1	
2	
3	Structural and functional analysis of the C-terminal region of FliG, an
4	essential motor component of <i>Vibrio</i> Na ⁺ -driven flagella
5	
6	Yohei Miyanoiri ^{2,#,*} , Atsushi Hijikata ^{3,#} ,Yuuki Nishino ^{1,#} , Mizuki Gohara ¹ ,
7	Yasuhiro Onoue ¹ , Seiji Kojima ¹ , Chojiro Kojima ⁴ , Tsuyoshi Shirai ³ , Masatsune
8	Kainosho ² and Michio Homma ^{1,*}
9	
10	¹ Division of Biological Science, and ² Structural Biology Research Center,
11	Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602
12	³ Department of Bioscience, Nagahama Institute of Bio-Science and Technology,
13	1266 Tamura, Nagahama, 526-0829
14 15 16	⁴ Graduate School of Engineering, Division of Material Science and Engineering, Yokohama National University, Hodogaya-ku, Yokohama, 240-8501
17	Running title:
18	Structural and functional analysis of FliG
19	
20	[#] These authors contributed equally
21	
22	*Correspondence to Michio Homma (Lead Contact) and Yohei Miyanoiri:
23	g44416a@cc.nagoya-u.ac.jp (MH) or miyanoiri.youhei@h.mbox.nagoya-u.ac.jp
24	(YM).

Keywords: NMR; FliG; rotor; flagellar motor

- Abbreviations: PomA, Polar flagellar motility protein A; PomB, Polar flagellar
- 29 motility protein B; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel
- 30 electrophoresis; NMR, Nuclear magnetic resonance

34 SUMMARY

35 The flagellar motor protein complex, which consists of rotor and stator proteins.

36 Their interaction generates torque of flagellum which rotates bi-directionally,

37 clockwise (CW) and counter-clockwise (CCW). FliG, one of the rotor proteins,

38 consists of three domains: N-terminal ($FliG_N$), middle ($FliG_M$) and C-terminal

39 (FliG_C). We have identified point mutations in FliG_C from *Vibrio alginolyticus*,

40 which affect the flagellar motility. To understand the molecular mechanisms, we

41 explored the structural and dynamic properties of $FliG_C$ from both wild type and

42 motility defective mutants. From NMR analysis, changes in signal intensities

43 and chemical shifts between wild type and the CW-biased mutant $FliG_C$ are

44 observed in C α 1-6 domain. Molecular dynamic simulations indicated the

45 conformational dynamics of $FliG_C$ at sub-microsecond timescale, but not in the

46 CW-biased mutant. Accordingly, we infer that the dynamic properties of atomic

47 interactions around helix $\alpha 1$ in the C $\alpha 1$ -6 domain of FliG_C contribute to ensure 48 the precise regulation of the motor switching.

49

50

51 **INTRODUCTION**

52 The bacterial flagellum is comprised of filament, hook, and basal body. The

53 basal body contains multiple ring-like structures, such as L, P, MS, and C ring.

54 The rotation of bacterial flagellar motor is bi-directional. The motor can rotate in

55 both clockwise (CW) and counter-clockwise (CCW) directions. Rotor, the

⁵⁶ rotating part of bacterial flagellar motor, is comprised of MS and C rings. The

MS ring is embedded in the inner membrane and made up of FliF protein. The C 57 ring is located under the MS ring and consists of three proteins: FliG, FliM, and 58 FliN (Macnab, 2003; Terashima et al., 2008). The complex of these components 59 is involved in the switching between CW and CCW rotations of the flagellar 60 motor. Owing to the rotational switching ability, the complex is also called the 61 "switch complex." The switching is regulated by the chemotaxis signaling 62 pathway (Sourjik and Armitage, 2010); FliM is the component involved in this 63 pathway. When FliM binds to the phosphorylated CheY, which is a chemotactic 64 regulator, CCW rotation is suppressed, so that the motor rotates CW. When 65 CheY is not phosphorylated, it cannot bind FliM and the flagellar motor rotates 66 in the CCW direction. FliG, another component in the switch complex, is 67 involved directly in the rotation. FliG contains three domains: N terminal 68 domain ($FliG_N$), middle domain ($FliG_M$), and C terminal domain ($FliG_C$) (Figure 69 70 1A). The third component of the switch complex, FliN, is thought to have a role in the flagellar export. Stator, the non-rotating part of the motor, is anchored to 71 the peptidoglycan layer and interacts with the rotor to generate torque. Stator 72 assembles around the rotor depending on H⁺ (for example, *Escherichia coli*) or 73 Na⁺ (for example, *Vibrio*) influx in the stator. These ion influxes induce 74 75 conformational change in the stator protein. The stator components are named MotA and MotB in the H⁺-driven motor of *E. coli* or PomA and PomB in the 76 Na⁺-driven motor of *Vibrio alginolyticus* (Li et al., 2011). MotB and PomB have 77 a single transmembrane region and a peptidoglycan-binding region. MotA and 78 79 PomA have four transmembrane regions and one large loop in the cytoplasm. It

is thought that the interaction between the large loop of the MotA/PomA subunit 80 and the rotor component, FliG, generates the torque (Takekawa et al., 2014). 81 The charged residues in this large cytoplasmic loop of the stator MotA/PomA 82 subunit and the charged residues in the C terminal domain of FliG_C are proposed 83 to be the sites of interaction between the two proteins. We have shown that 84 FliG_C of Vibrio is functional in E. coli and can interact with MotA of E. coli to 85 generate torque (Yorimitsu et al., 2003; Yakushi et al., 2006). 86 Extensive mutational analysis of FliG from E. coli and Salmonella, 87 identified a large number of mutations that affect the flagellation (*fla*), the 88 rotational bias (che) and the torque generation (mot) (Irikura et al., 1993; Lloyd 89 et al., 1996). In E. coli, a mutation in FliG neutralizes the effect of a mutation in 90 MotB, which conferred non-motility phenotype (Van Way et al., 2004). In 91 Salmonella, a deletion in helix_{MC}, which bridges $FliG_M$ and $FliG_C$, influenced 92 the rotational bias (CW-locked) (Togashi et al., 1997; Minamino et al., 2011). 93 The structures of FliG from various species, with different truncations and 94 mutations, have been determined by X-ray crystallography. Crystal structure of 95 the complex using fragments of *Thermotoga maritima* revealed the interaction 96 between FliG and FliM (Paul et al., 2011; Vartanian et al., 2012). Structural 97 98 analyses demonstrated that the packing of helix_{MC} affects the orientation of 99 FliG_M and FliG_C causing conformational changes in the rotor ring, which in turn leads to the switch in the rotation (Lee et al., 2010; Baker et al., 2016). Although 100 a very large number of mutational or structural studies have been conducted, the 101

molecular mechanism as to how the mutations in FliG affect the torque 102 103 generation or rotational switching of flagellar motor remain largely unknown. We generated various mutants of FliG from *Vibrio alginolyticus (Va)*, 104 which affected the motility and flagellation (Kojima et al., 2011; Onoue et al., 105 2015; Nishikino et al., 2016). Some of them, which have single amino acid 106 substitution in Va FliG_C, resulted in a critical defect in flagellar rotation. In the 107 present study, we purified the wild type and mutant fragments of Va FliG_C 108 (Figure 1) and analyzed their structural and functional characteristics. Using a 109 combination of NMR and molecular dynamics (MD) simulations of the 110 111 fragments of Va FliG_C, we explored the differences in the structural properties between the wild type and motility-defective mutants at atomic resolution. The 112 results suggest that change in the conformation of Va FliG_C contributes to the 113 generation of torque and flagellar bi-directional switching. 114 115 116

117 **RESULTS AND DISCUSSION**

118

119 Structural properties of Va FliG_C

120 On the basis of the crystal structure of FliG middle and C-terminal domains in *T*.

121 *maritima* (PDB: 1lkv), we built a homology model of Va FliG_C, which consists

122 of two domains. The first domain, C1 consist of an Armadillo repeat motif,

123 ARM_C (G214 to L252) comprised of 3 helices, involved in the interaction with

124 FliM (Brown *et al.*, 2007; Grunenfelder *et al.*, 2003; Passmore *et al.*, 2008; Paul

et al., 2011). The second domain, C2 (M253 to L351), contains the MFXF 125 (M253 to F256) motif and six tightly packed helices (C α 1-6, F256 – D337) 126 (Brown et al., 2002; Lee et al., 2010; Minamino et al., 2011) (Figure 1B). It was 127 reported that the immotile phenotype was given by the mutations in the $\alpha 1, \alpha 2$ 128 and α 3 of C2 in *Salmonella* (Irikura et al., 1993) To analyze the structural 129 properties of Va FliG_C in solution, we prepared uniformly ¹³C, ¹⁵N-labeled 130 His-Va FliG_C [(U-¹³C, ¹⁵N) His-Va FliG_C] and performed NMR analysis. 131 Although His-Va FliG_C showed well-separated amide signals in ¹H-¹⁵N HSQC 132 spectrum (Figure 2A, Figure S1), the amide signals in G214 to V260 were 133 relatively broader and could not be assigned completely. It appears that His-Va 134 FliG_C has several conformations. 135

To elucidate the correlation between the structural properties and motor 136 function of Va FliG_C, we measured the ¹H-¹⁵N HSQC spectrum of His-Va FliG_C 137 containing single amino acid substitutions, which resulted in defective motility. 138 Previously, we made the FliG mutations L259Q, L270R, and L271P which 139 completely abolished the motility of *Vibrio* cells and the A282T mutation which 140 conferred CW-biased phenotype (Kojima et al., 2011). The mutations had been 141 introduced according to the mutations of the conserved residues which conferred 142 143 the mot phenotype in Salmonella (Irikura et al., 1993). These amino acid residues located in the C α 1-6 in FliG_C and are well conserved in several species. 144 According to the model structure of Va FliG_C, these four residues form the 145 hydrophobic core of the C α 1-6 domain. The uniformly ¹⁵N-labeled His-Va 146 FliG_C(L270R) and His-Va FliG_C(L271P) mutants showed only few signals that 147

were broader than the wild type signals (Figures 2B, C). NMR samples of these 148 mutant proteins precipitated out partially after 2–3-hour experiments at 288K. 149 Although the L259Q mutant [His-Va FliG_C(L259Q)] emitted highly sensitive 150 amide signals in ¹H-¹⁵N HSQC spectrum (Figure 2D), the number of observed 151 signals was smaller than that of the wild type and the mutant protein degraded 152 within few hours at 288K. On the other hand, the CW-biased mutant [His-Va 153 FliG_C(A282T)] was relatively stable for 2-3 days and emitted separated amide 154 signals in the ¹H-¹⁵N HSQC (Figure 2E) spectrum. These results indicate that 155 the loss or weaken hydrophobic interaction by the mutations except A282T in 156 the domain decreased the protein stability resulting in the defect of bacterial 157 motility. 158

The thermal stability of wild type Va FliG_C and the mutated protein 159 with L259Q, L270R, and L271P mutations has been measured by differential 160 161 scanning calorimetry and three of them have more trypsin susceptibility than the wild type (Gohara et al., 2014). Similar protease susceptibility by mutations of 162 FliG_C had been reported in *E. coli* and it was supposed that there was the 163 164 relation between the protease sensitivity and the Mot⁻ phenotype (Lloyd and 165 Blair, 1997). The specific denaturation enthalpy change (ΔH) of the L271P mutant differed the most and was one-fifth of that of the wild type $FliG_{C}$. In the 166 ¹H-¹⁵N HSQC spectrum of His-Va FliG_c(L259Q), most of the amide signals 167 were observed in the range of 8.0-8.5 ppm in ¹H axis, and these signal 168 intensities were relatively stronger than those observed in other regions (Figure 169 2D). This is a typical spectrum pattern of the unstructured regions of proteins. 170

Therefore, it is likely that the structure of His-Va FliG_C(L259Q) is partially 171 unfolded. The number of observed amide signals in the ¹H-¹⁵N HSQC spectra of 172 His-Va $FliG_{C}(L270R)$ and His-Va $FliG_{C}(L271P)$ was significantly smaller than 173 that expected from the primary amino acid sequence. Moreover, these observed 174 signals were much broader than those of the wild type (Figure 2). As mentioned 175 176 above, these two mutant proteins easily precipitated out. Thus, we think that the L270R and L271P mutations induce a structural disruption resulting in 177 aggregation. The residues L270 or L271 and L259 belong to the α 2 and α 1 helix, 178 respectively. These hydrophobic residues are highly conserved in several 179 species. FliG_C structures indicate that these helices interact with other helices. 180 Therefore, these Leu residues may play a crucial role in forming the 181 hydrophobic core structure and maintaining the appropriate structure of FliG_c. 182

183

184 Structural dynamics of Cα1-6 of Va FliG_C and its CW-biased mutant

To elucidate the structural and dynamic properties of the C α 1-6 of Va FliG_C and 185 Va FliG_C(A282T), we constructed a new FliG_C fragment (His-Va FliG_{C2}, Figure 186 1A) and expressed $[U^{-13}C, {}^{15}N]$ His-Va FliG_{C2} fragments of wild type and its 187 A282T mutant in E. coli. Expression level of His-Va FliG_{C2} was much higher 188 than that of His-Va FliG_C. The purified protein did not precipitate or degrade 189 within 2 weeks at 288K. Therefore, all backbone (1 HN, 15 NH, 13 C α , 13 C β , 13 CO) 190 signals could be assigned unambiguously by the conventional triple resonance 191 NMR experiments (Figure 3; Table S1). From chemical shift-based secondary 192 structure analysis using TALOS-N (Shen and Bax, 2015), six helices, 193

194 $[\alpha 1(F256-V260), \alpha 2(D264-R272), \alpha 3(Q276-L283), \alpha 4(D288-K296),$

195 $\alpha 5(K300-E311)$ and $\alpha 6(V318-D337)$], were identified in His-*Va* FliG_{C2} (Table 196 S1). Remarkably, the amide signals in N terminal region (M253 to V260) of 197 His-*Va* FliG_{C2}, which could not be observed in His-*Va* FliG_C, were clearly 198 observed and could be assigned.

199 We also carried out NMR measurements on His-Va FliG_{C2}(A282T). 200 Although some amide signals showed large changes in chemical shift compared 201 to those of His-Va FliG_{C2}, the backbone NMR signals were assigned clearly, 202 except for the region from M253 to V260, which corresponds to the MFXF 203 motif and α 1 of His-Va FliG_{C2} (Table S2). In the ¹H-¹⁵N HSQC spectrum of 204 His-Va FliG_{C2}, some broadened signals were observed and could not be assigned 205 owing to the low sensitivity.

Next, we compared the ${}^{1}\text{H}-{}^{15}\text{N}$ HSQC spectra of His-Va FliG_{C2} and 206 His-Va FliG_{C2}(A282T). Large chemical shift perturbation (> 0.1 ppm) and signal 207 broadening were observed in the mutant and were mapped onto Va FliG_C model 208 structure (Figures 3 and 4). Interestingly, these signal changes were observed 209 not only around the A282T region (α 3- α 4), but also in the MFXF motif, α 1, α 5, 210 and $\alpha 6$ regions, which are relatively farther in the amino acid sequence from the 211 212 A282T mutation site. These results indicated that some intra molecular 213 interactions present in His-Va FliG_{C2} are partially disrupted by the A282T mutation. We also measured T₂ value of amide ¹⁵N for His-Va FliG_{C2} and 214 His-Va FliG_{C2}(A282T). The ¹⁵N T₂ of α 3- α 4 region in His-Va FliG_{C2} was longer 215 than that of A282T mutant (Figure S2). We suggest that a slow (milli to micro 216

second scale) conformational exchange occurs in the $\alpha 3$ - $\alpha 4$ region in His-*Va* FliG_{C2}(A282T).

To understand the molecular basis of the conformational differences 219 between the wild type and CW-biased mutant proteins at atomic resolution, 220 221 molecular dynamics simulations were performed for the wild type (Va FliG_C) and mutant [Va FliG_C(A282T)] proteins. From the trajectory analysis of the 222 simulation, the ARM_C domain of Va FliG_C showed a larger root mean square 223 deviation (RMSD) on average during the simulation (3.1 Å ± 0.8 for WT, 4.1 Å 224 225 ± 1.0 for A282T, respectively) as compared with that of the Ca1-6 domain (1.8 Å ± 0.4 for WT, 1.5 Å ± 0.3 for A282T, respectively), indicating that the ARM_C 226 domain is intrinsically flexible and assumes multiple conformations as observed 227 in the NMR analysis. We, therefore, focused on the structural difference of the 228 C α 1-6 domains between Va FliG_C and Va FliG_C(A282T). For Va FliG_C, the 229 values of the RMSD of the trajectories from the initial structure showed a 230 bimodal distribution with peaks at 1.3 Å and 2.0 Å, whereas that of Va 231 $FliG_{C}(A282T)$ showed a single peak at 1.4 Å. The degree of retention of the 232 native secondary structure of Va FliG_C(A282T) during the simulation was 233 comparable to that of Va FliG_C, rather it seemed to be slightly higher than that of 234 235 *Va* $FliG_C$ in $\alpha 1$ and $\alpha 3$ helices (Figure S3).

Cluster analysis of the backbone structures of C α 1-6 domain of *Va* FliG_C in the trajectories revealed that there were at least three representative conformations (S1, S2 and S3) (Figures 5A, B). In contrast, a single conformation was dominant in *Va* FliG_C(A282T) (Figure 5C, D). These results

indicated that, the structure of Va FliG_C(A282T) was restricted into one of the 240 three conformations of Va FliG_C, at submicrosecond timescale. We then 241 242 compared the 3D structures of the representative conformations with the initial structure as the reference. The RMSD of the backbone atoms in each 243 conformation of the C α 1-6 domain of Va FliG_C were 1.3 Å (WT S1), 1.9 Å (WT 244 S2), and 1.9 Å (WT S3). Although the overall structure of the representative 245 conformations was kept around the initial structure, especially for the α 6 region, 246 a large structural deviation was observed in the loop region between the helices 247 $\alpha 5$ and $\alpha 6$. The representative conformation of the Va FliG_C(A282T) was also 248 compared with the reference structure, and its RMSD value was 1.3 Å, 249 comparable to that of the wild type. The WT S2 conformation differed the most 250 from that of the others. The differences in the regions of $\alpha 1$, $\alpha 2$, and $\alpha 4$ 251 contributed most to the structural differences. The backbone RMSDs of the 252 conformation in the C α 1-6 domain of Va FliG_C(A282T) relative to that in the 253 wild type were 1.8 Å (WT S1), 2.5 Å (WT S2), and 1.7 Å (WT S3). Hence, the 254 overall conformation of Va FliG_C (A282T) was relatively close to that of S3. 255 The deviation of the loop region was as large as that of the wild type 256 conformation, but the other regions, with the exception of $\alpha 1$, had smaller 257 258 deviations than those in the wild type. The amino acid residue of position 282 were buried and formed a part 259

of the hydrophobic core in the Ca1-6 domain of both Va FliG_C and Va FliG_C (A282T). In Va FliG_C(A282T), there was an additional hydrogen bond between

the hydroxyl group of T282 side chain and the carbonyl group of V278

263	backbone, which was retained during the simulation (Figure 6). The hydrogen
264	bond formation between the T282 and the backbone on $\alpha 4$ in the hydrophobic
265	environment would be attributed to the gain of the thermodynamic stability in
266	the C α 1-6 domain of Va FliG _C (A282T). Furthermore, F256 in α 1(also the
267	second Phe in the MFXF motif), another residues forming the hydrophobic core
268	of the C α 1-6 domain, was in contact with the C β atom of A282. In the structure
269	of Va FliG _C (A282T), the substitution of A282 with Thr, which introduced a
270	methyl group at the γ -position, precludes the interaction between the C β atom at
271	the position and the side chain atoms of F256, thus, distancing $\alpha 1$ from $\alpha 3$ and
272	α4. When the angle ($θ$) and distance (d) between helices α1 and α4 were
273	measured for each trajectory of Va FliG _C and Va FliG _C (A282T) (Figure 6), Va
274	FliG _C showed two peaks at 20° - 9.5 Å and 40° -10.4 Å, whereas Va
275	FliG _C (A282T) showed a single peak at 35° - 11.1 Å. Since θ was well correlated
276	with <i>d</i> , the helix rearrangement between $\alpha 1$ and $\alpha 4$ seemed to be an important
277	factor for the conformational change observed in Va FliG _C . The difference in the
278	helix rearrangement between the Va FliG _C and Va FliG _C (A282T) would be
279	attributed to the local conformation alteration around $\alpha 1$ helix through a steric
280	repulsion between T282 and F256. Simultaneously, the additional hydrogen
281	bond between T282 side chain hydroxyl group and the V278 backbone carbonyl
282	group adds to the thermodynamic stability in the C α 1-6 domain of Va
283	$FliG_{C}(A282T)$. The results of the computational simulation could explain the
284	experimental observation of the slow state exchange in $\alpha 3-\alpha 4$ (Figure S3) and
285	large chemical shift around the $\alpha 1$ (Figure 4).

These structural effects caused by a single amino acid substitution would restrict the conformational variety in the C α 1-6 domain, which was not the case with the wild type. The helix rearrangement around α 1, as observed in the wild type, seemed to be coupled to the motion of the N-terminal region of *Va* FliG_C, which presumably play an important role in switching the directions of the flagellar rotation.

292

Role of FliG_C in the rotational switching

The amide signals in the ¹H-¹⁵N HSQC spectrum of the A282T mutant with 294 CW-biased phenotype were widely separated and the signal intensities were 295 homogeneous (Figures 2E, 3B). The A282T mutant did not precipitate or 296 degrade after NMR experiments. Therefore, the A282T mutation, unlike the 297 other mutations, did not appear to disrupt the protein fold. Comparison of the 298 ¹H-¹⁵N HSQC spectra of His-Va FliG_{C2} and His-Va FliG_{C2}(A282T) showed that 299 300 structural rearrangement occurred in C α 1-6 domain, especially in the MFXF 301 motif, $\alpha 1$, $\alpha 3$ to $\alpha 4$, $\alpha 5$, and $\alpha 6$ (Figure 4). In addition, structural fluctuations in milli to micro-second timescale were specifically observed in α 3 to α 4 region of 302 A282T (Figure S2). This dynamic property in α 3 and α 4 helices resulting from 303 304 the A282T mutation seemed to be caused by an additional hydrogen bond 305 formation, as estimated by molecular dynamics simulation (Figure 6). Molecular dynamics simulation also suggested changes in structural dynamics of $\alpha 1$ to $\alpha 4$ 306 helices (Figures 5 and 6). 307

308	From the ${}^{1}\text{H}-{}^{15}\text{N}$ HSQC spectrum of His-Va FliG _C , amide signals of the
309	ARM _C -MFXF- α 1 region, G214-V260, were broadened and could not be
310	assigned completely. The molecular dynamics simulations also suggested
311	flexibilities in this region. On the other hand, as mentioned above, amide signals
312	of MFXF- α 1 region are clearly observed in the ¹ H- ¹⁵ N HSQC spectrum of
313	His- Va FliG _{C2} , which are truncated in the ARM _C domain. These NMR and
314	molecular dynamics simulation analyses suggested that the MFXF- α 1 helix of
315	His-Va $FliG_C$ acts as a hinge between ARM _C and Ca1-6 domains of Va $FliG_C$,
316	which interact with each other. These multiple interactions may produce several
317	transient structures of Va FliG _C in solution state. This is consistent with the α
318	helical content estimated by CD spectra (Gohara <i>et al.</i> , 2014). This α helical
319	content in His-Va FliG _C was smaller than that estimated by secondary structure
320	prediction. In contrast, the α helical content of His-Va FliC _{C2} , as estimated by
321	CD spectra, was almost the same as that estimated by secondary structure
322	prediction. Other species also exhibit these phenomena. Two distinct
323	conformations of FliG_{C} were observed in the crystal structure of FliG from
324	Helicobacter pylori (Lam et al., 2012). In the $^{1}H^{-15}N$ HSQC spectrum of T.
325	maritima $FliG_C$ also, the amide signals of ARM_C -MFXF- $\alpha 1$ helix region
326	(G196-L242) were broadened and could not be assigned completely (Dyer et al.,
327	2009).

The molecular dynamics simulation results in this study suggested three representative conformations for the wild type Va FliG_C, but only one conformation for Va FliG_C(A282T). It means that the additional methyl group at

the A282 site because of the substitution with threonine partially disrupts the hydrophobic interactions between MFXF- α 1(F256) and α 3 (T282). The distribution of the multiple interactions between ARM_C and C α 1-6 may result in a single conformation. As a result, bi-directional (CW and CCW) flagellar motor function might have been abolished in the A282T mutant.

Crystal structures of FliG_C domains indicate several conformations 336 between the ARM_C and C α 1-6 domains connected by the MFXF motif (Brown 337 et al., 2002; Lee et al., 2010; Minamino et al., 2011). The structural analyses of 338 $FliG_{MC}$ demonstrate that the orientation of $FliG_{C}$ is prompted by the rotational 339 340 freedom of the MFXF motif (Lee et al., 2010; Lam et al., 2012). By comparing the six known crystal structures of FliG_C from various species, we found that the 341 342 rearrangement patterns of ARM_C-C α 1-6 could be largely divided into two groups: one containing the structure of CW-locked mutant, and the other one 343 containing the putative "CCW-conformation" of A. aeolicus FliG (Figure S4). 344 345 To illustrate the difference in the domain orientation between the two groups, we used two structural parameters: the dihedral angle of hinge residue F254 (in 346 V. alginolyticus) (Lam et al., 2012), and the orientation of helix $\alpha 0$ (the last 347 helix in the ARM_C domain) relative to C α 1-6 domain. We then plotted the two 348 349 parameter values (ϕ of F254 and the angle between the α 0 and α 6 helices) for 350 the structures of MD trajectories of Va FliG_C and Va FliG_C(A282T). The 351 parameter values for Va FliG_c were clustered mainly in two regions, corresponding to those of the crystal structures in each group, whereas, for Va 352 353 $FliG_{C}$ (A282T), the values were in a single region, corresponding to that for the

CW-locked mutant (Figure 7). It is noteworthy that the MD simulation of Va 354 $FliG_{C}$ was started from the homology-based model structure based on the $FliG_{C}$ 355 356 of T. maritima (PDB code: 11kv), in which the orientation of ARM_{C} - C α 1-6 domains was close to that of the CW-locked mutant. This was in good 357 agreement with results of the recent molecular simulation study of conformer 358 ensembles, by showing a bimodal distribution of the rotation angle of the torque 359 helix, relative to the MFVF hinge (Pandini et al., 2016). The authors of this 360 study also showed that the CW-locked mutant (PDB code: 3ajc) displayed an 361 asymmetric distribution of the angle between the torque helix and the hinge. 362 The actual CW and CCW conformations of FliG should be determined 363 in the context of the flagellar motor protein complex with the other components 364 forming the ring-shape structure. Nevertheless, considering the correlation 365 between the single conformational state of the C α 1-6 domain of FliG_C observed 366 in the MD simulations and the CW-biased phenotype of A282T, we 367 hypothesized that the major conformation observed in the simulations for Va 368 $FliG_{C}(A282T)$ was the CW-conformation. In our simulation, the A282T 369 mutation would have a repulsive effect on the interaction between F256 on 370 MFXF- α 1 and T282 on α 3 resulting in the fixation of the α 1- α 3 orientation, 371 372 which was not observed in Va FliG_C. Consequently, it would restrict the 373 movements of the MFXF hinge of ARM_C-C α 1-6 domain and α 0 helix and lock the structure in the CW-conformation. The NMR measurements were highly 374 supportive of the computational hypothesis. Although further investigations are 375 376 needed to validate our hypothesis in greater detail, to the best of our knowledge,

377	this is the first report that describes at atomic resolution, the molecular
378	mechanism by which a point mutation in FliG affects the rotational switching.
379	
380	
381	STAR★METHODS
382	
383	Detailed methods are provided in the online version of this paper and included
384	the following:
385	• KEY RESOURCES TABLE
386	• CONTACT FOR REAGENT AND RESOURCES SHARING
387	• EXPERIMENTAL MODEL AND SUBJECT DETAILS
388	○ Strains Used in Protein Production
389	• METHOD DETAILS
390	O Protein expression in <i>E. coli</i> and purification
391	○ NMR Spectroscopy
392	○ Secondary structure analysis
393	○ Homology modeling
394	\bigcirc Molecular dynamics simulation
395	• QUANTIFICATION AND STATISTICAL ANALYSIS

396	DATA AND SOFTWARE AVAILABILITY
397	O Data Resources
398	
399	
400	ACCESSION NUMBERS
401	The identification accession numbers of the chemical shift data in the
402	BioMagResBank (BMRB; http://www.bmrb.wisc.edu) are as follows. His-Va
403	FliG _{C2} (BMRB accession number: 12010), His-Va FliG _{C2} (A282T) (BMRB
404	accession number: 12011).
405	
406	
407	SUPPLEMENTAL INFORMATION
408	Document S1. Figures S1-S3 and Tables S1 and S2
409	
410	AUTHOR CONTRIBUTIONS
411	Conceptualization: Y.M., A.H. and M.H.; Methodology, Y.O., S.K., Y.N., and
412	M.G.; Investigation: Y.M., A.H. and Y.N.; Writing – Original Draft: Y.M., A.H.,
413	and Y.N.; NMR Data/Discussion: Y.M., Y.N., M.G., C.K., and M.K.; Structure
414	modeling/Discussion: A.H., Y.O. and T.S., Writing – Review & Editing: M.H.,
415	Y.M., and A.H.; Funding Acquisition, Resources, and Supervision: M.H., S.K,
416	A.H., T.S., and Y.M.
417	

419	ACKNOWLEDGEMENTS
420	This research was supported by Grants-in-aid for scientific research from the
421	Ministry of Education, Science and Culture of Japan (24117004 and 23247024
422	to MH, or 24657087 to SK), the Platform for Drug Design, Informatics, and
423	Structural Lifescience (PDIS) (16am0101042j0005) from the AMED to AH and
424	TS, and Program for leading Graduate Schools of Japan, Science for the
425	Promotion of Science to MG. YM was supported by JSPS KAKENHI
426	Grants-in-Aid for Young Scientists (B) (23770111 and 25840021) and a
427	Grant-in-Aid for Scientific Research (C) (15K06966).
428	
429	
430	Conflict of interest
431	None declared.
432	
433	
434	References
435	
436	Baker, M. A., Hynson, R. M., Ganuelas, L. A., Mohammadi, N. S., Liew, C. W.,
437	Rey, A. A., Duff, A. P., Whitten, A. E., Jeffries, C. M., Delalez, N. J.,
438	Morimoto, Y. V., Stock, D., Armitage, J. P., Turberfield, A. J., Namba, K.,
439	Berry, R. M. and Lee, L. K. (2016). Domain-swap polymerization drives
440	the self-assembly of the bacterial flagellar motor. Nat. Struct. Mol. Biol.
441	23, 197-203.

Brown, P. N., Hill, C. P. and Blair, D. F. (2002). Crystal structure of the middle 442 and C-terminal domains of the flagellar rotor protein FliG. EMBO J. 21, 443 3225-3234. 444 Brown, P. N., Terrazas, M., Paul, K. and Blair, D. F. (2007). Mutational analysis 445 of the flagellar protein FliG: sites of interaction with FliM and 446 447 implications for organization of the switch complex. J. Bacteriol. 189, 305-312. 448 Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J. and Bax, A. (1995) 449 NMRPipe: a multidimensional spectral processing system based on UNIX 450 pipes. J. Biomol. NMR 6, 277-293. 451 Dyer, C. M., Vartanian, A. S., Zhou, H. and Dahlquist, F. W. (2009). A 452 453 molecular mechanism of bacterial flagellar motor switching. J. Mol. Biol. 454 388, 71-84. Gohara, M., Kobayashi, S., Abe-Yoshizumi, R., Nonoyama, N., Kojima, S., 455 Asami, Y. and Homma, M. (2014). Biophysical characterization of the 456 C-terminal region of FliG, an essential rotor component of the Na⁺-driven 457 flagellar motor. J. Biochem. 155, 83-89. 458 459 Grunenfelder, B., Gehrig, S. and Jenal, U. (2003). Role of the cytoplasmic C terminus of the FliF motor protein in flagellar assembly and rotation. J. 460 Bacteriol. 185, 1624-1633. 461 Hijikata, A., Yura, K., Noguti, T. and Go, M. (2011). Revisiting gap locations 462 inamino acid sequence alignments and a proposal for a method to improve 463 them by introducing solvent accessibility. Proteins 79, 1868-1877. 464 Irikura, V. M., Kihara, M., Yamaguchi, S., Sockett, H. and Macnab, R. M. 465 (1993) Salmonella typhimurium fliG and fliN mutations causing defects in 466 assembly, rotation, and switching of the flagellar motor. J. Bacteriol. 175, 467 802-810. 468 469 Kojima, S., Nonoyama, N., Takekawa, N., Fukuoka, H. and Homma, M. (2011). Mutations targeting the C-terminal domain of FliG can disrupt motor 470 assembly in the Na⁺-driven flagella of *Vibrio alginolyticus*. J. Mol. Biol. 471 414, 62-74. 472 Lam, K. H., Ip, W. S., Lam, Y. W., Chan, S. O., Ling, T. K. and Au, S. W. 473 (2012). Multiple conformations of the FliG C-terminal domain provide 474 insight into flagellar motor switching. Structure 20, 315-325. 475

Lee, L. K., Ginsburg, M. A., Crovace, C., Donohoe, M. and Stock, D. (2010). 476 Structure of the torque ring of the flagellar motor and the molecular basis 477 for rotational switching. Nature 466, 996-1000. 478 Li, N., Kojima, S. and Homma, M. (2011). Sodium-driven motor of the polar 479 flagellum in marine bacteria Vibrio. Genes Cells 16, 985-999. 480 481 Lloyd, S. A. and Blair, D. F. (1997) Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli. J. 482 483 Mol. Biol. 266, 733-744. Lloyd, S. A., Tang, H., Wang, X., Billings, S. and Blair, D. F. (1996) Torque 484 generation in the flagellar motor of Escherichia coli: evidence of a direct 485 role for FliG but not for FliM or FliN. J. Bacteriol. 178, 223-231. 486 487 Macnab, R. (1995). Flagellar switch, In J.A. Hoch and T.J. Silhavey (ed), Two-component signal transduction. American Society for Microbiology, 488 Washington, D.C., p.181-199. 489 Macnab, R. M. (2003). How bacteria assemble flagella. Annu. Rev. Microbiol. 490 57, 77-100. 491 Marti-Renom, M. A., Stuart, A. C., Fiser, A., Sanchez, R., Melo, F. and Sali, A. 492 493 (2000). Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29, 291-325. 494 Minamino, T., Imada, K., Kinoshita, M., Nakamura, S., Morimoto, Y. V. and 495 Namba, K. (2011). Structural insight into the rotational switching 496 mechanism of the bacterial flagellar motor. PLoS Biol. 9, e1000616. 497 Nishikino, T., Zhu, S., Takekawa, N., Kojima, S., Onoue, Y. and Homma, M. 498 499 (2016). Serine suppresses the motor function of a periplasmic PomB mutation in the Vibrio flagella stator. Genes Cells 21, 505-516. 500 501 Onoue, Y., Kojima, S. and Homma, M. (2015). Effect of FliG three amino acids deletion in Vibrio polar-flagellar rotation and formation. J. Biochem. 158, 502 503 523-529. Pandini, A., Morcos, F. and Khan, S. (2016). The Gearbox of the bacterial 504 flagellar motor switch. Structure 24, 1209-1220. 505 506 Passmore, S. E., Meas, R. and Marykwas, D. L. (2008). Analysis of the FliM/FliG motor protein interaction by two-hybrid mutation suppression 507 analysis. Microbiology 154, 714-724. 508

509	Paul, K., Brunstetter, D., Titen, S. and Blair, D. F. (2011). A molecular
510	mechanism of direction switching in the flagellar motor of Escherichia
511	coli. Proc. Natl. Acad. Sci. USA 108, 17171-17176.
512	Pronk, S., Pall, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts,
513	M. R., Smith, J. C., Kasson, P. M., van der Spoel, D., Hess, B. and
514	Lindahl, E. (2013). GROMACS 4.5: a high-throughput and highly
515	parallel open source molecular simulation toolkit. Bioinformatics 29,
516	845-854.
517	Shen, Y. and Bax, A. (2015). Protein structural information derived from NMR
518	chemical shift with the neural network program TALOS-N. Methods Mol.
519	Biol. 1260, 17-32.
520	Sourjik, V. and Armitage, J. P. (2010). Spatial organization in bacterial
521	chemotaxis. EMBO J. 29, 2724-2733.
522	Takekawa, N., Kojima, S. and Homma, M. (2014). Contribution of Many
523	Charged residues at the stator-rotor interface of the Na^+ -driven flagellar
524	motor to torque generation in Vibrio alginolyticus. J. Bacteriol. 196,
525	1377-1385.
526	Terashima, H., Kojima, S. and Homma, M. (2008). Flagellar motility in bacteria
527	structure and function of flagellar motor. Int. Rev. Cell Mol. Biol. 270,
528	39-85.
529	Togashi, F., Yamaguchi, S., Kihara, M., Aizawa, S. I. and Macnab, R. M.
530	(1997). An extreme clockwise switch bias mutation in <i>fliG</i> of Salmonella
531	typhimurium and its suppression by slow-motile mutations in motA and
532	motB. J. Bacteriol. 179, 2994-3003.
533	Van Way, S. M., Millas, S. G., Lee, A. H. and Manson, M. D. (2004). Rusty,
534	jammed, and well-oiled hinges: Mutations affecting the interdomain
535	region of FliG, a rotor element of the Escherichia coli flagellar motor. J.
536	Bacteriol. 186, 3173-3181.
537	Vartanian, A. S., Paz, A., Fortgang, E. A., Abramson, J. and Dahlquist, F. W.
538	(2012) Structure of flagellar motor proteins in complex allows for insights
539	into motor structure and switching. J. Biol. Chem. 287, 35779-35783.
540	Yakushi, T., Yang, J., Fukuoka, H., Homma, M. and Blair, D. F. (2006). Roles
541	of charged residues of rotor and stator in flagellar rotation: comparative

study using H⁺-driven and Na⁺-driven motors in *Escherichia coli*. J. 542 Bacteriol. 188, 1466-1472. 543 Yorimitsu, T., Mimaki, A., Yakushi, T. and Homma, M. (2003). The conserved 544 charged residues of the C-terminal region of FliG, a rotor component of 545 the Na⁺-driven flagellar motor. J. Mol. Biol. 334, 567-583. 546 547 548 **Figure legends** 549 550 Figure 1. Structure of the FliG protein 551 (A) Schematic representation showing the organization of full-length *Vibrio* 552 alginolyticus (Va) FliG and His-tagged Va FliG_C proteins used in this study. The 553 Va FliG consists of three domains, N-terminal domain (FliG_N blue), Middle 554 domain (FliG_M, green) and C terminal domain (FliG_C, red). FliG_C is comprised 555 of two globular helical domains, C1 (G214-L252, pink) and C2 (M253-L351, 556 cyan and orange). The C1 consists of Armadillo repeat motif, ARM_C. The 557 MFXF motif (M253-F256, cvan) and tightly packed 6 helices, $C\alpha 1$ -6 558 (F256-D337, orange) are belongs to C2. The 6x His-Tag is shown as yellow. (B) 559 The model structure of Va FliG_C. The ARM_C, MFXF and C α 1-6 is colored pink, 560 cyan and orange, respectively. Side chains of the residues involved in the motor 561 function in Va FliG_C are shown in green. 562 563 Figure 2. NMR analysis for His-Va FliG_C and its motility-defective mutants 564 ¹H-¹⁵N HSQC spectra of $[U-^{15}N]$ His-*Va* FliG_C (A) and its motility-defective 565

566 mutants, L270R (B), L271P (C), L259Q (D) and A282T (E). The flagellar motor

- 567 profile for each mutant is shown in parenthesis of each spectrum. (CW),
- 568 clockwise; (CCW), counter-clockwise; (-), nonmotile.
- 569

570 Figure 3. Backbone amide signal assignment of His-Va FliG_{C2} and its

571 A282T mutant

⁵⁷² ¹H-¹⁵N HSQC spectra of $[U-^{15}N]$ His-*Va* FliG_{C2} (A) and $[U-^{15}N]$ His-*Va* FliG_{C2} ⁵⁷³ (A282T) (B). Sequence specific amide signal assignment was determined by ⁵⁷⁴ conventional triple resonance NMR experiments for each protein (see Material ⁵⁷⁵ and Methods).

576

577 Figure 4. Chemical shift perturbations of His-*Va* FliG_{C2} induced by the 578 single amino acid replacement A282T

(A) Histogram of chemical shift perturbations. The combined chemical shift 579 changes (Δ , ppm) of amide proton and nitrogen between His-Va FliG_{C2} and 580 His-Va FliG_{C2}(A282T) are plotted against residue number. " Δ " is defined as: 581 $\Delta_{\text{ppm}} = \left[\left(\Delta \delta H_N \right)^2 / 2 + \left(\Delta \delta N \right)^2 / 50 \right]^{1/2}$, where δH_N and δN represent chemical shift 582 differences of amide proton and nitrogen between His-Va FliG_{C2} and His-Va 583 $FliG_{C2}(A282T)$, respectively. The red bars indicate the residues whose amide 584 signals disappeared in ¹H-¹⁵N HSQC spectrum of His-Va FliG_{C2}(A282T) The 585 secondary structure of His-Va FliG_{C2} is indicated at the bottom of the histogram. 586 (B) Mapping of the residues that exhibited chemical shift perturbations induced 587 by the A282T single amino acid replacement. The residues whose $\Delta > 0.2$ ppm 588

and $0.1 < \Delta < 0.2$ ppm are colored in blue and yellow, respectively. The residues whose amide signals disappeared are colored in red.

591

592 Figure 5. Cluster analysis of the structures of C2 domain of FliGc in the

593 **MD trajectories**

- 594 (A, C) Representative conformations of (A) *Va* FliG_C (S1, S2 and S3) and (C)
- 595 Va FliG_C(A282T) are shown as ribbon diagrams. Region from G214 to L252 is
- colored in gray. (B, D) Multi-dimensional scaling (MDS) plots for (B) the Va
- 597 $\operatorname{Fli}G_{C}$ and (D) *Va* $\operatorname{Fli}G_{C}(A282T)$ trajectories. The density in the plot was
- solution estimated by the Gaussian kernel-density estimation. Structural data of the

colored region (M253-G339) was used for the MDS analysis.

600

601 Figure 6. Conformational analysis of FliGc domain

602 (A) Two parameters in the structural domain, the angle (θ) and distance (d)

between helices $\alpha 1$ and $\alpha 4$, were used for the analysis. (B) Two dimensional

- 604 plots of the parameters θ and *d* for *Va* FliG_C (left panel) and *Va* FliG_C (A282T)
- 605 (right panel). Each dot depicts the conformation of *Va* FliGc domain in the
- 606 trajectory. (C) Formation of an additional hydrogen bond between the hydroxyl
- group of T282 and backbone O of V278 in A282T during the MD simulation.
- Trajectories at 0 ns (left) and 100 ns (right) after the simulation are shown.

609

610 Figure 7. Distribution plots of the structural parameters for the structures

611 in the MD trajectories

612 (A) wild type and (B) A282T mutant. The densities of plots were estimated as

613 in Figure 5. The 2D positions of the crystal structures of FliGc: 3ajc, CW-locked

- 614 mutant in *T. maritima* (Minamino et al., 2011), 11kv, wild-type in *T. maritima*
- 615 (Brown et al., 2002); 3usy and 3usw, wild-type in *Helicobacter pylori* (Lam et
- al., 2012), 4fhr, complexed with FliM, wild-type in *T. maritima* (Vartanian et al.,
- 617 2012); 3hjl, full-length structure of wild-type in *A. aeulicus* (Lee et al., 2010),

618 are represented as circles in magenta.

- 619
- 620

621 STAR★METHODS

622 **KEY RESOURCES TABLE**

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Bacterial and Virus Strains		
Escherichia coli DH5α	TaKaRa	Cat#TKR9057
Escherichia coli BL21(DE3)	MERCK	Cat#69450
Chemicals, Peptides, and Recombinant Proteins		
T4 polynucleotide kinase	New England	Cat#M0201S
	Biolabs	
T4 DNA ligase	New England	Cat#M0202S
	Biolabs	
Ammonium ¹⁵ N chloride	ISOTEC	Cat#299251-10G

D-Glucose [U-13C, 99%]	Cambridge Isotope	Cat#CIL-1396-1		
	Laboratories			
Deuterium oxide	Wako	Cat#040-18831		
Critical Commercial Assays				
QuikChange Site-Directed Mutagenesis Kit	Agilent	Cat#200518		
Deposited Data				
His-Va FliGC ₂ Chemical shift data	This paper.	BMRB:12010		
His-Va FliGC ₂ (A282T) Chemical shift data	This paper	BMRB:12011		
Oligonucleotides	Oligonucleotides			
Primer : To construct pCold I-FliG _{C2} ;	This paper.	N/A		
ATGTTTGTCTTCGAAAACTTAGTCG				
ATGTTTGTCTTCGAAAACTTAGTCG Primer : To construct pCold I-FliG _{C2} ;	This paper.	N/A		
ATGTTTGTCTTCGAAAACTTAGTCG Primer : To construct pCold I-FliG _{C2} ; CATATGCCTACCTTCGATATGATG	This paper.	N/A		
ATGTTTGTCTTCGAAAACTTAGTCG Primer : To construct pCold I-FliG _{C2} ; CATATGCCTACCTTCGATATGATG Primer : To construct pCold I-FliG _{C2} (A282T);	This paper. Kojima et al., 2011	N/A N/A		
ATGTTTGTCTTCGAAAACTTAGTCG Primer : To construct pCold I-FliG _{C2} ; CATATGCCTACCTTCGATATGATG Primer : To construct pCold I-FliG _{C2} (A282T); ACGTGTTGCAAAAAACACTTAAAGGTGCC	This paper. Kojima et al., 2011	N/A N/A		
ATGTTTGTCTTCGAAAACTTAGTCG Primer : To construct pCold I-FliG _{C2} ; CATATGCCTACCTTCGATATGATG Primer : To construct pCold I-FliG _{C2} (A282T); ACGTGTTGCAAAAAACACTTAAAGGTGCC Primer : To construct pCold I-FliG _{C2} (A282T);	This paper. Kojima et al., 2011 Kojima et al., 2011	N/A N/A N/A		
ATGTTTGTCTTCGAAAACTTAGTCG Primer : To construct pCold I-FliG _{C2} ; CATATGCCTACCTTCGATATGATG Primer : To construct pCold I-FliG _{C2} (A282T); ACGTGTTGCAAAAAACACTTAAAGGTGCC Primer : To construct pCold I-FliG _{C2} (A282T); GGCACCTTTAAGTGTTTTTTGCAACACGT	This paper. Kojima et al., 2011 Kojima et al., 2011	N/A N/A N/A		
ATGTTTGTCTTCGAAAACTTAGTCG Primer : To construct pCold I-FliG _{C2} ; CATATGCCTACCTTCGATATGATG Primer : To construct pCold I-FliG _{C2} (A282T); ACGTGTTGCAAAAAACACTTAAAGGTGCC Primer : To construct pCold I-FliG _{C2} (A282T); GGCACCTTTAAGTGTTTTTTGCAACACGT	This paper. Kojima et al., 2011 Kojima et al., 2011	N/A N/A N/A		

pCold I	TaKaRa	Cat#TKR3361
Plasmid: pCold I-FliG _C , See Table 1	Gohara et al., 2014	N/A
Plasmid: pCold I-FliG _{C2} , See Table 1	This paper.	N/A
Plasmid: pCold I-FliG _C (L259Q), See Table 1	Gohara et al., 2014	N/A
Plasmid: pCold I-FliG _C (L270R), See Table 1	Gohara et al., 2014	N/A
Plasmid: pCold I-FliG _C (L271P), See Table 1	Gohara et al., 2014	N/A
Plasmid: pCold I-FliG _C (A282T), See Table 1	This paper.	N/A
Plasmid: pCold I-FliG _{C2} (A282T), See Table 1	This paper.	N/A
Software and Algorithms		
MODELLER 9.16	Marti-Renom et al.	https://salilab.org/
	2000	modeller/
ALAdeGAP	Hijikata et al., 2011	http://cib.cf.ocha.a
ALAdeGAP	Hijikata et al., 2011	http://cib.cf.ocha.a c.jp/aladegap/
ALAdeGAP GROMACS ver 4.6.2	Hijikata et al., 2011 Pronk et al. 2013	http://cib.cf.ocha.a c.jp/aladegap/ http://www.groma
ALAdeGAP GROMACS ver 4.6.2	Hijikata et al., 2011 Pronk et al. 2013	http://cib.cf.ocha.a c.jp/aladegap/ http://www.groma cs.org
ALAdeGAP GROMACS ver 4.6.2 TopSpin 3.2	Hijikata et al., 2011 Pronk et al. 2013 Bruker Biospin	http://cib.cf.ocha.a c.jp/aladegap/ http://www.groma cs.org https://www.bruke
ALAdeGAP GROMACS ver 4.6.2 TopSpin 3.2	Hijikata et al., 2011 Pronk et al. 2013 Bruker Biospin	http://cib.cf.ocha.a c.jp/aladegap/ http://www.groma cs.org https://www.bruke r.com/products/mr/
ALAdeGAP GROMACS ver 4.6.2 TopSpin 3.2	Hijikata et al., 2011 Pronk et al. 2013 Bruker Biospin	http://cib.cf.ocha.a c.jp/aladegap/ http://www.groma cs.org https://www.bruke r.com/products/mr/ nmr/nmr-software/
ALAdeGAP GROMACS ver 4.6.2 TopSpin 3.2	Hijikata et al., 2011 Pronk et al. 2013 Bruker Biospin	http://cib.cf.ocha.a c.jp/aladegap/ http://www.groma cs.org https://www.bruke r.com/products/mr/ nmr/nmr-software/ software/topspin/o

Sparky	T. D. Goddard and	https://www.cgl.uc
	D. G. Kneller,	sf.edu/home/spark
	SPARKY 3,	y/
	University of	
	California, San	
	Francisco	
TALOS-N	Shen and Bax, 2015	https://spin.niddk.n
		ih.gov/bax/softwar
		e/TALOS-N/
NMRPipe	Delaglio et al., 1995	https://spin.niddk.n
		ih.gov/bax/softwar
		e/NMRPipe/
Other	,	,

623

624

625 CONTACT FOR REAGENT AND RESOURCE SHARING

626 Further information and requests for resources and reagents should be directed

- 627 to and will be fulfilled by the Lead Contact, Michio Homma
- 628 (g44416@cc.nagoya-u.ac.jp)

630 EXPERIMENTAL MODEL AND SUBJECT DETAILS

631

632 Strains Used in Protein Production

- The FliG protein fragments used in this study were manipulated and expressed
- 634 in *Escherichia coli* DH5α and *Escherichia coli* BL21 (DE3), respectively. These
- 635 strains were transformed with pCold I expression vector (TaKaRa).

636

637 METHODS DETAILS

638

639 **Protein expression in** *E. coli* and purification

Strains and plasmids used in this study are shown in Table 1. Routine DNA 640 manipulation was performed using *E. coli* DH5α according to the protocols 641 described previously. pCold I-FliG_C(A282T) was constructed by QuikChange 642 643 method (Stratagene), using pCold I-FliG_C as a template; pCold I-FliG_{C2} and pCold I-FliG_{C2}(A282T) were constructed by an inverse PCR-based method. 644 First, the deletion fragments whose templates were pCold I-FliG_C and pCold 645 I-FliG_C(A282T) were amplified by PCR. The fragments were subjected to 646 agarose gel electrophoresis and extracted using a DNA extraction kit (Oiagen). 647 648 The 5'-hydroxyl termini of the extracted products were phosphorylated using T4 polynucleotide kinase (NEB). DNA ligation was performed using T4 DNA 649 ligase (NEB). After stopping the reaction by heating, these plasmids were 650 introduced into *E. coli* DH5a. All plasmids were purified and sequenced to 651 652 confirm the insertions. The expression plasmids were introduced into E. coli

BL21(DE3). The *E. coli* cells were cultured in LB medium containing 1 % (w/v)
Bactotryptone, 0.5 % (w/v) yeast extract, and 0.5 % (w/v) NaCl. Each sample
was confirmed by SDS-PAGE. The samples were prepared by mixing with SDS
sample buffer and heating at 95 °C for 5 min. The samples were subjected to
SDS-PAGE on 14 % polyacrylamide gels and detected by Coomassie Brilliant
Blue staining.

His-Va FliG_C [(U-¹³C, ¹⁵N) His-Va FliG_C] proteins uniformly labeled 659 with ¹³C and ¹⁵N were prepared according to the procedure described previously, 660 with slight modification (Gohara et al., 2014). Briefly, E. coli was cultured at 37 661 °C as first culture in 200 mL of M9 medium [7.0 g/L Na₂HPO₄ (anhydrous), 3.0 662 g/L KH₂PO₄ (anhydrous), 0.50 g/L NaCl, 1.0 g/L $[U^{-13}C]$ -glucose, 0.50 g/L 663 ¹⁵NH₄Cl, 20 mg/L adenine, 20 mg/L thymine, 20 mg/L guanosine, 20 mg/L 664 cytidine, 20 mg/L thiamin hydrochloride, 20 mg/L (+)-Biotin, 33 µM FeCl₃, 1.0 665 666 mM MgSO₄, 50 µM MnCl₂, 0.10 mM CaCl₂] containing ampicillin, to a final concentration of 100 µg/mL. The first culture was inoculated into 2 L M9 667 medium and was incubated at 37 °C. When the cell density at OD₆₆₀ reached 668 about 0.4, IPTG (isopropyl- &-D-thiogalactopyranoside) was added to a final 669 670 concentration of 0.5 mM and the incubation was continued for approximately 18 h at 16 °C. The cells were harvested by centrifugation and stored frozen at -80 671 °C. The cells were thawed and suspended in buffer A [50 mM Tris-HCl (pH 8.0), 672 150 mM NaCl, 5 mM imidazole] containing protease inhibitor, cOmplete, 673 EDTA-free (Roche Life Science). The cells were disrupted by sonication (Power 674

675 8, duty cycle 50 %). Unbroken cells were removed by centrifugation. The

supernatant was ultracentrifuged at 100,000 g for 30 min. The resultant 676 supernatant was mixed with Ni-NTA Agarose (Qiagen), and incubated for 1 h at 677 4 °C with shaking and was loaded on to a polypropylene column by batch 678 method. After the column was washed twice with buffer B [50 mM Tris-HCl 679 (pH 8.0), 150 mM NaCl, 20 mM imidazole], the proteins were eluted into four 680 fractions with buffer C [50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 500 mM 681 imidazole]. This method was applied to prepare unlabeled FliG_C proteins. 682 The purified proteins were concentrated to about 500 µL using Amicon 683 device (Millipore) and subjected to size exclusion chromatography using 684 Superdex 200 Increase 10/300 (GE Healthcare) in buffer D [50 mM Tris-HCl 685 (pH 8.0), 150 mM NaCl]. The flow rate was 0.75 mL/min. The peak fractions 686 were collected and concentrated as described above. The proteins were 687 subjected to buffer exchange with buffer E [50 mM Tris-HCl (pH 8.0), protease 688 689 inhibitor, cOmplete, EDTA-free]. Protein concentration was determined using Direct Detect spectrophotometer (Millipore). 690

691

692 NMR Spectroscopy

693 The $[U^{-13}C, {}^{15}N]$ His-*Va* FliG_C protein and its mutants were concentrated to 0.9

mM. The NMR sample buffer contained 50 mM Tris-HCl, 150 mM NaCl,

695 cOmplete EDTA-free, 0.01% (w/v) sodium

696 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) (Cambridge Isotope Laboratories,

697 Inc.) and 5% (w/v) D_2O at pH 7.0. NMR measurements were performed on an

AV-III 600 spectrometer (Bruker Biospin) equipped with a TCI triple resonancecryogenic probe at 288K.

700	The following NMR experiments were performed to assign backbone
701	resonances of His-Va FliG _{C2} and its mutants: 3D HNCACB, CBCACONH,
702	HNCA, HNCOCA, HNCO, HNCACO and 2D $^1\text{H-}^{15}\text{N}$ HSQC. Backbone ^{15}N T_2
703	spectra were recorded for His-Va $FliG_{C2}$ and His-Va $FliG_{C2}$ (A282T), using
704	standard CPMG pulse sequence with nine different delay times; $t = 0, 17, 34, 51$,
705	68, 85, 102, 119 and 136 ms. T_2 value was obtained by fitting signal intensities
706	from each spectrum to a single exponential curve. All NMR spectra were
707	processed with TopSpin (Bruker Biospin), NMRPipe (Delaglio et al., 1995) and
708	Sparky (Goddard and Kneller, University of California, San Francisco).
709	

710 Secondary structure analysis

711 Protein backbone dihedral angles (φ, ψ) of His-*Va* FliG_{C2} and His-*Va*

FliG_{C2}(A282T) were calculated from chemical shift value of 1 HN, 15 NH,

⁷¹³ $^{13}C\alpha$, $^{13}C\beta$ and ^{13}CO , using TALOS-N program (Shen and Bax, 2015).

714

715 Homology modeling

- 716 A model structure of *Va* FliG_C was built using MODELLER version 9.16
- 717 (Marti-Renom *et al.*, 2000), using the crystal structure of FliG from *T. maritima*
- 718 (PDB code: 1lkv) as template and sequence alignment of the two amino acid
- sequences generated by ALAdeGAP (Hijikata et al., 2011). Model structures of

- mutant Va FliG_C proteins with single amino acid substitutions (L259Q, L271P)
- or A282T) were built based on the model structure of the wild type.
- 722

723 Molecular dynamics simulation

MD simulations were performed using GROMACS version 4.6.2 (Pronk et al., 724 2013). The topology was generated with standard amino acid protonation states 725 at pH 7.0. The force field of AMBER99SB-ILDN and the water model of TIP3P 726 model were used for the simulation. The starting structure was placed in a cubic 727 box with 1.2 nm spaces around the solute and the box was filled with water 728 molecules. Na⁺ ions were added to a concentration of 150 mM. Finally, Cl⁻ ions 729 were added to make the total electrical charge neutral. There was a total of 730 52,873 atoms in the simulation. Energy minimization was performed by the 731 steepest descent method. Following energy minimization, the system was 732 733 equilibrated for 100 ps at 300 K under NVT (constant number of particles, volume and temperature) and NPT (constant number of particles, pressure and 734 temperature) conditions. After equilibration, an all atom molecular dynamics 735 simulation at 300 K under the NPT condition was performed for 500 ns. Each 736 *Va* FliG_C protein was simulated thrice independently. 737

738

739 QUANTIFICATION AND STATISTICAL ANALYSIS

The ¹⁵N T₂ values of His-Va FliG_{C2} and His-Va FliG_{C2} (A282T) (Figure S2)

741 were obtained by fitting the intensities of the peak heights to an exponential

- curve using a nonlinear least squares fitting method in Sparky (Goddard and
- 743 Kneller, University of California, San Francisco).
- 744

745 DATA AND SOFTWARE AVAILABILITY

746

747 Data Resources

- The resonance assignments for His-Va FliG_{C2} (Table S1) and His-Va FliG_{C2}
- 749 (A282T) (Table S2) deposited in the BioMagResBank (BMRB;
- 750 <u>http://www.bmrb.wisc.edu</u>) under accession numbers 12010 and 12011,
- respectively.
- 752
- 753

Figure 1. Miyanoiri et al.

Figure 2. Miyanoiri et al.

Figure 3. Miyanoiri et al.

(B)

Figure 5. Miyanoiri et al.

Figure 6. Miyanoiri et al.

Figure 7. Miyanoiri et al.

Supplemental Information

Structural and functional analysis of the C-terminal region of FliG, an essential motor component of *Vibrio* Na⁺-driven flagella

Yohei Miyanoiri, Atsushi Hijikata, Yuuki Nishino, Mizuki Gohara, Yasuhiro Onoue, Seiji Kojima, Chojiro Kojima, Tsuyoshi Shirai, Masatsune Kainosho and Michio Homma

Figure S1. Related to Figure 2. Comparison of ¹H-¹⁵N HSQC spectra between His-*Va* FliG_C and His-*Va* FliG_{C2}. (A) Overlay of ¹H-¹⁵N HSQC spectra of His-*Va* FliG_C (blue) and His-*Va* FliG_{C2} (red). Although amino acid residues in His-*Va* FliG_C is 40 more than that of His-*Va* FliG_{C2}, observed amide signals in ¹H-¹⁵N HSQC spectra are almost same between them. It is suggested that some amide signals in His-*Va* FliG_C were broadened to invisibility. (B)-(D) The enlarged spectra of B-D region (dotted square) in (A), respectively. Amide signals which are assigned both His-*Va* FliG_C and His-*Va* FliG_{C2} are labeled with black character. On the other hand, the residues which could be assigned in only His-*Va* FliG_{C2}, are shown in pink italic characters. Amide signals of V255(B), F256(C) and E257(D) could not be observed in His-*Va* FliG_C.

Figure S2. Related to Figure 3. Comparison between the backbone dynamics of His-*Va* FliG_{C2} and His-*Va* FliG_{C2}(A282T). ¹⁵N T₂ values of His-*Va* FliG_{C2}(A) and His-*Va* FliG_{C2}(A282T)(B), with error bars as a function of the residue number. The secondary structures of His-*Va* FliG_{C2} and His-*Va* FliG_{C2} (A282T) are indicated at the bottom of each plot.

Figure S3. Related to Figure 5. The fraction of amino acid residues, whose native secondary structure was retained during the MD simulation. Black and red lines indicate the fractions for wild-type and A282T mutant of $FliG_C$ domains, respectively. The secondary structures of $FliG_C$ are indicated at the bottom of the plot.

Figure S4 . Related to Figure 7. Rearrangement patterns of the crystal structures of $FliG_C$. (A) The crystal structures of $FliG_C$: 3ajc, CW-locked mutant in *T. maritima* [11], 1lkv, wild-type in *T. maritima* [21]; 3usy and 3usw, wild-type in *Helicobacter pylori* [26], 4fhr, complexed with FliM, wild-type in *T. maritima* [12]; 3hjl, full-length structure of wild-type in *A. aeulicus* [22]. (B) The rearrangement of helix $\alpha 0$ and the hinge between ARM_C and C α 1-6 domain of FliG_C in two crystal structures (3ajc and 3hjl). The residue numbers are according to those of *V. alginolyticus*. (C) The 2D plots of the two structural parameters for the rearrangement of ARM_C and C α 1-6 domains. Each dot in the plot depicts the individual crystal structure.

	12	Chemical shift [ppm] *1					dihedral angle [°] *2	
M252	13CO	¹³ Cα	13CB	¹⁵ NH	¹ HN	Phi	Psi	
F254	175.0	58.54	30.80	119.9	8.054	-72.16	140.8	H
V255	176.4	59.95	34.45	119.3	8.051	-107.5	159.0	L
F256	176.1	63.17	39.65	123.7	9.140	-57.32	-42.01	Н
E257	178.0	59.59	28.40	113.7	9.168	-66.21	-32.88	Н
N258	176.5	54.89	38.76	115.9	7.850	-70.97	-33.33	Н
L259	177.4	57.82	41.29	120.8	8.012	-65.07	-37.95	Н
V260	175.6	64.42	31.78	111.1	6.892	-70.78	-17.10	Н
E261	177.0	56.10	30.07	117.9	7.602	-90.85	-6.492	L
V262	174.7	62.58	31.84	122.0	7.256	-74.39	147.5	L
D263	176.3	54.42	41.53	124.8	8.473	-66.57	153.4	H
D264	177.8	58.73	40.75	122.2	8.623	-5/.85	-39.97	н
Q205 G266	178.9	47.48	27.90	117.4	8.065	-64.85	-38.99	н
1267	177.9	62.21	34.82	121.7	8.102	-68.96	-34.99	Н
Q268	179.0	60.23	27.71	118.0	8.389	-64.68	-41.20	Н
K269	178.8	59.76	32.43	118.7	7.637	-65.98	-39.88	Н
L270	178.4	58.43	42.47	121.9	8.256	-65.46	-44.39	Н
L271	179.1	57.08	41.59	114.0	8.415	-68.64	-25.00	Н
R272	177.5	58.92	30.39	116.9	7.311	-71.53	-28.53	н
D273	175.8	54.22	42.63	116.4	7.554	-96.25	-6.026	L
V2/4	173.8	59.97	33.40	120.4	7.323	-98.90	135.8	L
P2/5 0276	177.1	62.90	32.78	not assigned	-	-62.4/	147.8	H
0270	177.1	56.82	20.07	116.2	8 025	-50.04	-40.29	Н
V278	177.4	65.67	32.21	121.3	6 909	-70.40	-42.90	Н
L279	178.0	58.23	41.82	119.3	7.905	-63.27	-41.37	Н
Q280	177.7	60.20	28.56	115.6	8.370	-61.77	-42.50	Н
K281	177.3	60.62	33.38	115.8	7.407	-66.08	-41.95	Н
A282	180.1	54.82	19.68	117.1	8.112	-65.18	-39.79	Н
L283	180.0	55.94	42.13	113.3	8.315	-71.69	-23.15	Н
K284	177.4	58.24	31.21	123.6	8.127	-69.49	-23.60	L
G285	173.0	44.96	-	102.5	7.179	-94.84	1.975	L
A286	176.2	50.62	22.13	123.4	7.401	-111.8	146.4	L
D287	1 /6.3	58 20	42.12	120.3	8.835	-68.98	157.3	H
\$280	1/8.1	61.88	40.94 not assigned	119.8	8.075	-00.33	-37.30	Н
L290	178.5	57 53	41 06	125.9	7,771	-67.92	-42.67	Н
R291	176.9	60.72	29.93	116.8	8.016	-61.80	-42.60	Н
E292	178.7	59.10	28.79	114.6	8.328	-64.44	-38.32	Н
K293	177.3	58.19	32.50	120.3	7.384	-67.20	-40.96	Н
V294	178.2	67.07	30.97	118.4	7.541	-65.48	-43.67	Н
F295	179.0	58.46	37.77	117.9	8.827	-67.63	-22.82	Н
K296	176.4	58.24	31.62	116.0	8.172	-73.47	-19.63	Н
N297	172.6	54.47	41.25	117.8	7.590	-111.3	-15.03	L
M298	175.3	54.73	37.29	118.0	7.358	-128.0	148.8	L
\$299 K200	1/4.5	58.49	63.82	116.9	8.732	-69.28	156.8	H
R 301	179.2	58.40	32.43	123.0	8.720	-57.90	-39.45	Н
A302	1/8.4	54.99	18.45	121.8	7.662	-65.44	-37.91	H
A303	179.2	55.34	18.92	122.1	8.826	-65.22	-40.32	Н
E304	178.9	59.40	29.40	118.1	7.963	-64.01	-43.13	Н
M305	177.9	58.79	33.12	116.9	7.817	-65.96	-42.13	Н
M306	177.8	58.52	31.62	118.9	8.172	-64.36	-43.01	Н
R307	179.2	60.34	29.77	119.8	8.361	-62.73	-43.01	Н
D308	179.1	57.22	39.90	119.2	7.614	-66.41	-41.27	Н
D309	179.9	57.55	40.00	122.5	8.668	-63.47	-40.71	Н
1310	178.4	65.46	38.15	119.8	8.751	-64.61	-38.35	H
E311	177.6	58.63	29.27	120.1	7.853	-70.56	-19.04	n – – – – – – – – – – – – – – – – – – –
A312	177.9	52.55	19.53	118.5	7.575	-88.15	-/.150	L
P314	1/5./	DD.17	55.55 not sesioned	not assigned	7.409	-/3.31	151.6	1
P315	176.3	63.83	31.92	not assigned		-67.14	141.9	L
V316	176.1	60.10	34.07	123.1	8 240	-104 7	137.3	L
R317	178.4	56.54	30.37	126.9	9.063	-71.57	137.1	L
V318	178.0	67.09	31.43	125.1	8.785	-55.43	-42.33	Н
A319	180.7	55.02	18.46	119.7	8.704	-63.50	-36.02	Н
D320	179.2	56.68	40.59	117.5	7.329	-70.57	-38.36	H
V321	178.3	66.96	31.94	124.5	7.796	-65.25	-43.39	H
E322	179.1	59.69	29.29	118.9	8.512	-64.06	-39.72	H
A323	180.4	55.14	18.14	120.3	7.500	-65.41	-40.27	н
A324 0325	1/9.4	59.52	18.82	122.0	8 228	-07.03	-41.51	Н
K326	170.4	60.07	32.36	118.4	8 400	-64.69	-40.79	н
E327	179.2	59.57	28.97	122.0	7.904	-65.42	-42.99	Н
1328	177.8	66.16	37.30	119.1	7.819	-63.63	-42.46	H
L329	178.1	57.93	41.89	119.8	8.582	-64.90	-39.85	Н
A330	181.3	55.40	17.75	121.9	8.172	-64.23	-39.78	Н
1331	178.0	65.58	38.57	121.2	7.802	-65.77	-43.88	Н
A332	179.2	55.20	17.55	121.9	8.573	-63.81	-38.35	H
R333	178.1	59.72	30.05	117.2	8.776	-64.22	-42.19	H
R334	180.1	59.77	29.59	120.1	7.686	-65.21	-41.98	H
M335	1/8.7	59.59	55.88	119.5	8.529	-64.66	-43.74	п
A330 D337	182.2	57.17	40.15	124./	8.670	-01./3	-40.56	H
A338	177.7	52.15	19.29	121.7	7 470	-00.12	-27.17	1
G339	175.0	45.66	-	107.0	7.973	79.61	15.52	L
E340	175.0	56.64	31.25	117.2	8.221	-93.08	-10.26	L
L341	174.4	53.91	45.43	116.7	7.089	-134.3	138.9	E
M342	175.1	54.32	33.14	123.7	8.931	-101.9	123.5	E
L343	176.6	54.39	41.61	124.4	8.538	-79.23	136.2	E
S344	174.7	58.26	64.12	115.1	8.060	-79.73	152.5	L
G345	174.7	45.42	-	110.3	8.575	-174.0	163.2	L
G346	174.0	45.21	-	108.8	8.423	91.77	2.762	L
A347	177.6	52.66	19.35	123.7	8.336	-89.06	-8.814	L
D348 E240	1/6.2	54.59	41.16	119.2	8.353	-12.33	-18.32	L
E349 F350	175.9	57.47	30.39	120.6	8.212	-87.22	-8.306	L
1350	1/4.0	56.78	43 52	120.5	7 785	-04.13	1.30.7	

Table S1. Related to Figure 3. ¹H, ¹³C and ¹⁵N chemical shift and predicted dihedral angles of U-¹³C, ¹⁵N His-*Va* FliG_{C2} backbone at 288K, pH 7.0.

*1 ¹H, ¹³C and ¹⁵N chemical shifts are referenced indirectly against DSS. *2 The backbone dihedral angles (phi and psi) for each residue are predicted from chemical shift data using TALOS-N [23]. *3 The secondary structure was predicted from TALOS-N [23].

H: α -helix; E: β -strand; L: coil

Table S2.	Related to Figure 3.	¹ H, ¹³ C and ¹⁵ N chem	lical shift and predi	icted dihedral angles of
$U^{13}C^{15}N$	His-Va FliG C2 (A282	2T) backbone at 288H	х, рН 7.0.	-

	1300	1300	Chemical shift [ppm] *1	15,000	IIN	dihedral angle [°] *2		secondary structure *3
M252	not accioned	not accimad	CP not accionad	NH not accigned	HN not accioned	rm	r 5i	
E254	not assigned	not assigned	not assigned	not assigned	not assigned	-	-	
V255	not assigned	not assigned	not assigned	not assigned	not assigned	-	-	-
¥255 E256	not assigned	not assigned	not assigned	not assigned	not assigned	-	-	-
E257	not assigned	not assigned	not assigned	not assigned	not assigned	-	-	-
E237	not assigned	not assigned	not assigned	not assigned	not assigned		-	-
13250	not assigned	not assigned	not assigned	not assigned	not assigned		-	-
1239	175 557	64.170	not assigned	not assigned	6 802		-	-
V200	1/5.55/	64.179	not assigned	not assigned	0.893	-		L
E201	177.101	50.089	30.131	117.932	7.393	-91.614	-0./85	L
V262	174.749	62.823	31.833	121.825	7.552	-08.889	143.309	L
D263	1/6.152	54.324	41.357	124.494	8.425	-69.403	150.139	L U
D264	177.755	58.552	40.826	121.869	8.59	-58.451	-38.85	n
Q265	178.866	59.411	28.037	117.596	8.527	-64.987	-39.502	H
G266	175.471	47.476	-	110.083	8.125	-65.735	-42.18	H
1267	177.819	62.329	34.988	121.803	8.175	-68.764	-34.633	H
Q268	179.018	60.083	27.768	118.245	8.39	-64.317	-40.947	Н
K269	178.733	59.755	32.249	118.687	7.608	-66.082	-40.017	Н
L270	178.488	58.515	42.242	121.689	8.256	-65.939	-43.579	Н
L271	178.932	57.123	41.468	114.187	8.474	-67.043	-23.39	Н
R272	177.532	58.83	30.398	116.844	7.316	-72.282	-28.99	Н
D273	176.082	54.457	42.645	116.624	7.516	-95.825	-6.608	L
V274	173.683	60.025	33.228	120.692	7.455	-99.466	132.524	L
P275	177.909	63.005	32.701	not assigned	-	-61.634	146.665	L
Q276	177.383	60.068	28.851	124.602	9.106	-57.123	-39.645	Н
D277	178.005	56.916	39.781	116.687	8.952	-62.574	-34.114	Н
V278	178.192	65.654	32.208	120.743	6.957	-70.502	-42.445	Н
L279	179.422	58.111	41.897	120.054	7.858	-66.052	-40.894	Н
Q280	177.693	60.447	28.379	117.862	8.731	-62.572	-42.038	Н
K281	177 648	60.429	33,552	115 176	7,586	-65.88	-42 218	Н
T282	176 288	65,453	68,566	108 579	7,533	-65.09	-37.731	Н
1,283	179 378	56 182	42 796	118 711	7 897	-74 64	-24 487	Н
K384	177 101	58 702	31 542	122 178	7 072	-65 402	-25 802	L
G285	173 755	44 722	51.345	105.017	8 225	-0.5.402	3,009	Ĺ
0203 A294	175.735	51 204	21.215	103.017	0.223	-93.90/	152 207	-
A280	170.414	52.500	42.100	122.723	1.058	-00.10	132.38/	-
D287	1/0.448	53.561	42.120	119.182	0.001	-0/.0/1	100.918	H
D288	1/8.044	58.1	40.971	120.519	8.707	-39.295	-37.801	U
8289	176.963	61.881	not assigned	114.62	8.451	-64.539	-40.626	
L290	178.184	57.799	40.969	124.812	7.667	-69.323	-42.614	n
R291	176.976	60.606	30.205	116.606	7.899	-61.683	-42.764	H
E292	178.802	59.089	28.882	114.602	8.412	-64.253	-38.431	H
K293	177.384	58.312	32.557	119.862	7.383	-67.08	-41.186	H
V294	178.229	66.987	31.115	118.121	7.617	-65.324	-43.455	Н
F295	179.04	58.901	37.849	117.423	8.799	-67.491	-22.581	Н
K296	176.482	58.196	31.532	115.976	8.114	-73.387	-19.359	н
N297	172.627	54.423	41.163	117.794	7.558	-110.915	-13.057	L
M298	175.281	54.762	37.236	117.82	7.367	-128.05	148.831	L
S299	174.456	58.436	63.878	116.977	8.738	-69.844	157.465	L
K300	179.291	60.236	32.405	123.487	8.742	-57.669	-39.682	Н
R301	178.34	58.384	29.716	117.395	8.604	-66.637	-38.452	Н
A302	180.947	54.974	18.438	121.739	7.699	-65.247	-41.144	Н
A303	179.108	55.395	18.672	122.011	8.789	-64.553	-41.058	Н
E304	178.981	59.494	29.418	118.176	7.989	-64.255	-42.764	Н
M305	178.024	58.821	33.187	117.12	7.867	-65.8	-42.568	Н
M306	178.008	58.539	31.645	118.893	8.191	-63.802	-43.926	Н
R307	179.221	60.577	29.76	119.691	8.461	-62.655	-42.883	Н
D308	179.124	57.338	39.88	119.45	7.591	-66.191	-41.04	Н
D309	179.975	57.664	40.074	122.705	8.541	-64.58	-40.37	Н
1310	178.344	64.987	37.978	119.157	8.783	-65.08	-36.025	Н
E311	177.494	58,796	29.216	120.564	7.851	-70.033	-20.033	Н
A312	178.01	52.661	19.51	117.939	7.378	-87.792	-7.159	L
M313	173.633	54.938	33.403	120.538	7.415	-72.243	137.304	L
P314	not assigned	not assigned	not assigned	not assigned	-	-66,148	150.852	L
P315	176.162	63.645	31.929	not assigned	-	-60.521	142.434	L
V316	176.407	60.385	33.421	122.504	8.281	-93.005	133.288	L
R317	178.465	56.513	30.475	127.219	9.121	-70.591	140.554	L
V318	178 035	67,192	31 49	124 769	8,755	-55 289	-42 38	Н
A319	180.82	55.08	18.43	120 139	8 763	-63 193	-35 074	Н
D320	179 203	56 567	40.638	117 154	7 258	-70 563	-38 333	Н
V321	177 987	67 353	31 565	124 057	7 953	-64 912	-43 191	Н
F322	179.211	59.675	29 262	119 321	8 446	_64 30	-40 303	Н
A222	180 200	55 156	18 162	120.088	7,602	-65 672	-40 755	Н
A324	179 053	55 197	19.044	123.06	7.69	-66 768	-41 006	Н
0325	178 812	59.22	28 041	117 243	8 512	-64 39	-41 314	Н
K326	179.601	60 133	32 435	117.54	8.03	-64 635	-41 167	H
E227	179.001	50 504	22.433	101.04	7 900	65 224	. 42 270	H
1220	177.304	66 225	27.2	121.170	8.007	62 001	42.219	н
1320	177.274	57.024	37.241	119.221	0.007	-03.091	-42.333	
4220	1/0.3/4	51.924	+1.302	120.028	0.0/8	-03.138	-30.437	н
1221	101.300	65 522	17.748	121.807	0.089	-04.8/8	-37.443	н
1331	177.100	55 145	30.029	120.852	1.74	-03.921	-43.089	н
P332	179.100	50.145	17.33	121.881	0.3/4	-04.223	-37.27	н
K333	1/8.152	59.054	30.031	110.958	8.725	-03.931	-41.914	н
K334	180.052	59.689	29.549	119.973	/.003	-03.40	-42.0/5	н
M335	1/8./2	59.555	33.850	119.395	8.302	-05.023	-45.50/	
A330	182.130	54.901	17.799	124.621	8.85	-01.839	-40.46/	U
D33/	1//.453	57.119	40.213	121.78	8.663	-66.251	-26.491	1
A338	177.759	52.185	19.304	119.235	7.479	-83.331	-5.619	L
6339	1/5.01	45.669	-	107.048	7.973	/8.502	15.866	L
E340	1/5.046	56.645	51.208	11/.218	8.21	-93.843	-11.874	C L
L341	1/4.437	53.908	45.409	116.945	7.096	-132.987	139.332	C r
M342	175.007	54.395	33.072	123.872	8.947	-105.787	122.38	C
L343	176.701	54.359	41.84	124.19	8.516	-82.796	137.654	C 1
\$344	174.826	58.3	64.122	115.526	8.139	-82.838	155.079	L
G345	174.68	45.448	-	110.441	8.584	-175.301	173.041	L
G346	174.037	45.224	-	108.85	8.421	93.581	1.596	L
A347	177.624	52.726	19.331	123.655	8.327	-72.836	-19.306	L
D348	176.231	54.622	41.113	119.088	8.351	-72.792	-17.367	L
E349	175.952	56.797	30.367	120.498	8.191	-88.581	-6.85	L
F350	174.767	57.509	39.402	120.36	8.238	-86.071	136.833	L
L351	182.389	56.807	43.443	128.484	7.741		-	L

*1 ¹H, ¹³C and ¹⁵N chemical shifts are referenced indirectly against DSS.
*2 The backbone dihedral angles (phi and psi) for each residue are predicted from chemical shift data using TALOS-N [23].
*3 The secondary structure was predicted from TALOS-N [23]. H:α-helix; E: β-strand; L: coil