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Abstract

It is well known that when a pair of random variables is statistically
independent, it has no-correlation (zero covariance), and that the converse
is not true (e.g. [1]). However, if both of these random variables take only
two values, no-correlation entails statistical independence. We provide
here a general proof.

It is well known and can be simply proven that when two random variables
are statistically independent, they are not correlated. The converse is not true
in general (e.g. [1]). We can have a pair of random variables which is not
correlated but not statistically independent, and such examples can be easily
constructed as well.

In this note, however, we show that when both of these random variables take
only two values, statistical independence and no-correlation become equivalent.
In other words, the proposed theorem means that one cannot have an uncorre-
lated pair of random variables with two distinct values which is not statistically
independent.

Consider two random variables X and Y , such that they both take only
two distinct finite values (x1, x2) and (y1, y2). Denote the joint probability
distribution for these variables as P (X : Y ), and assume it is given by

p(xi : yj) ≡ P (X = xi : Y = yj) = pij , (i, j ∈ {1, 2}) (1)

Then, the probability distributions P (X) for X and P (Y ) for Y are simply
expressed as follows.

p(xi) ≡ P (X = xi) = pi1 + pi2, p(yj) ≡ P (Y = yj) = p1j + p2j . (2)

By the requirement that both X, Y take only two values,

p(x1) + p(x2) = p(y1) + p(y2) = 1. (3)
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These relations can be summarized in the following table.
The statistical independence of X and Y is defined as

P (X : Y ) = P (X)P (Y ). (4)

Also, with the definition of expectation values as

E[X ] =
∑

i

p(xi)xi, E[Y ] =
∑

i

p(yi)yi, E[XY ] =
∑

i,j

p(xi : yj)xiyj, (5)

we define that X and Y are not correlated when their covariance is zero.

Cov[X, Y ] ≡ E[XY ] − E[X ]E[Y ] = 0, (6)

or equivalently,
E[XY ] = E[X ]E[Y ]. (7)

We can see from the above definition that given (4), (7) follows. Our main
statement here is that the converse is true, i.e., (4) and (7) are equivalent when
both of these random variable take two finite distinct values. (In passing, we
note that if either (or both) X or Y takes more than two values, one can easily
create examples showing this equivalence does not hold.)

Theorem
When both random variables X and Y take two distinct finite values as set

up above, and
E[XY ] = E[X ]E[Y ], (8)

then
P (X : Y ) = P (X)P (Y ). (9)

proof
Let us define all the relevant probabilities with three parameters using rela-

tions (1), (2) and (3). We set

α = p11, u = p(x1), v = p(y1). (10)
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Then, other relevant probabilities can be expressed as summarized in the fol-
lowing table.

By definition of the expectation values, we have the following

E[X ] = ux1 + (1 − u)x2,

E[Y ] = vy1 + (1 − v)y2,

E[XY ] = αx1y1 + (u − α)x1y2 + (v − α)x2y1 + (1 − v − u + α)x2y2.

The condition (8) is now used together with above so that we obtain

0 = E[XY ] − E[X ]E[Y ]
= {αx1y1 + (u − α)x1y2 + (v − α)x2y1 + (1 − v − u + α)x2y2}

−{ux1 + (1 − u)x2}{vy1 + (1 − v)y2}
= (α − uv)(x1 − x2)(y1 − y2).

By the assumption that both of these stochastic variables take two distinct
values (x1 �= x2, y1 �= y2), this leads to

α − uv = p11 − p(x1)p(y1) = 0, (11)

from which one can deduce that

P (X : Y ) = P (X)P (Y ). (12)
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