̄Q

}

, (21)

where Q̄ = diag(q̄1, · · · , q̄n+2) = diag(xh, yh, θ1, · · · , θn)
and

Jx :=
[

On×2 −lKCθ

]

,

Jy :=
[

On×2 −lKSθ

]

.
(22)

The ith component of the second term of the left-hand side of

(19) is

∂T

∂q̄i
=

1

2
˙̄qT ∂H̄

∂q̄i
˙̄q

=
1

2
˙̄qT

(

∂JT
q̄x

∂q̄i
MJq̄x + JT

q̄xM
∂Jq̄x
∂q̄i

+
∂JT

q̄y

∂q̄i
MJq̄y + JT

q̄yM
∂Jq̄y
∂q̄i

)

˙̄q

= ˙̄qT

(

JT
q̄xM

∂Jq̄x
∂q̄i

+ JT
q̄yM

∂Jq̄y
∂q̄i

)

˙̄q. (23)

Because Jq̄x and Jq̄y do not depend on q̄1 = xh and q̄2 = yh,

it can be seen that

∂Jq̄x
∂q̄i

=
∂Jq̄y
∂q̄i

= On×(n+2), i = 1, 2. (24)

For j = 1, · · · , n, it holds that

∂Jq̄x
∂q̄j+2

=
[

On×2 −lKdiag(0, · · · , 0, cos θj , 0, · · · , 0)
]

,

∂Jq̄y
∂q̄j+2

=
[

On×2 −lKdiag(0, · · · , 0, sin θj , 0, · · · , 0)
]

.
(25)

Therefore, we have

∂Jq̄x
∂q̄i

˙̄q = Jx

[

0 · · · 0 ˙̄qi−2 0 · · · 0
]T

, (26)

∂Jq̄y
∂q̄i

˙̄q = Jy

[

0 · · · 0 ˙̄qi−2 0 · · · 0
]T

, (27)

and consequently,

∂T

∂q̄
= ˙̄qT

(

JT
q̄xMJx + JT

q̄yMJy

) ˙̄Q. (28)

Regarding the third term of (19), by noting that C̄ is symmet-

ric, we get
∂R

∂ ˙̄q
= ˙̄qT C̄. (29)

Summarizing the above equations, we obtain the following

equations of motion:

H̄ ¨̄q + W̄diag( ˙̄q) ˙̄q + C̄ ˙̄q = Ēτ , (30)

W̄ = JT
q̄xMJx + JT

q̄yMJy,

where W̄diag( ˙̄q) ˙̄q is the term for Coriolis and centrifugal

forces.

Fig. 6. Illustration of force in vertical direction and torque (side view). Virtual
roll joints are added to consider the constraint torque in the roll direction. 　
　 The normal force acting on link i and the constraint force at joint i in

the vertical direction are pi and fi respectively. Torques applied to i-th roll,
pitch, and yaw joints are ni, τ̂i, and τi respectively.

Fig. 7. Illustration of torque (top view). By noticing that the torque can be
expressed as a vector in the direction of the rotation axis, the effect of bending
at yaw joints can be correctly incorporated into the equilibrium equations

Thus far, we have used generalized coordinates which

are suitable for derivation of equations of motion. However,

for designing control inputs for yaw joints, it is more con-

venient to use another coordinate system defined as q =
[xh yh θ1 φT ]T . There is a relationship between two types

of generalized coordinate system, as follows:

˙̄q = Jqq̄q̇,

Jqq̄ = block diag(I2, Jφθ),

Jφθ =











1 0 · · · 0
1 1 · · · 0
...

...
. . .

...

1 1 · · · 1











∈ R
n×n.

(31)

Substituting (31) into (30), and multiplying both sides of (30)

by JT
qq̄ , we get

H q̈ +Wdiag(Jqq̄ q̇)Jqq̄q̇ + Cq̇ = Eτ , (32)

where H = JT
qq̄H̄Jqq̄ , W = JT

qq̄W̄ , C = JT
qq̄C̄Jqq̄ and E =

JT
qq̄Ē = [OT

(n−1)×3 In−1]
T . Note that after multiplication

by JT
qq̄ , the inertia matrix H becomes a symmetric positive-

definite matrix.

C. Equilibrium Equations in the Vertical Direction

In the previous subsection, only the planar motion is con-

sidered, and used to obtain torques applied to yaw joints.

However, we also need the torques applied to the pitch joints,

to evaluate energy consumption. In [14], assuming that the

snake robot can be approximated as an elastic straight beam,

they applied Clapeyron’s three-moment equation to determine

the pitch torques and normal forces. However, in doing so,

the shape of the snake robot and the constraint that the

normal force should be in the upward direction are neglected.

Therefore, this simplification can be a major deviation from
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the energy consumption of real snake robots. In the present 
study, to obtain these values, the equilibrium equations in the 
vertical direction are considered; thus, both the shape of the 
snake robot and the unidirectional constraint can be taken into 
account.

Let pi be the normal force acting on link i where pi = 0 if 
link i is a lifting link, τ̂i be the torque applied to pitch joint i, 
and fi be the constraint force acting on joint i which prevents 
links i and i + 1 from separating in the vertical direction. 
Let ni be the constraint torque in the roll direction at joint i, 
which can be seen as the torque applied to the virtual roll joint 
located in front of the yaw joint. Note that we assume that the 
normal force acts on the CG of the link and joints have zero 
length. Let m be the mass of a link and g be the gravitational 
acceleration. This notation is illustrated in Figs. 6 and 7. The 
equilibrium equations for link i can be written as

fi − fi−1 + pi = mg,

sinφi−1 · ni−1 + cosφi · τ̂i − τ̂i−1 − l(fi + fi−1) = 0,

ni − cosφi−1 · ni−1 − sinφi · τ̂i = 0.
(33)

Deriving these equations on every link, the following linear

equations can be derived:

Df = mge− p = mge− Sr, (34)

S̃φn+Dcτ̂ − lAf = 0, (35)

D̄cn− S̄φτ̂ = 0, (36)

where the matrix Dc and D̄c are defined as

Dc =















cosφ1 0 · · · 0 0
−1 cosφ2 · · · 0 0

...
...

. . .
...

...

0 0 · · · −1 cosφn−1

0 0 · · · 0 −1















(37)

∈ R
n×(n−1),

D̄c = −















−1 0 · · · 0 0
cosφ1 −1 · · · 0 0

...
...

...
...

...

0 0 · · · cosφn−2 −1
0 0 · · · 0 cosφn−1















(38)

∈ R
n×(n−1).

Vectors p, f and τ̂ are defined as p = [p1 · · · pn]
T , f =

[f1 · · · fn−1]
T and τ̂ = [τ̂1 · · · τ̂n−1]

T , respectively. From

p, we omit the components corresponding to the lifted links

and define the resulting vector as r. Matrix S is the selection

matrix which satisfies p = Sr. Matrices D and A are defined

as D = Dc|φ=0, and A = −Dc|φ=π , respectively. Matrices

S̄φ and S̃φ are defined as follows:

S̄φ =

[

diag(sinφ1, · · · , sinφn−1)
0
T

]

∈ R
n×(n−1), (39)

S̃φ =

[

0
T

diag(sinφ1, · · · , sinφn−1)

]

∈ R
n×(n−1). (40)

By solving the set of linear equations (34)-(36) for n, τ̂ , r

and f , under the condition that ri ≥ 0 for all i, i.e., that the

normal force from the ground must be non-negative, we can

determine necessary joint torques and normal forces from the

ground.

Suppose ng(≤ n) links are grounded, then, there are

3n+ng−3 unknowns and 3n equations. Therefore, the number

of grounded links ng should intuitively satisfy ng ≥ 3 and,

in the case of ng ≥ 4, we have redundancy in calculating

these unknowns. This redundancy can be used to control

normal forces, by tuning yaw and pitch torques appropriately;

however, in the present paper, we simply use the solution that

gives the minimum norm of the pitch torque vector, under the

constraint of ri ≥ 0 for all i. Note that if |φi| = π/2, then

τ̂i does not have any effect on link i, under the assumption

that joints have no length. This leads to the possibility that

the linear equations (34)-(36) have no solutions. Therefore,

we subsequently confine the range of the yaw angles to the

range (−π/2, π/2).

D. Energy Consumption

To calculate the energy consumption of a robot, the energy

consumption of a DC motor is evaluated by the following

equation [36]:

emotor =

∫ t

0

{

max(τ(ξ)ω(ξ), 0) +
γ

r2m
τ2(ξ)

}

dξ, (41)

where rm is the gear reduction ratio of the DC motor and

γ is the coefficient for the heat energy loss. The first term

represents the mechanical power given by the product of the

angular velocity ω and the torque τ at the motor. We neglect

the effect of negative power because the DC motor does not

store the energy supplied by the negative work. The second

term represents the heat energy loss.

In [36], this equation was used to calculate the energy

consumption of muscle, and in [14] the max function was

omitted for evaluation of the energy consumption of a DC

motor. Though these choices make only small differences in

the simulation results in V-C, we chose to use (41) because the

equation used in [14] clearly underestimates the energy con-

sumption unless some energy storage mechanism is assumed.

Let ei and êj be the energy consumed at the i-th yaw joint

and the j-th pitch joint, respectively. Then, the total energy

Etotal that is consumed by a whole snake robot is

Etotal =

n−1
∑

i=1

ei +

n−1
∑

j=1

êj , (42)

where ei and êj are calculated by (41).

IV. INPUT TORQUE FOR YAW JOINTS

The equations of motion (32) can be divided into two parts

as follows:

H11ẅ +H12φ̈+W1 +C1 = 03×1 (43)

H21ẅ +H22φ̈+W2 +C2 = τ , (44)
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Direc�on of movement

Fig. 8. One period of the serpenoid curve and the definition of winding angle
α. Parameter T controls how many serpenoid curves are formed by a snake
robot

where w = [xh yh θ1]
T and

H =

[

H11 H12

H21 H22

]

, H11 ∈ R
3×3, H22 ∈ R

(n−1)×(n−1),

(45)

Wdiag(Jqq̄ q̇)Jqq̄q̇ =

[

W1

W2

]

, W1 ∈ R
3, W2 ∈ R

n−1,

(46)

Cq̇ =

[

C1

C2

]

, C1 ∈ R
3, C2 ∈ R

n−1. (47)

Because H11 is positive definite, (43) can be solved for ẅ as

ẅ = −H−1
11 (H12φ̈+W1 +C1). (48)

From (44) and (48), it follows that:

Hφ̈+W2 +C2 −H21H
−1
11 (W1 +C1) = τ

H = H22 −H21H
−1
11 H12.

(49)

Therefore, by the following controller:

τ = Hu+W2 +C2 −H21H
−1
11 (W1 +C1), (50)

the system can be converted into the following system [9]:

ẅ = −H−1
11 (W1 +C1)−H−1

11 H12u (51)

φ̈ = u. (52)

We employ the serpenoid curve [10] for the body shape of

the robot. The serpenoid curve is defined as a curve whose

curvature propagates in sinusoidal manner with respect to the

arc-length coordinate. This curve is said to be very similar to

the body shape of biological snakes, and is often employed in

studies on snake robots [11]–[14], [20].
Let s ∈ [0, 1] be the arc-length coordinate of the points on

a curve and ρ(t, s) be the curvature at a point s at time t.
The serpenoid curve is characterized by

ρ(t, s) = 2παT sin(vt− 2πTs), (53)

where v is the angular frequency of bending, and T indicates

how many periods are formed within the interval of s ∈ [0, 1],
that is, it represents the spatial frequency of the body shape.

The winding angle α indicates the largest angle between the

serpenoid curve and the direction of movement, as shown in

Fig. 8. The effects of different α and T are illustrated in Fig. 9.
To employ this body shape, yaw joint angles are set accord-

ing to the following equation:

φi =
2πT

n
α sin

(

vt−
2πT

n
i

)

, i = 1, · · · , n− 1. (54)

̀̀ = /4 ̀ = ̀/2

T
=
1

T
=
1
.5

T
=
2

Fig. 9. Robot shapes for different pairs of α and T . A snake robot with
16 links (15 joints) is assumed. Crosses represent the end points of links.
T controls how many serpenoid periods are made by the snake robot. The
amplitude of the curve is affected both by α and T : a larger T with fixed
α leads to a smaller amplitude; a larger α with fixed T leads to a larger
amplitude.

Therefore, the angular acceleration of each joint is set as

φ̈i = −
2πT

n
αv2 sin

(

vt−
2πT

n
i

)

. (55)

From (50), (52) and (55), the torque input for each yaw joint

can be determined to form the serpenoid curve.

V. SIMULATION

We model the horizontal movement of lifted parts of the

robot as frictionless movement in Sec. III-A, that is, we set

the viscous coefficients of the lifted links to zero. Further, we

assume that the viscous coefficients of link i are proportional

to the normal force pi acting on the link as is assumed in [16].

Therefore, for some constants cxo, cyo and cθo, the viscous

coefficients associated with link i are cx,i = picxo, cy,i =
picyo and cθ,i = picθo. Note that cyo must be larger than

cxo to realize lateral undulation [9]. From a consideration of

torque acting on a link due to the friction force in the case of

pure rotation, cθo is set to be cθo = l2cxo/3 [31].

In the remainder of this section, the criteria to simulate

sidewinding locomotion and sinus-lifting motion are pre-

sented, and the energy efficiency is defined. Section V-D

presents simulations of various combinations of friction co-

efficients. We consider a 16-link snake robot with a total mass

of 5.0 kg and a total length of 1.0 m (5/16 kg and 1/16 m

for each link) in simulations. Among the three parameters, α,

v, and T , that regulate the serpenoid curve, T was fixed at 2,

that is, the snake robot makes two periods of waves within its

length. For α and v, we simulated various combinations.

A. Criteria for Deciding Lifted and Grounded Parts for

Sidewinding Locomotion

In this subsection, we explain how to determine grounded

links, and then show that only by choosing lifted and grounded
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Fig. 10. Relationship between lifting pattern and the direction of net motion,
which can be seen from the observation of real snakes. The solid lines
correspond to grounded parts and the dashed lines represent lifted parts of
the snake robot.

links appropriately, sidewinding-like locomotion can be gen-

erated. Fig. 10 describes the relationship between lifting

pattern and direction of net motion, which is derived from

observations of biological snakes [6], [37].

In the present study, we decided to use the lifting pattern

that is shown in the bottom of Fig. 10. To this end, grounded

links are selected as follows: If |φi−1|, |φi| < φth and φi−1 <
φi, then the link i is a grounded link. The threshold of the

angle φth is determined using some constant kφ ∈ (0, 1) as

φth = kφφmax, where φmax = 2παT/n is the amplitude of the

joint angles.

For sinus-lifting motion, similar criteria are used, but the

direction of the change in curvature is not required to be

considered. Therefore, the link i is set to be grounded if

|φi−1|, |φi| < φth is satisfied.

Because the number of grounded links gets smaller with

a smaller kφ, it is estimated that with a smaller kφ, we can

reduce the energy loss by friction and can improve energy

efficiency in some cases. However, this also means that the

robot has a smaller supporting polygon, which is the convex-

hull of the ground contact points. If the center of mass of the

robot is located outside this polygon, equilibrium of the force

and torque cannot be attained, and the robot will fall down.

Therefore, the required kφ is slightly larger than the minimum

that maintains at least four grounded links.

Confirmation of the Criteria: The validity of the criteria for

simulating sidewinding locomotion mentioned above is tested

by a simulation.

We set the parameters as T = 2.0, α = 1.0 rad and v = 5.0
rad/s. The constants in the viscous coefficients are set to be

cxo = 0.1 s2/m and cyo = 0.5 s2/m. The initial configuration

is q(0) = [0 0 α φ(0)T ]T , where φ(0) is determined from

(54) by setting t = 0. Initial angular velocities for joints

are determined according to the time derivative of (54), and

ẇ(0). The initial velocity of head and angular velocity of

link 1 is determined so as to set both the initial velocity

Fig. 11. Simulation result of sidewinding locomotion. Dashed lines represent
lifted parts; × represents the position of the center of mass. The relationship
between the grounding pattern and the movement direction is compatible with
biological observations.

of the CM and the initial total angular momentum to zero.

Fig. 11 shows the result of simulation, which shows that by

this criterion, the same relationship between the grounding

pattern and movement direction as biological snakes can be

obtained.

B. Criteria for Deciding Lifted and Grounded Parts for Sinus-

Lifting Motion

In sinus-lifting motion, a snake lifts up its body parts

where the curvature is large; the direction of bending does

not matter. To realize this sort of ground contact pattern, a

similar decision rule to that for sidewinding locomotion can

be used: if |φi−1|, |φi| < φth, then the link i is a grounded link.

Note the difference from the case of sidewinding locomotion.

In sidewinding locomotion, the direction of bending should be

taken into consideration, but this is unnecessary in sinus-lifting

motion.

C. Energy Efficiency

The energy efficiency is defined as the distance that the CM

of the robot can travel per unit of energy:

(energy efficiency) =
(distance CM traveled)

(energy consumption)
. (56)

Greater energy efficiency means that the robot can travel

longer distance per unit of energy. Energy consumption of

the yaw and pitch joints is calculated according to (41).

The coefficients for heat energy loss and gear reduction ratio

for yaw joint motors are γyaw = 4.6 × 104 Ω(A/Nm)2 and

rm,yaw = 76, respectively. In contrast, corresponding coeffi-

cients for pitch joint motors are γpitch = 8.1× 102 Ω(A/Nm)2

and rm,pitch = 51, which are the same as given in [14]. In

the simulations, kφ was set to be kφ = 1.0 for sidewinding

locomotion, and kφ = 0.92 for sinus-lifting motion. Note that

the number of grounded links is more limited in sidewinding
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locomotion than in sinus-lifting motion; thus, a larger kφ 
is required for sidewinding locomotion than for sinus-lifting 
motion. Parameter settings for simulations are summarized in 
Table I. As can be seen in Table I, we continue to use T = 2 
because if T < 2, it is difficult to satisfy the condition of 
ng ≥ 3 in sidewinding locomotion that is generated according 
to Section V.A.

D. Simulations in Various Environments

We ran simulations for eight different situations, each distin-

guished by the frictional properties between the robot and the

ground: (i) (cxo, cyo) = (0.01, 0.03) s2/m, (ii) (cxo, cyo) =
(0.1, 0.3) s2/m, (iii) (cxo, cyo) = (0.01, 0.04) s2/m, (iv)

(cxo, cyo) = (0.1, 0.4) s2/m, (v) (cxo, cyo) = (0.1, 0.05) s2/m,

(vi) (cxo, cyo) = (0.1, 0.5) s2/m, (vii) (cxo, cyo) =
(0.01, 0.1) s2/m and, (viii) (cxo, cyo) = (0.1, 1.0) s2/m.

The ratios between the two friction coefficients cxo/cyo are

1/3 for (i) and (ii), 1/4 for (iii) and (iv), 1/5 for (v) and

(vi) and, 1/10 for (vii) and (viii). This ratio is considered

critical for controllability of the lateral undulation [9]. The

smaller the ratio is, the more efficient the lateral undulation

becomes. We chose 1500 combinations of bending frequency

and winding angle (v, α) at random, where v ∈ [0.01, 50] and

α ∈ [0.01, 1.4].
The results are shown in Fig. 12 as scatter plots. From

these plots it can be seen that there is a trade-off between

speed and energy efficiency in all three gaits. In Fig. 13,

only points that satisfy the trade-off are plotted. Note that

most of the trade-off lines do not reach the vertical axis,

because no combination of (α, v) was found that attains lower

speed with higher energy efficiency than the left most points

on those lines. Each of these curves define the maximum

energy efficiency as a function of locomotion speed given

the gait and the environment. Combinations of α and v
which attain these trade-off performances can be seen as

solutions to the multiobjective optimization problem which

aims to maximize speed and energy efficiency. According to

multiobjective optimization, these trade-off curves are called

the Pareto fronts, or simply ‘fronts’.

1) Comparison between Lateral Undulation and Sidewind-

ing Locomotion: As pointed out in the literature [17], [18],

sidewinding locomotion is generally more efficient than lat-

eral undulation. If the overall friction is large, such as in

Figs 13(b), 13(d), and 13(f), sidewinding locomotion outper-

forms lateral undulation at all speeds. However, if the overall

friction is small, there are intersections between these fronts.

In each of Figs. 13(a), 13(c), 13(e) and 13(g), there is an

intersection in low-speed region. For speeds lower than that

TABLE I
PARAMETER SETTINGS FOR SIMULATIONS

m 5/16 kg n 16

l 1/32 m γyaw 4.6 ×104 Ω(A/Nm)2

T 2 γpitch 8.1 ×102 Ω(A/Nm)2

Simulation time 2.1 periods rm,yaw 76
kφ for sidewinding 1.0 rm,pitch 51
kφ for sinus-lifting 0.92
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(h) (cxo, cyo) = (0.1, 1.0) s2/m

Fig. 12. Scatter plot showing energy efficiency at different locomotion speeds.
Blue crosses correspond to the results of lateral undulation, green asterisks
to those of sinus-lifting motion and red circles to those of sidewinding
locomotion. There is a region of attainable performance in terms of locomotion
speed and energy efficiency. Typically maximum efficiency at a certain speed
or maximum speed with a certain energy efficiency is desirable. Thus, the set
of points representing a trade-off, the Pareto front, is of interest.

critical value, lateral undulation is more energy efficient than
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Fig. 13. Pareto fronts discovered through simulations. These fronts define the
maximum energy efficiency as a function of locomotion speed or vice versa.

sidewinding locomotion. This is consistent with previous lit-

eratures [34] stating that sidewinding locomotion is especially

good for high speed locomotion. This phenomenon can be un-

derstood as follows: When the robot is moving slowly, energy

consumed by lifting is dominant, but as speed increases, the

dissipation due to friction increases while the energy for lifting

remains almost constant. As a consequence, lateral undulation,

which loses more energy by dissipation, is less energy efficient

than sidewinding locomotion at high speeds. Note that as the

ratio cxo/cyo gets smaller, the critical speed gets higher: about

6.5 × 10−3 m/s in Fig. 13(a), 1.1 × 10−2 m/s in Fig. 13(c),

1.5×10−2 m/s in Fig. 13(e), and 5.0×10−2 m/s in Fig. 13(g).

A smaller friction ratio results in higher performance in lateral

undulation, but not in sidewinding locomotion. An interesting

phenomenon can be seen from Fig. 13(h). There are two

intersections between the fronts: one in the low speed region

and the other in the high speed region. The energy efficiency of

sidewinding locomotion is outperformed by lateral undulation

in middle speed region, i.e., sidewinding locomotion is more

efficient than the lateral undulation only if the speed is very

low or very high. Understanding the cause of this phenomenon

is beyond the scope of the present study, and will be the focus

of our future work.

2) Comparison between Sidewinding Locomotion and

Sinus-lifting Motion: As with sidewinding locomotion, our re-

sults show that sinus-lifting motion is generally more efficient

than lateral undulation. This is consistent with other works

by researchers of snake robots [14]. However, the shapes

of the fronts are more similar to those of lateral undulation

than sidewinding locomotion. Fronts of sinus-lifting motion

and sidewinding locomotion have an intersection or inter-

sections in a wide range of friction setting. If the overall

friction is small as in Figs. 13(a), 13(c), 13(e), and 13(g),

the fronts of sidewinding locomotion and sinus-lifting motion

intersect at a single point. If the speed is lower than that

critical value, sinus-lifting motion is more energy efficient than

sidewinding locomotion, otherwise sidewinding locomotion

is more energy efficient. If the overall friction is relatively

large as in Fig. 13(d), these two fronts generally intersect at

two points, and sinus-lifting motion is more energy efficient

than sidewinding locomotion in the middle speed range. In

Figs. 13(f) and 13(h), there is only one intersection, in low-

speed region. It is conceivable, however, that, if we were to

extend the search space, another intersection would be found

in the higher-speed region.

3) Energy Consumed by Pitch Joints: Let the energy con-

sumed by all of the pitch joints be Epitch, and that by the

whole robot be Etotal. Fig. 14 shows the ratio Epitch/Etotal for

sidewinding locomotion and sinus-lifting motion (for lateral

undulation, the ratio is always 0). Note that the ratio is

only calculated for parameter settings that are Pareto optimal.

This figure shows that Epitch/Etotal is larger for sidewinding

locomotion than that for sinus-lifting motion, because there

are more lifted links. Also, in both gaits, the ratio becomes

smaller at higher speeds because of the higher dissipation at

the grounded links.

4) Effect of the Environment: If the overall friction is

low, as in Figs. 13(a), 13(c), 13(e) and 13(g), the gaits

are unable to achieve very high locomotion speed. In such

environments, slippage hinders the snake robot’s movement.

In Figs. 15 and 16, movements of sinus-lifting motion and

sidewinding locomotion are captured. In both figures, (a)

corresponds to the setting (cxo, cyo) = (0.01, 0.03), and (b)
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(a) (cxo, cyo) =
(0.01, 0.03)s2 /m

(b) (cxo, cyo) = (0.1, 0.3) s2/m

(c) (cxo, cyo) =
(0.01, 0.04) s2/m

(d) (cxo, cyo) = (0.1, 0.4) s2/m

(e) (cxo, cyo) =
(0.01, 0.05) s2/m

(f) (cxo, cyo) = (0.1, 0.5) s2/m

(g) (cxo, cyo) =
(0.01, 0.1) s2/m

(h) (cxo, cyo) = (0.1, 1.0) s2/m

Fig. 14. The ratio between the energy consumed by pitch joints and the
total energy Epitch/Etotal for sidewinding locomotion and sinus-lifting motion.
The ratio is calculated for those settings on the Pareto fronts. In both gaits,
because energy dissipation at the grounded links grows as the locomotion
speed increases, the ratio becomes smaller in the higher speed region.

to (cxo, cyo) = (0.1, 0.3). Parameters other than the friction

coefficients remain constant, i.e., winding movements of the
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Fig. 15. Comparison of sinus-lifting motion in different environments.
Although the gait is the same, the net displacement is larger for larger friction.
This suggests that the slippage prevents the snake robot from moving forward.

snake robot are identical in all plots. Despite this, these figures

also show that both gaits result in slower movement in the

case of lower friction than in the case of higher friction. This

suggests there is greater slippage in low-friction environments

that make it difficult for the robot to move fast.

In Fig. 17, the fronts for each gait for various environments

are shown. In each figure, cxo is fixed. As cyo becomes

larger, i.e. the friction ratio cxo/cyo gets smaller, the efficiency

increases in all gaits. However, as can be seen from Fig. 17, the

improvement is greater for lateral undulation and sinus-lifting

motion than sidewinding locomotion. Large cyo leads to less

side-slip and a larger resistance force in the lateral direction,

leading to better energy efficiency in lateral undulation and

sinus-lifting motion. Fig. 15 shows that a larger resistance

force in the lateral direction provides a larger propulsive force

for sinus-lifting motion, as the direction of movement is more

or less perpendicular to the grounded links. The cause of the

improvement in lateral undulation is essentially the same as in

sinus-lifting motion. In contrast, in sidewinding locomotion the

increase in lateral resistance has a smaller effect on propulsive

force, as the direction of movement is more parallel than

perpendicular to the grounded links, as shown in Fig. 16. From

Fig. 17, the effect of doubling cyo for sidewinding locomotion,

which can be seen from the difference by changing cyo from

0.5 s2/m to 1.0 s2/m or from 0.05 s2/m to 0.1 s2/m, would

be 1/4 to 1/2 that for sinus-lifting motion. These results

confirm that, for sidewinding locomotion, the anisotropy in

friction is not essential. This can be interpreted as a major

reason for desert snakes preferring this locomotion. Because

snakes’ bodies can be easily buried in sandy environments, it

is difficult to achieve the required anisotropy.

5) Summary: Both sidewinding locomotion and sinus-

lifting motion are generally more energy efficient than lateral

undulation, as shown by Fig. 13. However, details change

according to the properties of friction. If the anisotropy in

friction is large enough, as in Figs. 13(g) and 13(h), sinus-

lifting motion is the most efficient of the three gaits; otherwise,

sidewinding locomotion is. In the case where the overall fric-

tion is small, as in Figs. 13(a), 13(c), 13(e), and 13(g), the most

energy efficient performance of these three gaits changes from

lateral undulation, then to sinus-lifting motion, and finally
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Fig. 16. Comparison of sidewinding locomotion in different environments.
As for sinus-lifting motion, slippage prevents the snake robot from moving
in the low-friction environment.

sidewinding locomotion, as the locomotion speed grows. In the

case where overall friction is large and friction ratio cxo/cyo
is also large, as in Fig 13(b), sidewinding locomotion is the

most energy efficient gait. As the friction ratio gets smaller,

i.e., as the anisotropy gets more intense, the relative superiority

of sidewinding locomotion over the other gaits shrinks, as in

Figs. 13(d), 13(f), and 13(h). From [7], the friction ratio for

biological snakes was shown to be between 1/3 and 1/2, at

least on the flat dry metal surface on which experiments were

conducted, which seems to be rather small. Previous studies

have suggested that biological snakes may also use obstacles

such as rocks to gain a propulsive force by pushing against

them [7], [10]. Therefore, we speculate that some snakes use

sidewinding locomotion on flat surfaces because they cannot

gain enough propulsive force to overcome the resistive force;

thus, sidewinding locomotion outperforms other gaits in such

situations. Where anisotropy in friction is large enough or

where there are enough obstacles to compensate for the lack of

anisotropy in friction, sinus-lifting motion becomes the most

efficient gait, especially at higher speeds. This seems to be

consistent with biological snakes that often use sinus-lifting

motion when moving at high speed. However, snake robots

typically employ passive wheels, leading to intense anisotropy.

Therefore, if the environment is flat and solid enough to

support it, sinus-lifting motion will be the most energy efficient

gait.

VI. CONCLUSION

In the present paper, a dynamic analysis of sidewinding

locomotion, sinus-lifting motion and lateral undulation by a

snake-like robot was presented. Sidewinding locomotion and

sinus-lifting motion were treated as planar locomotion for

simplicity, and the normal forces acting on the grounded links

and the torques applied on pitch joints were calculated by

solving equilibrium equations. Assuming viscous friction be-

tween the robot and the environment, sidewinding locomotion

and sinus-lifting motion were simulated by selecting grounded

links so as to make the grounded pattern similar to that of

biological snakes. Simulation results show there are speed–

energy efficiency trade-offs in both sidewinding locomotion

and sinus-lifting motion gaits. Investigation of the curves of

these trade-off points, or Pareto fronts, verified hypotheses that
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Fig. 17. Plots of Pareto fronts for each locomotion in various environments.
In all three gaits, the energy efficiency improves as cyo gets larger. However,
the improvement is smaller in sidewinding locomotion than in the other two
gaits.

sidewinding locomotion is efficient especially when moving at

high speed. These fronts also clarified that if the anisotropy

in friction is great enough, and overall friction is large,

even lateral undulation outperforms sidewinding locomotion

in wide range of locomotion speeds. In the same way, sinus-

lifting motion is shown to be efficient generally, but its front

has intersections with fronts of other gaits, resulting in the

most energy efficient gait changing as the locomotion speed

changes.

In the present study, links to be grounded and lifted were

predefined based on the curvature of the body shape. However,

to maximize the effect of lifting, the grounded and lifted

links should be determined according to the situation. This

will require a combinatorial optimization method. Another

possible topic for future research is analysis using a three-

dimensional dynamic model. In the present study, movements
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in the vertical direction are assumed to be small enough to be 
neglected, but this assumption will be true only in the case of 
small amplitudes of angular acceleration in pitch joints. These 
improvements will require a large calculation cost, prohibiting 
random searches such as in the present study. However, since 
it has been shown that there is a trade-off between locomotion 
speed and energy efficiency, and since we generally are not 
interested in performances which is not on the front, we can 
use some multiobjective optimization algorithm for expensive 
black-box functions, such as proposed in [38]–[39].
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[4] E. Kelasidi, P. Liljebäck, K.Y. Pettersen, and J.T. Gravdahl, “Experimen-
tal Investigation of Efficient Locomotion of Underwater Snake Robots
for Lateral Undulation and Eel-like Motion Patterns,” Robotics and

biomimetics, vol. 2, no. 8, 2015.
[5] S.A. Stamper, S. Sefati, and N.J. Cowan, “Snake Robot Uncovers Secrets

to Sidewinders’ Maneuverability,” Proceedings of the National Academy

of Sciences, vol. 112, no. 19, pp. 5870-5871, 2015.
[6] J. Gray, “The Mechanism of Locomotion in Snakes,” J. Exp. Biol., vol.

23, no. 2, pp. 101-123, 1946
[7] J. Gray, and H. W. Lissmann, “The Kinetics of Locomotion of the Grass-

Snake,” J. Exp. Biol., vol. 26, no. 4, pp. 354-367, 1950
[8] J.E. Baio, M. Spinner, C. Jaye, D.A. Fischer, S.N. Gorb, and T. Weidner,

“Evidence of a molecular boundary lubricant at snakeskin surfaces,” J.
R. Soc. Interface, vol 12, no. 113, 2015
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