
 1 

Primitive Chain Network Simulations of Probe Rheology 

 

Yuichi Masubuchi1*, Yoshifumi Amamoto1, Ankita Pandey1 and Cheng-Yang Liu2 

 

1 Department of Materials Physics, Nagoya University, Japan 

2 Institute of Chemistry, Chinese Academy of Science, China  

 

 

 

*Corresponding Author 

E-mail: mas@mp.pse.nagoya-u.ac.jp; Tel +81-51-789-2551 (Y.M.). 

 

 

 

  



 2 

ABSTRACT 

 The probe rheology experiments, in which the dynamics of a small amount of 

probe chains dissolved in immobile matrix chains is discussed, have been performed for 

the development of molecular theories for entangled polymer dynamics. Although the 

probe chain dynamics in the probe rheology is considered hypothetically as the single 

chain dynamics in the fixed tube-shaped confinement, it has not been fully elucidated. 

For instance, the end-to-end relaxation of probe chains is in retard of that for 

monodisperse melts, unlike the conventional molecular theories. In this study, 

viscoelastic and dielectric relaxations of probe chains were calculated by primitive 

chain network simulations. The simulations semi-quantitatively reproduced the 

dielectric relaxation, which reflects the effect of constraint release on the end-to-end 

relaxation. Fair agreement was also obtained for the viscoelastic relaxation time. 

However, the viscoelastic relaxation intensity was underestimated, possibly due to some 

flaws of the model for the inter-chain cross-correlations between probe and matrix 

chains.  

 

Keywords: constraint release, entangled polymers, multi-chain slip-link simulations 
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1 Introduction 

In spite of lots of attempts, description of polymer dynamics in entangled 

states is still a challenge1,2. Due to the significance in the polymer processing industry, 

polymer rheology has been one of the important issues in polymer science. 

Experimental attempts have revealed that the polymer rheology is compatible with the 

polymer dynamics (owing to the stress-optical rule3), and that the rheological behaviors 

of polymers with different chemistries are mostly universal4. On the basis of these 

findings, theoretical attempts for the description of polymer rheology with simplified 

molecular models have been performed, with embedding the effects of chemistries via 

inter-molecular interactions into a few model parameters. Such theoretical studies are 

based on the Rouse model5, in which the polymer chain is represented by consecutive 

beads and springs, and no inter-bears interaction is considered. The Rouse model can 

reproduce linear viscoelasticity of polymer melts given that the molecular weight of 

polymers is relatively small and the polymer concentration is sufficiently high. On the 

other hand, the model fails for long polymers, for which the molecular weight is larger 

than a chemistry-dependent critical value. For such polymers, the dynamics is in retard 
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of the Rouse behavior. Because the mechanism of this retardation has been considered 

as the entanglement between polymers, the polymeric liquids with such behaviors are 

so-called entangled polymers4.  

Although the molecular detail of entanglement phenomena is still a matter of 

discussion, it has been rather established that the dynamics of entangled polymers can 

be cast into the dynamics of single polymer chain in a tube shape confinement6,7. In this 

framework, the polymer dynamics is decomposed into the test chain dynamics in the 

fixed tube and the tube dynamics so-called constraint release (CR) due to the motion of 

surrounding chains1,8. The former has been almost established in the recent molecular 

theories9,10 that incorporate the reptation7,11 and the contour length fluctuations (CLF)12. 

On the other hand, the CR dynamics is still a matter of investigation due to complicated 

multi-chain effects, although there have been established a few implementations of CR 

termed as Rouse-CR13, double reptation14,15 and dynamic tube dilation16.  

Effects of CR on polymer dynamics have been discussed in binary blends of 

polymers with well-separated molecular weights17. In particular, the experiments with a 

small amount of short chains dissolved in long chain matrices are so-called probe 
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rheology18. On the basis of the assumption in which the dynamics of short chains 

corresponds to the test chain dynamics without CR, results in probe rheology have been 

discussed in comparison to the dynamics of monodisperse melts18. 

Although polymer dynamics confined in an immobile tube constraint has been 

theoretically established, there have been reported a few unsolved issues. For instance, 

Matsumiya et al.19 reported an interesting probe rheology study, in which they 

performed dielectric measurements of polyisoprene in addition to the viscoelastic 

measurements. Because polyisoprenes have type-A dipoles, the dielectric relaxation 

corresponds to the end-to-end relaxation of the molecule, whereas the viscoelastic 

relaxation conforms to the segment orientational relaxation. For the first time, they 

clearly demonstrated that the viscoelastic relaxation coincides with the dielectric 

relaxation for the probe chain. This result supports the tube framework, in which the 

segment orientational relaxation coincides with the end-to-end relaxation (tube survival 

probability) in the absence of CR. Meanwhile, they also reported the retardation of the 

end-to-end relaxation due to the lack of CR. This finding contradicts to some tube 

theories, in which the tube survival probability (i.e., the end-to-end relaxation) is not 
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affected by CR. Indeed, in the well-developed tube model20 and the single-chain 

slip-link model21, CR does not affect the end-to-end relaxation. A possible theoretical 

explanation of this phenomenon is the CR-activated contour length fluctuations 

(CR-activated CLF) proposed by van Ruymbeke et al.22,23. They introduced the 

additional relaxation rate in the tube survival probability to incorporate the tension 

re-equilibration process induced by the CR-Rouse motion of the skinny tube in the 

dilated tube. Another possible idea has been proposed by Read et al24,25 , who describe 

the effect of CR on the end-to-end relaxation by considering two different tubes for the 

constraints of short and long chains following the CR picture constructed by Viovy et 

al.26. Specifically, Read et al24,25 suggest that the characteristic time of CR-activated 

CLF is dominated by sliding of the test chain along the skinny tube in its response to 

CR. Nevertheless, the probe rheology data with dielectric response has never been 

examined theoretically.  

Apart from the significance of CR, there is the other multi-chain effect 

so-called orientational cross correlation (OCC). As mentioned above, the single chain 

models have achieved remarkable success on the basis of the assumption in which the 
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polymer chain moves independently. However, the experimental studies27–29 have 

shown that there are cross-correlations between different chains. The cross correlation 

has been studied in molecular simulations as well. For instance, Cao and Likhtman30 

have reported that there exist considerable contributions of OCC in the relaxation 

modulus of polymer melts. They used Kremer-Grest type bead-spring simulations and 

measured the stress for each chain to extract the contribution of OCC. In their analysis, 

the OCC contribution increases in time, and it grows up to 40% of the total intensity at 

the terminal relaxation time. Similar results have been reported for multi-chain slip-link 

simulations31,32. In particular, Masubuchi and Amamoto33 reported that the OCC 

contribution depends on the blend ratio and the short chain molecular weight for the 

case of bidisperse blends. This result suggests possible effects of OCC in the analysis of 

short chain signal in the probe rheology data.  

In this study, multi-chain slip-link simulations were performed for the probe 

rheology data reported by Matsumiya et al.19  The simulations reproduced the 

dielectric relaxation for the first time with the retardation due to the lack of CR. The 

coincidence between dielectric and viscoelastic relaxation spectrum for the probe chain 
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was also confirmed if shift-factors for the relaxation intensities are allowed. However, 

the simulated viscoelastic relaxations were not in good agreement for the relaxation 

intensity, possibly due to some flaws of OCC in the model. Details are shown below.  

 

2 Model and Simulations 

In the multi-chain slip-link simulations34,35, polymers are represented by 

consecutive segments. Each segment carries a molecular weight comparable to the 

entanglement molecular weight. The segments are bundled via slip-links in pair to form 

a network in 3D space. The polymer motion is described by the Langevin-type equation 

of motion for the slip-link position and by the stochastic rate equation for the monomer 

transport through the slip-links. Both equations incorporate entropic elasticity of 

segment, osmotic force for segment density, friction with the medium, and thermal 

agitation. In addition, topological change of the network is considered via creation and 

destruction of slip-links at the chain ends. This topological change represents reptation 

of the test chain and CR for the partner chain.  

To mimic the probe rheology experiment, the chain dynamics was examined 

in a gel network, in which the topological change of surrounding chains was suppressed. 
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The gels were obtained from equilibrated monodisperse melts by eliminating the 

creation and destruction of slip-links at the chain ends except for the probe chains. An 

important difference from probe rheology experiments is that the effect of CLF of the 

matrix chain is completely deactivated in the gels. Because the characteristic time of 

CLF is the Rouse time of the chain, the effect is not negligible if the matrix molecular 

weight is not sufficiently separated from that of probe chains. Indeed, Matsumiya et al19 

stated that for the longest probe chain with the molecular weight of 179k, the CLF 

dynamics of matrix chain with the molecular weight of 1.1M may affect it, although the 

Rouse time of the matrix chain is several times larger than the relaxation time of the 

probe chain (in the matrix). Nevertheless, due to the computational difficulties for the 

simulation with activated long chain matrices, the topologically frozen gels were 

employed as the matrix in this study.  

The simulation code utilized in this study is identical to that used earlier for 

monodisperse and bidisperse33,36,37 melts. The simulations were performed choosing the 

average equilibrium length of the segment 𝑎 as unit length, 𝑘𝑇 as unit energy, 𝜏% =

𝜁𝑎(/6𝑘𝑇	as unit time, where 𝜁 is the friction coefficient of the slip-link. The unit 
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modulus is defined as 𝐺% = 𝜌𝑅𝑇/𝑀%, where 𝑀% is the average molar mass of the 

segment and 𝜌 is polymer mass density35,38.  

Periodic boundary condition was employed with cubic simulation cells, for 

which the cell dimension was accommodated to be sufficiently larger than the chain 

dimensions (see Table I). Simulations under quiescent conditions were performed for 

sufficiently long times (10 times longer than the longest relaxation time for each case). 

For statistics, 16 independent runs with different initial configurations were performed 

for each case.  

 The linear relaxation modulus 𝐺(𝑡) was obtained from the auto-correlation 

function of shear stress. 𝐺∗(𝜔)  was calculated from 𝐺(𝑡)  via fitting to the 

multi-mode Maxwell relaxation function. The dielectric relaxation 𝜀∗(𝜔) was obtained 

from the fluctuations of end-to-end vector. For both relaxations, auto-correlation for the 

same chain and cross-correlation between different chains were calculated from the data 

recorded for each chain. The entire relaxation and auto and cross-correlation 

contributions are denoted as 𝑆 𝑡 , 𝐴 𝑡  and 𝐶 𝑡 , respectively, with the subscripts S 

and P for segment orientation and end-to-end vector relaxations. The superscripts P and 
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M are for the probe and the matrix components. See Appendix A for the definition of the 

relaxation functions.  

For polyisoprene (PI) data obtained by Matsumiya et al.19, the parameters 

were determined as 𝑀% = 3.5k and 𝜏% = 4.5×10AB sec, to reproduce the data for 

monodisperse PI melts at 40℃ as shown in Figure 1. The unit modulus 𝐺% = 6×10BPa 

is determined from 𝑀%. As reported earlier35,38, the slip-link simulations reproduce the 

data semi-quantitatively, with the parameters shown above, although it is fair to note 

that the dielectric relaxation time for the shortest chain is apparently underestimated. 

The segment number per chain Z and the unit cell dimension L employed in the 

simulations are summarized in Table I. 

 

Table I Segment number per chain Z and unit cell dimension L  
Mw Z L 
43k 12 10 
99k 28 16 
179k 51 20 

 

For the probe rheology simulations, the probe chain fraction 𝜙E was fixed at 

0.1 follwoing the experiment by Matsumiya et al. 19 It is noted however that they 
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employed 𝜙E = 0.2 for 𝑀 = 179k due to the experimental convenience.  

 
Figure 1 Linear viscoelasticity and dielectric loss for monodisperse PI melts at 40℃ 

with the molecular weight of 179k (blue), 99k (red) and 43k (green) from left to right, 

respectively. Symbols are reproduced from Matsumiya et al.19. For the upper panel, 

filled and unfilled symbols are storage and loss moduli, respectively. Solid and dotted 

curves are storage and loss moduli from the simulations. For the bottom panel, the 

dielectric loss is shown with a similar manner to the viscoelasticity. Simulation 

parameters are described in the text. 

 

3 Results and Discussion 
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3.1 Comparison to experimental data 

 Figure 2 shows the simulation results of loss modulus and dielectric loss for 

the probe chains in comparison to the experimental data19. The data for monodisperse 

melts are also shown for comparison. The simulation parameters for probe chains are 

identical to those used for the melts. The solid curves are obtained from 𝑆IE 𝑡  and 

𝑆EE 𝑡  (see eq 8 in Appendix A). The simulation results are in reasonable agreement for 

the dielectric relaxation including the retardation of dielectric relaxation for the probe 

chain in comparison to the melt. In other words,  𝑆EE 𝑡  is affected by CR. This result 

contradicts a few theoretical predictions. Glomann et al.20 argued that for the tube model 

proposed by Likhtman and McLeish10, dielectric relaxation is insensitive to the 

inclusion of CR. Pilyugina et al.21 reported similar results for the single-chain slip-link 

model. Nevertheless, the simulation is capable to predict the dielectric relaxations. The 

viscoelastic relaxation time is also reasonably captured according to the peak position 

for 𝐺" 𝜔  of the probes, 𝐺”E 𝜔 .	 It is fair to note that the relaxation time for 43k is 

somewhat underestimated both for viscoelastic and dielectric relaxations but the 

discrepancy is consistent with that seen for the dielectric relaxation of the monodisperse 
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melt. On the other hand, the intensity of viscoelastic relaxation was not well-captured. 

Actually, in the experiment 𝐺”E 𝜔  is larger than 𝐺" 𝜔  for the monodisperse melts 

around the peak. For the simulations, the peak intensity of	𝐺”E 𝜔  is somewhat lower 

than 𝐺" 𝜔  for the melts. The intensity is virtually molecular weight independent for 

the experimental data whereas it decreases with decreasing molecular weight for the 

simulation.  

It so appears that the simulation fails for the intensity of 𝐺”E 𝜔 , and the 

failure suggests flaws in the simulations for CR and/or OCC. In the following sections, 

the effects of CR and OCC shall be analyzed in detail for end-to-end (dielectric) and 

segment (viscoelastic) relaxations.  
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Figure 2 Loss modulus and dielectric loss of the probe chains in comparison to the 
monodisperse melts with the molecular weight of 179k (top), 99k (mid) and 43k 
(bottom). Symbols are the experimental data by Matsumiya et al.19, and filled and 
unfilled ones represent the data for probe chains and for monodisperse melts, 
respectively. The probe chains are immersed in the matrix with the molecular weight of 
1.1M in the experiment. Curves are the simulation results, in which solid ones are 
obtained from 𝑆IE 𝑡  and 𝑆EE 𝑡 , and broken ones are for the monodisperse melts.  
 

 

3.2 End-to-end relaxation 

  Figure 3 shows the end-to-end relaxation and its auto-correlation 
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contribution for probe chains and for melts. For melts, as reported earlier31, 𝑆E 𝑡  and 

𝐴E 𝑡  are not distinguishable from each other. This coincidence means that the 

cross-correlation is virtually negligible. The coincidence between 𝑆EE 𝑡  and 𝐴EE 𝑡  is 

observed for the probe chains as well. The other issue of interest is comparison between 

𝑆EE 𝑡  of probe chains (solid curves) and 𝑆E 𝑡  in melts (broken curves), i.e., the effect 

of CR on the end-to-end relaxation. Namely, 𝑆EE 𝑡  is in retard of 𝑆E 𝑡 , and the 

magnitude of retardation depends on the molecular weight. In particular, for the longest 

chain, there is almost no retardation. Our results are in good agreement with the data, as 

seen in Fig 2. The result seems in harmony with the idea of CR-activated CLF proposed 

by van Ruymbeke et al22,23. Actually, in the multi-chain slip-link simulations employed 

in this study, the effect of blinking slip-links propagates along the chain via the force 

balance. When a slip-link is created/destructed, the position of connected slip-links is 

changed due to the force balance, and a cascade of the position change of slip-links 

takes place along the chain. This argument might be also cast into the idea proposed by 

Read et al24,25 if the wriggling of the chain is represented by the tube diameters, into 

which the effect of force balance is embedded. Nevertheless, the results for the 
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end-to-end relaxation suggest that the CR effects are reasonably implemented in the 

simulation.  

   

 

Figure 3 End-to-end relaxations for probe chains 𝑆EE 𝑡  and 𝐴EE 𝑡  (solid curves) and 
for monodisperse melts 𝑆E 𝑡  and 𝐴E 𝑡  (dotted curves). The molecular weight of PI 

is indicated in the figure. The entire relaxation ( 𝑆EE 𝑡  and 𝑆E 𝑡 ) and the 

auto-correlation contribution (𝐴EE 𝑡  and 𝐴E 𝑡 ) are indicated in black and red, 
respectively.  

 

3.3 Segment relaxation 

 Figure 4 shows the segment correlation function for the probe chain 𝑆IE 𝑡  
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(black solid curve) plotted with 𝐴IE 𝑡  (red solid curve). Apparently, 𝐴IE 𝑡  is smaller 

than 𝑆IE 𝑡 , indicating the effect of inter-chain cross-correlation. The cross-correlation 

contribution defined as 𝐶IE 𝑡 ≡ 𝜙E𝐶IEE 𝑡 + 𝜙N𝐶IEN 𝑡 ~𝜙N𝐶IEN 𝑡  are shown by 

green solid curves. 𝑆P 𝑡 , 𝐴P 𝑡  and 𝐶P 𝑡  for monodisperse melts are shown by 

broken curves. For the relaxation rate, the probe chain relaxation is in retard of that in 

monodisperse melt due to the lack of CR, both for 𝐴IE 𝑡  and 𝐶IE 𝑡  (see the 

difference between solid and broken curves in red and green). 𝑆IE 𝑡  reflects these 

retarded relaxations, which are consistent with the experiment19 as shown in Fig 2. On 

the other hand, the simulation failure for the intensity of 𝐺”E 𝜔  demonstrates flaws in 

the intensity of 𝑆IE 𝑡 . Because the intensity of 𝐴IE 𝑡  is similar to that of 𝐴P 𝑡  and 

any reasonable mechanism to intensify 𝐴IE 𝑡  cannot be suggested, the simulation 

failure is due to the cross-correlation term 𝐶IE 𝑡 . Indeed, 𝐶IE 𝑡  is smaller than 𝐶P 𝑡  

for all the examined cases, and it contributes the intensity of 𝑆IE 𝑡  . Note that however, 

𝐶IE 𝑡  is mainly composed of the cross-correlation between probe and matrix chain 

𝜙N𝐶IEN 𝑡  (because of the condition at 𝜙E = 0.1), and thus, it is inherently different 

from 𝐶P 𝑡  in melts.  
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Figure 4 Correlation functions for segment orientation for probe chains (solid curves) 

and monodisperse melts (dotted curves). The molecular weight of PI is indicated in the 

figure. The entire function 𝑆P 𝑡 , the auto-correlation function 𝐴P 𝑡  and the 

cross-correlation contribution 𝐶P 𝑡  are indicated in black, red and green, respectively.  

 

3.4 Comparison between end-to-end and segment relaxations 

 For further investigations, end-to-end and segment relaxations for the probe 

are compared with each other in this section. Watanabe39 has shown that the end-to-end 

relaxation coincides with the segment relaxation given that the chain reptates in a fixed 

tube (without CR). To check this argument, Figure 5 shows the comparison among the 



 20 

relaxation functions for the probe chain, 𝑆IE 𝑡 , 𝑆EE 𝑡 , 𝐴IE 𝑡  and 𝐴EE 𝑡 .  𝑆IE 𝑡  and 

𝐴IE 𝑡  are vertically shifted with appropriate shift-factors a and b to match 𝑆EE 𝑡  and 

𝐴EE 𝑡 . In the long-time region, in which the higher relaxation modes (e.g. Rouse 

modes) are not significant, all the relaxation functions coincide with each other. This 

result is in agreement with the data by Matsumiya et al.19, who reported the coincidence 

for loss modulus and dielectric loss for the probe chains. (It is fair to note that in their 

data the relaxation functions do not coincide with each other for the probe chain with 

the molecular weight of 179k, because the probe molecular weight is not sufficiently 

different from the matrix molecular weight.) It is also noteworthy that 𝑆IE 𝑡  and 

𝐴IE 𝑡  overlap with each other in the long-time region. This result indicates that the 

effect of 𝐶IE 𝑡  can be virtually replaced by the shift factor. In other words, 𝐶IE 𝑡  has 

virtually no effect on the longest relaxation time. This result lends support the 

discussion for the effect of CR on the relaxation time in the study by Matsumiya et al.19 

even though they did not consider the effects of cross-correlation.  

 The comparison among the relaxation functions shown above supports the 

discussion in the previous section for the failure in 𝐺”E 𝜔  in the simulation. Because 
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𝑆EE 𝑡  is fully consistent with 𝜀"(𝜔)  that can be superposed to 𝐺”E 𝜔  in the 

experiment, the coincidence between 𝑆IE 𝑡  and 𝑆EE 𝑡  means that the relaxation time 

distribution of the segment relaxation is reasonably captured in the simulations. Namely, 

the shape and the horizontal location of 𝐺”E 𝜔 is reasonably predicted in a similar 

extent to 𝜀"(𝜔) . The discrepancy is thus mainly in the intensity of 𝐺”E 𝜔 , as 

discussed previously. Thus, it is reasonably concluded that 𝐶IE 𝑡  is the main reason of 

the failure in  𝐺”E 𝜔 .  
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Figure 5 Comparison among the probe chain relaxation functions 𝑆IE 𝑡 , 𝑆EE 𝑡 , 𝐴IE 𝑡  

and 𝐴EE 𝑡 . Solid and dotted curves are end-to-end and segment relaxations, 

respectively. 𝑆 𝑡  and 𝐴 𝑡  are indicated in black and red.  

 

4 Discussion 

4.1 Problems in the present simulation 

As mentioned in the previous section, the inconsistency for the viscoelastic 

data shown in Fig 2 is probably due to some flaws in OCC in the simulation. It is fair to 
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note that the employed model is not rigorous for the thermodynamic description40. In 

particular, the free energy expression of the system is unknown due to the osmotic force 

that suppress density fluctuations. The description of osmotic force may affect the 

present results. Actually, it has been reported that OCC is affected by the intensity of 

osmotic force32. In this respect, use of the other multi-chain models41,42 constructed with 

rigorous thermodynamic expression is to be considered. Another possible flaw of the 

present study might be the use of gels rather than the actual long chain matrix. Even in 

the case in which the longest Rouse time of the matrix chain is well beyond the longest 

relaxation time of the probe chains, higher Rouse modes may affect the results. For 

these possibilities, although the computation cost is not practically affordable at this 

time being, further study is necessary.  

 

4.2 Comparison to the tube theory 

 Owing to the fact that the tube models have attained quantitative agreement 

with melt data even neglecting OCC, one may argue that advanced tube models may be 

capable of describing the probe rheology data. In Figure 6, the prediction for probe 



 24 

chain dynamics from the tube theory by Likhtman and McLeish10 is shown by broken 

curves with the simulation results shown by thin solid curves. For the tube model, the 

CR intensity parameter 𝑐R is set at zero, and the other parameters were determined 

from the melt data as described in Appendix B. Note that the dielectric relaxation was 

obtained from the approximated analytical form given by eq 13 in the paper by 

Likhtman and McLeish10, which is not in good agreement with the original stochastic 

simulations for the short chains. Thus, the result for M=43k chain may not be 

appropriate for further discussions.  

 
Figure 6 Loss modulus (top) and dielectric loss (bottom) of the probe chains with the 
molecular weight of 179k, 99k and 43k shown in blue, red and green, respectively. 
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Symbols are the experimental data by Matsumiya et al.19. Solid thin curves are the 
simulation results and identical to those shown in Figure 2. Broken curves are the 
prediction of Likhtman-McLeish model10. 

 

Figure 7 shows the dielectric relaxations for the monodisperse melts and for 

the probes with the tube prediction. Note that the dielectric relaxation is not affected by 

CR in the theory so that the tube prediction is identical for the monodisperse melt and 

the probe. Although the tube predictions for the long chains are in good agreement with 

the data for melts (as shown in Fig 10 in Appendix B), they deviate from the probe data, 

which exhibit the retardation from the melts.  

 

Figure 7 Dielectric relaxations of monodisperse melts and probes for M =179k, 99k and 
43k shown in blue, red and green, respectively. Filled and unfilled symbols are for the 
probes and the monodisperse melts, respectively. Broken curves show the tube 
prediction10.  

 

Overall, the tube prediction is fairly good and the prediction accuracy is 
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comparable to that of the present simulation. For the dielectric relaxation (bottom panel), 

even though the tube prediction is insensitive to the lack of CR20, the discrepancy with 

the experimental data is not large. For the viscoelastic relaxation, the relaxation 

intensity is in better agreement with the experiment than the simulation, although the 

relaxation time of the longest chain is somewhat overestimated.  

As shown in Figure 6, two models are different for the description of the 

chain dynamics without CR. Figure 8 demonstrates the difference further explicitly for 

the longest chain with M =179k. In the top panel, curves in red are the prediction of 

𝐺 𝑡  for the melt, and solid and broken curves are the simulation result and the tube 

prediction, respectively. Note that for the tube model the 𝑐R parameter is chosen at 1.0 

for the melt case, as determined in Appendix B. These two results are in good 

agreement with experiment (as shown in Figs 1 and 10 by blue curves, the latter is in 

Appendix B). In the bottom panel, the tube survival probability 𝜇(𝑡)  is shown. 

Because 𝜇(𝑡) is the segment relaxation function for the test chain in a fixed tube, the 

counterpart in the simulation is assumed to be 𝐴IE 𝑡 , which is also shown for 

comparison. Due to the cross-correlation contributions (as discussed for Fig 4), the 
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relaxation intensity of 𝐴IE 𝑡  is smaller than that of 𝜇(𝑡) . To accommodate the 

difference in relaxation intensity, 𝐴IE 𝑡  is vertically shifted and shown by dotted curve 

in red in the bottom panel. The comparison demonstrates that 𝐴IE 𝑡  relaxes faster than 

𝜇(𝑡) . These differences between 𝐴IE 𝑡  and 𝜇(𝑡)  are concealed in 𝐺 𝑡  by the 

different implementations of CR dynamics, and by the cross-correlation. 

 
Figure 8 Linear relaxation modulus 𝐺 𝑡  (top) and tube survival function 𝜇(𝑡) 
(bottom) for the melt of M =179k from the simulation (red solid curves) and the tube 
theory (black broken curves). In the bottom panel 𝐴IE 𝑡  from the simulation is shown 
for comparison to 𝜇(𝑡) in the tube theory10. Red dotted curve is 𝐴IE 𝑡  with a vertical 
shift.  
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It is fair to note that, as mentioned earlier, there are further advanced tube 

models23–25, which take account of the effects of CR on the end-to-end relaxation. In 

particular, Shivokhin et al.25 have proposed the expression of the end-to-end relaxation 

time for the chains placed in various CR environments. Their theory is actually applicable 

to the probe rheology, even though their study rather focused CR conditions in which the 

CR relaxation time is faster than the reptation time of the test chain. However, the 

magnitude of accerelation for the end-to-end relaxation due to CR depends on the 

phenomenological parameter in the crossover function between different CR regimes, so 

that detiled discussion seems difficult. Indeed, Shivokhin et al.25 restricted themselves to 

the qualitative discussion about the comparison to the data by Matsumiya et al.19 

Nevertheless, the effect of CR on the end-to-end relaxation is a challenge for the single 

chain models.   

 
 

4 Conclusions 

 The probe rheology data reported by Matsumita et al.19 were examined via 

primitive chain network simulations. The retardation in dielectric relaxation due to the 
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lack of CR was captured, and consequently, the dielectric relaxation was 

semi-quantitatively reproduced. This result is conceptually in harmony with the 

CR-accelerated CLF22,23. On the other hand, the viscoelastic relaxation was not in good 

agreement with the experimental data, for the relaxation intensity in particular. The 

source of discrepancy was analyzed in terms of the cross-correlation between the probe 

chains and the matrix chains for the relaxations of end-to-end vector and the segment 

orientation. For the end-to-end relaxation, the cross-correlation is virtually negligible, 

whereas for the segment relaxation, it has a considerable contribution in the total 

relaxation modulus. Even with such a difference in the cross-correlation contribution, 

the end-to-end and segment relaxations are superposable with a certain shift-factor for 

the intensity, being fully consistent with the experimental result. The coincidence 

between end-to-end and segment relaxations demonstrates that the relaxation time and 

its distribution are reasonably reproduced even for the viscoelastic relaxation. On the 

other hand, the intensity of viscoelastic relaxation is underestimated due to the failure of 

the simulation in the cross-correlation contribution. The failure might be due to the flaw 

of the model that is not thermodynamically rigorous, and due to the use of gel for the 
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matrix rather than the actual mobile long chain.   

 It so appears that the probe rheology with viscoelastic and dielectric 

measurements is quite useful for the test of molecular models. Indeed, the difference 

between the simulation and the tube model is exhibited in the probe rheology 

predictions whereas it is concealed in the viscoelasticity of monodisperse melts. For the 

comparison, the dielectric data are important to fix the parameters. Even though there 

are lots of attempts for the probe rheology, the dielectric relaxation has not been 

frequently discussed. Further studies from experimental and theoretical sides are of 

necessity.  
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Appendix A: Correlation Functions 

In this section, the correlation functions to be discussed in the text are 

summarized. Because the analysis has been proposed earlier by Cao and Likhtman30, 

readers familiar with their study may skip this section.   

Owing to the fluctuation dissipation theorem, the linear relaxation modulus 

𝐺 𝑡  can be obtained from the segment orientational correlation function 𝑆P 𝑡  with 

the stress-optical coefficient 𝛼. 

𝐺 𝑡 =
1
𝛼
𝑆P 𝑡 																																																																	(1) 

Here, 𝑆P 𝑡  is defined as, 

𝑆P 𝑡 ≡ 𝑁V
1
𝑁V

𝑂X
YZ 𝑡

[\

X]^

1
𝑁V

𝑂X
YZ 0

[\

X]^

						(2)	

Here, 𝑁V is the total number of segments and 𝑁_ the number of chains in the system. 

The segment orientation tensor 𝑂X
YZ is defined as,  
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𝑂X
YZ 𝑡 ≡

𝑟aXY(𝑡)𝑟aX
Z(𝑡)

𝑛aX(𝑡)

cd

a]^

																																								(3) 

Here, 𝑍X is the number of segments for chain 𝐽, and 𝑛aX(𝑡) and 𝐫aX = 𝑟aXY, 𝑟aX
Z, 𝑟aXi  

are the Kuhn segment number and the end-to-end vector for segment 𝑖 on chain 𝐽, 

respectively. Note that the Kuhn segment number 𝑛aX(𝑡) is normalized by 𝑛% that is 

the average number of Kuhn segments on one entanglement segment carrying the unit 

molecular weight 𝑀%.  

For a system containing matrix and probe chain components, 𝑆P 𝑡  can be 

decomposed as,  

𝑆P 𝑡 = 𝜙N𝐴IN 𝑡 + 𝜙N(𝐶INN 𝑡 + 𝜙E𝐴IE 𝑡 + 𝜙E(𝐶IEE 𝑡 + 2𝜙N𝜙E𝐶INE 𝑡 				(4) 

𝐴Ik and 𝐶Ikl are auto and cross correlations defined as,  

𝐴Ik 𝑡 = 𝑁V
1

𝜙k𝑁V(
𝑂X
YZ 𝑡 𝑂X

YZ 0
X∈k

																							(5) 

𝐶Ikl 𝑡 = 𝑁V
1

𝜙k𝜙l𝑁V(
𝑂n
YZ 𝑡 𝑂X

YZ 0
noXn∈k,X∈l

			(6) 

The superscripts A and B stand for the matrix (M) or probe (P) components.  

Equation 4 can be rewritten as the sum of the contributions from the matrix 

and the probe chain components,  
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𝑆P 𝑡 = 𝜙N𝑆IN 𝑡 + 𝜙E𝑆IE 𝑡 											(7) 

Note that the contribution from each component includes the cross-correlation terms;  

𝑆Pk 𝑡 = 𝐴Ik 𝑡 + 𝜙k𝐶Ikk 𝑡 + 𝜙l𝐶Ikl 𝑡 								(8) 

The relaxation modulus for component A, 𝐺k 𝑡 , can be obtained from 𝑆Pk 𝑡  with the 

stress-optical coefficient 𝛼 as 𝐺k 𝑡 = 𝑆Pk 𝑡 /𝛼.  

 In a similar manner to the segment orientation, the relaxation can be defined 

for the end-to-end vector as follows,  

𝑆E 𝑡 ≡ 𝑁_
1
𝑁_

𝑃XY 𝑡
[\

X]^

1
𝑁_

𝑃XY 0
[\

X]^

						 9  

𝑃XY 𝑡 = 𝑟aXY 𝑡

cr

a]^

𝑛aX 𝑡

cr

a]^

																											(10) 

𝑆E 𝑡  is proportional to the dielectric relaxation function of type-A polymers. The auto 

and cross-correlation functions, 𝐴E 𝑡  and 𝐶E 𝑡 , and the contribution from each 

component are defined as of eqs 5-8.  

 

Appendix B: Determination of parameters for the tube model 

 For the comparisons shown in Figs 6-8, the parameters for the tube model10 
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were determined as described here. The model parameters are the unit of molecular 

weight, modulus and time, and the CR intensity parameter, which are denoted as 𝑀%
sN, 

𝐺%sN , 𝜏%sN  and 𝑐R , respectively. The value of 𝑀%
sN  was chosen at 𝑀%

sN = 4820 

according to the literature by Auhl et al.43. 𝐺%sN was chosen at 𝐺%sN = 0.624 GPa, 

which is modified from the value reported by Auhl et al.43 due to the difference of 

temperature (𝐺%sN  reported by Auhl et al.43 is 0.595 GPa for 25℃, whereas the 

temperature for the data by Matsumiya et al. is 40℃). The other parameters were 

determined via the fitting to the melt data for M =179k. Owing to the nature of 

dielectric relaxation that is not affected by 𝑐R, 𝜏%sN was firstly determined from the 

fitting of dielectric loss data as 𝜏%sN = 1.25	×10ABsec. Afterwards, 𝑐R was determined 

to attain the best fit to the viscoelastic data. Figure 9 shows the comparison to the 

experimental data with various 𝑐R values and the other parameter values mentioned 

above. The top panel demonstrates significant effects of 𝑐R  on the viscoelastic 

relaxation. Auhl et al.43 suggested 𝑐R = 0.1  but with this value the viscoelastic 

relaxation time is largely overestimated (see red curves) given that 𝜏%sN is fixed by the 

fitting to the dielectric relaxation. Indeed, Auhl et al.43 did not discuss the dielectric 
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relaxation to determine their 𝑐R value. Nevertheless, Fig 9 clearly demonstrates that 

𝑐R = 1.0  gives the best fit for this specific case. Owing to the result, the melt 

calculations were made for the other molecular weights with the same parameter set as 

shown in Fig 10. For the shorter chains (M=99k and 43k shown in red and green), the 

tube theory underestimates the viscoelastic relaxation time. This discrepancy may not 

appear if 𝑐R is tuned for each molecular weight, as reported by Glomann et al.20. 

Indeed, for M=99k case, since the dielectric loss is excellently predicted, the 

viscoelastic relaxation would be better predicted with a smaller 𝑐R  value. For the 

shortest chain (M=43k) the dielectric relaxation is not correctly described due to the use 

of the approximated function (eq 13 in the paper by Likhtman and McLeish10), which is 

not in good agreement with the results obtained from the stochastic simulations for 

short chains (see the paper by Likhtman and McLeish10). Nevertheless, the results from 

the tube model shown in Figs 6 - 8 were made with the parameters given above, except 

the 𝑐R parameter that is set to zero to suppress CR for the case of probe chains.  
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Figure 9 Prediction of the tube theory10 for viscoelastic (top) and dielectric (bottom) 
relaxations of the monodisperse melt for M =179k. The prediction and the experimental 
results are shown by curves and symbols, respectively. The parameters are 𝑀%

sN =
4820, 𝐺%sN = 0.624 GPa and 𝜏%sN = 1.25	×10ABsec. 𝑐R  was varied as 0, 0.1, 1.0 
and 10, and the results are shown by the curves in black, red, blue and green, 
respectively. Storage and loss moduli are shown by solid and dotted curves. The 
experimental data were reported by Matsumiya et al.19 
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Figure 10 Prediction of the tube theory10 for viscoelastic (top) and dielectric (bottom) 
relaxations of monodisperse PI melts for M =179k, 99k and 43k shown in blue, red and 
green, respectively. Predictions and experimental results are shown by curves and 
symbols, respectively. The experimental data were reported by Matsumiya et al.19 
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