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Abstract 

The objective of this study was to develop a heterogeneous traffic-flow model to study the possible 

impact of connected and autonomous vehicles (CAVs) on the traffic flow. Based on a recently 

proposed two-state safe-speed model (TSM), a two-lane cellular automaton (CA) model was 

developed, wherein both the CAVs and conventional vehicles were incorporated in the heterogeneous 

traffic flow. In particular, operation rules for CAVs are established considering the new characteristics 

of this emerging technology, including autonomous driving through the adaptive cruise control and 

inter-vehicle connection via short-range communication. Simulations were conducted under various 

CAV-penetration rates in the heterogeneous flow. The impact of CAVs on the road capacity was 

numerically investigated. The simulation results indicate that the road capacity increases with an 

increase in the CAV-penetration rate within the heterogeneous flow. Up to a CAV-penetration rate of 

30%, the road capacity increases gradually; the effect of the difference in the CAV capability on the 

growth rate is insignificant. When the CAV-penetration rate exceeds 30%, the growth rate is largely 

decided by the capability of the CAV. The greater the capability, the higher the road-capacity growth 

rate. The relationship between the CAV-penetration rate and the road capacity is numerically analyzed, 

providing some insights into the possible impact of the CAVs on traffic systems. 

Keywords: Multi-model, connected and autonomous vehicles, cellular automaton, heterogeneous flow 

model 

1. Introduction 

Recent developments in information and communication technology have resulted in significant 

advancements in intelligent transportation systems (ITSs). Because of the latest developments in the 

automobile industry, connected and autonomous vehicles (CAVs) are coming to the fore. It is widely 

expected that CAVs will be available on the mass market by 2022 or 2025. Connected systems such 

as the vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) systems will be introduced in the 

transportation system along with the deployment of CAVs. These significant developments will 

change the highway-driving environment. Equipped with computer sensors that can help detect near 

objects, along with the capability of communicating with other autopilot vehicles, the driving 

characteristics of the CAVs will be different from those of the conventional vehicles. The CAVs are 



able to obtain more precise driving-condition parameters compared to human perception; thus, they 

are capable of instantly reacting to the changes in driving conditions unlike the delay observed in 

human reaction time or the negative effects of human error. Moreover, the CAVs can be driven in close 

proximity via the adaptive cruise control (ACC) technology; thus, the distance between two successive 

CAVs is considerably shorter than that between two conventional vehicles. In addition, inter-vehicle 

connections via dedicated short-range communications (DSRC) are able to enlarge the detection range 

of the distance sensors, and allow CAVs a greater capability. The potential merits such as improvement 

in road capacity, traffic safety, and efficiency are expected through the deployment of CAVs. However, 

before the CAVs are fully deployed, a heterogeneous traffic flow comprising the conventional vehicles 

and CAVs will exist for a long period, which may bring uncertainty in the current transportation system. 

The extent to which the current transportation system can be improved through the deployment of this 

new technology is unknown. Moreover, the relationship between the CAV-penetration rates and the 

possible improvement in the road capacity need to be analyzed. In this study, some insights are 

provided regarding the aforementioned parameters through simulation with the help of a multi-model 

approach. The known characteristics of the CAVs can be used to model the driving behavior. The 

simulation approach will be helpful in addressing the problems numerically.  

2. Literature review 

In recent studies, the possible impact of the CAVs on the current transportation system was 

discussed such as impact on traffic safety, congestion, travel behaviors, parking, and vehicle ownership. 

Fagnant and Kockelman summarized the potential benefits of autonomous vehicles with respect to 

traffic safety, congestion, and travel behaviors [1]. They presented several implementation methods 

along with some policy recommendations. Gruel and Stanford analyzed the long-term effects of 

autonomous vehicles using a speculative approach [2]. In these studies, the impact of CAVs was 

largely addressed using analytical approaches. However, a traffic-flow model can be used to solve this 

problem by using a computational approach via simulation, which may be able to provide more 

accurate results.  

In the field of traffic modeling, many studies have been conducted concerning the impact of 

autonomous driving on the flow of traffic. During the early stages of development, the term 

autonomous driving was largely associated with semi-automatic vehicles having a driving-assistant 

function known as the ACC. In previous studies, advantages such as smoother traffic flow, 

improvement in road capacity, and flow stability were presented. Ioannou and Chien developed an 

autonomous intelligent cruise-control system. They evaluated the performance of the system via a 

computer simulation and found that the developed system contributes to a faster and smoother traffic 

flow [3]. Arem et al. studied the impact of a cooperative ACC on the traffic-flow characteristics and 



found that the traffic-flow stability can be improved along with a slight increase in the flow efficiency 

[4]. Kesting et al. employed an ACC strategy to improve the traffic stability and increase the dynamic 

road capacity [5]. In most previous studies on autonomous driving, the possible effects of the ACC 

technology were analyzed, focusing primarily on the car-following process and single-lane models 

were used without considering passing behaviors. Although autonomous driving is an important 

component of the CAV technology, the connectivity was neglected in these studies. Nevertheless, 

many studies have been conducted on connected vehicles. Lu et al. presented an overview of wireless 

technologies used in the connected vehicles and discussed the possible pros and cons of vehicular 

connectivity [6]. Talebpour et al. presented a comprehensive simulation framework to model the 

behavior of the driver in connected vehicles under a connected environment and found that this 

technology can be used to improve the efficiency and reliability of a driverless transportation network. 

Because the connected-vehicle technology and automatic driving are two different emerging 

technologies, previous studies treated them separately [7].  

With the rapid development of CAVs in recent times, fully automated vehicles with connected 

ability will soon be a reality. Studies are being conducted on this emerging technology. Talebpour and 

Mahmassni presented a framework used to simulate different types of vehicles including CAVs using 

different models with some technology-appropriate assumptions [8]. Gora and Rüb presented 

fundamental concepts and assumptions to model self-driving connected cars [9]. In these studies, 

fundamental hypothesizes were used to model the CAVs based on the technical characteristics of the 

CAVs. One such assumption was that the maximum velocity is limited because of the detection range 

of the sensor. The speed of a CAV should be sufficiently low so that it can react to any event outside 

the sensor range [10]. These studies serve as the basis for further research on modeling CAVs.  

The cellular automaton (CA) model is a type of discrete model, which has been extensively applied 

in the field of microscopic-traffic modeling in the past few decades. In addition to the capability of 

describing the vehicular driving behavior, although with relative low accuracy on a microscopic scale 

comparing to continuous models, advantages such as simplicity and flexibility in adapting to 

sophisticated characteristics of real traffic have been demonstrated in many previous studies. For 

example, Tian et al. established a two-state safe-speed model (TSM) to reproduce the metastable state, 

traffic oscillations, phase transitions, and other real traffic flow dynamics. They compared the TSM 

with a series of existing models and found that the TSM performs the best [11]. Thus, we choose the 

TSM as the base of new model in terms of modeling regular vehicles. The CA model was also applied 

to study the possible impact of the emerging technologies on the traffic flow. Kerner analyzed the 

shortage of classical traffic theories concerning traffic breakdown, and concluded that the traffic-flow 

models based on these theories may not be reliable for analyzing the possible impact of autonomous 

driving or other ITS-applications on the traffic flow. Hence, a traffic-flow model in the framework of 



the three-phase theory was suggested to analyze the impact of autonomous driving on the traffic flow. 

The traffic flow model in the framework of the three-phase theory can show and explain traffic 

breakdown by the F→S transition (free flow to synchronized traffic flow) in the metastable free flow. 

Kerner further investigated the performance of autonomous driving under mixed-traffic-flow 

conditions and found that autonomous driving can either decrease or increase the probability of traffic 

breakdown [12]. Hence, in this study, a heterogeneous flow model was established wherein the 

conventional vehicles and CAVs were considered simultaneously based on the recent developments 

in the field of microscopic-traffic modeling. For modeling of regular vehicles, we applied the TSM 

model. While for modeling the CAVs, new rules were established in the heterogeneous-flow model.  

In real traffic, capacity is affected by numerous factors, such as road conditions, road user conditions, 

driving behaviors of the user, weather conditions and so on. Vehicle composition naturally is a 

significant factor that affects the capacity. Traffic flow modeling approach enables us to analyze the 

impact of a certain factor on capacity by conducting simulation under relatively idealized condition. 

In the field of traffic flow theory, fundamental diagram describes a statistical relation between the 

macroscopic traffic flow variables of flow, density, and velocity. The term “capacity” used in this work 

indicates the classical understanding of road capacity. Capacity is equal to the maximal flow rate 

attained in the free flow phase. The objective of this study was to explore the possible impact of the 

CAVs on capacity under different penetration rates.  

The paper is organized as follows. The TSM proposed by Tian et al. is first presented in section 3.1, 

which is a one-lane homogeneous traffic-flow model in the frame of the three-phase theory. In the 

subsequent section, we extended the model to a two-lane heterogeneous-flow model by incorporating 

a classical lane-changing model in the lane-changing process, wherein the CAVs were included in the 

heterogeneous flow. After having validated the model via the empirical data obtained from Next 

Generation Simulation (NGSIM) in section 4, the extended model was used in studying the possible 

impact of the CAVs on the heterogeneous-traffic flow. The simulation results and conclusions are 

presented in sections 6 and 7, respectively.  

3. Model 

3.1 The steps involved in the TSM are as follows. 

1. Deterministic speed update: 

୲ୣୢݒ
ᇱ = min(v+a, vmax, danti, vsafe)                                                 (1) 

2. Stochastic deceleration: 

൜	ᇱ=ݒ
maxሺୣୢݒ୲

ᇱ െ ܾrand, 0ሻ 	with	probability	݌
୲ୣୢݒ
ᇱ 																											otherwise

                              (2) 



3. Position update 

 ᇱ                                                                 (3)ݒ	+ ᇱ= xݔ

Here, v (ݒᇱ ) and x (ݔᇱ ) denote the speed and position at the current and subsequent time steps, 

respectively. a and vmax are the acceleration rate and maximum velocity of the vehicle, respectively. 

brand denotes the randomization-deceleration rate. danti denotes the anticipated space gap, vsafe denotes 

the safe speed, which is defined in the Gipps model [13]. danti and vsafe are defined as follows. 

danti = d + max(vanti − gsafety, 0)                                                  (4) 

vsafe = [െbmax+ඥܾ୫ୟ୶ଶ ൅ ௟ݒ
ଶ ൅ 2ܾ୫ୟ୶݀]                                           (5) 

This equation assumes (i) a reaction time of 1 s (which is presumably the time step of the CA 

model), (ii) no acceleration at the present time. 

d = xl െ xെ Lveh is the real space gap. Lveh is the length of the vehicle.  

vanti denotes the expected velocity of the preceding vehicle. 

vanti = min(dl, vl+ a, vmax)                                                      (6) 

xl, dl, and vl denote the position, real space gap, and speed of the preceding vehicle, respectively. gsafety 

is a safety parameter that helps in avoiding accidents considering the limitation of human perception, 

with the constraint gsafety	൒ brand. bmax is the maximum deceleration rate. The round function [x] helps 

return the integer nearest to x.  

The randomization deceleration brand and stochastic deceleration probability p are specifically defined 

as follows: 

brand=ቄ
ܽ	if	ݒ ൏ ܾdefense ൅	 ۂܶ/anti݀ہ
ܾdefense																			otherwise

			                                     (7) 

p=൝
ݒ	if																		b݌ ൌ 0		

ݒ	if	else									c݌ ൑ ݀anti/ܶ
otherwise														defense݌

                                              (8) 

where pdefense = pc+
௣a

ଵା௘ഀሺೡcషೡሻ
 is a logistic function used to define the randomization probability pdefense. 

In the function brand, two different randomization-deceleration values are employed to describe the 

difference in the driving behaviors under two different states, i.e., the defensive and normal states. 

	ۂݔہ is the floor function used to return the maximum integer no greater than x. bdefense is the 

randomization-deceleration rate under the defensive state. Under the normal state, the randomization-

deceleration rate equals to a. 

3.2 Modeling CAV 

Compared to the conventional vehicles, CAVs are only able to detect vehicles located within the 

detection range of the sensors. Based on this characteristic, the maximum velocity of a CAV is limited 

to the detection range (DR) of the sensors. Here, the velocity of a CAV is assumed to be sufficiently 

low such that the vehicle can be completely stopped within the DR, i.e., the maximum velocity of the 



CAVs ݒ୫ୟ୶ୡୟ୴ , which is defined as follows. 

୫ୟ୶ୡୟ୴ݒ 	=	ሾ√2ܾmaxܴܦሿ	                                                      (9) 

To determine vsafe of the conventional vehicles, a reaction time of 1 s for human drivers is incorporated 

in Equation (5). For the CAV, this reaction time can be neglected. Thus, the following equation can 

be obtained. 

ୱୟ୤ୣݒ
ୡୟ୴ 	= [ඥݒ௟

ଶ ൅ 2ܾ୫ୟ୶min	ሺ݀anti,  ሻ]                                           (10)ܴܦ

Moreover, for a CAV, based on the capability of obtaining an exact value of the space gap, the 

anticipation distance can be transformed to the following function. 

݀ୟ୬୲୧
ୡୟ୴ ൌ ቄ ݀ ൅ CAV	a	is	lݒ	if								antiݒ

݀ ൅ antiݒ െ ܾdefense		otherwise
                                       (11) 

Here, a worst case is assumed to ensure the safety during the operation of the CAVs when following 

a conventional vehicle. Because the driving behavior of humans is unpredictable, a conventional 

vehicle is always assumed to stay in the defensive state in the operation of a CAV. Namely, the result 

in Eq.(11) will be larger if a preceding vehicle is a CAV. For CAVs, since they can get relatively more 

precise parameters comparing to regular vehicles, no safety distance is applied. Consequently, Eq.(11) 

will be larger than Eq.(4). 

A classical ACC model is employed to determine the acceleration rate a for the autonomous driving 

of the CAVs [12], which is defined as follows.  

a1 = K1(d െ	vTACC) + K2(vl െ	v), a =	ہmaxሺminሺܽ1, ܽmaxሻ, ܾmaxሻ(12)                          ۂ 

Here, K1 and K2 are coefficients with respect to the ACC, and TACC is a desired net time gap of a CAV 

with respect to the preceding vehicle. The calculated acceleration rate is regulated by the range from 

bmax to amax, which accounts for the comfort factor. amax and bmax represent the maximal acceleration 

rate and maximal deceleration rate, respectively.  

Connectivity of the CAVs is another method of obtaining additional road condition from a wider 

connected range (CR) compared to its sensor-detection range. This characteristic is incorporated in 

Equation (6), 

ୟ୬୲୧ݒ
ୡୟ୴ 	= min(dl, vl + a, vmax, vli )                                                 (13) 

where vli denotes the average velocity of the preceding connected vehicles within the CR. If there is 

no CAV within the CR, a default value of vmax is applied for vli. The CAVs are able to obtain the driving 

condition within the CR via dedicated short-range commutation (DSRC) technology. CR is larger than 

DR.  

 

3.2 Lane-changing model 

A classical lane-changing model is employed to extend the TSM to a two-lane traffic-flow model 

[14]. It is defined as follows. 

Incentive criteria: d(i, t) < min{v + a, vmax} and d(i, t)other > min{v + a, vmax} indicate space ahead 



of the object vehicle i is not enough for traveling with a higher velocity, and the driving condition in 

the target lane is better than that in the current lane.  

The safety criteria d(i, t)back > vmax indicates that, when changing the lanes, the vehicle immediately 

behind the object vehicle moving on the target lane will not crash the object vehicle after changing 

lanes. When the two conditions are fulfilled simultaneously, the object vehicle will move onto the 

target lane with a lane-changing probability Plc.  

4. Empirical validation  

The empirical dataset used to validate this study was presented by NGSIM [15], which was collected 

using double-loop detectors on eastbound Interstate 80 (I-80) freeway in the San Francisco Bay area 

in Emeryville, CA, on April 13, 2005. This data set provides 30-s processed, loop detector data. Speed 

(unit: feet/s), volume (unit: number) and occupancy (unit: percentage) at each detector for the 30-s 

time step are presented at each detector in each lane. A method proposed by Brockfeld was employed 

to obtain the effective single lane speeds ݒୟ୴ୣ௜  and fluxes ୟ݂୴ୣ
௜  over N lanes, which are given below. 

 

ୟ୴ୣ௜ݒ ൌ෍ ௜௝ݓ
ே

௝ୀଵ
௜௝ݒ
ୣ୫୮, ݓ௜௝ ൌ

௙೔ೕ
౛ౣ౦

෍ ௙
೔ೕᇲᇲ
೐೘೛

ಿ

ೕᇲᇲసభ

, ୟ݂୴ୣ
௜ ൌ

ଵ

ே
෍ ௜݂௝

ୣ୫୮
ே

௝ୀଵ
                   (14) 

 

where ௜݂௝
ୣ୫୮ and ݒ௜௝

ୣ୫୮ are the empirical flux and speed in lane j at detector station I, respectively 

[16].  

I-80 is a five-lane freeway, with the left-most lane being a high-occupancy vehicle (HOV) lane. The 

traffic dynamics on the HOV lane is significantly different from those in other lanes. Thus, to validate 

the extended model, only the data from lanes 2–5 were used. The loop detector data included in the 

dataset are separated by lanes. Since the heterogeneous flow model established in our work is a two-

lane flow model. We cannot use the empirical data directly in the validation process. In order to take 

into account the passing behavior, we obtain the effective single-lane data from each two of the 

original five lanes. Specifically, effective single-lane data from lanes 2–3 and lanes 4–5 are used to 

validate the extended two-lane model. Tian et al. provided specific simulation setup information [17].  
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  c                                              d 

Fig. 1. Comparisons of speed–time series between simulation results and empirical data. Red curves are calculated 

using Eq. (14) from real data. Blue curves indicate simulation results obtained using the extended model. (a) and (b) 

are simulation results under condition of no passing behavior on the road segment. (c) and (d) with passing behaviors.  

 

The speed–time series of the real data, indicated in red in Fig. 1, shows a typical pattern of highway-

traffic flow during a particular day, wherein a decrease in speed is observed during the peak hours of 

the morning and traffic breakdown during the peak hours of the afternoon. The original TSM was 

proved to have the capability of reproducing the lane-average speed–time series through simulation as 

observed in the study by Tian et al. [17]. However, the speed–time series of each lane are different, 

i.e., the average speed in the lanes decreases from the left to right. As a one-lane flow model, the TSM 

is not able to incorporate the passing behaviors, which is a common practice in real traffic flow. This 

study confirms that the TSM can be extended to a multi-lane flow model by applying the lane-changing 

model and setting specific speed limits for each lane based on the empirical data. Figs. 1(a) and 1(b) 

show the simulation results without the passing behavior, which is unsuitable compared to that shown 

in Figs. 1(c) and 1(d), wherein the passing behaviors are incorporated.  

In this section, the simulation result shows that the performance of the extended traffic-flow model 

is in good agreement with the real traffic data, thus proving the effectiveness of the extended two-lane 

model. With its capacity of representing the real traffic dynamics of manual driving vehicles, this 

model is further used in simulating the heterogeneous flow including the CAVs to study the possible 

impact of the CAVs. 

5. Simulation setup 

In the CA model, the road segment is subdivided into cells and time into time steps. At each time 

step, each cell has only two states, which either is occupied by a vehicle or is empty. The simulation 

was conducted on a 10-km two-lane road segment under periodic boundary condition. First, the 

simulation involved conventional vehicles and CAVs randomly distributed in a mega-jam on the road 

segment. Tables 1 and 2 list the parameters of the TSM and parameters for modeling the CAV, 

respectively.  

Velodyne Lidar HDL-64E has a capability of 120 ± 2 m in the detection range. In this study, the 
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detection range DR equals to 120 m. A typical communication range used in the connected vehicles 

in the DSRC technology is 300 m. The maximum velocity of the CAVs is given by [√2ܾmaxܴܦ]. To 

investigate the difference in the performance between autonomous vehicles and regular vehicles under 

the traffic-flow conditions, the same vmax is employed for the conventional vehicles in the simulation. 

Table 1 Parameters of TSM  

Parameters  Lcell Lveh vmax T a bmax bdefense Pa Pb Pc gsafety vc α 

Units m Lcell m/s s m/s2 m/s2 m/s2 - - - Lcell Lcell/s s/Lcell 

Values 0.5 15 27 1.8 1 െ3 1 0.85 0.52 0.1 20 30 10 

 

Table 2 Parameters for modeling CAV 

Parameters  DR CR Plc TACC K1 K2 amax 

Units m m - s s-2 s-1 m/s2 

Values 120 300 0.2 1.1 0.14 0.9 3 

 

Because of the lack of real data regarding the CAVs, the parameters required for the ACC process 

follow the ones in the study conducted by Kerner [12]. Specifically, TACC = 1.1 s with coefficients of 

ACC adaptation K1 = 0.14 and K2 = 0.9. Moreover, two comparison experiments are conducted 

simultaneously with TACC set as 0.8 s and 0.5 s, representing more advanced capabilities of the CAV. 

This also helps provide additional information on the impact of the CAVs on the traffic flow. Lane-

changing probability is a parameter, which incorporates randomness in the lane-changing process. In 

this work, the lane-changing probability is set as 0.2, which is a typical value used in CA model for 

the lane-changing probability. We compared the performance of several values for the lane-changing 

probability, including 0.1, 0.2, and 0.3. Value of 0.2 has the best performance among these three values, 

with its result presented in Fig.1 (c) and (d). Still, we fail to find any reference for determining some 

parameters in CAV driving, such as the lane-changing probability for CAVs. For these parts, we did 

not differ CAVs from regular vehicles in the modeling process. Generally, lane-changing probability 

would have a direct impact on traffic safety. While the impact of lane-changing probability on road 

capacity would not be so significant as improvement in individual vehicle performance.   

6. Simulation results and discussion  

The simulation was conducted under periodic boundary. Pav denotes the percentage of the CAVs 

with respect to the total number of vehicles in the traffic flow. 
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Fig.2. Flow-density diagrams and speed-density diagrams of the presented model under different penetration rates 

of autonomous vehicle Pav with TACC = 1.1 s (a, b), 0.8 s (c, d), and 0.5 s (e, f).  

Fig. 2 shows the relationship between the traffic flow and velocity with respect to the density. First, 

the traffic flow increases with a linear function until it reaches the road capacity. Subsequently, the 

flow decreases with further increase in the density. The diagram can be divided into two parts: the free 

flow phase and congested-flow phase. The maximum flow rates, shown in Figs. 2(a), 2(c), and (e), 

helps in reflecting the road capacity. Under different Pav, the road capacity varies. In other words, a 

higher penetration rate Pav corresponds to a higher capacity, indicating that the presence of CAVs can 

increase the road capacity. In the free-flow phase, the effect of the CAVs on the performance of the 
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system is negligible. The conventional vehicles and CAVs are able to operate at maximum velocity, 

without interacting with other vehicles. In the congestion phase, the CAVs are more advantageous 

than the conventional vehicles. A smaller gap between a CAV and its preceding vehicle could be 

achieved, further increasing the road capacity. Moreover, situations with a higher penetration rate Pav 

results in a longer free-flow phase, which is a direct effect of the increased road capacity.  

Comparing the results of Figs. 2(a) and 2(b) with those of Figs. 2(c) and 2(d) and Figs. 2(e) and 2(f), 

we can find that the capability of the CAVs in terms of the desired net time gap plays a decisive role 

in the process, which can be understood easily. When it comes to connectivity, it is not so plausible 

that connectivity results in an increase in the capacity directly. Since the increase in capacity is largely 

based on the improvement of individual vehicle performance, in terms of a decrease in the average 

time gaps. Still, connectivity actually is a part of the reasons that contributes to the decreased average 

time gaps and helps to avoid potential crashes at the same time. Further improving the capability of 

the CAVs compared to the conventional vehicles will lead to a greater improvement in the road 

capacity. However, the growth pattern in each situation seems different. 

 
Fig.3. Relationship between road capacity and CAV-penetration rate in the heterogeneous traffic flow with 

different TACC. 

Fig. 3 shows the results under the three situations with various TACC values. The figure shows that 

the increase in the road capacity is different for different TACC values. Before the CAV-penetration 

rates reaches a rate of 30%, the road capacity increases gradually. The effect of the difference in the 

CAV capability on the capacity growth rate is negligible. At this stage, with CAVs being the minority 

in the heterogeneous flow, the connected condition is rarely fulfilled, and only autonomous driving is 

fully realized. As the conventional vehicles are in majority, the increase in the road capacity resulting 

from the CAVs is limited. When the CAV-penetration rate exceeds 30%, the growth rate is largely 

decided by the improved capability of the CAVs in the ACC compared to conventional vehicles. An 

improved capability corresponds to a higher capacity growth rate and a higher road capacity.  

7. Conclusions 

In this study, an extended CA model was established incorporating the CAVs in the heterogeneous 
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traffic flow. The possible impact of the CAVs on the road capacity under different penetration rates is 

numerally investigated. The simulation results indicate that the introduction of CAVs changes the 

traffic-flow dynamics, increasing the road capacity along with the increase in the CAV-penetration 

rate within the heterogeneous flow. Before the CAV-penetration rate reaches 30%, the increase in the 

road capacity is gradual; moreover, the effect of the difference in the CAV capability on the growth 

rate is insignificant. When the CAV-penetration rates exceed 30%, the growth rate is largely decided 

by the CAV capability on the desired net time gap. A higher capability corresponds to a higher capacity 

growth rate. The possible increase patterns are numerally presented, providing some insights into this 

problem. 

The contribution of this study can be summarized as follows. A two-lane heterogeneous flow model 

is established wherein the possible impact of the CAVs on the current traffic system is analyzed. The 

possible impact of an increase in the road capacity is verified, with the growth mechanisms 

demonstrated via simulation experiments. The growth pattern with respect to the capacity relies on the 

improvements of the individual CAVs compared to the conventional vehicles. To more accurately 

predict the growth pattern, more accurate empirical data regarding the CAVs are needed. In terms of 

connectivity, the inter-vehicle connection via short-range communication is only used to enlarge the 

range of the distance sensor. Only the response to the immediate leader is considered; i.e., no "multi-

anticipation" is applied. These are the major limitations of this work. Extending the analysis to multi-

anticipation will be a research direction in future studies. The problem of lacking empirical data of 

CAVs can be solved as and when related data is published along with the development of this emerging 

technology.  
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