DEVELOPMENT OF A UNIFIED RESONANCE
SELF-SHIELDING METHODOLOGY FOR
LATTICE PHYSICS CALCULATION IN LIGHT
WATER REACTOR CORE ANALYSIS

Hiroki KOIKE

Department of Material, Physics, and Energy Enginge

Graduate School of Engineering, Nagoya University

2017



This work is a study hovaccurately and efficient to generate effecti reactionprobability of

neutror from complicated resonance dfor light water reactor core anisis.

10000

100

Cross section[barn]

1 10 100
Neutron energy|eV]



ABSTRACT

This dissertation is devoted to development of #iathresonance self-shielding methodology
for generation of multi-group effective cross-sect in lattice physics calculation of light water
reactor (LWR) core analysis. The new methodology @ecurately and efficiently treat generalized

multi-region geometry in a reactor core with exteasieutron spectrum conditions for LWRSs.

The present methodology is established by theadetemhancement and integration of
conventional three resonance treatments, i.e.,valguce theory, ultra-fine-group slowing-down
calculation and sub-group method. The integratiamks/ have been accomplished from the view
point of maximizing the advantages and minimizihg tisadvantages for each method. As a result,

several important technical issues for conventioesbnance treatments, i.e.,
(i) limitation for generalized lattice geometry,
(i) black neutron absorber assumption,
(iii) scattering source approximation,
(iv) resonance interference treatment,
(V) radially/azimuthally dependent intra-pellet selfedtiing treatment,
(vi) non-uniform fuel composition and temperature treathwithin a pellet,

are simultaneously resolved in the framework of tmafied theory. Solution for (i)(ii)(v) and
(ii)(iv)(vi) enables treatment of generalized gexig and extensive spectrum conditions,
respectively.

The present resonance self-shielding methodology ganerate multi-group effective
cross-sections used for the subsequent multi-gfwp calculation, by considering complicated
energy/space self-shielding effects driven by rasom absorption of heavy nuclides suclf*3.

By applying the effective cross-sections obtaimedifthe present methodology to the lattice physics
calculations, it is demonstrated that major neutrparameters such as neutron multiplication
factor and reactivities can be accurately predicted generalized geometry under extensive

spectrum conditions. The accuracy is comparabllea@ontinuous energy Monte-Carlo results.

From the technical achievements in this dissertaiiois concluded that the present resonance
treatment can accurately and efficiently generfieciéve cross-sections used in LWR core analysis.
The present achievements will enable to perforrmibees accurate and efficient core nuclear design

and safety analysis, which contributes to the dis/for improvement of nuclear power safety.
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NOMENCLATURES
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CHAPTER 1. INTRODUCTION

1.1 Background
1.1.1 Latest Requirements for Nuclear Core Analitshodologies

The Fukushima-Daiichi nuclear power plant accident 2011 reconfirmed
importance of nuclear safety, and improvement aflear power safety has strongly
been promoting. The control of fission chain reactin a reactor core is a key
technology to assure nuclear power safety, anddlfety is mainly confirmed through
reactor core analysis. Therefore, the advancenfemtactor core analysis methodology
will directly contribute to the activities for furér improvements of nuclear power

safety, e.g., reflection of the latest knowledgadancement of analysis technologies.

Conventionally, the reactor core analysis for comua¢ LWR (light water reactor)
nuclear power plants is composed of core nuclesigdethermal-hydraulic design, fuel
mechanical design and safety design. In the framewb these design analyses, the
core nuclear design is usually the uppermost strieati for the reactor analysis and

total plant design.

The nuclear design can create the basic conceptre&ctor core, and suggest the
fundamental specifications of the core, e.g., ¢beemal power, core size, nuclear fuel
specifications and reactivity control method fasfon chain reaction. That is why the
fundamental technologies associated with the nuoclbesign characterize many

specifications of a nuclear power plant.

In addition, the various neutronics parameters inbth from nuclear design are
1



supplied as interface data for the subsequentmstdahe design analyses. Therefore,
the quality of nuclear design methodology influencen the analysis results of

subsequent designs.

In order to improve the nuclear power safety, thlivaamced core analysis
methodologies have been continuously investigatecbm the view point of
best-estimate evaluation for setting the more sgalisafety margin in the nuclear
reactor analysis, the core nuclear design methggiof@s been incorporated into the
detailed safety analysis methodology based on a eettiimensional,

nuclear/thermal-hydraulic coupling calculations3]J1-

In order to apply the nuclear design methodologw gmart of the advanced safety
analysis scheme, its applicable range must be @steto the irregular core conditions
assumed in safety analysis. In the recent reqummésrfer safety analysis, DEC (design
extended conditions) and SA (severe accident) @®unmaed, in addition to the
conventional application range, i.e., normal opegaand DBE (design based event)

conditions.

In order to preserve the appropriate predictionusry of nuclear design
calculations against the extended application rdogesafety analysis, the advanced
core nuclear design methodologies are now strongdyired. The advancement will
contribute not only to the enhancement of safeplyemis methodology, but also to the
further improvement of nuclear core design itsé@lerefore, the advanced nuclear
design methodology will contribute to the actiwstiior enhancement of both the safety

and economy in nuclear power.



1.1.2 Overview of Current Core Nuclear Design Melttiogy

From the extended requirements for core analysighadelogy, this dissertation

focuses on the core nuclear design methodologydo@se reactor physics theory [4-8].

As shown inFigure 1.1, the current core nuclear design is generally dase a
two-step calculation scheme [8], which is composédattice physics calculation
followed by core calculation. Since a huge amodrdove analysis is performed in the
nuclear design for various fuel loading patteri® lattice physics calculation (fuel

assembly calculation) and the core calculatiorsaparated for calculation efficiency.

Cross-sectio
library

Fuel assembly || Lattice physcs calculation

Fuel assembly specificati
Core condltlon

Core specification,
Assembly-averaged Thermal-hydraulic conditiory,
I nuclear constants Fuel loading pattern

X

I
v

Corecalculation

Full core

Core neutronics
parameters

L

Exit

Figure 1.1 Current flow of core nuclear design based on a two-step calculation.



By tracing the flow of core nuclear design caldolatstream, it can be seen that the
final prediction accuracy of core neutronics partare depends on the accuracy of
assembly-averaged nuclear constants obtained fattiod physics calculations, which

are the most important input data for the coreutatons.

Here, the typical flow of lattice physics calcutatiis shown inFigure 1.2. The
accuracy of lattice physics calculation itself stetmined by the solutions of neutron
transport calculation for fuel assembly geometrg,, ispace-dependent, multi-group
neutron fluxes. If the appropriate multi-group effee cross-sections are generated
from resonance calculation, and supplied as inguthe rigorous neutron transport
calculations, the neutron fluxes can accuratelglitained. The details for the resonance

calculation are described in sub-sections 1.1.31ahd.

Cross-sectio Fuel assembly specification,
library Core condition
|
v
Resonance calculation

i

L\

Effective cross-sections

T

Neutron transport calculation

Neutron fluxes

Assembly-averaged

Exit nuclear constants

Figure 1.2 Typical flow of lattice physics calculation.
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Recently, the method of characteristics (MOC) Pidely applied as a standard
neutron transport calculation scheme in order tplieidy consider heterogeneous
geometry such as pin-cell, fuel assembly and eurcére. The MOC can be applied

by utilizing the current high computational perf@nce.

In contrast to the neutron transport calculatibe, iresonance calculation has several
technical issues from the view point of suffici@micuracy with practical computation
time. The accuracy of multi-group effective crosst®ons obtained from the resonance

calculation should be well-balanced with that afitnen fluxes.

The current core nuclear design calculation scheuggests that the accuracy of
multi-group effective cross-sections and its soreeclear data) strongly influences on
the final accuracy of core neutronics parameter@mFthis point of view, this
dissertation is devoted to improvement of the amcyrfor multi-group effective

cross-sections.

As shown inFigure 1.3, the multi-group effective cross-sections arerdsfias the
averaged cross-sections of original continuousggnemss-sections in a specific energy
range. The multi-group energy structure is gengrdéfined by dividing the whole
neutron energy range in a reactor core X1.0%eV-20MeV) into approximately several
dozen-a few hundreds energy groups. Since the gaoeraged process for generating
the effective cross-sections is especially impdrfan resonance energy ranges, e.g.,
6.0-8.0eV for?*%U, its processing is called as the resonance adlonl [6]. In this

dissertation, a new resonance calculation methggakdeveloped.
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Figure 1.3 Relation between continuous ener gy cross-section and the

cor responding multi-group effective cross-section.



1.1.3 Boltzmann’s Neutron Transport Equation andtiMeroup Theory

The core nuclear design methodology is based @aetar physics theory [4-8]. In
the reactor physics theory, a fundamental equdtiosolve the neutron behavior in a

reactor core is a Boltzmann’s neutron transporagqno written as:
QOyr,EQ)+Z,(r,E)(,E,Q)=0Q(,E Q). (1.2)

In the equation, the neutron population within acter core is modeled as if it were
the gas transported in the media of reactor core.pBviding the material-wise
cross-sectionsz  which correspond to the probability of neutrondeus reactions, the
angular neutron fluxy , i.e., the neutron density in a reactor core tgggends on six
phase spaces (spatial position=(x, y,z), neutron energyE and neutron flight

direction Q = (6, 9)), is solved for a target reactor core.

As for the steady-state critical core, the neutir@msport equation is numerically
solved as an eigenvalue problem. For the eigenvphoblem, neutron source in

Equation (1.1) is written as:

Q(,E, Q) =jdE'jd9'zs(r, E' - EQ - Qu(, E, Q)

1 X(rlE) I I I
+— de'vZ, (r,ENexAr, E).
< an [oE'vE, (r,ENr E)

(1.2)

The most fundamental solutions for Equations ({113) are effective neutron

multiplication factor k,,; (eigenvalue) and neutron flug (r,E,Q) (eigenvector).

In the actual nuclear design calculations, the trgc change Ap and the

reaction-ratesR(r) are often evaluated fronk, and ¢ (or scalar flux ¢ ) as



follows:

A,O:(keﬁ,_ll—(ke“ ‘1]: t. (13)
keﬁ keff

R(r) =jdEZ(r, E)e(r,E), (1.4)

where the scalar flux is obtained by integrating d@ingular flux solution.

The typical examples of the neutronics parametétaimed from a LWR nuclear

design are listed ifable 1.1. Though the various neutronics parameters areuateal

in the nuclear design, many of them are essentiadiyoyproducts ofk, and ¢ .

Table 1.1 Typical examples of neutronics parameter s obtained from a LWR

nuclear design.

Parameter type Main category Detailed category
Doppler temperature coefficient
Doppler power defect
Moderator temperature coefficient
Moderator reactivity Moderator density coefficient
Reactivity change: Boron worth
Differential worth
Integral worth
Isothermal temperature coefficient
Shut-down margin
Thimble reaction-rate for instrumented assembly
(used for processing measured power distribution)
Radial assembly power distribution
Axial power distribution
Reaction-rate Pin power distribution
Macroscopic reaction-rate Nuclear enthalpy-rise hot channel factor
(axially-integrated peak pin power)
Thermal flux hot channel factor
(3D local peak power)

Doppler reactivity

Control rod worth

Others

Microscopic reaction-rate




As can be observed in Equations (1.1)-(1.2), thetroa transport equation can

analytically be solved only for a very simple casay., dE) = in the case

EZ, (E)
that the target system is an infinite homogeneoadium QO (r,E,Q) =0) and
neutron source is asymptotic for neutron ener@(K)=1/E). That is why the
transport equation is numerically solved in thecpcal core nuclear design calculations.
In the reactor physics theory, the fundamental tguahas already been given as
Equations (1.1)-(1.2). Therefore, the main intefestesearch and development is how

to solve Equations (1.1)-(1.2) from the practicaihp of view.

The numerical approach to solve the transport emuas generally classified into
two categories, i.e., stochastic method [10-11] deterministic method [6]. In the
stochastic method (or often referred as the MoradeC method), there are no
approximations for the treatment of each phaseespHee space, energy and angular
dependences of neutron flux are treated as coniswmeanner by directly tracing a

series of neutron life with random number. As ailteghe stochastic method enables

accurate estimation ok, and ¢, as long as many neutrons are traced and the
corresponding statistical errors are negligible.

For the practical application of the stochastic hodt the acceptable computation
time is limited since the nuclear design calculaishould be completed in the limited
period for in-core fuel management. In such a séalisituation, the number of traced

neutrons is limited, and the statistical error baran issue for design calculation.

Especially for the evaluation of small reactivithanges such as the Doppler

reactivity coefficient, and spatially local paraewst such as pin-by-pin power

9



distribution, a huge amount of neutrons shouldrédeetd to reduce the statistical error in
a practical level. In general, the number of traoedtrons is determined so that the
statistical errors for the target neutronics patanseare sufficiently smaller than the
neutronics uncertainties for the parameters usedhén nuclear designs and their

interface design applications.

In contrast, the deterministic method can evalusdatronics parameters without
statistical error. To perform computation within paactical computation time, the
deterministic method introduces several modelingraxamations associated with

discretization and/or function expansion of eachgghspace (space, energy and angle).

In spite of the approximations, the deterministietinod is widely applied to the
current nuclear design calculations for LWRs owiagts high calculation efficiency.
As for the approximate treatment on neutron energych is a main interest of this
dissertation, the whole neutron energy range isagtor core (1.810°eV-20MeV) is

generally divided into the multi-group, as showirigure 1.4.

10
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Figure 1.4 Concept of multi-group treatment.

11



In the multi-group treatment for neutron energy driginal transport equation for
continuous energy form is transformed to the mmitup form. The multi-group

transport equation for groum is derived by integrating Equation (1.1) for the

corresponding energy range as follows:
QIOY, r,Q)+Z, (N, (r,2)=Q,(r,Q). (1.5

In the derivation, the multi-group cross-sectiahg, neutron fluxes and the neutron

sources are defined as:

[ dEZ (. E)p(r,E.Q) | dEZ, (r,E)eAr, E)
9 0 9

2 = _

o) J'ngw(r,E,Q) Ing(ﬂ(r, E) 9
Y, r.@) = | dEY(r,E.Q), (1.7)
Q, (1) = [ dEQ(r.E. Q). (1.8)

where the angular dependence of neutron flux withinenergy groupg is

approximately ignored in Equation (1.6). The mgltdup cross-sectiorz; is defined

so that the energy-integrated reaction-rate witii@ group g is preserved in the
multi-group treatment, i.e.3 ¢ () :I dEX(E)¢ (E, Q).
g
Here, it should be noted that the multi-group aagélux ¢, is accurately solved

by Equation (1.5) only if the accurate multi-grocipss-sectionss | are generated in

advance. However, the multi-group cross-sections defined as an averaged

12



cross-section for the specific energy range witk #nergy-dependent flux as a
collapsing weight, as shown in Equation (1.6). THect indicates that the
energy-dependent neutron flux is necessary in amyan spite that the neutron flux
itself is a solution of the transport equation.sTts “the chicken or the egg” situation,

and an essential issue for multi-group treatment.

The example of continuous energy and corresponaulgj-group cross-sections for
238 is shown inFigure 1.5 [12]. As for the smooth cross-section ranges,abeve
issue for flux weight is not essential as longhesdontinuous energy cross-section can
be regarded as an almost constant within the spemifergy group. In contrast, the
continuous energy cross-sections for resonancessasigeply vary for neutron energy.
The corresponding energy-dependent neutron fluxstiengly influenced by the
resonance cross-sections. Therefore, the speadial isanecessary for generation of
accurate multi-group cross-sections in which thdgimal continuous energy
cross-sections include resonances. The care conmdspto the reaction-rate
preservation for each energy group mentioned abibus. sure that the reaction-rate
preservation is performed by considering the tewmipee dependence of resonance

cross-sections.

13
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The multi-group cross-sections obtained by consideithe resonances are called as
“effective cross-sections”, and their generatiorogess is called as “resonance
calculation” [6]. The resonance calculation is venportant process for deterministic
nuclear design calculations since the cross-sectib*®U, which is a base nuclide of
nuclear fuel material for LWRs, include severalgi&aresonances. This dissertation

focuses on the resonance calculation methodolaghMiR core analysis applications.
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1.1.£Resonance SeShielding Treatme!

The resonance calculation is to generate -group effective cro-sections by
considering the resonances in original continLenergy cros-sections. By remindin
the example of very simple case for the solutiomefitron transport equation in t
previous su-section, the neutron flux is written

1

O 5

(1.9

where the target system is assunas an infinite homogeneous medium, and

neutron source is regardedanasymptotic functio for neutron energy. As can be se
from Equation 1.9), the energ-dependent neutron flux is proportional to the igeeof
macroscopic total cro-sections for the taet medium. Therefore, the neutron f
corresponding to the resonance c-sections for neutron energy is depressed, as s

in Figure 1.6.

Cross-section or
neutron flux

Neutron energy E

Figure 1.6 Relation between resonance cross-section and the corresponding

neutron flux.
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By considering the definition of multi-group crossetion, the effective
cross-section is generated by the average of th&incomus energy resonance

cross-sections with corresponding fluxes as a jpsitey weight:

_ | dEa(E)AE)
o [, dEa(E)

o (1.10)

The neutron flux is strongly depressed for the masgce peak range. Thus the
effective cross-section is smaller than the singplergy-averaged one. This mechanism
is called as “resonance self-shielding effect”gBice the large resonance cross-section

itself reduces the corresponding effective crossises due to the flux depression.

The accurate and efficient treatment of self-slgjdeffect is a key issue for
resonance calculation. The above self-shieldingnpimenon is generally called as
“energy self-shielding effect” since the effect dsiven by the flux depression for

neutron energy.

There is another self-shielding phenomenon caltetspatial self-shielding effect”
[6] driven by the spatial flux depression withirfiugl region. Since the fuel material for
LWR is a strong neutron absorber, the incoming no@st from the fuel surface is
exponentially attenuated in the fuel region. Themefthe neutron flux has spatially
distribution within a fuel region, as shown kingure 1.7. The effective cross-sections
show the spatial dependence, whose values are fangthe fuel surface than for the

fuel center regions, due to spatial distributiomefitron flux.
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Fuel pellet

Radial direction r

@(r) : Neutron flux

Figure 1.7 The spatial distribution of neutron flux within a neutr on absor ber.

In the resonance calculation, the energy and dpsgiéshielding treatments a

important for generation of appropriate effectivosssections

In the actual resonance sshielding treatment, several numerical approacine
applied to the current nuclear design methodoldgythe early days for nucle
technology, the reacti-rates associated with the resonance absorptio®*®U (so
called “resonance integral5]) are directly measured, and the measured datfitted
with the function equation such the Hellstrand’s formula 5, 13. The Hellstrand’
formula is often applied to the resonance-shielding treatment in thegacy method

[5] due to the limitation of computational resouraethe ere

In contrast, several numerical approaches can pkedpas a practical resonar
selfshielding methodology in the curretreatmentowing to the rich computation
resourcesThe current resonance sshielding treatment is generally classified i
three categories, i.ethe “equivalence theory”the “ultrafine-group calculation” an
the“sub-group method”Comparison oeach methodology is summarizecTable 1.2.

In the bllowing, the outline for each methodology is dédsed
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Table 1.2 Comparison of current resonance self-shielding treatment.

Characteristics Treatment Treatment Modeling resolution : —
Methodology . Suitable application target
for theory for geometry for scattering source  Space = Neutron energy
Ultra-fine-group Simple ) 2) . : N . Accurate calculation
calculation (First principle) MOC®/CPM Slowing-down equation - Simplfied Fine for small geometry
. . N Effici lculati
Sub-group method Simple MOC/CPM  NR®IR™ approximation ~ Fine Simplified iclent calcuiation

for complicated geometry

Rational approximation

Equivalence theory Complicated i
q y P +Dancoff correction

o ine o
NR/IR approximation /Simplfied Simplified

Efficient calculation
for simplified geometry

(1) Method of characteristics
(2) Collision probability method
(3) Narrow resonance

(4) Intermediate resonance
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(a) Ultra-fine-group calculation [14]

The ultra-fine-group calculation is to directly welthe energy-dependent neutron

flux ¢(E) for generation of effective cross-sections.

The example of energy-dependent neutron flux obthiinom the ultra-fine-group
calculation is shown ifigure 1.8. In the ultra-fine-group calculation, the obtairfieck
is directly used as a collapsing weight of resoraomss-sections in the ultra-fine

energy group (or continuous energy) resolution.

1.0

0.8

Flux per unit lethargy [A.U.]

1 10 100 1000
Neutron energy[eV]

Figure 1.8 Energy-dependent neutron flux obtained from ultra-fine-group

calculation.

The rigorous estimation off(E) does not make sense, since the flux is not a

pre-determined input data but a primary solution n&utron transport equation.
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Therefore, the approximated transport equationoigesl for the treatment of energy
dependence on neutron flux. The corresponding &xquais referred as the

“slowing-down equation”, and is written as:
5 (E)|(E) = j:dE'zs(E' = E)(E"). (1.11)

In the slowing-down equation, the fission sourceissally ignored owing that the
fission source is relatively smaller than the sratg source for the resonance energy
ranges [15]. For the scattering source treatmamiy the down scattering by elastic
neutron-nucleus collision in the center-of-masdaileen into account since the other
types of scattering reaction are commonly negleifdr the target resonance energy

ranges.

As shown in Equation (1.11), the neutron flux itsisl included in the energy
integration of scattering source, thus the slowdogwn equation cannot analytically be
solved in general. Fortunately, the scattering auncludes only the down-scattering
component in the slowing-down equation. Thereftie, neutron flux can numerically
be solved from the upper to the lower energy rafyessing a recurrent relation. Any
iterative calculations are not necessary, as @iffefrom general multi-group transport
calculation for LWRs. That is why the energy-depamdheutron flux for the resonance

energy ranges can efficiently be solved by the sigwdown equation.

Owing to the direct treatment of energy dependefmesross-section and neutron
source, the ultra-fine-group calculation can admlyatreat the energy-dependent
scattering source and the resonance interfererfeet 8], which cannot be treated

accurately in the sub-group method and the equical¢heory.
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For the general heterogeneous geometry, the slesiomgn equation is extended as:

Z,(B)REN, =Y. P (EV, [[EZ, (E - B)g(E), (1.12)

where the integral form of neutron transport equmabased on the collision probability
method [16] is applied as an example. While thewsig-down equation for the

homogeneous system (Equation (1.11)) is efficiestllyed, the slowing-down equation
for the heterogeneous system requires a huge ambeomputation burden due to the
collision probability calculation for the ultra-feagroup resolution. Especially for the
large and complicated geometry such as a fuel ddgean full core, the collision

probability calculation for all the region-to-regicombination is not practical for actual

core nuclear design applications.

Therefore, the small geometry such as a pin-cethalti-cell is a practical target for

the current ultra-fine-group calculation.

(b) Sub-group method [17-18]

The sub-group method generates the effective @esens by dividing the specific
energy range of multi-group resolution into sevesab-groups according to the

magnitude of resonance cross-section level, asrsioiigure 1.9.
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1]

Cross-section

Neutron energy

Figure 1.9 Concept of sub-group method (discrete energy range for sub-group 2is

shown as an example).

Since the energy dependence of neutron flux is stiqmportional to the inverse of
resonance cross-section (see Equation (1.9)),ubeyoup definition according to the
resonance cross-section level can efficiently amrsithe relation between the

cross-section and the flux.

By solving the spatial neutron transport for eaalb-group, the complicated

geometry is efficiently treated for generation fiéetive cross-sections.

In the sub-group method, the following sub-grouptren transport equation is

solved:
QIOY Q) +Z (N (r,Q)=Q,(r,Q). (1.13)

Here, the problem-independent sub-group crossesectare usually generated in
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advance based on a numerical scheme such astthg fitethod [17] or the moment

method [18].
By collapsing the sub-group cross-sectiamg with the obtained sub-group fluxes

¢,, Multiplied by the band probabilitiep,,, the effective cross-section is generated

as:

z a—sgwsg psg
o, =928 . (1.14)

’ z ¢sg psg
sdlg

Here, the band probability corresponds to the naiggn of energy width for the
sub-group from the physical point of view. It stiblle noted that the concrete energy

ranges are not explicitly specified in the fittiagthe moment method.

The sub-group method can efficiently treat compéidageometry with the smaller

number of sub-groups than the conventional mutiiagrenergy discretization.

The sub-group method has an essential issue faliction accuracy of effective
cross-sections for several specific applicationscé&the sub-group cross-sections are
generated with the corresponding band probabilities corresponding energy ranges
for each sub-group are not explicitly defined. they words, the sub-group is implicitly
defined through band probability. This fact leadsiriconsistency of energy ranges
among different temperature conditions becausedbenance cross-sections strongly
depend on temperature, and the pair of sub-groogsegections and band probabilities
are independently estimated for each temperaturditon.

Therefore, the sub-group method includes the catiseror in the case of explicit
24



treatment for intra-pellet fuel temperature digition. The error comes from the
inconsistency of an implicit energy range for easpatial region with different

temperatures in the sub-group transport calculation

(c) Equivalence theory [6]

The equivalence theory generates the effectivesesestions for heterogeneous
system by interpolating the pre-tabulated multigracross-sections for homogeneous

system.

In the equivalence theory, the homogeneous multifgicross-sections are tabulated
in advance as a function of background cross-sectibe definition of which is
described later. Then the background cross-sectionheterogeneous system is
estimated by considering various heterogeneousctsfféor actual fuel assembly
geometry. Finally, the effective cross-sections tfor target heterogeneous system are
generated by interpolating the homogeneous mubiiygr cross-sections with the

background cross-section as an interpolation argtime

In this scheme, the homogeneous and the heterogesgsetems are assumed to be
equivalent from the viewpoint of the resonance-skiélding effect, if the background
cross-section for both systems is identical. Tleatwhy the method is called as
equivalence theory. In the following, the theoratibackground of the equivalence

theory is qualitatively described.

First, the energy-dependent neutron flux is assuiméx proportional to the inverse

of cross-sections, by reminding the very simpleec&s the solution of neutron

25



transport equation in sub-section 1.1.3. Then thdron flux is expressed as:

1
AE) = £ (E) (1.15)

Here, the target system is assumed as an infirmteogeneous medium which is
composed of target resonance nuclide and hydrogha. typical example of the
resonance nuclide 82U, which is a main nuclide for nuclear fuel materidydrogen is

a main contributor for neutron scattering sourceWwRs.

In this assumption, the macroscopic total crossiageof the homogeneous system

composed of a target resonance nuclideand hydrogen is rewritten as:

> (E)=N,0/ (E)+ N,0;'(E) ON,o; (E) + NHO-::

N,o (1.16)
=N Jor B+ =5 | =N, Lol (B) + o),
where g, denotes the background cross-section defined as:
N, o}
o, = KI P, (1.17)

r

As shown in Equation (1.17), the background cressisn is defined as sum of

cross-sections of other nuclide(s) per resonanckdeu

Then the neutron flux is expressed as:

1

1

The relation between resonance cross-section otattgeet resonance nuclide and
flux is shown inFigure 1.10. From Equation (1.18), the magnitude of flux degren

depends on the background cross-section. This léaets to make the background

26



crosssection as a quantitative index of the magnitudettie resonance stshielding

effect

Resonance
cross-section o, (£)

Neutron flux

PEY<E o ——
Neutron energy £ o/ (E)+o,

Figure 1.10 Relation between resonance cross-section and flux.

The fundamental mechanism for tdependenceof effective cros-sectionon the
background cro«-section is shown ilFigure 1.11. By considering both the Equati
(1.18) ard the definition of effective cro-section, the effective crc-section become
smaller as the flux depression becomes larger dughé smaller backgrour
cros«section. The smaller background ci-section corresponds to the relatively la
amount of he target resonance nuclide. Therefore, the effeaiios-section become
smaller as the amount of resonance nuclide becdangsr, which is a fundament

reason for calling “se-shielding” effect
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Figure 1.11 Mechanism for the dependence of effective cross-section on the background cross-section.
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By considering the above discussion, the effeatnas-section can be expressed
a function of backound cros-section.The typical curve is shown iFigure 1.12. In
the equivalence theory, treffective cros-sectior is pretabulated as a function

background cro-section for the homogeneous syst
It should be noted that the effective c-section corresponding to thdnfinite
backgrwnd cros-section g, - ) is called as an infinite dilution crc-section sinct

the condition corresponds to the infinil-diluted situation of the target resonai

nuclide ina hydrogen mediun

700
600 |

500 | /
400 |- /
300 |

200 | /
100 | /

O YT TSRTTITI T AS W N T M T TR WREITT

Multi-group cross section[barn]

L v el e e o el o e i 1

1.E-10 1.E-06 1.E-02 1.E+02 1.E+06 1.E+10

Background cross section[barn|

Figure 1.12 Effective cross-section as a function of background cross-section.

The homogeneous systeidiscussed abovis anidea condition for simplifiec
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calculation scheme. Fanactual LWR fuel assemb the fuel ?*®U) and the moderatt
(hydrogen) regions are spatie distributeq, i.e., the heterogeneous system. There
the various heterogeneous effects should be caeside the effective cro-section. Ir
the equivalence theory, the heterogeneeffect is simply considered by correcting

background cro-section used for the effective cr-section interpolatiol

The example of homogeneous and heterogeneous systesnown irFigure 1.13.
In the homogeneous system, the fuel material (@sa nuclides such a®®V) is
homogeneously compounded in the medium, thus aapesprobability of neutror

from the homogeneous medium is z

(a) (b)

Water moderator

(*) P: Escape probability

Figure 1.13 Homogeneous and heter ogeneous systems ((a) Homogeneous system,

(b) Heter ogeneous system).

In contras, the escape probability is always positive for eyah heterogeneot

system owing to thfinite spatialregionsof fuel and moderator. The positive esc
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probability promotes thmitigation of flux depression due to the resonance absorf
thus it leads to increase the effective c-section. In the equivalence theory,
increase of effective crc-section is considered by adding the heterogeneeums

against the background cr-section s follows:

2
Ty =Ty ¥ (1.19)

r

The numerator otheterogeneous terrz, is called as escape cr-section, and i

corresponds to the inverse of chord length for fuelg. The chord lengl depends ol

fuel volume tosurface ratio

The above discussion for heterogeneous syconsiders atisolatedfuel system
l.e., only one fuel lump is surrounded by infinitederator. For the actual condition

LWR fuel assembly, the multiple cylirical fuel rods are arranged with attice

configuration, as shown Figure 1.14.

(a)

~
=y
N

&

%
&\\\\X@@
© 0 O
&;\%‘

Figure 1.14 I solated and lattice systemsfor heterogeneous geometry ((a) fuel

isolated system, (b) fuel lattice system).
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By taking into account of lattice configurationetlkscape probability for the lattice
system becomes smaller than that for the isolatedilesn due to the resonance
absorption of neighboring fuel rods. This effect@led as “shadowing effect” in the

equivalence theory.

By incorporating the shadowing effect of neighbgrifuel rods, the effective
cross-sections become smaller than that for th&atesb system. The decrease of
effective cross-section is considered by correctihng heterogeneous term of the
background cross-section as follows:

2
o,+o0, -0, +(@1-C) Ne : (1.20)

r

The correction termC is called as a Dancoff correction factor [5-7]da@ndepends

on the mean optical length of neutron for moderatdhe lattice system.

As discussed above, the effective cross-sectiontifer heterogeneous system is
generated by interpolating the effective crossisedor the homogeneous system. The
background cross-section is utilized as an intefpmd argument for the magnitude of

resonance self-shielding effect which includesowsiheterogeneous effects.

Though the above discussion is a little qualitatdescription, the equivalence
theory is actually based on a complicated theakt@ckground. As a result of the
many efforts in the theoretical derivation, it cachieve a very simple scheme for
generation of effective cross-sections in the ddaiace physics calculation. This is an
advantage of the equivalence theory, and at the sane, it is also a disadvantage for

prediction accuracy of effective cross-sections tdu@any theoretical approximations.
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1.1.5 Requirements for Advanced Resonance SelldigeTreatment

As shown inTable 1.3, the resonance self-shielding treatment influemeesarious

neutronics parameters and related analyses.

Table 1.3 Neutronics parameter s mainly related to resonance calculation.

Neutronics parameter mainly
related to resonance calculation

Core nuclear design

Criticality Crtticalty safety design
(e.g., Spent nuclear fuel pool)

Doppler/moderator reactivities Safety analysis

Fuel mechanical design

(Evaluation of fuel centerline temperature)

Interface analysis

Intra-pellet power distribution

In the conventional core design for LWRSs, the eglg@imce theory has widely been
applied as a standard resonance self-shieldingniezd. It has an advantage for
calculation efficiency in routine nuclear designrigy while the several approximations
are used. It should be reminded that the approxmagometimes assumes normal
operating and shutdown condition. Thus care shdgdtaken on the treatment of
extended neutron spectrum conditions including lowsoderator density ranges

appeared in safety analysis.

Instead of the equivalence theory, the ultra-finedg calculation has been applied
as an alternative resonance treatment in recems.y&he ultra-fine-group calculation
can directly contribute to the accurate predictanneutronics parameters such as

reactivities and intra-pellet power distributionhile its huge amount of calculation

33



burden is an issue for practical use. In the currstate, application of the
ultra-fine-group calculation is generally limiteal $mall geometries such as a pin-cell or

multi-cell.

The sub-group method has the intermediate naturecdtrulation accuracy and
efficiency, compared with the above two methods.f@sthe typical advantage of the
sub-group method, it can efficiently predict thé&rarpellet power distribution through
generation of spatially-dependent effective crasgisns within a pellet. In spite of the
advantage, it has also an issue for the predictioouracy of Doppler reactivity

considering non-uniform fuel temperature distribnti

From the above qualitative discussion among resmn#reatments, it can be seen
that the establishment of a unified resonancestefiding methodology is an essential
issue, in order to achieve both high accuracy aghl éfficiency for various application
targets. Though the selection of the most apprtgpnmaethod is one of the realistic
approaches for each design application, the eshab&nt of a unified resonance
treatment will be a good alternative. The unifieanance treatment will have an
advantage for the seamless treatment of extengpécation ranges in the safety

analysis.
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1.1.6 Overall Direction for Development and Curréathnical Issues

As discussed in the previous sub-section, the adioreal three resonance
treatments have its own advantages and disadvant8gee all of the three resonance
treatments have not been screened out on the diagest huge amount of researches

and development works, further improvement for eaetthod is not very easy.

From this point of view, in the present study, avneesonance self-shielding
methodology is developed by unifying the converdioimnree methods rather than the

individual improvements for each method.

The target performance of the new methodology lier ¢alculation accuracy and

efficiency is illustrated ifrigure 1.15.
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Figure 1.15 Tar get per formance of the new methodology for the calculation accuracy and efficiency.
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In the present study, the conventional equivalegheery is set as a starting point of
the development. This is because the equivaleneeryhhas an advantage for high
calculation efficiency and its rich experiences tbhe application of lattice physics
calculations. By analyzing the theoretical appradions in the conventional
equivalence theory, the following technical issuaa be extracted for the accuracy of

equivalence theory:

(1) limitation for generalized lattice geometry

(i) black neutron absorber assumption

(i)  scattering source approximation

(iv)  resonance interference treatment

(v) radially/azimuthally dependent intra-pellet selfedtling treatment

(vi)  non-uniform fuel composition and temperature treathwithin a pellet

In the present study, the above issues are solved step-by-step approach. In
concrete, the essences of the ultra-fine-grouputtion and the sub-group method are
incorporated into the equivalence theory, whileitiimy additional computational

burden.

By solving the above issues simultaneously, therate and efficient treatments of
generalized geometry with extensive neutron specttonditions are achieved in the
resonance calculation. The image for the extensighe applicable range is illustrated

in Figures 1.16-1.17.

37



Geometry size

[
Large | ‘
EEE | R N
Mults fuel ... _______________________
assembly Equivalence theory, | 7
.-. Sub-group method | " A new methodology/
Unit foel Gt | )| T }
assembly Biimgemee [ I |
(T 7 - . Neutron
Pin-cell VT Ultra-fine-group calculation
Small | \== . ) spectrum
Soft Hard
o O
o @) © o
O (@) &) O
High moderator density < > Low moderator density

(Normal operating condition) (Transient or accident condition)

Figure 1.16 Image for the extension of global applicable rangein the present resonance treatment.
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Figure 1.17 Image for the extension of local applicable rangein the present resonance treatment.
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1.2 Objective

From the background in the previous section, theabive of the present study is
enhancement of the reactor analysis methodologgutiir developing a unified

resonance self-shielding treatment.

In this dissertation, the new resonance self-simgldhethodology is established by
simultaneously solving the several technical isshesvn in the previous sub-section.
As a result, the accurate and efficient treatmehtgeneralized geometry with extensive

neutron spectrum conditions are achieved in thenaasce calculation.

Treatment of generalized geometry contributes t@rawvement of prediction
accuracy for core nuclear design. It is also sigtdbr next generation core analysis
methodology which can be applied to the uncertagpi@ntification and/or reduction of

neutronics parameters.

Treatment of extensive neutron spectrum conditcardributes to the application of
transient and severe accident conditions (lowerearaidr density ranges) appeared in

safety analysis.

Through the enhancement of the methodology, theigiren accuracy of neutronics
characteristics is improved, not only for the ndrmperation but also for the severe
accident conditions of the reactors. These enhasctmassociated with the core
analysis methodology contribute to the activities improvement of nuclear power

safety, which is an overall objective of this study
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1.3 Contents of This Dissertation

In this dissertation, the six technical issues fioe resonance calculation (see
sub-section 1.1.6) are solved with the step-by-staproach. By setting the
conventional equivalence theory as a starting pafinhe development, each two issues
are solved in Chapters 2-4, respectively. In al fimathodology, the six issues are all

solved simultaneously.

According to the above flow of the development, thatents for each chapter are

briefly described as follows:

< Chapter 1 >

The background and the objective of the presenlysine described.

< Chapter 2 >

An advanced resonance self-shielding methodologgd®n the equivalence theory is
developed. In the development, the two issues,(i)dimitation for generalized lattice
geometry and (ii) black neutron absorber assumptao& addressed by improving the

conventional equivalence theory.

< Chapter 3 >

A hybrid resonance self-shielding methodology basethe equivalence theory and the
ultra-fine-group calculation is developed. In trevelopment, the two issues, i.e., (iii)
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scattering source approximation and (iv) resonamegference treatment, are addressed
by incorporating the essence of the ultra-fine-gr@alculation into the equivalence

theory based method in Chapter 2.

< Chapter 4 >

A unified resonance self-shielding methodology base the equivalence theory, the
ultra-fine-group calculation and the sub-group rodtrs developed. This is a final form
of the new methodology. In the development, the twssues, i.e., (V)

radially/azimuthally dependent intra-pellet selfedting treatment and (vi)

non-uniform fuel composition and temperature treatiwithin a pellet, are addressed
by further incorporating the essence of the sulbygmethod into the hybrid method in
Chapter 3. In the incorporating process, the salqgmethod itself is improved for the
non-uniform fuel composition and temperature treattmThrough the development in

Chapters 2-4, all the six issues (i)-(vi) are sdlsanultaneously.

< Chapter 5 >

The summary and the future works of the presentystine described.
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CHAPTER 2. DEVELOPMENT OF ADVANCED
RESONANCE SELF-SHIELDING METHODOLOGY
FOR GENERALIZED LATTICE GEOMETRY AND
GRAY NEUTRON ABSORBER BASED ON

EQUIVALENCE THEORY

2.1 Introduction

In a recent trend of the neutron transport methbd, method of characteristics
(MOC) [1] is widely applied especially for the lat calculation field. On this basis,
numerical errors in multi-group neutron flux cakibns become negligible. From this
point of view, generation of an appropriate muhiigp effective cross-section, which is
used in the neutron flux calculations as an inpaomes crucial in lattice physics
calculations. In the lattice physics code GALAXY],[2MOC has already been
implemented as the basic method for the flux caloah. Therefore, this paper

describes the detail of a new effective cross-sedeneration method for GALAXY.

Generation process of the effective cross-sectiaralled the resonance calculation.
In general, the resonance calculation method ssiflad into three categories [3], i.e.,
ultra-fine-group method [4], sub-group method [5jdaDancoff method [6] with
equivalence theory [7]. The ultra-fine-group methgives an accurate effective
cross-section, but has a limitation for the pradtidesign applications of large and

complicated geometries in the fuel assembly leeeblise of the long computation time.
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The sub-group method enables carrying out of ts®n@nce calculation with more
realistic calculation costs than the ultra-finetgyromethod, but it is still difficult to
generate an appropriate sub-group cross-sectidnswificient robustness. In contrast,
the equivalence theory is the most suitable foigteapplications because of its short
computation time and historically rich validatioxperiences, so it is adopted for many
current lattice physics codes. However, the eqaived theory has not been improved
for over 30 years, in spite of its many approximasi which should be removed and are
described later. From this point of view, in thegent paper, the equivalence theory is

selected for the improvement of its accuracy wikhing its short computation time.

The equivalence theory introduces background csessen for considering the
magnitude of resonance self-shielding effect. Theltigroup cross-section is
pre-tabulated as a function of the background esession in the homogeneous
medium. Then the background cross-section for #terbgeneous system is generated
considering lattice effect and multi-group effeeticross-section for heterogeneous
system is calculated by interpolating the abovetirgubup effective cross-section for
homogeneous system. The equivalence theory leaglsgasonable calculation scheme
because detailed information of an energy depend®ss-section is pre-computed in
the cross-section library generation. However, fillowing approximations, which

become drawbacks, are generally applied in thevatgrnice theory:

(1) Multi-group cross-section tabulation for digerbackground cross-sections,

(2) Rational approximation for first-flight fuel espe probability,
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(3) Black limit approximation for Dancoff correctip
(4) Two region approximation for heterogeneousesyst

(5) Lump approximation for resonance material.

These approximations directly contribute to theuddidn of calculation costs, but

these are also drawbacks of the equivalence tteatycause several calculation errors.

In the present study, the above drawbacks (1)#)esolved by introducing several
unique and challenging techniques. The concephefriew resonance self-shielding

method is described below.

Drawback (1) is resolved by developing a new cresgion library generation
method based on polynomial hyperbolic tangent féatan. Drawback (2) causes
inaccurate treatment of fuel escape probabilitytiierisolated system, so it is improved
by adopting multi-term rational equation for fueicape probability with reaction-rate
preservation scheme. Drawback (3) causes inaccurasgment of fuel escape
probability for the lattice system because actwmsonance material is not a black
material (perfect neutron absorber), so it is imprb by determining coefficients in
rational equation so that accuracy of the escambatility is preserved in gray
resonance range. Drawback (4) is improved by exsguwvo dimensional one-group
fixed source MOC flux calculations and determiniting rational coefficients using
these MOC results. Drawback (5) is resolved by wvilegi a spatially dependent
resonance self-shielding method for generation pétially dependent effective

cross-section within pellet.
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In order to develop the new resonance self-shigldirethod, all the calculation
processes based on the equivalent theory from -sexg®n library preparation to
effective cross-section generation are reviewed raficimed by adopting the current
enhanced methodologies for lattice calculations.t@n basis of the above concepts,

contents of each section in the present papemanenarized as follows.

Section 2.2 reviews the basic concept of the edgmea theory and derives a new
cross-section library generation method. Secti@ctarifies the approximations of the
conventional resonance self-shielding methods amdives a new resonance
self-shielding method with multi-term rational apgimation. Section 2.4 refers to the
conventional intra-pellet power profile generatswheme and derives a new resonance
self-shielding method for the treatment of spatiaépendent resonance self-shielding
within pellet. Section 2.5 mentions the conventlopeoblem for the accuracy of
multi-group reaction-rate and derives a formulatfoe reaction-rate preservation with
multi-term rational equation. Section 2.6 verifimsd validates the present resonance
self-shielding method with lattice physics code @Y. Section 2.7 summarizes the

conclusions of the present paper.
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2.2 Cross-Section Library
2.2.1 Equivalence Theory

By applying isotropic and elastic down-scatteringppraximation in the
center-of-mass system and ignoring fission southe, integral form of neutron
transport equation is transformed to slowing dowquagion. The slowing down
equation in the homogeneous medium is simplifie@dpylying narrow resonance (NR)

approximation for scattering source:
Zp
ZAB¢E=En (2.1)

where %, (E), ¢(E), and £, denote macroscopic total cross-section and neditan

for neutron incident energy¥e, and macroscopic potential scattering cross-sgctio

respectively. From Equation (2.1), the neutron fRirewritten as:

> o +o;
HE)==_> =1 P (2.2)
EZ(E) Eog(E)+o,

where g{(E) and g, denote microscopic total and potential scattedrgss-sections

of the specific resonance nuclide, respectively. Absorption and resonance scattering
reactions for all the nuclides excluding nuclide are ignored in the right hand side of

Equation (2.2). In the following formulation, inteediate resonance (IR) parameter [8]

proposed by Goldstein and Cohen will be multipltedo,. o, corresponds to the

background cross-section defined as:
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oy = —— (2.3)

where N, denotes number density of the nuclite o] handles the magnitude of

resonance self-shielding effect with competition @f(E) in the denominator of

Equation (2.2).

Multi-group effective cross-section for multi-groti@ansport calculation is derived
with neutron flux weight for reaction-rate presdrva within the energy group. Then

the multi-group cross-section for groug is defined as follows:

) jnga(E)go(E)

o, = Lqup(E) (2.4)

As will be described in section 2.3.1, neutron flux heterogeneous system is
derived with the same form of the homogeneous apeessed in Equation (2.2). Then
the same background cross-section value betweenogenheous (described in section
2.3.1) and homogeneous (Equation (2.3)) systemsegmrded as an equivalent
resonance self-shielding level. This assumptiocaked the “equivalence principle”
between homogeneous and heterogeneous systemegesimance self-shielding theory

derived with the assumption of the equivalenceqyie is called “equivalence theory”.

On the basis of the above assumption, detailedrimdbon on the energy
dependency of neutron flux for the resonance csestion can be calculated in the
homogeneous system. Specifically, the ultra-finedgr slowing down equation in
homogeneous medium composed of a single resonasideur (e.g., %) and

hydrogen (typical neutron moderator in LWR), is rauivally solved at severab,
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levels. Then energy dependency @fE) is calculated for eaclo,. By considering

the definition of Equation (2.4), the multi-grouposs-section in the homogeneous

system is clearly expressed as a functioropt

LdEa(E)q)(E,ab)

Lquo(E,Jb) (5)

Ug(ab) =

In general resonance treatment, effective multisgroross-section, which depends
on the background cross-section, is pre-tabulaieédch nuclide, reaction type, energy
group and temperature, and edited as a cross-sditiiary. Instead of the multi-group
cross-section, self-shielding factor or resonanuegral is often tabulated for the

consistency of adopted resonance calculation methdte self-shielding factor is

defined as:
a4(a,)
f (0)=—2 , (2.6)
N gy (w)
and resonance integral is defined as:
j dEg(E)@(E, 0,)
Ig (ab) == ' (27)

Augl

where Au, denotes lethargy width for group .
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2.2.2 New Derivation of Polynomial Hyperbolic Tang&ormat Library

In many traditional lattice physics codes, the mgidbup cross-section (or the
resonance integral) table is prepared against tlesss 10 background cross-section
points due to the NJOY [9] (cross-section processiode) execution constraints. This
treatment is valid in the framework of conventiotrahsport methods and energy group
resolutions because the influence of cross-sedtiterpolation accuracy is relatively
small in the lattice calculations. However, thenijgort method adopted in GALAXY
[2] is based on the more enhanced technologythe.method of characteristics (MOC)
[1], and the detailed XMAS 172 energy group street{d0] is directly handled in
GALAXY. So the interpolation accuracy of the mutieup cross-section becomes
“relatively” more obvious and the conventional eegsion of the cross-section library
would be insufficient for cross-section interpadati Furthermore, the multi-term
rational approximation in section 2.4 handles theremwide range of background
cross-section, so the cross-section interpolaticcuracy should be preserved in the
wide application range. From this point of viewpew robust representation method of

the multi-group cross-section library is derived@bows.

The multi-group cross-sectior, as a function of the background cross-section
o, generally shows a logistic curve such as hypechtalngent functionFigure 2.1
shows the example of logistic curve far, versuso,. As shown in Figure 2.1,
infinite dilution condition (0, =) gives a maximum value of the multi-group

cross-section, and perfect self-shielding condijop =0) gives a minimum one. So

52



the following representation equon can be inductively derive

o,(0,)= Atanh{aln(%j} +B, (2.8)

where A, B, a and b denote arbitrary constanttb>0). By taking a limit to

g, - or g, -0, A and B are analytically determined .

g, (0)=A+B, (29)
0,(0)=-A+B. (2.10)
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Figure 2.1 Logistic curve of multi-group cross-section versus background

Cross-section.

By substituting Euation: (2.9) and 2.10) into Equatic (2.8), g, is expressed as

hyperbolic tangent function co,:

53



o,(0y,) =Mtanh{aln[%j}+ % (oo);ag (O). (2.11)

If the appropriate values o& and b are determined in all the, range, the
reproducibility of o, is improved. This equation is originally propoded sub-group

parameter generation [11], but, dependency for the usual multi-group cross-section

is larger than that for the sub-group cross-sectiomrder to improve the interpolation

accuracy of g, the polynomial hyperbolic tangent formulation derived in the

present study as a natural extension of Equatidri)2

o,(0,) = % (00)2_09 © ZL:cl tanh{a1 In[%}} + 7 (m);ag © , (2.12)

3¢ =1. (2.13)

Here, a, b and ¢ denotel-th coefficients f >0), and L denotes the number of
polynomial expansion, respectively. The summatibnco is normalized as unity. The
coefficients (g,h,c) are determined by fitting the accurate cross-gectset

(0,,04(0,)) with the non-linear least square fitting methotie Toresent polynomial

hyperbolic tangent expansion method enables toceethe library storage because only

g,(0), o,(0) and (g,h,q) are preserved. The present library represents the

multi-group cross-section in all the backgroundssrsection range with high accuracy

and enough robustness when is set to 5, as described in section 2.6.1.
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2.3 Resonance Calculation with Multi-Term RatioEglation
2.3.1 Conventional Dancoff Method
The integral form of neutron transport equationtfeo region heterogeneous system

consisting of fuel and moderator is written as:

2O EV, =[P BV, +P, BZN,] (2.14)

where NR (or IR) approximation is applied for sedtig source. Indicesf and m
denote fuel region and moderator region, respdgtivgere, the fuel and moderator

regions correspond to the typical resonance andresonance material regions,

respectively.V denotes region volumeP,  (E) and P, ,(E) denote collision

probabilities, e.g.,P, . (E) is the probability that neutrons having incidenegy E
born in the moderator region suffer their firstlisodns in the fuel region.

By substituting the following reciprocity theorenmda probability constraint into

Equation (2.14):

Po. ¢ (E)Z}V, =P, L (E)Z/ (E)V, (2.15)
P +(E)=1-P; (E), (2.16)

neutron flux in the fuel region is formulated wéhalytical expression as follows:

_1lg Z,
2 (€)= ¢| 0P B gy P (B)), (2.17)

where P, . Is rewritten asP

ef?

which corresponds to first-flight escape prolgbil
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from the fuel region.

Expression of the fuel escape probability is thennfaature for the resonance
self-shielding theory in the heterogeneous systaseth on the equivalence theory [7].
The fundamental expression is one-term rationat@a@mation proposed by Wigner:

1

PiSO E) = ,
O s lEn

(2.18)

where |, denotes mean chord length of the fuel lump anddchlength distribution is

assumed to be the exponential function. Equatiot8j2denotes the escape probability

in isolated system, i.e., a single isolated fugipun an infinite moderator medium.

In the actual fuel assembly, multiple fuel rods boadled with lattice arrangement
and the escape probability becomes effectively lem#ian that for the isolated system
due to the shadowing effect of neighboring fuelstoBhysical property of the above
phenomenon is considered as lattice effect in gémesonance self-shielding theory.
By applying isotropic approximation for incidentuteons, the fuel escape probability
in the lattice system is derived as [12]:

(1-C)RY(E)

R (B)= 1-{1-Z{ (E)I{RY(E)}C’

(2.19)

where C denotes Dancoff correction. By substituting Equat{2.18) into Equation

(2.19), P is generated as:

D

PR(E) = o,
! /), +D

(2.20)

where D corresponds to Dancoff factor, which satisfies:
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D=1-C. (2.21)

By substituting Equation (2.20) into Equation (2,1the neutron flux is formulated

as:

1 =M. +D 1 Ol +0
¢ (E) === ==—F 0 (2.22)
EZ (), +D Eo(B)+oy

where background cross-section for the heterogenladiice system is defined as:

D> Nyos+DJl
g, = , (2.23)

where N,/ denotes number density of the nuclite in the fuel region. Equation
(2.22) shows that the neutron flux in a heterogaeesystem has the same form as that
in a homogeneous system shown in Equation (2.2ndny legacy codes, the Dancoff
factor is generated with the black limit conditiand the heterogeneous background
cross-section is calculated by Equation (2.23). nThbe multi-group effective
cross-section for the heterogeneous system ispwoited from the homogeneous
cross-section library regarding the background ssEstion as an interpolation

variable.

In order to improve the accuracy of fuel escapéabdity, the following multi-term

rational approximation for the isolated systemftemapplied instead:

PISO(E) zb Z (E)l +a (224)

ZN:bn =1, (2.25)

n=1

where N denotes the number of rational equation terms.and b, denote then
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-th rational coefficients. For the cylindrical fuleimp, two-term coefficients proposed

by Carlvik [7] are often used:

(a,b,a,,b,) = (223-1). (2.26)

The values in Equation (2.26) are generated bylhek and white limit conditions
for the escape probability and the blackness. Bygttuting Equations (2.24) and (2.25)
into Equation (2.19) and using Equation (2.26), dseape probability in the lattice

system is analytically derived [7] as follows:

P% (E) = 2/3 % (E)l e (2.27)
o= C+5—\/C22+34C +1 (2.28)

ZEC+5+ c22+34c+1, (2.29)
B E%, (2.30)
B,=1-4,. (2.31)

These coefficients, which correspond to the coiwactof Carlvik's two-term
coefficients for considering the lattice effect, redormulated by Stamm’ler. Though
C in Equations (2.28), (2.29) and (2.30) is caladaby taking into account the fuel
transparency in the Stamm’ler correction, the tmaiasion probability from the fuel
surface to the cell boundary included @ is generated in the black limit condition. So
the Stamm’ler correction still utilizes the blagipsoximation. The Carlvik’s two-term
rational approximation with the above Stamm’lerreotion is widely adopted in many

current lattice physics codes.
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2.3.2 Enhanced Neutron Current Method and Genehfstamm’ler Correction

In the recent studies, the improved treatmentsterresonance self-shielding are
suggested. One is for complicated geometry handlrdy, and another is for gray
resonance treatment [14]. The above two methodgharéasic concept of the new

method derived in the next sub-section, so theianply reviewed in this sub-section.

The Dancoff factor in Equation (2.23) is generafigiculated by the collision
probability method. Yamamoto proposed the Dancafftdr generation scheme by
incorporation of MOC [13]. This is called the “emit&d neutron current method”. By
applying the black limit approximation consistenithwthe conventional Dancoff
method, macroscopic total reaction-rate is conwkege

lim = @ (£1) = lim =/ ZI’IerD—zf+D| 2.32
Jm @ ( t)—zt!rf‘m CSeD /i (2.32)

f

where ¢, denotes lethargy averaged neutron flux derivedElyation (2.22) with

one-group approximation. Dancoff factor is themfalated by Equation (2.32) as:
D= L@rpw o) —z;} . . (2.33)

@, is numerically obtained by the transport calcolatwith MOC. So the complicated

spatial dependency of Dancoff factor can be haneébgalicitly by including neutron

flux within the formulation.

On the other hand, Carlvik’'s two-term rational appmation with Stamm’ler
correction described in the previous sub-sectiaoftisn applied in many current lattice

physics codes. Hébert proposed the generalizatiorStamm’ler correction with
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three-term equation [14]. The fuel-to-fuel collisiprobability in the lattice system is

given by:
3 STE)
Plat E :1_Plat E = t f ’ 234
ORI E N A o (2.34)
3
.5, =1, (2.35)
n=1

where n -th rational coefficientsa, and £, are semi-analytically generated as

described later, which is different from the schepfethe Stamm’ler correction.

Specifically, P, is calculated with the collision probability methat five points of

macroscopic cross-section poimt and a set of X/ (p), P™ ; (p)) is generated. Then

the escape function is defined as:

Z.(2) E—f_zt . (2.36)

In the following, the escape functioB (=) is considered instead o™, for
convenience becausﬁe(zt‘) does not strongly depend any . From the above set of
(Z/ (p),P™ . (p)) with Equation (2.36), a set ofz{(p),E(p)) is easily obtained.

ie(z:) can be reproduced with the following quadraticorad! equation as:

_a(E/)’+bz +c
(£ +dz +e

.(2) (2.37)
where a, b, ¢, d and e denote constants determined so that the sekbfp,

ie(p)) is satisfied. By substituting Equation (2.37)oinEquation (2.36),P* , is
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rewritten as:

lat = ztf Eﬂ( ztf)z +dztf +e}
CUOE)PH(@rd)(E )’ + bz +c

(2.38)

On the other handpP® , is expressed witha, and B, by reducing Equation

(2.34) to a common denominator as:

3
Z:Zﬁnl_l (ztf +am/|f)
P = e : (2.39)

3
|'l(25+an/|f)

By comparing the denominator of Equations (2.38) éh39), the cubic equation

for = is solved anda, are obtained. Furthermore, by comparing the nutoect
Equations (2.38) and (2.39), and considering Equnafl.35), 5, are analytically

generated withd, € and a,.

Though the calculation process of the Hébert metb@dlittle complicated because

medium paramete _(Z!) is introduced, the essence of the method is thatand

B, in Equation (2.34) are determined so that the atewescape probability of lattice

system is reproduced in the various macroscopa twbss-sectionz, including gray

resonance range. This corresponds to the calcnlptimcess of coefficientsa(, b, c,

d and €) in Equation (2.37).a, are finally generated by the above five coeffitsen

and B, by a,, d and e.
On the Hébert method, the black limit approximati®excluded in the formulation.
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In concrete, the accuracy of the escape probabdgitgdaptively improved with the
one-group fixed source transport calculations farious =/ points. In contrast,
Carlvik’'s two-term rational approximation with tif&amm’ler correction includes the
black approximation for derivation of the coeffigie in the isolated system and the
transmission probability. So the Hébert method amsaderably different from the
Stamm’ler correction in which the one-group fixeduse transport calculation is
carried out only for the black limit point. Besidéise Hébert method enables to treat the
complicated geometry for which the collision proltiab is obtained. In the
conventional methods, only the Hébert method cacthktreat the gray resonances and

the complicated geometry in the framework of thdtkterm rational approximation.
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2.3.3 New Derivation of Multi-Term Rational Equatidor General Lattice Geometry

with Gray Resonance Absorbers

The resonance calculation method implemented in &Y. [15] is based on the
equivalence theory with multi-term rational equatidhough the classical equivalence
theory has some approximations such as black &ssumption, the method adopted in
GALAXY resolves some of these approximations aedttthe more realistic neutronics

behaviors for the resonance self-shielding tharctimventional methods.

The conventional resonance self-shielding methazptedl in many lattice physics
codes for design applications, e.g., CASMO-4 [1BICEENIX-P [7] and PARAGON
[17], is based on Carlvik’s two-term rational apgmation with Stamm’ler correction
[7]. It assumes the resonance material as a blagkbee., a perfect neutron absorber.
Furthermore, the geometrical configurations areaté@ with one-dimensional
cylindrical approximation. Hébert's enhanced metladpted in DRAGON [14] can
treat gray resonance absorbers (the actual matertak reactor core is not black but
gray neutron absorber in general). However, it oame extended to the large lattice

geometry because it is based on the collision gritibamethod.

On the other hand, the new resonance calculatiadhadedescribed as follows can
treat the general lattice geometry of the fuel sy with the gray resonance absorbers
by combination of Yamamoto’'s Dancoff factor geniematscheme [13] and Hébert's
resonance self-shielding method [14], both of whaie reviewed in the previous

sub-section.

In the framework of the multi-term rational appnme&tion, the first-flight fuel

escape probability in the lattice system is exmeds/ [14]:
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P(E)= Zﬁ % (E)l Ve (2.40)

a, corresponds to the parameter for considering titécé effect, andp,

corresponds to the weight of rational equation radized as:
N
2.5, =1 (2.41)

By substituting Equations (2.40) and (2.41) intau&ipn (2.17), the neutron flux is

rewritten as:

Pl N oL +oy

0O LA v ER e 242)

n=1

Here, n-th background cross-section is defined as:

> Nos+a, /I
oy = . (2.43)

Then, the microscopic effective cross-section &sonance nuclide , reaction x

and energy groupg in a fuel region is derived as:
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J,dEaL(B) (E)
Oy =
* [ dEnE)

100ID

_;ﬁn dE0 (E) = oiErer

N g +a)
zﬁn dEl r " : nr
=} E o, (E)+o,

g

iﬁnl; (0™,

e
0(E)+

Zﬁn xg r)Aug
N 1 J Ub
(nzﬂnjmu -Zﬂ o J (E)*it(Ew
ign o (2.44)
o ag( )
- ;ﬁna +oy

by substituting Equation (2.42) using the defimtiof Equation (2.7) and considering

Equation (2.41). Here,o;, denotes the continuous energy cross-section fer th

resonance nuclider and reactionx . I, (o0y") denotes the effective resonance

integral per lethargy width of the group for theaerance nuclider , reaction x (x =a
for absorption reaction) and energy group in the homogeneous medium,

interpolated from the cross-section library wittj" as an argument.

Especially for the one-term rational approximatiahge relationship between
resonance integral and effective cross-sectioneisveld from Equation (2.44) for
reaction x and absorption reaction. By substituting the refainto Equation (2.44),
the final form of effective cross-section is forratdd as [15]:
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Z:Bn o (T )0, (0y)
Oy =2 — , (2.45)
PWXACH

where o, (0,") denotes the effective cross-section for the resmmenuclider,

reaction x (x =a for absorption reaction) and energy grodp in the homogeneous

medium, interpolated from the cross-section libnaith o." as an argumentg (o,")

corresponds to the neutron flux of thre-th term defined as:

O.F + 0.[;1[’

¢;(o—gr)—0ag(a Yron v o7 (2.46)

The microscopic effective scattering cross-sedsaterived in the same manner as:

f [ dE[ dE'ol(E - Eg, (E)
nfo—Jo g
[ dEg, (E)
g

Z:Bn sg- g( Sr) iﬂ sg g( )¢ (0’ ) (247)

— n=1

1- ZN:,B ag(a) > A0

The form of Equation (2.44) and the intermediatenfof Equation (2.47), which are
expressed by the resonance integral, are the cbomehexpression and are not used in
GALAXY. Instead, the final form of Equations (2.4&hd (2.47), which is derived by

using the relation between the resonance integaak#fective cross-section, is applied.

In the present methodga, and [, are numerically calculated in order to

accurately treat general lattice geometry and gespnances. By averaging Equation

(2.42) for the arbitrary lethargy range and assgnatal cross-section to be constant in
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this specific range (one-group approximation), degy averaged neutron fluy, is

formulated as:

+a,
Ztlf+a

n

@)= Zﬁ (2.48)

in the same manner of Equation (2.32).

Neutron flux is calculated by MOC at several macopsc cross-section pointg
and a set ofX (p),®; (p)) is generated. Them, and B, are numerically optimized
so as to minimize the following objective functitkased on the least square fitting

method:

P +q P
4

— n _N_l pf+aN 2
Awfb,-—;{qof(p) {Zﬁ 3 (p)l]] va [1 Z;ﬁj ztf(p)mwaH ,

(2.49)

where P denote the number of( (p), R (p)) data. Normalizing condition off,

in Equation (2.41) is explicitly considered in Etoa (2.49). By minimizing A@fbj,
a, and S, in Equation (2.42) are determined so that the rateuneutron flux is
reproduced in the various optical length/|. including gray resonance range.

Essentially, minimization ongojbj is equivalent to determination af, and £, so

that the reproducibility of fuel escape probabilityEquation (2.40) is improved. In this
procedure, the rational coefficients in the isalatgystem are not necessary for

derivation of the coefficients in the lattice systewhich is a different point from the
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Stamm’ler correction. Therefore, the present metladhbles to handle general
geometries which beyond the simple infinite cylinade the slab. Furthermore, the

present method can treat the arbitrary number wdrral equation term in principle

because generation af, and S, is merely numerical fitting procedure in accordanc

with Equation (2.49). As different from the presenéthod, the number of rational
equation term in the Hébert method is limited t@éhbecause the analytical solution of

N -th equation can be derived substantially by tAeguation.

In the actual numerical treatment, several points>¢ between black (e.g.,
10°[1/cm]) and white (e.g., I¥1/cm]) limit including actual gray resonance rarfgey.,
10.0, 1.0, 0.1[1/cm]) are set and one group fixasse problem is solved for each
value. The sames value is set to all the resonance region becaliseatcurate
region-wise = is not pre-known. MOC can be adopted in the trartspalculations
because Equation (2.48) is expressed not as aioallrobability, but as a neutron flux.
In the present method, general lattice geometrybeaaxactly treated because MOC is
directly applied for the flux calculations. Furthesre, gray resonance absorbers can be
accurately treated because not only the black lmitalso the gray resonance range of

macroscopic total cross-sections are explicitly scdered for generation of pin-wise

a, and S, values. The present gray resonance self-shieldiettpod can consistently

treat both black and gray resonance self-shieldanmyl as a result, it can generate

effective cross-sections with high accuracy.

In the Carlvik method with Stamm’ler correction,ygictal constraints only for the

black and white limits are satisfied from the tretmal point of view. So the effect of
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gray resonance is not “theoretically” and expljcithken into account. On the other
hand, the present resonance self-shielding mettimebfetically” and explicitly takes
into account the constraint to increase the acguiEcescape probability in gray

resonance range with the fitting equation.

The advantage of the present method, i.e., thetexay resonance treatment, is

similar to that of the Hébert method, but the clattan process of the coefficients,

and g, is different between the present method and tHeeHénethod. In the Hébert

method, the analytical treatment is partially idmoed to the coefficient evaluation with
a constraint which is necessary for the three-teational equation, but the present
method simply adopts to the numerical fitting pihwe without any additional

constraints. So the implementation of the presesthod is simpler than that of the

Hébert method.
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2.4 Spatial Self-Shielding Calculation for IntraHEePower Profile Generation
2.4.1 Conventional Explicit Methods

Radial power profile within fuel pellet is requirex$ input data for fuel integrity
evaluation. In the evaluation, fuel centerline tengpures for various types of pellets are
calculated with the radial power profile data giy®na neutronics design code for the
pin or assembly level. In order to make intra-gefjewer profile data, a spatially

dependent effective cross-section within the psletuld be generated.

Equivalence theory assumes that the configuratfaiesonance material is a lump.
So, the direct formulation of the spatially depeamtdeffective cross-sections for each
ring region within the cylindrical fuel lump is afficult task. For generation of the
detailed effective cross-section data within thdlegpethe more accurate resonance
self-shielding methods such as sub-group methodof5litra-fine-group calculation
method [4] are applied in general. These methodsider the detailed information of
the spatial and energetic resonance self-shiekefifegts within each energy group, so it
can directly treat the neutron balance within tletlgb. In spite of this advantage,
however, these methods require large calculati@tscdrom this background, a more

simple and efficient method is desirable whichsdgily design applications.
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2.4.2 Stoker-Weiss Method

A resonance self-shielding method for generatiorspdtially dependent effective
cross-section, which is based on the equivaleneeryh was proposed by Stoker and
Weiss [18]. In the Stoker-Weiss method, fuel escagdability from a specific ring
region within the fuel lump is formulated by comaiion of the escape probability from
each lump component. This method enables simpgfyime generation scheme of
spatially dependent effective cross-section. Batahove escape probability of the ring
region is derived for the fuel isolated system #mel escape probability of ring for

the lattice system is approximately given by:
P (E) = DP®(E) . (2.50)

This approximation is not consistent with the gahéreatment of lattice effect in

the equivalence theory, i.e., Equation (2.19).
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2.4.3 New Derivation of Spatially Dependent Grayp®ence Self-Shielding Method

Inconsistency of the fuel escape probability treattmfor the lattice system in
Stoker-Weiss method is completely resolved in SD@patially Dependent Dancoff
Method) [19] proposed by Matsumoto. But SDDM is extension of Stamm’ler
correction, so the black limit approximation, whiagsumes the resonance material as a
blackbody, is still left. From this point of view, new resonance self-shielding method,
SDGM (Spatially Dependent Gray-Resonance-Self-8imgIMethod), is derived in the

present study.

SDGM is an extension of a new gray resonance b@feing method described in
section 2.3.3. Furthermore, SDGM incorporates aicb@sncept of the escape
probability formulation for the ring region in StakWeiss method and SDDM. It

should be noted that the final form of effectivess-section in SDGM is the same as

that in SDDM, but the coefficientsr,, £, included in the effective cross-section are
different between SDGM and SDDM.

In the Carlvik method with Stamm’ler correction, iain is the basis of SDDM, the
accuracy of fuel escape probability in gray reseeamange is improved comparing with
Wigner method with Dancoff correction. However, pital constraints only for the
black and white limits are satisfied in the Carlwiethod from the theoretical point of
view. So the effect of gray resonance is not “te&oally” and explicitly taken into
account. On the other hand, the present resonatizehgelding method described in
section 2.3.3, which is the basis of SDGM, “theicadly” and explicitly takes into

account the constraint to increase the accura®scédpe probability in gray resonance
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range with the fitting equation. As a result, SD@\Va different approach from SDDM

for the theoretical consideration of gray resonance

Figure 2.2 shows the concept of formulating spatially depemndiiel escape
probability in SDGM. It is based on the ideas obKetr-Weiss method and SDDM.
From this geometrical approach, the fuel escapbatitity of the specific ringi in a
fuel region for the lattice system is formulated éxtending the original definition of

the escape probability as follows:

" Effective"blacknessf ringi
Opticallengthof ringi
Combinatia of (Escapdractionx Blackness)
: {forfourlumpswhichcompose)f ringi }
- Opticallengthof ringi

I:)e,i (E) =

_ f a, |
p, X, (E)|1Z'B m
f a—
L o Z, (E).zzﬁ SHE), +
> (E)l
(BN, pl_l[zf(E)LsZ'B ﬁ
-p, l[zf(E)||4z,B ﬁ
B 4 N I[; a, _
_mZ:lyi’ng:l n ztf (E)l - +an’ (251)

where y, . denotes the coefficient which captures the gedosmtinformation of the

ring i and is defined as:

| |
ply pli. Pl p.l J (2.52)

(yi,liyi,Z’yi,B’yiA)E(
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Figure 2.2 Geometrical treatment of spatially dependent fuel escape probability.

Here, |, denotes the mean chord length derived as4v, /S, (V, :volume of the ring

i, S;:pellet surface).p, and p_ denote the relative outer and inner radii of the r

i, respectively (normalized by the pellet radigs). |, ~ denotes the mean chord

length of m-th lump (see Figure 2.2) derived by the followantalytical form:
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m=1:+7mp/2,p=p,

2R > 1 ., m=2:-7p/2,p=p,
o =——[l{1-p°+=sin"pt—p|, ) 2.53
. ﬂtﬁ o P p 2'0) m=3:+7p/2,p=p_, (259

m=4:-1mp/2,p=p._,

As shown in Equation (2.51), the escape probabilitthe fuel ring is expressed by
adding and subtracting the contribution of the lsmp 2, 3, and 4. The relative radius
p corresponds to the fraction of incoming neutrorigclv see the specific lummn
from the pellet surface. Sop is multiplied to the first-flight blackness of datump
for considering effective escape fraction of newstolt should be noted that the

blackness of a lump for optical length is expressed by:

WAL (254

1l Xta,

Then, the neutron flux in the regioin within a fuel region is described in the same
manner of Equation (2.17) as:
zf
f

s TR | (2.55)

1o
@(B) = [{1-Ry(B}

By substituting Equation (2.51) into Equation (3,38e neutron flux is rewritten as:

1 N . ta
E)==> v, P, 2.56
ROV =L nd o sTEl v (2.56)
by using the following normalizing condition foy,
4
D Vim =1, (2.57)
m=1

which is easily obtained by substituting Equatiarb8) into Equation (2.52).
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By dividing both of the numerator and the denononat Equation (2.56) by the
number density of nuclidg’, Equation (2.56) is transformed to the nuclideets@ent

flux as:

nmr

Jb
E)=— —, 2.58
9 (E)= Zy.mnzlﬁ a(E)+a"mf (2.58)
where n -th background cross-section fan-th lump is defined as:
ZNka; +an/|i,m
oy =k : (2.59)

Nf

Finally, by using Equation (2.58), the microscopitective cross-section for the

resonance nuclidg , reaction x and energy groupy in a regioni within the fuel

pellet is derived as:

IngO’;(E)Q(E) zylmZﬂn xg nmr) z_ly|m2ﬂn xg nmr)¢ (a.nmr)
ZylmZﬂ by(0y™)

S R

nmr)

nmr

+0'b

(2.60)
The present resonance self-shielding method carergen spatially dependent
effective cross-sections by Equation (2.60) witmeucally generated coefficients,,,
B, and analytically calculated coefficient, which capture the effect of exact gray

resonances and detailed geometrical configuratibngugh the fundamental derivation

of the spatially dependent effective cross-secisohased on SDDMga, and S, of
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SDDM correspond to those of Stamm’ler correctionva& in section 2.3.1, which is

based on the black assumption in Dancoff correctiorcontrast for SDGM,a, and

B, are generated considering the exact gray resosascdescribed in section 2.3.3. It

means that SDGM can handle the more actual behafiareutrons to resonance

material than SDDM for generation of spatially degent effective cross-section.
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2.5 Reaction-Rate Preservation for Multi-Term RadilcEquation
2.5.1 Conventional Methods

Many lattice physics codes adopt multi-term ratlom@proximation such as
Carlvik’'s two-term method with Stamm’ler correctioin spite of the remarkable
improvement in the accuracy of escape probabiligyever, the multi-term method
often shows less accuracy for multi-group reactiate-than Wigner’s one-term method
with Dancoff correction. This problem has been sdhby empirical correction of
resonance integral table or partial implementatibthe ultra-fine-group slowing down

calculation in many current lattice physics codes.
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2.5.2 Derivation of Constraint for Integrated ReactRate Preservation

In the present study, a fundamental reason forehetion-rate error based on the
multi-term rational approximation is discussed anzbnstraint equation is derived from
the view point of the reaction-rate preservatiohjol is completely consistent with the

multi-term expression based on the equivalenceyheo

This method is originally suggested in Ref. 20, andetailed explanation of this
method is described there, so supplementary vatiibic is carried out in section 2.6.4

with the gray resonance self-shielding method ¢setion 2.3.3).

The integrated reaction-rate for the resonanceidwidl , reaction x and energy

group g in fuel region (resonance material region) is ragysly written as:
RR;! (continuous = jg dEc’ (E)g, (E) . (2.61)

It can be evaluated by the continuous energy M@ade or the ultra-fine-group

slowing down calculations.

On the other hand, for the deterministic latticedeso multi-group effective

cross-section a;;g is generated by resonance calculation, and bygusirj;;gf ,
multi-group neutron fluxg, , is obtained by transport calculation. On this gathe
integrated reaction-rate is derived as:

RR; (multi group) = g} @ , . (2.62)

Ratio of the reaction-rates based on multi-grougugion (2.62)) and the

continuous energy (Equation (2.61)) is transfortaethe ratio of fluxes as follows:
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J,dEaL(E)e: (E)

)
a;gf] qof,g _ J.g dE¢f (E) | _ ¢f,g
J,dEo (B)g (B) | dEoL(E)p () [ dEg(E)

(2.63)

In the multi-term rational approximation, neutrdaxf per lethargy is derived from

Equation (2.42):

N (T +a" 0'r+(7m
Zﬁ : Zﬁ ;
= oy toy J,4Ea (B)o (E)
+al;"
J,4E2 (B) (2.64)
ar+ag"

=[ dEg (E)DD A, .
°, Dz " [, dELo; (B) + 0" 1, (E)

By substituting Equation (2.64) into Equation (2.68d considering Equation

(2.42), the reaction-rate ratio is expressed as:

oo, _$, LAZARN

|, JECL(B)pi (B) =

2.65
s (2.65)

J a0 B+l Iy 8 T oL

I—l

The right hand side of Equation (2.65) is not umikgcept for the one-term rational
approximation (N =1). This fact implies that the multi-group reacticate does not
reproduce the continuous energy-based reaction-ostethe assumption of the
multi-term rational approximation. This is why thaulti-term rational approximation
cannot obtain high accuracy of the multi-group teaerate without empirical

corrections.

On the other hand, the present resonance selfdsigeinethod described in section

2.3.3 reproduces the multi-group neutron flux oe treaction-rate based on the
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multi-term rational approximation. Here, it sholde noted that the non-preservation of
the reaction-rate shown in Equation (2.65) is dised within the framework of the
multi-term rational approximation based on the egl@nce theory, thus the present
discussion cannot be expanded to other resonaneatmgnts such as the
ultra-fine-group method. The general discussion flee non-preservation of the

reaction-rate in a resonance calculation is desdrib Ref. 21 using the SPH factor.

In order to improve the accuracy of resonance taticum, the effective cross-section
should be generated so that the continuous energgebreaction-rate is preserved. By
considering Equation (2.42) and the effective cesstion derivation scheme in

Equation (2.44), the continuous energy-based @actte is transformed as:
N
RR, = ] dEoy (E)g (E) =25 J,dETL(B)g (E.0)
‘Zm;wﬂmu—meg’WWﬂM% (2.66)

o, +a)
_Zﬁn xg P

0.0y )+, +oy
On the other hand, the multi-group-based reacta-is expressed as:

o, +oy
S oy

N r nr
g, t+0
— r,f p b
AU x,g zlgn r,f r nrAug'
n=1 a,

Oy, t0,+0;

N
RR, =0yi¢,= xgzlﬁ

(2.67)

As shown in the above discussion through Equati65), Equations (2.66) and
(2.67) are not consistent in multi-term rationapregximation. From this point of view,

the effective cross-section in Equation (2.67) #thobe modified so that the
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reaction-rate given by Equation (2.67) reprodutes by Equation (2.66). By defining
the modified effective cross-section and neutrax fs &;; and &f,g, respectively,

Equation (2.67) is rewritten as:

N o, +oy

RR( _axg¢fg = ~er,Bn “'rf

+0'b

r nr
ap +0,

g’

———Au, —"”Z,B
n=1

+ a; + ak’J"
(2.68)

where G/ in Equation (2.68) is different from the resultEjuation (2.45), ancféf'g

in Equation (2.68) is formulated by integrating Btan (2.42) for the energy group
and assuming total cross-section to be constanthis specific group (one-group
approximation). Equation (2.68) consists with therfulation of the multi-term rational

equation.

For generation of the appropriatﬁ;;gf, the right hand side of Equation (2.68)

should preserve the right hand side of Equatio6)2.From this necessary condition,

the following equation is derived:

a.r a.ﬂ a.l' +0.nr

~rf b b
B, — =N B0 . 2.69
zl ooy Zl D) v ot oy @9

Each physical quantity except fcn?;;gf is already generated in the conventional

resonance calculation scheme described in sect®B.2Zor the actual generation of

", the effective absorption cross-section is firgtdified by the following iteration

scheme:
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r nr
o, +0,

r nr r nr
Ua,g (Ub ) + Up + Ub
N r nr

o,+0,

>4

S G ) oy oy

N
2 B0

gre(n+) ="

, (2.70)

where Equation (2.70) is derived from Equation 92.65;; (n) and &, (n+1)
denote the modified effective absorption crossisestin n-th and n+1-th iterations,

f

, for n+l1-th iteration is generated by using n-#ration results and

respectively. g’
the iteration is repeated untd,; is converged. The modified effective cross-section
except for absorption reaction is then generatednmg through process as:

r nr
o,+0o,

N
Y B0y (0
=1

~r,f _ N
X9 N

2.5

~r,f r nr
m Oy TO,%0,

7., (0y)+ 0, +a]
A . (2.71)
o,+0,

The method can easily generate the effective @esBon that preserves the
multi-group reaction-rate, only by using the intediate quantities generated in the

resonance calculation.
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2.6 Verification and Validation

In this section, verification and validation of tipeesent resonance self-shielding
method are carried out. Sub-sections 2.6.1-2.6respond to the verification of key
component methods described in sections 2.2, 2.3, g&d 2.5, respectively.
Sub-sections 2.6.5-2.6.7 correspond to the vatdatof the present resonance
self-shielding method with transport and depletiatculation methods adopted in the
lattice physics code GALAXY. The actual contents ezfch sub-section are shown

below.

<Sub-section 2.6.1>

Verification of cross-section interpolation accwyrdor polynomial hyperbolic tangent

format library described in section 2.2
<Sub-section 2.6.2>

Verification of one-group, multi-term reaction-redecuracy for gray resonance optical

range based on new and conventional methods deddnisection 2.3
<Sub-section 2.6.3>

Verification of reaction-rate accuracy for intrallpe multi-region geometry based on a

new spatially dependent resonance self-shieldintpodedescribed in section 2.4
<Sub-section 2.6.4>

Verification of multi-group reaction-rate accurdegsed on a reaction-rate preservation

scheme described in section 2.5

84



<Sub-section 2.6.5>

Validation of effective multiplication factor andngby-pin fission rate accuracies of
fuel assembly calculated by the present resonaetfestselding method with the

method of characteristics, which is the transpathod implemented to GALAXY

The validation is carried out by comparison withntbouous energy Monte-Carlo

calculation results.
<Sub-section 2.6.6>

Validation of spatially dependent burnup and nieldmposition accuracies calculated
by the present resonance self-shielding method théhransport and depletion methods

implemented to GALAXY
The validation is carried out by the post irradiatexamination analysis.
<Sub-section 2.6.7>

Validation of fuel rod power accuracies calculatbg the present resonance

self-shielding method with the transport methodlemmented to GALAXY

The validation is carried out by the critical expggnt analysis of VIP.
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2.6.1 Interpolation Accuracy of Hyperbolic Tangeitrary

First verification is to evaluate the interpolati@tcuracy of cross-section for
hyperbolic tangent format library described in s®tt2.2.2. The accuracy of the
multi-group capture cross-section BfU for 300.0K in 6.16-7.52eV (88group in
XMAS 172 group structure [10]) is verified becauarge resonance 6f%U in 6.7eV
corresponds to the most typical resonance of fagénal and its calculation accuracy is
important in LWR lattice calculations. 40 sets loé tmulti-group cross-section versus
background cross-section data between infinite tidiu and fully self-shielding
conditions are prepared by execution of NJOY GROURGHule [9]. The order of
polynomial L in Equation (2.12) is changed from 1 to 5 in orderconfirm an
appropriate L value. It should be noted that the larger becomes, the better

accuracy is expected, but at the same time, the memory storage is necessary.

Figure 2.3 shows the result of the above verification witference cross-section
and indicates that accuracy of the cross-sectioro¥erall range of the background
cross-section is merely less than 0.5% whenis set to 5. The influence of maximum

error (0.5%) to the effective multiplication factervery small.
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Figure 2.3 Interpolation accuracy of cross-section for polynomial hyperbolic

tangent format library.

In this case, the number original NJOY output is 40x2=80 and the number ¢
the present library data i5x3+2=17, respectively. It corresponds to almost 8
reduction of library data with preserven of the accuracy for the cre-section. Here,
40 points of the cro-section data is required ecially for SDGM application. It
SDGM, the order of background cr-section for?*®U is 1(-1000 barn, so tt more
detailed and robust cre-section reconstruction is required comparing to

conventional resonance treatment which treatsanegsge mateal as a lumy

From this result, the applicaity and efficiency of the cro-section library with the
present polynomial hyperbolic tangent format fdti¢e physics code are confirme
and GALAXY library has been unified to hyperboliangent format inthe actua

developmen
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2.6.2 Reconstruction Accuracy of Reaction-Ratedmy Resonance

Second verification is to evaluate the reconstanciccuracy of reaction-rate for

gray resonance self-shielding method describeceatien 2.3.3. Rational coefficients

(a,,B,) are numerically generated and the following ratdtim rational equation based

on macroscopic total reaction-rate is reconstructed

a, 2.72
Ztlf+a (2.72)

RRE) =g E)= ZZﬁ

The coefficients &, 5,) of the present gray resonance self-shielding auktire

generated by fitting procedure of Equation (2.49%)r comparison, &, ,3,) of the

conventional methods are also calculated. In Wigname-term rational approximation

with Dancoff correction, ¢, , 5,) are given by:

(,5)=(D), (2.73)
which is easily obtained by comparison between Egug2.20) and Equation (2.40).

On the other hand, in Carlvik's two-term rationg@peoximation with Stamm’ler
correction, @,,[,) are given by Equations (2.28)-(2.31). Stoker-Waeisethod with
no-subdivision of pellet needs a little differergatment. By applying Equation (2.24)

to Equation (2.50) and substituting the escape ghitiby into Equation (2.17) with a

little complicated formulation, the following maawopic total reaction-rate is derived:

RRf (th) :th(Zf (th):ztf [E(l D)_ DZN:b Z : ’ (2-74)
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where coefficients &,,hb,) for isolated system are given by Equation (2.R6}he

present verification. Dancoff factob (or Dancoff correctionC) used in the above

conventional methods is calculated by Equation32.3

The benchmark problem for the present verificai®a simplified single fuel pin
cell model shown irFigure 2.4. Details of the model are shown Trable 2.1. These
conditions represent a typical LWR situation. Thranium oxide fuel and the water
moderator in the room temperature condition arerassl. The cladding is omitted for

simplicity. The detailed calculation conditions afewn inTable 2.2.

Table 2.1 Specifications of the unit-cell model.

Physical quantity Set up value
2U 2.0x0°
Number density in fuel region[1/barn/cm] 2%y  1.0x10°
o a0xalf
- . 'H  6.0x10°
Number density in moderator region[1/barn/cmj, .
3.0x10°
Temperature[K] 293
Fuel radius[cm] 0.4
Cell pitch[cm] 1.26
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Table 2.2 Calculation conditions.

ltem Condition:
Calculated quanti Microscopic effective capture cross sectior” U
Energy grou 88, 80, 75, 69 and " group in XMAS 172 group [L

88" 6.16-7.52[eV
80" 19.45-22.60[e\
Energy rang 75" 33.72-37.27[e\
69" 55.60-67.90[e\
67" 75.67-91.66[e\

Flux solve GALAXY [2]
Cell boundary conditic Perfect reflectio
Evaluated nuclear data ENDF/B-VII.O
Point wise cross section calcul NJOY (Ver.99.259) [¢

Another methods for comparis W|gne'r s Ismgle term ratpnal approxmatpn
Stamm'’ler's two terms rational approximatior
Methods for evaluating background ci

. . Enhanced neutron current method
section and Dancoff correction fac

/ Fuel pellet (Radius: 0.4cm)

————— Moderator (Pitch: 1.26¢cm)

Figure 2.4 Simplified unit-cell model.

Table 2.3 shows the calculated results of coefficients fag thult-term rationa

equation.Figure 2.5 shows the accuracy of react-rate reconstructed by uation:

. an . Versus various optlca eng'z or each rethod. ccuracy o t
(2.72) and 2.74) i ical leng %1, f h rethod. A f th
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reaction-rate depends on the accuracy of flux ingfqn (2.42). Fundamentally, it is
equivalent to the accuracy of fuel escape prolghii Equation (2.40). The reference

reaction-rate is generated by the one-group fixesce MOC transport calculations for

each z.
Table 2.3 Results of coefficients for multi-term rational equation.
Method Wigner  Stamm'ler Present
The number of terms 1 2 1 2 3

a 0.77915” 1.14774 0.81306 1.62393  1.16794

By 1.00000 1.12600 1.00000 4.73022 23.98950
N a, 4.07311 1.85156  1.34937
Coefficients[-]
B, -0.12600 -3.73022 -11.39820
as 1.02325
Ay -11.59130

Y Dancoff factor
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Figure 2.5 Reconstruction accuracy of macroscopic total reaction-rate for each

method.

As shown in Figure 2.5, Wigner's one-term methodhwbDancoff correction
preserves the reaction-rate in the black limit, darinot reconstruct the reaction-rate in
gray resonance range. Carlvik’'s two-term methodhvtamm’ler correction improves
the accuracy of Wigner's method. The accuracy & 8toker-Weiss method with
no-subdivision of pellet has an intermediate trbatliveen Wigner and Carlvik methods.
The present multi-term gray resonance self-shigldimethod further improves the

accuracy of Carlvik method with Stamm’ler correatio

The relative difference of*®U effective capture cross-sections from reference
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solutions is shown ifTable 2.4. The reference solutions are obtained from thectlir
ultra-fine-group calculation for heterogeneous getmyn In order to quantify the net
improvement for the present method, the NR apprakons are applied to the

scattering source for the reference calculations.

From Table 2.4, it can be seen that the presenhadetor N =3 produces the
more accurate results than the Stamm’ler’'s metlooalf the energy groups. It is also
found that the present method can consistently rgemahe effective cross-sections
including “gray resonances” with high accuracy. Tpeesent method forN =2
produces slightly better results than that fdr=3 in most cases, bulN =3 gives
better results for 67 group, which is rather small resonance thus censitias gray

compared to other resonances.

Table 2.4 Relative difference of U effective capture cross-sections from reference

solutions for unit-cell.

The number of rational Relative diference[%]
Method . h h h h h
function terms 88"gr. 80"gr. 75" gr. 69" gr. 67"gr.
Wigner 1 -0.37 -138 -210 -3.69 -6.72
Stamm'ler 2 0.72 0.55 0.59 0.5 -0.21
1 0.87 -0.01 -051 -194 -533
Present 2 0.14 0.05 0.04 0.06 -0.37
3 -0.22 -0.17 -0.14 0.08 -0.13

This verification clarifies the effectiveness of netering gray resonances in

Equation (2.49). While the conventional methods rdui explicitly treat the gray
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resonance range to the reaction-rate (or the feehpe probability), the present gray
resonance self-shielding method explicitly handiesgray resonance absorption. From
the discussion, the applicability of the presenthuoé for the effective cross-section
generation is confirmed. The present gray resonaalfeshielding method shows high
accuracy in gray resonance range, so the methoevuap the accuracy not only for the
large and wide resonances in low energy rangelbatfar the narrow resonances in the

higher energy range (> 100eV).

Simplified multi-cell model is also prepared aswhan Figure 2.6. It consists of
4x4 square unit-cells and the part of them is wagdls evithout any resonance nuclides.
The composition of isotopes in the water cell i® tbame with the moderator
composition for the above pin-cell model. The iulkeg lattice effect in this model can
easily be considered by the present method withaytanalytical formulation efforts

such as Stamm’ler’s [7].

@®
006
0ee®
P

— Fuel cell

Homogenized water cell

Figure 2.6 Simplified multi-cell model.
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The relative difference of*®U effective capture cross-sections from reference
solutions is shown iff able 2.5. Effective cross-sections for 8%roup are generated
since 67" group includes the gray resonance$®8f. Each region number in Table 2.5
corresponds to those in Figure 2.6. From Table 2.5 confirmed that the present
method can generate effective cross-sections wigh laccuracy not only for the

simplified single pin-cell model, but also for tmeegular multi-cell model.

Table 2.5 Relative difference of U effective capture cross-sections from reference

solutions for multi-cell.

The number of rational Relative difference [%]

Method function terms Reg.1 Reg.2 Reqg.3 Reg.4 Req.5 Reg.8 Reg.9 Reg.13
Wigner 1 -7.24 -6.86 -7.6¢4 -6.96 -6.79 -6.84 -6.77 -6.79
Stamm'ler 2 -0.20 -0.36 -0.22 -0.33 -0.28 -0.33 -0.27 -0.30
1 -5.78 -5.45 -6.12 -553 -540 -543 -538 -5.38
Present 2 -0.48 -0.39 -0.57 -0.41 -0.39 -0.38 -0.38 -0.37
3 -0.15 -0.13 -0.18 -0.13 -0.13 -0.15 -0..3 -0.13
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2.6.3 Comparison with Monte-Carlo Results for IrRellet Multi-Region Geometry

Third verification is to evaluate the accuracy mfa-pellet reaction-rate distribution
generated by SDGM described in section 2.4.3. Tiay gesonance self-shielding
method in section 2.3.3 and SDGM have been implésdeto GALAXY. For the
verification of SDGM, absorption reaction-rate dkaitions within a fuel pellet
obtained by GALAXY are compared with those by countius energy Monte Carlo
code MVP [22]. The simple pin cell models for tlypital UO, and MOX fuel at room
temperature condition of PWR are prepared for thleutations. Reflective boundary
condition is applied. The absorption reaction-distributions of the important actinide
nuclides are calculated by subdividing the pelb i10 equal volume rings for radial
direction. The specifications of the calculatiomdibion are shown i able 2.6, and

geometrical configuration is shown kigure 2.7.

Table 2.6 Specifications of the unit-cell Monte-Carlo benchmark.

Physical quantity

Set up conditions

Material temperature[K] 300.0
Pellet radius[cm] 0.4095
Pellet division 10 regions with equal volume
Cladding outer radius[cm] 0.4750
Cladding thickness[cm] 0.0655 (gap is omitted forpdiaity)
Cell pitch[cm] 1.260

Fuel type UO,(4. 1wt%235U)
MOX (7.1wt%Pu fissile contents)
. Zr4 (Few nuclides except for
Cladding type Zr are omitted for simplicity)
Moderator type KO
Boron concentration[ppm] 500
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Fuel pellet
(sub-divided to 10 regions)

— Cladding

<+«— Moderator

Figure 2.7 Geometrical configuration of unit cell model.

Figures 2.8 and 2.9 show the comparison microscopic absorption react-rates
for 2*U in UO, and MOX between GALAXY with SDGM (square points)daklVP
(rectangular ines). The accuracy of react-rates for 8" (6.1€6-7.52eV), 8"
(19.5-22.6eV) and 7" (33.7-37.3eV) groups including wide resonances®*U in
XMAS 172 energy group structure econfirmed. The relative differences are sme
than 16% for UG and 9% for MOX fuels, respectively. On the othendheFigures
2.10 and 2.11 show the comparison of energy integraimacroscopic absorptic
reactior-rates for each nuclide between GALAXY h SDGM (square points) at
MVP (rectangular lines). The relative differencee amaller than 1% for U, and 2%
for MOX fuels except fo®*“Pu in center region. The results obtained by GALAXith
SDGM and MVP show some differences for the r-group wist reactiol-rate
distribution in detailed XMAS 172 group structutdowever the energy integrate
reactior-rate, which isa more important parameter to estimithe intra-pellet powel

profile, shows good agreement. Therefore, it cacdrecluded that SDGMan predic
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nuclide dependent react-rate distributions with high accuracy for practi

applications

1.E+01
- —— GALAXY with SDGM
..... MVP — 4+ 6.16-7.52eV
|
t e— 19.5-22.6eV
1

1.LE+00 | e
SEEEEE _____d_‘_,__‘;"'_u— 33.7-37 3¢V

Absorption reaction rate[A.U.]

1.E-01 : : : :

00 02 04 06 08 1.0
Relative radius|-]

Figure 2.8 Comparison of intra-pellet microscopic absor ption reaction-rate
distribution for UO, between GALAXY with SDGM and MVP for important

resonances of 22U,
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Figure 2.9 Comparison of intra-pellet microscopic absor ption reaction-rate
distribution for MOX between GALAXY with SDGM and MVP for important

resonances of 22U,
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LE+00 | U-238 ﬁv‘J --------

Absorption reaction rate[A.U.]

1.E-01 ' '
00 02 04 06 08 1.0
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Figure 2.10 Comparison of intra-pellet macr oscopic absor ption reaction-rate

distribution for UO, between GALAXY with SDGM and MVP for each nuclide.
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Figure 2.11 Comparison of intra-pellet macr oscopic absor ption reaction-rate

distribution for MOX between GALAXY with SDGM and MVP far each nuclide.

The important advantage of GALAXY for the applicati of power profile
generations is short computation time comparindp &itontinuous energy Monte Ca
code. Especially for the microscopic depletion gktton with radial subdivision ¢
pellet, extrerely large computational load is necessarthe Monte Carlo code in orde
to achieve small statistical error. Furthermores thumber of actinide and fissi
product nuclides directly affects computation tinfeMonte Carlo code. Determinist
code suchs GALAXY does not have such a disadvantage afak calculation spee
of GALAXY with depletion calculation is much fastéran that of continuous ener

Monte Carlo cod:
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The verification of SDGM for irregular multi-cellegmetry is also carried out. The
specifications of the calculation condition arewshadn Table 2.7, and the geometrical
configuration is shown inFigure 2.12. Each pellet is numbered (1 to 8) for

convenience.

Table 2.7 Specifications of the multi-cell Monte-Carlo benchmark.

Physical quantity Set up conditions
Material temperature[K] 300.0
Pellet radius[cm] 0.4095
Pellet division 10 regions with equal volume
Cladding outer radius[cm] 0.4750
Cladding thickness[cm] 0.0655 (gap is omitted fandicity)
Guide tube outer radius[cm] 0.612
Guide tube thickness[cm] 0.041
Cell pitch[cm] 1.260
UO(4.1wt% V)
Fuel type MOX (7.1wt%Pu fissile contents)

UO,(2.6Wt% > U) with 6.0wt%GdOs
Zr4 (Few nuclides except for
Zr are omitted for simplicity)
Moderator type KO

Boron concentration[ppm] 500

Cladding and guide tubes type
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U0, cell (U)

MOX cell (M)

g Gd cell (G)
) GT cell
O

Figure 2.12 Geometrical configuration of multi-cell model.

A 3>x3 multi-cell model, including three U, fuel cells, three MOX fuel cells, tw
UO, + Ga,Os fuel cells and one guide tube cell, is preparedthier calculation. Th
room temperature condition is assumed. The spatic of this :x3 multi-cell model
is apseudo one only used for the overall verificatibhe geomerical configuration o

this benchmark icomplicatel because airregulaity including the no-fuel cell locatec
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in the asymmetrical position. Boundary conditiontlts problem is perfect reflection,
so the guide tube region simply simulates a largéewhole located in the center of
BWR fuel assembly. On this basis, each pellet regsodivided into 10 equal volume
rings for radial direction. Four types of colorleah the range between black and white
resonance absorption are irregularly arranged,M@X fuels and U@ + Ga.0; fuels
are almost black, UOfuels are gray and guide tube region is almosteviitom the
viewpoint of resonance calculation. If the calclataccuracy for the present four-color

problem is good, the robustness of SDGM can beirroned!.

Figure 2.13 shows the comparison of the energy-integrated osaopic absorption
reaction-rate distributions for each pellet betw&XL_AXY with SDGM (points) and
MVP (rectangular lines). The relative differences amaller than 2% for all rings in
each pellet. From this result, the good agreensobtnfirmed. Because MOX and YO
+ GO; fuels are the strong neutron absorbers, the djeaghent of reaction-rate
distribution is observed within pellet. As widelydwn in the field of "microscopic
reactor physics", the gradient for Y® Gd.0O; pellet is especially remarkable from the

neutronics point of view.
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Figure 2.13 Comparison of intra-pellet macr oscopic absor ption reaction-rate

distribution between GALAXY with SDGM and MVP for each fuel rod.

Both SDGM and SDDM (conventional method) obtaireefive cross-sections of an
annularly sub-divided pellet (multi-region systeb@sed on the resonance calculation
result of a pellet (one-region system) using thengetrical information of intra-pellet
sub-division. So the improvement from SDDM (implertexl to the current nuclear
design code) to SDGM (implemented to GALAXY) is shin the difference of pellet

one-region result between the current nuclear desige and GALAXY.

From the view point of applicability to PWR coreadysis, the accuracy of reactivity
is excellent in both codes, but the accuracy off fae power is improved in GALAXY
within the uncertainty of nuclear hot channel fachot only the pin-cell but also the<3

3 multi-cell results shown above already clarifye teffect of gray resonance and
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two-dimensional lattice treatment in GALAXY. Thdedt of overall improvement from
the current nuclear design code to GALAXY would bere clearly shown through
comparison with the reference value, i.e., measenémFrom this point of view,
calculation accuracy of fuel rod power is confirmbrbugh critical experiment analysis

in sub-section 2.6.7.

It can be concluded that SDGM can accurately ptete reaction-rate distribution
of highly heterogeneous system with the complicaggbmetry. It means that
GALAXY can execute both transport and resonanceutations consistently with the

exact two-dimensional geometry from the pelletdseanbly level.
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2.6.4 Comparison with Monte-Carlo Results for M@tioup Reaction-Rate

Fourth verification is to evaluate the accuracynailti-group reaction-rate with
reaction-rate preservation method described inide@.5.2. The method has been
implemented to GALAXY. The simple pin cell modets the typical UQ fuel at room
temperature condition of PWR are prepared for thlEuwtations. The multi-group
transport calculation is carried out and both tfiective multiplication factor and the
multi-group absorption reaction-rate 6¥U are obtained. The specification of the
calculation condition is the same as that of the pi@ cell problem in the section 2.6.3,
but pellet region is not sub-divided. The gray reswe self-shielding method with
reaction-rate preservation is applied in GALAXY aahtion. Furthermore, the gray
resonance self-shielding method without reactida-rareservation and Wigner's
one-term method with Dancoff correction are alsaried out for comparison. The

reference result is obtained by MVP.

Table 2.8 shows the comparison of the effective multiplicatifactor between
GALAXY and MVP. Figure 2.14 shows the absolute difference of the multi-group
absorption reaction-rate between GALAXY and MVPtHe case of the gray resonance
self-shielding method without reaction-rate prea@on, the overestimation for
multi-group absorption reaction-rate 67U influences the underestimation of the
multiplication factor. On the other hand, the gragonance self-shielding method with
reaction-rate preservation improves the accuraayati-group reaction-rate, and as a
result, the multiplication factor is accuratelyadated. Wigner’s one-term method with
Dancoff correction generates the accurate effeatmstiplication factor, but it is a
result of group-to-group cancel-out, as shown iguFe 2.14. From this result, the
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applicability of the present method for the reactiate preservation is confirmed.

Table 2.8 Comparisons of effective multiplication factor between GALAXY and

MVP.
Code Methodology Effective multiplication factor[-]  farence from MVP results[pcm]
. Gray rgsonance method_ 138313 17
with reaction rate preservation
GALAXY . Gray res.onance method . 1.37956 275
without reaction rate preservation
Wi t thod
!gner one term me. 0 138369 23
with Dancoff correction
Continuous energy L
MVP Monte-Carlo method 1.38337 10 (Statistical error)
Note: (GALAXY-MVP)/MVleO5
0.010 1.E+05
[o0) —
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Figure 2.14 Comparison of multi-group reaction-rate between GALAXY and

MVP.
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2.6.5 Extensive Monte-Carlo Benchmark for CommemRI&R Fuel Assembly

For the total validation of new resonance selfislimg methods with multi-group
MOC transport calculation, the effective multiplicen factor and the pin-by-pin fission
rate distribution in commercial PWR fuel assemblgtaned by GALAXY are
compared with those by MVP. The verification of leacey method described in
sections 2.2, 2.3, 2.4 and 2.5 has been carriednotite previous sub-sections. The
objective of this validation is to confirm the oa#traccuracy of the present resonance
self-shielding method with the transport calculatroethod for the PWR fuel assembly

calculations, which are the main use of the lafbiogsics code GALAXY.

The specifications of the calculation condition shewn inTable 2.9. As shown in
Table 2.9, fuel type, lattice arrangement, fuel position, thermal-hydraulic condition,
boron concentration and type of inserted rod aelyichanged for overall validation.
The present extensive benchmark problem is gemnegt@rthogonal table [23], which
is widely applied in quality engineering field. Thember of parameter combinations
based on Table 2.9 is about several tens of thagsao the reduction of the benchmark
set is required for efficient validation. By intnazing the orthogonal table, the number

of calculations in the benchmark is effectivelyueed to less than one thousand.
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Table 2.9 Specifications of the extensive M onte-Carlo benchmark.

Parameter Condition
Fuel type UQ, UG, with Gd:03, MOX, UO, with ERO3
Lattice arrangement 14x14, 15x15, 17x17

0.75-9.0Wt%">U in UO;
6.0, 10.0wt% GgD3 in UO, + GO3
3.1-13.0wt% Pu contents in MOX
5.0wt% EpO3 in UO, + EROs

Fuel composition

Thermo-hydraulic conditior 300-1800K for fuel temgpiere
Boron concentration 0-3500ppm
Inserted rod Non insertion, RCC, BP (PyrexCB

Figure 2.15 shows the difference of effective multiplicatiomcfor between
GALAXY and MVP. The differences are almost smattesan 200pcm (0.2%Kk) in all
cases. The accuracy of effective cross-sectionahlasge influence for predicting the
appropriate effective multiplication factor, so tipeesent resonance self-shielding

methods drastically contribute to the robust acoyid lattice physics calculations.
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Figure 2.15 Comparison of effective multiplication factor between GALAXY and

MVP.

On the other hancFigure 2.16 shows the standard deviation for the differenc

pin-by-pin fission rate spatial distribution between GAL¥>and MVP. The standal

deviations are almost smaller than 0.5% il cases. The accuracy of reac-rate

spatial distribution is roughly determined by thelested transport method. So,

preser resonance seshielding methods and MOC are the good combinafar

generating both the effective multiplication factrd the fission rate distribution wi

high accurac
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Figure 2.16 Standard deviation of differencefor pin-by-pin fission rate between

GALAXY and MVP.
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2.6.6 Post Irradiation Examination Analysis

For the total validation of new resonance selfislmg methods including SDGM
with multi-group MOC transport and microscopic dsjan calculations, the post
irradiation examination (PIE) analysis is carrieat.oThe spatial burnup and nuclide
composition distributions within a fuel pellet olntad by GALAXY are compared with
those by measurements reported by Central Resdastiiute of Electric Power
Industry (CRIEPI) [24]. The verification of each mponent method described in
sections 2.2, 2.3, 2.4 and 2.5 has been carriednotite previous sub-sections. The
objective of this validation is to confirm the oa#raccuracy of the present resonance
self-shielding method with the transport and depietcalculation methods of

GALAXY.

In the microscopic depletion calculation of GALAXXrylov sub-space method is
adopted for direct loop chain treatment in expoiaéndepletion matrix [25]. U@
(3.8wt% ) pellet is irradiated and the maximum averagedhibpi is 74.5GWd/t in
this PIE. For the calculation of GALAXY, the pelled first divided into 10 equal
volume rings and then the outer 3 rings are redeéiinto 13 equal volume rings. So,
the pellet is totally divided into 20 rings for raddirection. Pellet temperature is

assumed to be constant for radial direction andk98Qsed.

Figures 2.17, 2.18 and2.19 show the comparison of the spatial burnup andideicl
composition distributions within a fuel pellet be®n calculations by GALAXY
(rectangular lines) and measurements (circle ppirisr the evaluation of nuclide
composition, U, ?*U and?*®U are taken into account for the uranium isotopdks (

and?*¥Pu,Z%Pu,%%Pu,?*'Pu and*?Pu are for the plutonium isotopes (Pu), respegtivel
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Spatially dependent weight ratio of U and Pu nwdidk normalized so that the tot
ratio becomes unity (100%) for each ring. From ¢hessults, the good agreemen
confirmed between calculation and measurement salligerefore, it can be conclud
that GALAXY can appropriately carry out the micropt cepletion calculations wit

the present resonance s¢shielding treatmer

160 1
o Measurement
140
— Calculation by
— GALAXY
3 L
2 120
9,
=3
o
5 100
m
80

00 02 04 06 038 1.0
Relative radius|[-]

Figure 2.17 Comparison of burnup distribution between calculation by GALAXY

and measur ement.
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Figure 2.18 Comparison of U composition distribution between calculation by

GALAXY and measurement.
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Figure 2.19 Comparison of Pu composition distribution between calculation by

GALAXY and measurement.
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2.6.7 Critical Experiment Analysis

For the overall validation of new resonance seiélsing methods with multi-group
MOC transport calculation, the critical experimaniglysis is carried out. The VENUS
International Program (VIP) critical experimentdlosen for analysis. The fuel rod
powers obtained by the current nuclear design esadeGALAXY are compared with
those by the measurements reported in Ref. 26etReljion is not sub-divided in the
calculations. The objective of this validation @ ¢onfirm the difference of overall

accuracy between the current nuclear design cod &&bAXY.

The VIP critical experiments were mainly conducbgdBelgonucléaire (B/N) and
the Belgian Nuclear Research Center (SCK/CEN). fwosver distribution was
measured for the PWR 47 lattice configuration shown iaigure 2.20. The layout of
the experiment consists of a MOX fuel assemblyaurded by 4 U@fuel assemblies.
The uranium enrichment of UGassembly is 3.0 wt%. The MOX fuel assembly has
three different plutonium total contents. The tqikitonium contents ((Pd¥Am)/(U+
Pu+#*Am+°0)) are 12.6 wt%, 8.6 wt% and 4.8 wt% for the hjgmedium- and
low-content MOX rods, respectively. These fuel agsiees are surrounded by a driver

fuel region with 3.0 wt% and 4.0 wt% UYuel rods.
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Figure 2.20 Core configuration of VIP critical experiment.

The fuel rod power distributions obtained by thereat nuclear design code and
GALAXY are compared with the measurements obtaiogdhe gamma scan method.
The differences of power distribution for “currenticlear design code calculation
versus measurement” and “GALAXY calculation versusasurement” are depicted in
Figures 2.21 and2.22 for MOX and UQ fuel assemblies, respectively. The maximum

differences of rod power in the current nuclearigtesode and GALAXY calculations
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are 5.7% and -3.6%, respectively. For the currerdlear design code, the standard
deviations of the difference are 2.2% and 1.5% M&®X and UQ, respectively. In
contrast, in GALAXY, the standard deviations ar8%.and 1.2% for MOX and UQ

respectively.
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Figure 2.21 Calculation to measurement ratio of power distribution for MOX fuel

assembly in VIP critical experiment.
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Figure 2.22 Calculation to measurement ratio of power distribution for UO, fuel

assembly in VIP critical experiment.

From these results, the improvement of overalludateon accuracy from the current

nuclear design code to GALAXY is confirmed.
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2.7 Conclusion

A new resonance self-shielding method based on dtjeivalence theory is
developed for general application to the latticggits calculations. The present scope
includes commercial light water reactor design iagibns which require both
calculation accuracy and calculation speed. In rotdedevelop the new resonance
self-shielding method, all the calculation processkom cross-section library
preparation to effective cross-section generatrenreviewed and reframed by adopting
the current enhanced methodologies for lattice utafions. The new method is
composed of the following four key methods: (1) sssection library generation
method with a polynomial hyperbolic tangent forntida, (2) resonance self-shielding
method based on the multi-term rational approxiomafor general lattice geometry and
gray resonance absorbers, (3) spatially dependagtrgsonance self-shielding method
for generation of intra-pellet power profile ang {Adtegrated reaction-rate preservation
method between the multi-group and the ultra-finedg calculations. From the various
verifications and validations, applicability of tipeesent resonance treatment is totally
confirmed. As a result, the new resonance selfldinig method is established, not only
by extension of a past concentrated effort in #ector physics research field, but also
by unification of newly developed unique and chadieg techniques for practical

application of the lattice physics calculations.

In addition to the topics of the present studyatiment of the thermal motion of
heavy nuclides for resonance scattering kernel, [[28] is important for the exact
modeling of the actual physical phenomenon. Fumtioee, consideration of the
resonance interference effect is also importanm#ef resonance treatment from the
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view point of improvement of the reactor physicedty and reduction of the

calculation error. These are still open problems.

Conventionally, the validity of resonance self-#thieg method has not sufficiently
been analyzed so far when the method was implemhentéattice physics codes, in
spite of the many approximations in the resonamtieskielding theory. However, the
resonance treatment is a key part of reactor poysmory and would dominate the final
accuracy of lattice physics calculations. From thomt of view, a series of products in
the present study will be useful, not only for thevelopment of GALAXY, but for the

deeper insight and improvement of reactor physiesry.
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CHAPTER 3. DEVELOPMENT OF HYBRID
RESONANCE SELF-SHIELDING METHODOLOGY
FOR ENERGY DEPENDENT SCATTERING SOURCE
AND RESONANCE INTERFERENCE EFFECT BASED
ON INTEGRATION OF EQUIVALENCE THEORY AND
ULTRA-FINE-GROUP SLOWING-DOWN

CALCULATION

3.1 Introduction

Resonance treatment is one of the important elesmémt the lattice physics
calculation in the reactor physics field. In therreat lattice physics codes, the
microscopic reaction-rates and the neutron muttlon factor are usually evaluated
through the resonance calculation and the (singledti stage) flux calculation. The
resonance calculation is to generate multi-grofgcéfe cross-sections considering the
resonance self-shielding effect. The choice ofrttethod for resonance self-shielding
treatment is very important because the effectresszsection directly influences on the

result of subsequent multi-group flux calculatioraiheterogeneous geometry.

In conventional lattice physics codes, the equivedetheory [1] has been widely
applied as a fundamental method for resonance skadfding treatment. The

equivalence theory can easily treat the resonagifsiselding effect by assuming the
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equivalence between homogeneous and heterogengstiesns using the background
cross-section. The resonance self-shielding treatrinased on the equivalence theory
has been successfully applied by its simple anddasulation features, which are the

most advantages of this method.

In the recent trend of core analysis, extensiothefapplicable range tends to be
required for the lattice physics code while keepitsgprediction accuracy. For the
resonance self-shielding treatment based on theaquoce theory, the following three
features are especially the important items to ddressed to extend the applicable
range with keeping sufficient accuracy, i.e., (1gxible geometry treatment, (2)
consideration for the variety of fuel compositicasd (3) wider application range for
the water moderator density. Items (1) and (2) iamgortant for the innovative fuel
designs, and (3) is important for the safety anslgpplications of LWRs (Light Water
Reactors). In the conventional equivalence thedhe above three items are

approximately treated as follows:

(1) Geometry: One-dimensional cylindrical approximatiq@] with

Dancoff method [1],

(2) Fuel composition: No resonance interference efffidgt among

multiple resonance nuclides in the fuel material,

(3) Moderator density: Optimized for the normal opematicondition
assuming the 1/E asymptotic spectrum for the gswadtesource

approximation.
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In order to reduce the influence of the above axiprations, the ultra-fine-group
treatment has been investigated for the resonaaicalation in the recent studies [3, 4,
5]. In this treatment, the resonance cross-sectteply varying to the neutron energy
is directly taken into account on the ultra-fineesgy group resolution. The direct
ultra-fine-group slowing-down calculation is an &pgch to generate effective
cross-sections with high accuracy, but its apgbeats usually limited to the pin-cell
geometry. Extension to the fuel assembly geomeinsidering the variety of pin-wise
fuel compositions and the irregular lattice effdoe to the non-fuel cells is not very

easy.

To remove the limitation in the ultra-fine-grougdtment, the more direct approach
has also been investigated by reflecting the cuhvgih computational performandes.,
increasing the number of energy groups for the inguitup flux calculation step in the
fuel assembly geometry [6, 7]. The influence of tlesonance calculation can be
reduced by increasing the number of energy graaps the detailed energy dependence
of the resonance cross-section and the neutrondldiectly taken into account in flux
calculation step. This treatment is surely strdagiatard approach, but it cannot be
applied easily for the design applications whictuiee many branch calculations in the

nuclear constants generation.

By investigating the past beneficial studies fog tlesonance treatment mentioned
above, the advanced method for resonance selidgigetreatment is newly developed
in the present study. The target of the new methdd achieve high accuracy without

increasing the number of energy groups in the ¢alculation step. Especially, the main
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features to address the above three approximaathtents are summarized as follows:

(1) Geometry

In the past study, the gray resonance self-shiglthie@atment method [8] based on
the equivalence theory was established for MHI ghishi Heavy Industries, Ltd.)

lattice physics code GALAXY [9]. This method canngeate the coefficients of the

multi-term rational equation ¢, and S, shown in section 2) to consider the

heterogeneity between fuel and non-fuel regiond, the irregular lattice effect in the
fuel assembly geometry. The coefficients are gdedrso as to obtain the accurate flux
response by the rational equation against all ptiea length ranges of the fuel regions.
The optical length includes the intermediate rabgiveen the black (perfect neutron
absorber) and the white (pure neutron scatter)t loonditions, and this intermediate
range is called as the “gray resonance range’n&ontrast to the “black” or “white”
limits. In the method, the effect of gray resonarge the two-dimensional exact
geometry can be directly handled by using the aoeqg MOC (method of

characteristics) [10] fixed source calculations.

In the resonance self-shielding treatment newlgldsthed in the present study, the
coefficients of the multi-term rational equatiom the neutron flux in the heterogeneous
system capture the various spatial effects foretkeect geometry mentioned above. To
achieve the efficient spatial treatment, a new fofnenergy dependent neutron flux is
proposed based on the flux derivation scheme irethevalence theory consistent with
the multi-term rational equation of the gray resw®a treatment method. The

coefficients can be generated for pin-by-pin resohy thus the new method can
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efficiently handle a two-dimensional exact assenga@gmetry.

(2) Fuel composition

The spatial effect is accurately treated by theceph described in (1). Another
important element is the accurate treatment ofggndependence for the neutron flux.
In the equivalence theory, the resonance crosgesscexcept for the target resonance
nuclide are usually not considered to achieve ihgle and fast calculations. The
approximated treatment of the cross-sections negtbe resonance interference effect
among the multiple resonance nuclides in the fwglion. Though the resonance
interference effect itself can be considered edsylythe RIF (resonance interference
factor) method [11, 12], another important appraadion in the equivalence theory, i.e.,
the scattering source approximation, also needsetoeviewed for the more accurate
treatment [13]. To remove the above two approxiomsj all the resonance
cross-sections for the important resonance nuclidéise fuel region, and the accurate
scattering source in the fuel region which appesrshe slowing-down equation, are

taken into account for the flux derivation scheméhie present study.

(3) Moderator density

The scattering source of the non-fuel region i® atsportant element. The simple
1/E spectrum is assumed as a flux for the non-fegions in the conventional
equivalence theory [1]. The approximation may bdédvéor the normal operation
condition of LWR, in which plenty hydrogen existsthe moderator region and many

neutrons are slowed down to the epi-thermal ensxgges. The 1/E flux approximation

131



is not sufficient for the low moderator density ddaion, and the flux in the moderator
region is directly influenced by the flux in theefuregion. It should be noted that the
prediction accuracy of the moderator flux also @fethe accuracy of the fuel flux
through the scattering source provided from the emar region, hence the accurate
moderator flux treatment is important. In ordertteat the scattering source of the
non-fuel region more accurately, the resonancestedfiding effect in the fuel region is

theoretically taken into account to the flux in ti@n-fuel region in the present study.

By the above three treatments, a new form of enelggendent neutron flux is
derived. The fundamental form is the multi-termaaal equation, and at the same time,
it is the slowing-down equation. The former aspswtresponds to consideration of the
spatial dependence of the flux (pin-by-pin resoln)j and the latter corresponds to
consideration of the energy dependence of the f{uixra-fine-group resolution),
respectively. As a result of the new derivationesoh, a new method for resonance
self-shielding treatment is established as a hytmadiel of the equivalence theory and

the ultra-fine-group slowing-down calculation.

On the basis of the above concepts, contents &f axtion in the present paper are

summarized as follows.

<Section 3.2>

A new slowing-down equation is proposed with a meitm rational form. The

equivalence theory and the ultra-fine-group treatnage theoretically integrated in the
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derivation scheme.

<Section 3.3>

A correction factor equation is derived to presertie reaction-rate between

multi-group and ultra-fine-group treatments.

<Section 3.4>

Numerical treatments with discretized equationssaie@vn for actual implementation of

the new method.

<Section 3.5>

A new method for resonance self-shielding treatnestéblished in sections 3.2-3.4 is

verified for unit pin-cell problem with lattice pbics code GALAXY.

<Section 3.6>

A new method for resonance self-shielding treatmentverified for UQ/MOX

multi-assembly problem with lattice physics codel@XY.

<Section 3.7>

Extensive Monte-Carlo pin-cell benchmark is carrmat for infinite multiplication

133



factor (k-infinity) and reactivity coefficients iwide application range by comparison

between GALAXY and continuous energy Monte-Carlde®VP.

<Section 3.8>

The conclusions of the present study are summarized
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3.2 Derivation of Slowing-Down Equation with Mulferm Rational Form
3.2.1 Slowing-Down Equation for Two-Region Hetenogeus System

The integral form of neutron transport equationtfeo region heterogeneous system

consisting of fuel and non-fuel regions is writtesn
2 (E)@ (EV, =S, (E)VV, P, ;(E) + S, (EV, Py (E). (3.1)

In the following derivation, the non-fuel regiondsfined as multiple regions except
for fuel. For the typical LWR (light water reactanpit cell, non-fuel region is composed

of cladding and moderator regions.

In the resolved resonance energy ranges, therissiarce can be omitted. The (n,
2n) reaction is also negligible in this energy mngherefore the neutron source term

for fuel region can be written as scattering source
S (E)=) [ EN/0L(E ~ E)g (E), (3.2)
k

The neutron source for non-fuel region can be amitis the same manner.

By applying the isotropic and elastic-down scatigrnin the center-of-mass system,

the scattering cross-section matrix is derived as:

o EACE (E<E'<Ela,)
o (E' - E)={@-a,)E (3.3)

0 (E'<EorE'>E/a)).

By substituting Equation (3.3) into Equation (3.2 scattering source for the fuel

region is written as:
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E/ak Y=
r 0- E 1
S, (E) = ZJ f % ¢ (E)
g i (3.4)
‘Z ”£0EME)
a- ak) E
The scattering source for the non-fuel region $® avritten as:
()ZIW EWfWEWMH (35)
(1_ k) E' .

By substituting Equations (3.4) and (3.5) into Bora(3.1), neutron slowing-down

equation for the fuel region can be obtained as:

P, (E) o dE' g (E) g, (E')
# (8= 2- mj

z (E) E'
P~ (E) Z N, JE/ak dE'c¢ (E"gy (E)
vV, () %-a) g

(3.6)

The equation for the non-fuel region is obtainedtles same manner. The more
general equation for the multiple region systemr@rihan two regions) can be easily
derived in similar way. In the resonance self-stirg treatment based on the
conventional ultra-fine-group calculation, the siogrdown equation for a
heterogeneous system is directly solved with sévens of thousands of energy groups.
As can be seen from Equation (3.6), the slowing+lequation cannot be solved
analytically except for the very simple case beeatl® flux itself is included in the
scattering source term. In the actual numericahttnent of Equation (3.6), the
ultra-fine-group flux is solved from the fast teettower energy ranges as a fixed source
problem without fission source updates (outer ttens) and scattering source updates

(inner iterations).
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3.2.2 Flux and Scattering Source for Non-Fuel Regio

In the present study, the ultra-fine-group slowdgyvn equation in the
heterogeneous system, i.e., Equation (3.6) or the general one, is not directly solved
for fast calculation. Besides, the NR or IR appmaiion [1, 14] of the scattering source
conventionally used in the equivalence theory i$ also applied to improve the
prediction accuracy of energy dependent neutron fle achieve this concept, further

theoretical approximations are not applied fordbattering source of the fuel region.

The efficient treatment of non-fuel region is mamgortant for fast and accurate
resonance calculation. The effect of resonancetesoeg for the non-fuel region is
usually small relative to that for the fuel regi@y. using this assumption, the scattering

source for the non-fuel region (Equation (5)) ipraximated as:

an O.k E/ay dE! EI
k p J ¢an( ) ’ (37)
E E

S ® DX 4,5

where a,k) denotes the microscopic potential scattering esession of nuclidek .

The neutron flux in the non-fuel regiog ((E) ) is usually influenced by the flux in

the fuel region.¢  (E) is not a simplel/ E asymptotic spectrum, and includes the

self-shielding effect induced by the resonanceshi fuel region. The treatment of

non-asymptotic effect is especially important foe fow moderator density conditions

assumed in safety analysis. To incorporate thectkffe (E) is expressed as a

following equation in the present study:
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7 (B) =02+ (1-6)9, (E). (3.8)
where ¢ . (E) denotes the non-asymptotic component of the fluxthe non-fuel
region. & denotes the ratio of asymptotic spectrufi<(d<1). ¢ (E) can be
derived from corrected neutron flux in the fuelioen(¢, (E)). ¢, (E) is not derived

in this intermediate process, hence the concreta fof ¢_ (E) is discussed in the

following sub-section (section 3.2.4).

In the extreme condition fod - 0, ¢ (E) approaches tap . (E) (or ¢, (E)).

This special case corresponds to the situatiorhiciwthe neutrons would not collide in
the non-fuel region. This means that the non-faglan is in the vacuum condition. For
the typical example in the reactor core or the spenlear fuel pool for the LWR, most
of the water surrounding the fuel rods evaporated becomes low density mist

condition.

By substituting Equation (3.8) into Equation (3.8, (E) can be transformed as:

_ N;fa.lg E/a, dE, 1 B '
s@=Tas| E EE@E,+(1 9)¢m(E)}
_ nf N nfa.k E/ay dE'¢nf (E')
9— + (- e)z i-a.) — (3.9)
{ma 60— Nna J/ dEME)] o
z (1 a,) E

where Z‘F‘f denotes the macroscopic potential scattering €esBon in the non-fuel

region.
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By defining the part of the intermediate producEmpuation (3.9) by:

_ N“fa— Elac g’ ¢nf(E)
HU(E)=0+([1- 9) (1 ak)J _ (3.10)
S, (E) is rewritten as:
Sy (E) = u(E) E" = U(E)Z} 4..(E), (3.11)

where the asymptotic spectruftf E is rewritten as¢, (E) .

The conventional form ofs (E) is £ /E in the equivalence theory, therefore

U(E) corresponds to the correction factor to consider glf-shielding effect by the

resonances in a fuel region.

139



3.2.3 Incorporation of Multi-Term Rational Equatifor Fuel Escape Probability

By substituting Equation (3.11) into Equation (3.the transport equation for the

two region heterogeneous system is rewritten as:
2 (E)g (EV =S (ENV,P_((E)+ UE)Z P (ENV, Py ((E).  (3.12)

The following formulation is based on the flux d@tion scheme for the multi-term
rational approximation [8] in the equivalence theoithe fuel to fuel collision

probability satisfies the following probability egion:

P (E)=1-P,_(E)=1-PR.(E), (3.13)

where P, . (E) denotes the fuel to non-fuel collision probabjliyhich corresponds

to the first-flight fuel escape probability in tHattice system,P,(E) [1]. P.(E)

includes the lattice effect due to the neutron entrinduced by the neighboring fuel

rods or the non-fuel regions.

The reciprocity theorem between the fuel and thefoel regions is also written as:

I/ (E)V Py (B) =3V, Py (B), (3.14)

p

where the total cross-section for the non-fuel aegs approximated as the potential

scattering cross-section, i.e%" (E) OZ{ (E) Oz},

in the right hand side of the
equation. In this approximation, the non-fuel males assumed as a pure scatterer to
the neutron for the target resonance energy ranvgaesh do not include the thermal

energy ranges. The effect of resonance scattesinitpé non-fuel region is also regarded

as small relative to that for the fuel region, whis consistent with the assumption in
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Equation (3.7).

By substituting Equations (3.13) and (3.14) inte tight hand side of Equation

(3.12), Equation (3.12) is rewritten as:

2 (E)@ (E)V, =S, (E)V,{1-P;_ (E)} + 4, (E)U(E)Z! (E)NV, P, (E).

(3.15)
Further transformation of Equation (3.15) can yield
S; (E)
¢f (E) :{1_ Pf -nf (E)} sz— + ¢as(E):u(E)Pf -nf (E)
¢ (E)
= ¢.(E) E;{l— P (E)} E{ 5(5) J/Zf (E)} + U(E)P;_ (E)
as [ f - nf ¢aS(E) t f - nf
=4..(B) }1-R.(E) E;fL(E)Jfﬂ(E)Pe(E)}
i ¢ (E)
(3.16)
where
T gu(E) |

>!,(E) denotes the “slowing-down cross-section” newly edrand defined in the
present study. It should be noted that the dimen$io ¢, (E) in Equation (3.17)
corresponds to that for the neutron flux. Consiterihat the dimension fos, (E)

corresponds to that for the macroscopic reactitm-fiee., product of the macroscopic
cross-section and the flux), the dimension ff, (E) is, after all, equal to that for the

macroscopic cross-section. It is sure tEf (E) is not a pure cross-section in the
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physical point of view, but it can be converted tiee macroscopic potential
cross-section in case of the NR approximation (detae discussed in section 3.2.6).

Thus z!,(E) is formally written as a cross-section.
In the multi-term rational approximation of the fuescape probability,P,(E) is
expressed as [1, 8]:

P(E)=) B,——on

—_— 3.18
n=1 " z'[f (E)lf +an ( )

where |, denotes the mean chord length of the fuel lurhp. denotes the number of
rational equation termsa, corresponds to then -th coefficient considering the

heterogeneous and lattice effec{s, corresponds to the weight of rational equation

normalized as:
.6, =1. (3.19)

By substituting Equations (3.18) and (3.19) intouttipn (3.16), the energy

dependent neutron flux in the fuel region is detias:
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¢, (E) = ¢..(E) [E{l— P.(E)} Gzzsﬂ(%+#(E)Pe(E)}

a-R(E)} BZZ%%W(E)&(E)}

ml|e
1 T

N L(E)|
1 {Z'B Z'B ! (E)I +a }DZZJ(E)
== (3.20)
E
+H )Zﬂ 5 (E)I va |
_1 BN H(E)a,
CE| Zﬂ SHE), +a, nz;,g sHE), +a}
_1S sd(E)If +u(E)a,
g2 5/(E) +a,
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3.2.4 A New Set of Slowing-Down Equation

From Equations (3.4), (3.10), (3.17) and (3.203,tleutron flux in the fuel region is

formulated as:

Z(E)l, +ﬂ(E)a

¢ (E) ——Zlﬁ STE), + (3.21)
where
S, (E) % dE' 0¥ (EN g (E)
S(E)=—"—=E) J f 3.22
ChPYE RN g 322
H(E)=0+(-6) ZNHU Emkw. (3.23)

(1_ k) E

As referred in section 3.2.2¢ . (E) in Equation (3.23) denotes the non-asymptotic

component of the flux in the non-fuel region. Hoe heutron flux in the non-fuel region,

the self-shielding effect propagated by the resoesrof the fuel region is somewhat

mitigated. Thereforeg . (E) can be approximated by correcting the heterogeneou

term a, of Equation (3.21) as:

SL(E), +uE)Ea,
. (E)= Z_llﬁ STE) req, (3.24)

where &, denotes then -th coefficient considering the mitigation of resoce
self-shielding effect in the non-fuel region.

Equations (3.21)-(3.24) are the new set of slowdogm equation for a two-region
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heterogeneous system. In the actual numericahtesst ¢, (E), =/ (E), x(E) and

¢.. (E) are solved successively from the fast to the loamergy ranges as a fixed

source problem without fission source updates (oitgeations) and scattering source
updates (inner iterations). The detail of the nucaétreatment is described in section

3.4.1.

With the byproducts of the solution for EquatioB2()-(3.24), the neutron flux in a

non-fuel region can be reconstructed using Equat{8r8) and (3.24) as:

@y (E) :é 8+ (l_g)iﬁn st(E)lf +,U(E)gnan (325)

= > (B +e,a,
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3.2.5 Essential Roles of and ¢,

The coefficientsd and ¢, are the essential elements to represent the flua i

non-fuel region by the following reasons.

(1) Essential role and the number of H atom dependehd2

Figure 3.1 shows the typical example of fluxes in a fuel andon-fuel region for
the wide range of fuel optical length obtained frdtm MOC one-group fixed source
calculation. In this figure, fluxes are calculated 4.8wt%UQ pin-cell geometry
analyzed in section 3.5. In the black limit, thecnascopic total cross-section reaches to

> o o, as aresult ofz] - ». In this extreme case, the flux in a fuel regien i

converged as zerolim ¢, =0, see Equation (3.21)), but the flux in a non-fregion

> —»0
must be always positiveg(. > 0) due to the scattering source in the non-fuelaegas

long as some materials exist in the non-fuel regidre value of @ plays a role in the

asymptotic component of , which is independent to variation &/, whereas

@-6)¢,, depends onz' . These properties can be followed by Figure 3.1.
Mathematical meaning o/ is clarified in section 3.2.7 (Equation (3.38)).

Note that & strongly depends on the moderator dengtigure 3.2 shows the
example for moderator density dependencefof In this figure, & is plotted for
various moderator density conditions of 4.8wt%Ug@in-cell geometry analyzed in

section 3.5. The moderator density dependenceomsrsiboth for the normal cell pitch
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condition of PWR (Pressurized Water Reactor) ared gbeudo wide pitch condition.
The moderator to fuel volume ratios (¥+) are 1.67 and 10.71, respectively. As shown
in Figure 3.2, 68 is larger for the water enriched conditions tham the lower
moderator density conditions. By rearranging theabveor of & shown in Figure 3.2,

6 depends on the number'sf atom in a fuel cell, as shown in Figure 3.3 (tienber

of 'H atom is normalized by that 6%U atom). As shown in Figure 3.39 is large for

the high'H/?*®U conditions than for the lowéH/>%U, respectively.

(2) Essential role ofe,

As described in section 3.2.%, . (E) approaches tap . (E) in case of the limited

condition, i.e., @ - 0. In this extreme case, the non-fuel region is lo& Yacuum
condition, hence the corresponding two region sysi® after all, equivalent to the

homogeneous medium composed of the fuel materialy. onTherefore,

¢:(E)=¢.(E)=¢, (E) incaseoff - 0. In this extreme cases, =1.

Application of £, is more important for the heterogeneous geomdiry 4<1)

than for the homogeneous mediur@ £0). In the general heterogeneous case, the

non-asymptotic component of the flux in the nontfuegion, i.e., ¢ (E), is not
completely equal tog, (E) . Therefore, £, is newly introduced as a correction factor

in order to well approximatep . (E) by means of correcting, (E) .

As shown in Figure 3.1, the gradient (or sensijviof ¢ . or 1-6)¢, .
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associated withz change is generally different from that @f . The above
sensitivity is essentially determined by the relatof magnitude betweeil, and

a, in the denominator of Equation (3.21). The différsensitivity effect of a non-fuel

n
region comparing with a fuel region can be conglby correctinga, in the rational
equation. Thereforeg, plays a role in the sensitivity correction factora non-fuel

region againstz change. The sensitivity op . (Equation (3.24)) induced by

change can be mitigated bg,.
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Figure 3.1 Fluxes by the MOC one-group fixed source calculationsfor wide range

of optical length and expression of non-fuel flux.
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3.2.6 Comparison with Conventional Equivalence Theo

A new set of the slowing-down equation shows a ribizal hybrid form of the
equivalence theory and the ultra-fine-group treatmdn this sub-section, it is
confirmed that Equations (3.21)-(3.25) can be fiansed to the equations generally

used in the equivalence theory by the conventiscattering source approximation.

By the NR approximation, Equation (3.22) is appnaxied as:

Elac e 5!
SL(E)= EZa_ L[ ——=EGE:ZW (3.26)

where Z; denotes the macroscopic potential scattering €esBon in the fuel
region.

The NR approximation is also applied for the noelregion. The flux in the
non-fuel region is approximated as a simgleE form, thus =1. As a result, the

following simple relation is derived from Equati{®23):
U(E) =1. (3.27)
By substituting Equations (3.26) and (3.27) intou&iipns (3.21), and by

considering € =1, the flux in the fuel and the non-fuel regions approximated as:

N ol+a,
% (E )~—Z,3 W (3.28)

21
WA5~E- (3.29)

Equations (3.28) and (3.29) are the general formth&f neutron flux in the

equivalence theory using the NR approximation. As be confirmed by comparisons
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of Equations (3.21) and (3.25) with Equations (3.28d (3.29), a new form of the
slowing-down equations is completely equivalentite conventional equations based

on the equivalence theory by applying the followaagversion.

<Numerator in Equation (3.21)>
Zu(E) - 2,

<Numerator in Equation (3.21)>
H(E) -1

<Equation (3.25)>

-1
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3.2.7 Numerical Generation of Rational CoefficigioisGray Resonance Ranges

In the present method, the coefficients, ., &, and 8 in the rational equation

are required in advance to solve Equations (3.224(. The coefficients are generated
so as to reproduce the neutron fluxes by one-gfowgal source MOC (method of
characteristics) calculations against the sevgrata lengths including gray resonance
ranges. The fundamental concept is the same as ftathe gray resonance

self-shielding treatment method [8].

In the fixed source MOC calculations, the neutrams$port equation is written as:
WSE) s Eywise)=XE), (3.30)
ds ar

where ¢(s,E) denotes the angular flux for neutron energy at spatial positions

along with the specific characteristics line. Theutnon source is assumed to be
isotropic and written af)(E)/471. In the NR approximation consistent with Equation

(3.26), the neutron source of Equations (3.4) afd)(can be expressed as

Q(E)=%,/E by approximating the scattering cross-sections tla potential

scattering cross-sections, and the fluxes withia émergy integration as th& E

asymptotic form. Then Equation (3.30) is rewritéen

12

dy(s,E) 2y
ds =y

+2 (B (sE)= (3.31)

By multiplying E for both sides of Equation (3.31), the followinguation is

derived:

dt//(SU) +3 (W (su) _Z (3.32)
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where Eg (s, E) is rewritten asg/(s,u) denoting the angular flux for lethargy unit.

By assuming one-group fixed source problem, Equga32) is simplified as:

W) 5 =20 (3.33)
ds a4

The scalar fluxes for each heterogeneous regionobtained by integrating the
angular flux solutions of Equation (3.33) againatte characteristics line, polar and
azimuthal angles. As shown in Equation (3.33), dhe-group equation is completely

independent to the energy groups. In the MOC calmnis for the present method, the

final target is to generate the energy independeefficients a,, S,, &, and @ for

the rational equation, i.e., the flux response hHe tnacroscopic total cross-section
change. The energy dependence of the flux is imtglicaken into account on the
fluctuation of the macroscopic cross-section ingtehenergy, which covers the range

between the black and the white limits including teal gray resonance optical length.

The flux in the fuel region is expressed as Equat®28) in the equivalence theory.
By averaging Equation (3.28) to the specific enemyges assuming constant

cross-section, the lethargy averaged flux in thel fiegion becomes independent to

energy and is written as a function of the optieagth =1, :

N Zl+a

@ (=)= Zﬁ (3.34)

S +a,

In the present method, the coefficients, S, are first generated so as to well

reproduce the one-group MOC result by Equation4(3.8h concrete, the following

objective function is minimized:
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(A:f]:il[(ﬂf.g{[z‘ﬂ t,|f+ZnJ %H21 (3.35)

where (thy, , ¢ ,) denote the set of macroscopic total cross-seaiahthe flux in the

fuel region by the MOC calculations for several noacopic cross-section points (
the number of macroscopic cross-section pointsjue/af % covers the range
between the black and the white limits including tfray resonance ranges. Value of

¢, is obtained from the one-group fixed source calooih in the exact geometry by

MOC. Thus the effect of geometry is directly incorgted into the fitted coefficients

a,, B, forthe pin-by-pin resolution in a fuel assembly.

In the present method, the coefficierds and 8 for the flux in the non-fuel

region are also required. By substituting only Eoues (3.26) and (3.27) into Equation

(3.25), the flux in the non-fuel region is exprebsss:

7 (B)= 1|6+ 0- e)iﬁ Zole *En | (3.36)
N (E)I te,a,

By averaging Equation (3.36) to the specific energgges assuming constant

cross-section, the lethargy averaged flux in the-fo@l region becomes independent to

energy and is also written as a function of thécaptength /1, :

+&.a,

G (Z(1) =0+ (- H)Zﬁ (3.37)

Ztlf+£a

From Equation (3.37), the coefficierl is easily obtained as the non-fuel flux in
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the black limit condition:

6=1im @, (Z/1,). (3.38)
2y -

In the a,, B, and @ fixed condition, ¢, is then generated so as to well

reproduce the one group MOC result by Equation7(3.8h concrete, the following

objective function is minimized:

2 2
Ag, Ll 1 NG ST +ea,
=Y | —Q|6+@1-6> g2 |- , 3.39
[ D J ;[%f, %[ ( );IB th,llf +5nan) %H}] ( )

where &/, ¢,,) denote the set of macroscopic total cross-sedtiahe fuel region

and the flux in the non-fuel region by the MOC c#dtions for several pointsg, , is

obtained from the above one-group fixed sourceuwtation by the MOC. The effects of

geometry and moderator density are also directgriporated into the coefficients,,

@ for the pin-by-pin resolution in a fuel assembly.
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3.3 Derivation of Correction Factor Equation foraReon-Rate Preservation
3.3.1 Conventional SPH Method for Reduction of Mgtoup Condensation Error

In the multi-group (100~200 energy groups) transp@iculation, the effective

cross-section is used as the input data. The Bféecross-section forg —th energy
group is defined as:

], 9Ec(B)g, (E)

X9 (3.40)
Y [ dEe (B)

where g (E) denotes the continuous energy cross-section éorebonance nuclidé

and the reaction typex . In the multi-group treatment, the multi-groupcten-rate for
the resonance nuclidé, the reaction typex and the energy group in the fuel

r,f
xg !

region, which is expressed by IS written as:

o (multi_group) = o} ¢ (3.41)
where ¢, denotes the multi-group neutron flux obtained fraire transport
calculation usingoy; .

In contrast to the above multi-group calculatiohe tmulti-group reaction-rate
obtained from the continuous energy or the ultn@-fgroup (several tens of thousands

of energy groups) treatment is written as:

rr . (continuous energy = Ig dEo; (E)g, (E) . (3.42)

In usual, Equations (3.41) and (3.42) are not edhat is:
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J,9ETL (B (B) % 001 - (3.43)

The above inconsistency comes from the error dwgdss-section condensation on
energy. Flux obtained by multi-group transport #solu does not reproduce that
obtained by ultra-fine-group calculation even ifetlexact multi-group effective

cross-sections, i.e., those directly obtained Inatfine-group calculation, are used. As

r,f H r,f . .
a result, rr;; (multi_groy) cannot preserverr, (continuous energy without
correction.

The inconsistency on the multi-group reaction-radésained by the continuous
energy and by the multi-group treatments direcyses the difference of the neutron
multiplication factor between two treatments. lder to reduce the difference in the

multi-group treatment, the following approach (¢tX2)) is usually applied:

(1) Increasing the number of energy groups in the ngubdup transport

calculation [6, 7],

(2) Applying the cross-section correction methods swsh SPH (Super

homogenization) method [3].

Approach (2) is the more efficient one in ordeatwid the additional computation
time in the transport calculation. The SPH metlsodsually applied for the reduction of
spatial homogenization error [15], but it can als® applied for the reduction of

multi-group condensation error. In the SPH methtte effective cross-section is
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corrected by the group dependent correction fadtpras follows:
gy, =f.o0. (3.44)

The role of f, is to preserve the multi-group reaction-rate ofgdi from the

continuous energy treatment, therefore the follgwlation is derived:

J,4ET (B)er (B) = (f,00) Wpy . (3.45)

By using the definition of the effective cross-sect(Equation (3.40)),f, is

rewritten as:

|4 (B)e () | [ dEoy(B)g (B) | /| [ dEoy(E)e (E)
T e, .4 J,dEg, (B)
J,dE2 (E)
e

f

g

(3.46)

f, can be generated using the results of resonanicelatéon based on the

ultra-fine-group treatment. The numerator of Equat{3.46) is directly calculated by
integrating the neutron flux from the ultra-finesgp slowing-down calculation. The
denominator of Equation (3.46) is calculated by dleitional one-group fixed source

calculation for each group . As for the well-known SPH method, the iterative

transport calculation is required so that the deftl right hand sides of Equation (3.45)

become equal. The correction factdy is converged as the iteration proceeds.

For the additional fixed source MOC calculatiort® following one-group neutron

transport equation is solved independently for eawdrgy groupg :
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dy(s) S
ST T W (9= (3.47)

where ¢ (s) denotes the angular flux for groug at spatial positions along with

the specific characteristics line. The scalar flufer each heterogeneous region are
obtained by integrating the angular flux solutioofs Equation (3.47) against each

characteristics line, polar and azimuthal angles.

The neutron source is assumed to be isotropic aritew as S, /4n. The
macroscopic effective total cross-sectian, is given from the ultra-fine-group flux
weight scheme based on Equation (3.40). The newoomce S, is generated from
S, =IngS(E) by integrating the energy dependent scatteringcgo®(E) within

group g, which is the byproduct of the ultra-fine-groupwing-down calculation. The

SPH factor f, is multiplied to 5,/ for solving Equation (3.47) and it is updated in

the iterative scheme untif; is converged.
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3.3.2 A Correction Factor Equation for ReactioneRateservation

The new method for resonance self-shielding treatnderived in section 3.2 is
based on the ultra-fine-group calculation, thus 8f*H method described in section
3.3.1 can be applied in principle. The SPH metheduires the additional flux

calculations with iterative scheme, which requitegger computation time.

Fortunately, the present resonance self-shieldiegtrnent includes the essence of
the equivalence theory. The energy dependent nedltre can be reconstructed by the
analytical form of the multi-term rational equatiohhis feature becomes advantage

comparing with the conventional SPH method, whishbased on a pure numerical

approach. In the following part, an equation tovedhe correction factorf_ , which

corresponds to the SPH factor in Equation(3.46)leisved based on the fundamental

concept of the reaction-rate preservation schentigeirequivalence theory [16].

By using Equations (3.40) and (3.42), the multitgraeaction-rate obtained from

the ultra-fine-group treatment is rewritten as:
rrxr,'gf (continuousenergy = jg dEo; (E)@ (E)
J,dE@L (B)g, (E) { g (® 018
= w .
[gEp(®) |

=0y, _[g dEg. (E).

In the multi-group treatment, the multi-group reéactrate in Equation (3.41) is

corrected as:

re.d (multi_group) =G5 @, , = .00 @, (3.49)
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where Equation (3.44) is applied for Equation (3.41

By assuming the constant cross-section within thergy group g for Equation
(3.21), which is consistent with the multi-groupdtment, the neutron flux in Equation

(3.49) is derived as:

Z (Bl +ﬂ(E)a

P LdE Zﬁ foZi,l

n=1 tgf

de >1(E), JdE U(E)a.
_2,3 s (3.50)

tgf

:ZN:ﬂ Z;dglf /'Ig n
=R PO ’

tgf

where the scattering source term for the fuel mregand the self-shielding correction

term for the non-fuel region, are each defined as:
Sl = f dE= st(E) f dEL [ES, (E) = J'dES (E), (3.51)
_ 1
=j dEL (E). (3.52)
¢ E

By substituting Equation (3.50) into Equation (3,4¢he following equation is

derived:

) (multi_group) = f o} Z,B S“gff T ”. (3.53)
’ =M PP

Finally, by assuming that Equation (3.53) is eqoaEquation (3.48), and dividing

both sides byo!'!, the following equation to solvef, is formulated as:

X, ?
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N Tl + M0,
fgzﬂn fdzgffl : :Jng¢f(E)' (3.54)

n=1 t,g' f

Equation (3.54) is a correction factor equationrisaction-rate preservation, which

suits with the hybrid method for resonance selékling treatment in section 3.2. All

the terms except forf, are byproducts of the solution of the new seti@ivsg-down
equation in section 3.2.4f_ is easily obtained from iterative calculation unfi, is

converged. From Equation (3.54f, for (i+1)-th iteration is generated using i-th

result as follows:

| J, dEcaf(E)
foi+1) =— ST +ﬂ . (3.55)
nZﬂ f (I)Ztg f

The method includes the iteration scheme, but adgitianal iterative flux

calculations are no longer required. The calcutetime of f_  is negligible comparing

with the conventional SPH method. Besides, Equdi3od4) can be rewritten adl -th

order linear equation. Therefore the analyticalisoh of f_ is easily obtained in case

of the one-term or the two-terms rational equatianwhich the iteration of Equation

(3.55) is not necessary at all.
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3.4 Numerical Procedure and Calculation Flow
3.4.1 Numerical Discretization and Calculation Subdor Slowing-Down Equation

A new set of the slowing-down equation is solvedmatically by energy
discretization. The discretized form of the equatend its fundamental calculation

scheme are described in this section.

¢ (E), ¢,.(E), =L, (E) and u(E) in section 3.2.4 are discretized for energy and

written as:
N Tl Ha,
Grig = Zﬁ ;ffg fl LS (3.56)
fg n=1 tfg' f
N s
nf fg Zﬁ = ffg f IUfg ’ (357)
By il tEa,
0 (fg =1)
> AE 05 @ : 3.58
sty = fgz . Z AR (fg=23--,FG) (3:58)
( ak) fgi Efg’k
6 (fg= )
- N g _ AE.. , : 3.59
ﬂfg 9+(1 9) nf k p fg_k¢nf,fgk (fg: 2,3,"',FG) ( )
Z (1_ak) g Efglr(
where
FG: The number of ultra-fine energy group,
fg: An ultra-fine energy group for the range,, < E<E, ,,
Eyar Eg! Upper and lower energy boundaries for grotgp,
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g Lethargy averaged energy for group (Efg = ,/Efg_lEfg ),

m

AE Energy width for groupfg (AE, =E,, - E),

fg :
fg, ={Eq |E{ <E4 < Ey/a}:Incoming neutron energy group for scattering seur

integration of the nuclidek .

In the energy discretization, the ultra-fine-grosgpucture is assumed to be fine

enough so that the resonance cross-sections astaobmithin each groupfg and the

self-scattering can be ignored. Besides, the enevggth AE, for each
ultra-fine-group is assumed to be small enoughtivelato the scattering length for
energy, i.e.,E,, /a, - E, . In the actual implementation, the ultra-fine-gvaatructure
is designed so as to satisfy the above assumptions.

For the slowing-down calculation, the ultra-finesgp neutron flux is solved
successively from the fast to the lower energy eangithout iteration. This feature is

specific for the slowing-down equation.

First, the ¥ group fluxes are solved based on Equations (3%6p) as:

18, sl +tua, N, O, +6, 1
- Zsdlf  Ftn _ - _ Y (360
qofl El n=1 " ztf,llf +an Zl zt 1I +0’ ZIB Zt 1| n ( )
x zsfdlI +lul n n 1 N 950’
== 3.61
nfl 2118 zt’]_I +£ 0' E1 nZﬁn ztll +£ 0’ ( )

Second, the ¥ group slowing-down cross-section and self-shigjdaorrection
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factor are obtained based on Equations (3.58)-[3us8ng the above numerical

solutions for ¢, ,, ¢, as:
A
sdz‘EZZ N85I, 140”, (3.62)
t-a) E
NS oy A
=0+ (1-6) jfz E1¢””. (3.63)
zp k (1 ak El

Then the ¥ group fluxes are solved based on Equations (3B6)) using the

above numerical solutions foE!,,, 4,. From the % group calculations, ;i s Hig)

and (¢ ,#,. ) are solved simultaneously. The above procedureepeated for

nf, fg

successive energy groups.
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3.4.2 Fast Calculation Scheme for Scattering Sountegjration

The energy integration of the scattering souree, (Z;d,fg , 4;y) Calculation in this

paper, needs long computation time. In order tacedhe computation time, the energy

group boundaryfg, .., corresponding to the maximum ener@y, /a, forthe fg-th

group scattering source integration, is pre-evalligdnd tabulated in cross-section
library. This treatment enables to avoid the coadél branch processing for the

scattering source integration in the actual impletaikson.

For the additional fast calculation, the scatterisgurce for fg -th group is
calculated using(fg-1) -th group result based on the efficient numericethesne
developed by Kier [17]. Thefg-th group scattering source for the fuel regionicivhs

f

apartofz, ., is written as:
f AE, 0% @
si=y N s Pu% 0o (3.64)
e (-a) % Eq

The relation of scattering source integration rahgeveen fg-th and (fg -1) -th

groups is shown in Figure 3.4. As shown in Figur#t 8he majority of the scattering
integration range is common. Therefordg -th scattering sourcesffg is easily

obtained from (fg-1)-th source S{g_l by adding (fg -1) -th integration part and
subtracting the part which is out of thfg-th integration range. The corresponding

equation is derived as:

N, AEfg-la_sk,fg—lf”f,fg—l _ZAEfQ’kJ; 0 P 1 (3.65)
Efg—l fok E

S/ =S/ +
o o Zk:(l_ak) fgp
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where the energy integration range for the subtrgct part is only
(f9 =Dy min < 9% < 9% n —1 ({9 i - Minimum incoming neutron energy group for
scattering source integration of nuclide to the outgoing neutron energy groug).

This treatment is very effective comparing with theect integration for all the energy

ranges in Equation (3.64).

fg-th group integration range
A
( \

(fg-1)-th group integration range
A H
( \

. - | —E (Neutron energy)
fg-1 fg-2 9 kmin  (FO-1)" « min

Common integration range betwegrth and {g-1)-th energy group

Figure 3.4 Relation of scattering source integration range between fg-th and

(fg -1 -th groups.

Finally, the slowing-down cross-section can be ioleth as >, =ES{ . u,

can also be obtained with the same manner.
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3.4.3 Calculation Flow of New Resonance Self-Slmgld reatment

Calculation flow of the method established in smwti 3.2-3.4 is shown iRigure

3.5. The calculation procedure is described as follows

(1) Read the microscopic ultra-fine-group cross-sectiata o, ( fg :
ultra-fine-group number) from the library.

(2) Read the relative atomic weight to the neutran, and the microscopic

potential scattering cross-sectian, .

(3) Read the heterogeneous region volumieand the number densit\N .

(4) Perform the one-group MOC fixed source calculatiaiséng Equation
(3.33) and obtain the fluxes for each region. lis tstep, each non-fuel
region such as the cladding and moderator is tleat the individual

regions. Each non-fuel region data are homogenizsteps (6) and (7).

(5) Generatea, and g, by fitting the MOC flux data for fuel region using
Equation (3.35).

(6) Calculate N and Z‘F‘f from the non-fuel heterogeneous regions data for

the cladding and moderator. Hersl" is a volume averaged number

density in the non-fuel region and is obtained Mg = > N,V /Z\/I (i:

iOnf iOnf

each heterogeneous region included in the nontegibn). =% is then
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obtained asz? => No} .
k

(7) Calculate ¢, (=) using the one-group MOC results for the non-fuel

heterogeneous regiong, (=) is a volume averaged flux in the non-fuel

region and is obtained ag, (=) =D @ (X V, /ZV, :

iOnf iOnf

(8) Generate the rational coefficiel by substituting value oflim ¢ =)
2y -
based on Equation (3.38).

(9) Generateg, by fitting the MOC flux data for non-fuel regionsing
Equation (3.39).
(10)  Calculate the first group flux data(,,¢, ,) in the ultra-fine-group

resolution using Equations (3.60) and (3.61).

f
sd, fg

(11) Calculate the fg -th ultra-fine-group X and u, based on

Equations (3.58) and (3.59). In the actual numéscheme, the scattering
source term is solved by Equation (3.65) usiffg —1) -th group results

(The part of 4, can also be obtained with the same manner).

(12)  Calculate the fg-th ultra-fine-group flux data «; ., ) using

nf, fg

zf

sd, fg ?

1, and Equations (3.56) and (3.57).

(13)  Carry out the steps (11) and (12) fax fg<FG (FG: the number

of ultra-fine-group) successively without iteratson
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(14) Generate the effective (:ross-se(:tior;'gf using ¢, ,, and Equation
(3.40).

(15)  Calculate the correction factof, using Equation (3.54) and multiply
itto oy, .

(16)  Apply the evaluated effective cross-sections fa thulti-group flux

calculation.

In case of the fuel assembly calculations, step(¢4e-group MOC fixed source
calculations) is performed for the exact two-dimenal assembly geometry, not for the
unit pin-cell. The flux data is obtained for pin-pyn resolution by the MOC
calculations, thus the following steps (5)-(15) dsnperformed individually for each

fuel cell in the target geometry.
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<System independent data> <System dependent data>
-Relative atomic weight -Region volume
-Potential cross-section -Number density

@ ] ®
(1) el

Ultra-fine-group
cross-section
library

Read ultra-fine-group l
cross-section data (4) Perform one-group MOQ
fixed source calculation

[
! l

One-group fluxes One-group fluxes
(fuel region) (Non-fuel heterogeneous region)
(5) Generate rational coefficients | Calculate volume-averaged non-fuel dath (6) - (7)
for fuel region
l -Volume-averaged non-fuel data
-Rational coefficients -Number densityN;"
(a..5) -Macroscopic potential cross-secticr

-One-group fluxess,

(8)-(9)| Generate rational coefficients for non-fuel regiorl\

-Rational coefficients €,.6 )

(10) | Calculate #group fluxesé: 1 @ur 1 |

(1 l) | Calculate fg-th group dat& g, My

(13)

Successively carry out for fg =2, 3, ..., FG

(1 2) | Calculate fg-th group fluxeg; i P 16

Ultra-fine-group fluxes

(14) | Generate effective cross-sectiorl

(1 5) Calculate correction factor, and correct effectivess-section

!

Effective cross-section by the new method

|

(16)| Apply effective cross-section to multi-group flualculation |

Figure 3.5 Calculation flow of a new resonance self-shielding treatment.
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3.5 Verification for Unit Pin-Cell Problem
3.5.1 Analysis Condition

In this section, verifications of the new method fieesonance self-shielding
treatment are carried out using unit pin-cell peobl The present method is
implemented in the MHI (Mitsubishi Heavy Industriestd.) lattice physics code

GALAXY [8, 9], and the GALAXY is used for all theerifications.

The one hundred and twenty thousands (120,000) ltod-fine energy group
cross-section library is generated by editing thgpot of NJOY BROADR module [18]
using the ENDF/B-VII.0 nuclear data files [19]. Tbktained ultra-fine-group library is
incorporated as a part of the GALAXY cross-sectitihrary based on the
ENDF/B-VII.0. The list of nuclides considering theltra-fine-group resonance
cross-section and the scattering source in thidicegion are shown immable 3.1. The
energy group structure of the 120,000 groups isvaha Table 3.2, which is based on
the structure of SLAROM-UF code [5] except for thst and thermal energy ranges. It
should be noted that the multi-group flux calcwatis carried out with XMAS 172
energy group structure [20] in GALAXY. The abovdraifine-group library is used
only for the ultra-fine-group flux calculations tgenerate the multi-group effective

cross-sections.
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Table 3.1 List of nuclides considered in the verification of ultra-fine-group

calculation.
Condition Target heterogeneous region Nuclides
Consideration of both ultra-fine-group resonancé XS Fuel zsﬁJ, 238U, 238PU,239PU,240F’U,241PU,
and scattering source *?py,**'Am, *°0 (in fuel region)
Consideration of only ultra-fine-group scattering Non-fuel H, *o (in moderator region}?B,
source with potential scattering XS Ozr, Pz, %zr, %2, %2¢

1) XS: cross-section

Table 3.2 Ultra-fine-group energy structure.

Energy boundary [eV] Mesh division
Upper Lower (Equal division for lethargy)
20000000 52475 10000
52475 9118.8 56000
9118.8 4307.4 12000
4307.4 961.12 12000
961.12 130.07 8000
130.07 0.32242 12000
0.32242 0.00001 10000

The number of rational equation term il =2. The ultra-fine-group flux
calculation by the new method is carried out frdm fast to the epithermal energy
ranges (20MeV-0.625eV). The effective cross-sestion the range between
0.82MeV-0.625eV are generated by the present methbd effective cross-sections
except for the above energy ranges are generatéddebgray resonance self-shielding
method [8] based on the equivalence theory. Thex¥e cross-sections for Zr nuclides

in the cladding region are generated by the enlthmeitron current method [21].
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These conditions are applied for all the analysdhis article.

UO, (4.8wt%***U) and MOX (7.2wt% Pu fissile contents) pin-cellghwHot Full
Power (HFP) operating conditions are set as thedypWR (Light Water Reactor)
neutron spectrum conditions. The specificationshef pin-cell problem are shown in

Table 3.3, and the geometrical configuration is showirigur e 3.6.

Table 3.3 Specifications of the pin-cell model.

Item Specification
Fuel UO; case: 4.8Wt%>U uo,
Material . MOX case: 7.2wt%Pu-f MOX
Cladding Zr
Moderator Borated water
Fuel 976K
Temperature: Cladding 600K
Moderator 580K
Boron concentration 1000ppm
Cell pitch 1.26cm
Pellet radius 0.4095cm
Geometry Cladding outer radius 0.475cm
Cladding thickness 0.0655¢m

(Gap is omitted)
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Fuel pellet

— Cladding

<«—— Moderator

vy
y

R; =0.4095cm R =0.475cm

Figure 3.6 Geometry of pin-cell model.

Especially for sub-sections 3.5.3, 3.5.4 and 3.3[® calculation results by
GALAXY are compared with those by continuous-enekpnte-Carlo code MVP [22].
ENDF/B-VII.0 [19] nuclear data library is used itl $he MVP calculations to be
consistent with GALAXY calculations. The total nuertof neutron sampling for MVP
calculations is set to 100 million histories, iniagfhthe one sided statistical uncertainty

of k-infinity is about 5pcm%x10° Ak / k).
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3.5.2 Reproducibility of Flux for Gray ResonancenBes

The reproducibility of the flux by the rational egion is confirmed in this

sub-section for the calculation conditions showseéntion 3.5.1

As described in section 3.2.7, the coefficierts, B,, & and 8 in the

multi-term rational equation are generated so asepyoduce the flux by the MOC
one-group fixed source calculations. The aboveftte coefficients have an important

role in the fundamental accuracy of the presenhotet

For the UQ pin-cell case, the reproducibility of the fluxeg the rational equation
of Equations (3.34) and (3.37) is shownFigure 3.7. In Figure 3.7, the MOC results
are set as a reference. As shown in Figure 3.7 nthki-term rational equation of
Equations (3.34) and (3.37) can well reproduce Nf@C results for overall optical
length ranges between black and white limits iniclgdgray resonance ranges. The

reproducibility can be confirmed both for the faeld the non-fuel regions.
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2 .
50 1
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Optical length of fuel region [-]

Figure 3.7 Reproducibility of fluxes by the rational equation for wide range of

optical length.
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3.5.3 Ultra-Fine-Group Neutron Flux

The ultra-fine-group neutron flux by the presergomance self-shielding treatment

is compared with the continuous-energy Monte-Ceasullt in this sub-section.

As described in section 3.2.4, a new set of theislg-down equations (Equations
(3.21)-(3.24)) are solved to calculate the ultreefgroup neutron flux. The prediction
accuracy of the flux directly influences on the wecy of the multi-group effective

cross-section.

The ultra-fine-group fluxes in a fuel region by GAXY with the present method
and those by MVP are shown kigures 3.8-3.9 for UO, and MOX cases against the
important resonance energy range$>8f. The fluxes based on the equivalence theory
with NR approximation are also shown for comparssorhe equivalence theory based
fluxes are analytically obtained from the multirterational equation assuming that the

target resonance nuclide?8U.

As shown in these Figures, the present method aaurately predict the
ultra-fine-group neutron flux, which is almost eeplent to the continuous-energy
Monte-Carlo results. The present method can dyeabnsider the resonance
interference effect (local flux depression) indudsdthe multiple resonance nuclides
except for®*®U. The equivalence theory cannot incorporate thecefwithout some

additional cares [11-13].

It should be noted that both GALAXY and MVP codesesi the scattering kernel
based on the asymptotic model shown in Equatid),(us the treatment of scattering

source term is consistent between GALAXY and MVHRhis verification.
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Figure 3.8 Comparison of ultra-fine-group fluxes between GALAXY and MVP for

UO, fud ((a) 6-8eV, (b) 19-23eV, (c) 33-38eV, (d) 55-70eV).
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Figure 3.9 Comparison of ultra-fine-group fluxes between GALAXY and MVP for

MOX fuel ((a) 6-8eV, (b) 19-23eV, (c) 33-38eV, (d) 55-70eV).
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The important byproducts of the ultra-fine-groupxflcalculations in the present

method, i.e.,Z! (E) (Equation (3.22)) andu(E) (Equation (3.23)), are also shown in
Figures 3.10-3.11 for UO, case. As discussed in section 3.2.6, the convsadtio

equivalence theory corresponds XJ, (E) = Z; and u(E) =1. From these figures, the

differences of =, (E) from £ and u(E) from unity are clearly observed.

2.0 1

—Slowing-down XS
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Figure 3.10 Energy dependenceof ! (E).
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Figure 3.11 Energy dependenceof u(E).
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The difference of =!,(E) from X corresponds to the effect of accurate

intermediate resonance treatment for resonance-sgxgions becausE; is obtained

from the NR approximation. In the conventional eqlence theory, the effect of
intermediate resonances is considered by the IRnpater and it is handled in
multi-group resolution. The present method, in casti the intermediate resonances are

directly considered in the ultra-fine-group resmatby the slowing-down calculation.

The difference of u(E) from unity corresponds to the correction factor foe
accurate scattering source treatment in a nonfkgibn (see Equation (3.11)). In the

conventional equivalence theory, the scatteringreufor a non-fuel region is

approximated asz:f /E, as mentioned in section 3.2.2. The actual s@dadfesource

has a locally more complicated energy dependenu#,/gE) can directly consider
the effect. From the view point of numerical castidns, u(E) essentially handles the
slowing-down source in a non-fuel region, and italdes to carry out the
ultra-fine-group flux calculation for the heterogews system as if it were the
slowing-down calculation for the infinite homogensomedium. This feature leads to
the smaller computational burdens comparing with gglire numerical method for the

heterogeneous slowing-down calculation.

The accurate treatment &/, (E) and u(E) directly contributes to improve the
accuracy of the ultra-fine-group flux against tlygliigalence theory without significant

increase of computational burdens.
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3.5.4 Multi-Group Effective Cross-Section

The multi-group effective cross-section by the prgsresonance self-shielding
treatment is compared with the continuous-energyntek&Carlo result in this

sub-section.

The effective cross-sections in the fuel regiof@ALAXY with the present method
and those by MVP are shown ihable 3.4 for UO, and MOX cases against the
important resonance energy range$df. As shown in Table 3.4, the present method
can accurately predict the effective cross-sect@sna result of good agreement for the
ultra-fine-group flux between GALAXY and MVP showm section 3.5.3. The
applicability of the present method is confirmedtive next sub-section through the

prediction accuracy &-infinity (final results).
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Table 3.4 Comparison of multi-group effective cr oss-sections between GALAXY and MVP.

Energy group in XMAS  Energy [eV] Macroscopic absorption XS [1/cm| Relative difference of XS [%] MVP statistical

Fueltype 172 group structure  Upper Lower MVP ((GALAXY-MVP)/MVP) error [%]
88 7.524  6.160 1.208 1.1 0.1

UO, 80 22.603 19.45% 0.699 1.0 0.1
75 37.266 33.720 0.863 -0.5 0.1

69 67.904 55.59% 0.181 -0.2 0.1

88 7.524 6.160 1.186 0.8 0.1

MOX 80 22.603 19.45% 0.881 0.5 0.1
75 37.266 33.720 0.610 0.0 0.1

69 67.904 55.59% 0.281 -0.3 0.1
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3.5.5 Multi-Group Reaction-Rate and K-infinity

The multi-group reaction-rate amdinfinity by the present resonance self-shielding
treatment are compared with those obtained by twirmious-energy Monte-Carlo

result in this sub-section.

The multi-group reaction-rates in the fuel region ®ALAXY with the present
method and those by MVP are showrnTiable 3.5 for UO, and MOX cases against the
important resonance energy range$*df. Thek-infinity results are also shown in this
table. As shown in Table 3.5, the present methodacaurately predict the reaction-rate.
The reaction-rate preservation scheme efficiertiuces the difference of reaction-rate
by GALAXY comparing with MVP result, and as a rdsuhe k-infinity well agrees

between the two codes.
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Table 3.5 Comparison of multi-group reaction-rates and k-infinity between GALAXY and MVP.

Energy group

Fuel type in XMAS 172

Energy [eV]

Relative difference of macroscopic absorption

rate [%] (GALAXY-MVP)/MVP) MVP statistical error

for reaction rate [%]

Relative difference of k-infinity [pcm]

((GALAXY-MVP)/MVP) MVP statistical error

for k-infinity [pcm]

group structure Upper —Lower Without RRY With RR® Without RR With RR
88 7.524 6.160 3.1 -0.9 0.1
5
UO, 80 22.603 19.45& 4.3 0.8 0.1 502 46 4
75 37.266 33.720 6.2 2.7 0.1
69 67.904 55.59%5 2.0 0.5 0.1
88 7.524  6.160 3.2 -0.6 0.1
5
MOX 80 22.603 19.45t 4.5 1.2 0.1 -360 -49 5
75 37.266 33.720 6.9 2.6 0.1
69 67.904 55.595 2.0 0.4 0.1

(1) Without RR: Do NOT apply reaction rate pres¢éiovascheme

(2) With RR: Apply reaction rate preservation sckem
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3.5.6 Calculation Time

The breakdown of calculation time for the preseathud is shown iff able 3.6. As
shown in Table 3.6, the calculation time for th&afine-group flux is very short. On
the basis of its short computation time, the pressthod can be easily applied for the

fuel assembly geometry, i.e., the ultra-fine-greafculation by Equations (3.21)-(3.24)
for each fuel cell independently with the cell degent coefficientsa,, £,, & and

6.

Here, it should be noted that reading of the uitra-group cross-section library
takes only once, thus the time is negligible agaihe total calculation time of the

lattice physics calculations.

Table 3.6 Calculation time.

CPU time [sec]

Process
uo; MOX
Ultra-fine-group XS library read (only one time) 0.3 0.28
Ultra-fine-group flux calculation 0.22 0.23
Generation of effective XS and correction factor 20.0 0.03
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3.5.7 Extension for Multi-Region Problem

Treatment of GgD3 bearing fuel rod, which requires sub-division bé tpellet, is
also important theme for the resonance calculatiad,it is still open problem to extend
the present method for the general multi-regionblenm. Thus only U@ and MOX

fuels are covered in this paper.

In order to apply for the general multi-region gystsuch as radially sub-divided
GdO3 bearing fuel rod, the more time consuming methods,, the direct
heterogeneous ultra-fine-group calculation or tbb-group method [1, 23], may be
required. It is sure that the sub-group methode=msily treat the multi-region system.
However, the other important factors such as tlsenance interference effect, which
can be treated in the present method, cannot Wjireet taken into account in the
sub-group method. Some investigations are carrigd23], but the more research is

desired in this field.
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3.6 Verification for UQ/MOX Multi-Assembly Problem
3.6.1 Analysis Condition

In this section, verifications of the new method fieesonance self-shielding
treatment are carried out using WKROX multi-assembly color-set problem. The
fundamental calculation condition is common for thet pin-cell problem in section

3.5.

Objective of the verification is to show the apphdity of the present method for
the general multi-cell problem including severglayg of fuel rods whose compositions
are different each other. The multi-assembly pnobile designed based on PWR type 17
x17 UQ, and MOX fuel assemblies. The ratio for the numiifdibading between U
and MOX assemblies is assumed to be 3:1 in ordgietd the local gradient of the flux
spatial distribution in the target system. Hot Fdiwer (HFP) operating conditions are
set as the typical LWR neutron spectrum conditidie specifications of the color-set
problem are shown iiiable 3.7, and the geometrical configuration is showrrigure
3.12 (details of cell arrangement are shown in secd@n?2). As shown in Figure 3.12,
calculation geometry consists of four quarter-asde® with a perfect reflective

boundary condition.
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Table 3.7 Specifications of the multi-assembly model.

ltem Specification
UO, assembly: 4.8Wt% U UO;,
MOX assembly:
Fuel High: 7.2wt% Pu-f MOX
Material Middle: 4.2wt% Pu-f MOX
Low: 3.1wt% Pu-f MOX
Cladding Zr
Moderator Borated water
Fuel 976K
Temperature: Cladding 600K
Moderator 580K
Boron concentration 1000ppm
Cell pitch 1.26cm
Pellet radius 0.4095cm
Cladding outer radius 0.475cm
Geometry _ _
Cladding thickness 0.0655¢m
(Gap is omitted) '
Assembly gap 0.08cm
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Figure 3.12 Geometry of multi-assembly model.

The calculation results by GALAXY are compared vittlose by continuor-energy
Monte-Carlo code MVP [22]. ENDF/-VII.0 [19] nuclear data library is used in all t
MVP calculationsto be consistent with GALAXY calculatics. The total number ¢

neutron sampling for MVP calculations is set to bfidion histories
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3.6.2 Pin-by-Pin Effective Dancoff Factor

As described in section 3.2.7, the rational coeffits a,, [, are generated for

pin-by-pin resolution in a fuel assembly. In orderobserve the trend of pin-by-pin
rational coefficients, the equivalent 1-term Damdaictor by the present resonance
self-shielding treatment, which is named as theo#iffe Dancoff factor in this paper, is

generated by the following equation [1]:

Dy = {iﬂ\/? } , (3.66)

where the multi-group cross-section or the resomaimtegral is assumed to be

expressed as a function of the square root of bgemeous term for the background

cross-section. By taking into account that the toggeneous term is proportional @, ,

and B, corresponds to the weight of n-th term,, can be obtained by averaging
Ja, with B, weight.

The pin-by-pin effective Dancoff factor in each lfuegion by GALAXY with the
present method is shown fingur e 3.13 for lower half part of the geometry. Figure 3.13

also shows cell arrangement in the multi-assemebneetry. As shown in Figure 3.13,

D.; Is larger on the fuel rods near the water enriaheat-fuel cells than on the other

fuel rods. This trend is consistent with the funéatal property of the Dancoff factor.

On the other hands, the fuel composition dependehde,, is extremely small, as can

be observed by comparison among the symmetricipositD,, (or a,, B, in the
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present method) essentially considers the geoneftgct, and is generated to be
constant against the change of optical length araszopic cross-section for each fuel

rod.
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Figure 3.13 Cell arrangement and pin-by-pin effective Dancoff factor.

194



In the present method, the spatial and energy digmees of the flux are well

decomposed by utilizing the rational equation. Hpatial dependence is taken into

account by the pin-by-pin coefficients,, S, based on the equivalence theory, while

the energy dependence is directly considered bylth@-fine-group cross-sections for
each fuel rod based on the slowing-down calculatiom this framework, the

ultra-fine-group slowing-down calculations can berfprmed for each fuel cell

individually through the pin-by-pin coefficients,,, S,, even if the optical lengths of

each fuel rod are different each other in an askerb a result, the present method can
be applied for the general multi-cell problem inievhthe fuel compositions are

different for each fuel rod in the target system.

The above treatment is appropriate based on thgHatthe more detailed spatial
dependence of flux is obtained from the multi-groflpx calculation step. The
decomposition of space and energy is an efficissumption for the purpose of the
ultra-fine-group flux calculations, in which the tamed flux is not used as a final
solution of the lattice physics calculation butasveighting function to generate the

appropriate multi-group effective cross-sectioniagfaeach limited energy range.
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3.6.3 Pin-by-Pin Reaction-Rate and K-infinity

The pin-by-pin absorption and fission rates &ndfinity by the present resonance
self-shielding treatment are compared with thostiobd by the continuous-energy

Monte-Carlo result in this sub-section.

The pin-by-pin absorption and fission rate disttitmis by GALAXY with the
present method and the difference between GALAXY BYVP are shown irFigures
3.14-3.15 for lower half part of the geometry. Hereg 1MVP statistical uncertainties
of the reaction-rates are smaller than 0.3%. K-idinity results for the multi-assembly
system are also shown imble 3.8. As shown in the results, the present method can
accurately predict both thk-infinity and the pin-by-pin reaction-rate, even for the
complicated geometry including both Y@nd different types of Pu content MOX fuel

rods.

Table 3.8 Comparison of k-infinity between GALAXY and MVP for

multi-assembly problem.

k-infinity Relative difference of k-infinity [pcm] MVP statistical error for
GALAXY  MVP ((GALAXY-MVP)/MVP) k-infinity [pcm]
1.27701  1.27790 -70 4
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Standard deviation:  0.2% +1%
Maximum difference: +0.8%
0% |

High (max: 1.202)

Low (min: 0.777) -1%

Relative difference of absorption rate

Pin-by-pin absorption rate (GALAXY) between GALAXY and MVP

Figure 3.14 Comparison of pin-by-pin absorption rate distribution between GALAXY and MVP.
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High (max: 1.166) Standard deviation:  0.2% +1%

Maximum difference: +0.5%

0%

Low (min: 0.733) -1%

Relative difference of fission rate

Pin-by-pin fission rate (GALAXY) between GALAXY and MVP

Figure 3.15 Comparison of pin-by-pin fission rate distribution between GALAXY and MVP.
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3.7 Extensive Monte-Carlo Benchmark
3.7.1 Analysis Condition

In this section, verifications of the reactivityegliction in lattice physics code
GALAXY are carried out with the new resonance s#lielding treatment. The
k-infinity and some important reactivity coefficients are pared between GALAXY

with the present method and continuous-energy MQaiko code MVP.

The main application of GALAXY is generation of assly nuclear constants used
for core design and safety analysis of PWR. Indhesalyses, the prediction accuracy
of Doppler and moderator reactivity is especialipportant. As a result, the
corresponding Doppler temperature coefficient, tiederator density coefficient and
the boron worth by GALAXY are verified by companmsavith MVP results. The
ENDF/B-VII.0 nuclear data library is used in aletMVP calculations to be consistent

with GALAXY calculations.
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3.7.2 Doppler Reactivity

In this sub-section, the accuracy of Doppler redgtiprediction by GALAXY is
evaluated. Fuel temperature change is the maiorfémt the Doppler reactivity in PWR.
The corresponding reactivity coefficient is Dopplemperature coefficient@TC). In
the present Doppler benchmarQTC generated by GALAXY is compared with that

by MVP.

The Doppler reactivity is mainly induced by changk the amount for®&%U
resonance absorption due to the fuel temperatuangds. The contribution of
resonance absorption f6fU depends not only on the fuel composition butherange
of fuel temperature and burnup. From this pointvadw, the Mosteller's original
benchmark [25, 26] is extended to the different teenperature and burnup ranges in
the present study. The verification is essenti#iilg investigation of the prediction
accuracy for DTC against the systematic change of the number gemsit the energy
dependent resonance cross-sections for each nucliie fuel region. The unit pin-cell

benchmark is prepared for the simple and essesrdlcation.

The specification of Doppler reactivity benchmark shown in Table 3.9.
Calculation geometry is shown gure 3.16. The base condition is the same as that in
Mosteller's original benchmark. The gap region ledw pellet and cladding is
explicitly treated in MVP calculations. In contrair GALAXY calculations, the gap
region is smeared to the cladding region and thebau density of cladding region is

diluted so that the total number of atom is preserv

200



Table 3.9 Specification of the Doppler reactivity benchmark.

ltem Specification
Fuel type UO,, MOX (Reactor-recycle)
0.711,1.6,2.4,3.1,3.9,45,5.0
(600K and 900K, 0GWd/t)
1.0, 2.0, 4.0, 6.0, 8.0
(600K and 900K, 0GWd/t)

Uo: (235U concentration)

Fuel composition [wt%]
MOX (PuG; content)

Fuel temperature [K] 300, 600, 900, 1200, 1500, 1800, 2100
Burnup [GWd/t] 0, 20, 40, 60, 80
Fuel pellet
Gap
— Cladding
<«—— Moderator
e >
1.26678cm

~ /0-39398cmHZP) R, =0402%cm
' ]0.39433cmHFP) R =0.45972cm

Figure 3.16 Geometry of pin-cell model for Doppler reactivity benchmark.

The total number of neutron sampling for MVP cadtigns is set to 100 million
histories, in which the one sided statistical utaiaty of k-infinity is about S5pcm

(5x107°Ak/K).
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In the present benchmarl)TC is basically generated as follows:

DTC = {( Kue = 1J - ( Kize _1J:|/(THFP ~Tize)
Kiiep Kiizp (3.67)
:( 1 J[EKHFP _kHZPJ
Tuer ~Tozp kHZP kHFP

where T and k denote the fuel temperature akeinfinity, respectively. Indices

“HZP” and “HFP” denote the hot zero power and hdit power conditions, respectively.
Both GALAXY and MVP calculations are based on tlsgraptotic scattering model, in
which the scattering kernel is expressed as Equd8a®). It should be noted that the
recent topic for the more exact scattering modelirgg, the thermal motion and the
temperature dependent resonance scattering trelatmdre heavy nuclides [27, 28], is

out of scope in this paper.

In this benchmark, (1) fuel composition dependen®¢osteller's original
benchmark), (2) fuel temperature and (3) burnupeddpnces (extended benchmarks)
of DTCs are verified. Topic (1) includes both Y@nd MOX fuel cells in which the
fuel composition range satisfies the commercial PW& specifications. Topics (2)

and (3) are set by extending the original 5.0wt% dfd 8.0wt% MOX fuel conditions.

For the fuel temperature dependence (2), onlydbktemperature is systematically
changed between room temperature (300K) and vegh hemperature (2100K)
conditions against the original HFP (900K) 5.0wt%JdAnd 8.0wt% MOX cases. The
correspondingDTCs are generated for each temperature range, D&€Cs between

300-600K, 600-900K;, , 1800K-2100K.

For the burnup dependence (3), the depletion ionl is carried out by GALAXY
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in advance against the same original HFP (900Kesxa80GWd/t is set as the
maximum burnup, and the obtained nuclide compaosstitor each burnup point are
used in the verifications. The common number desssib the depleted fuels are used

both for GALAXY and MVP, and the burnup calculatibg MVP is not carried out at

all.

The differences ok-infinity between GALAXY and MVP are summarizedTiable

3.10. Here the difference for each camsis evaluated as:

K -k
(Ak/ k)n = n,GAL/:(XY n,MVP ’ (368)

n,MVP

where k, caaxy and k. denote thek-infinity for casen calculated by GALAXY

and MVP, respectively.

Table 3.10 Comparison of k-infinity between GALAXY and MVP in the Doppler

reactivity benchmark.

Number of Difference [pcm] MVP statistical
Fuel type Changed parameterSamples (GALAXY-MVP)/MVP error [pcm]
Average Maximum Average
Fuel composition 14 -61 -101 4
uo; Fuel temperature 7 -65 -111 4
Burnup 10 28 120 5
Fuel composttion 10 -31 -55 5
MOX Fuel temperature 7 -56 -104 5
Burnup 10 29 148 6
Al Fuel composttion 24 -49 -101 4
(UO+MOX) Fuel temperature 14 -61 -111 5
Burnup 20 28 148 5
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The averaged and maximum differenc@sk / k) (Ak/K),.. are also evaluated as:

avg '’

avg

(DK /K) —%ZI:(Ak/k)i , (3.69)

(AK/K) e = (BK/ K), {j ‘ miaA(Ak/k)i| =|(ak/k) J\} (3.70)

wherel denotes the number of sample. These equatiorsdsareised in section 3.7.3.

As shown in Table 3.10, the differences are verglsfor fuel composition, fuel

temperature and fuel burnup changes.

Figures 3.17-3.19 show the calculation results dTC to each parameter change
for UO, and MOX fuel cells. The fuel temperatures in Feg®:.18 correspond to the
midpoint between the neighboring two temperaturébe differences of DTC
between GALAXY and MVP are summarizedTiable 3.11. The average difference of
DTC is almost within the 2~8s of statistical uncertainty for MVP propagated by
k-infinity statistical errors, thus considering the 8 MVP statistical uncertainty, the
differences for DTC between GALAXY and MVP are small for each paramete

change.

It is concluded that GALAXY with the present resooa self-shielding treatment

can accurately predict the Doppler reactivity.
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Table 3.11 Comparison of Doppler temperature coefficient between GALAXY and

MVPin the Doppler reactivity benchmark.

Number of Difference [%] MVP statistical
Fuel type Changed parameterSamples (GALAXY-MVP)/MVP error [%]
Average Maximum Average

Fuel composition 7 14 2.4 0.6

uo; Fuel temperature 6 2.3 3.8 0.8
Burnup 5 15 2.6 0.7

Fuel composttion 5 1.9 2.5 0.7

MOX Fuel temperature 6 1.9 2.4 0.8
Burnup 5 1.9 3.0 0.8

Al Fuel composttion 12 1.6 25 0.7

(UO+MOX) Fuel temperature 12 2.1 3.8 0.8
Burnup 10 1.7 3.0 0.7
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Figure 3.17 Comparison of Doppler temper ature coefficient between GALAXY

and MVP for fuel composition change ((a) UO, (b) MOX).
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3.7.3 Moderator Reactivity

In this sub-section, the accuracy of moderatortratic prediction by GALAXY is
evaluated. Moderator density and boron concentratimnges are the main factors for
the moderator reactivity in PWR. The correspondirggactivity coefficients are
moderator density coefficienMDC) and boron worth BW). In the present moderator
benchmark, MDC and BW generated by GALAXY are compared with those by

MVP.

Moderator reactivity is mainly induced by change tbé amount for neutron
moderation and absorption due to the moderator ityeasid boron concentration
changes. The Mosteller's original benchmark [25] B6extended to the different
moderator density and boron concentration in thesgmt study. The verification is
essentially the investigation of the prediction wecy for MDC and BW against
the systematic change of the number density foh @aclide in the moderator region.

The unit pin-cell benchmark is prepared for thepderand essential verification.

The specification of moderator reactivity benchmerlshown inTable 3.12. The

base condition such as calculation geometry issiiee as that in Mosteller’s original

benchmark. The number densities of the boron neglid the boron concentratioG,

are generated by using those for the original 1g60gondition (ND;(140Gpm))

based on the assumption of negligible displaceriveribe water:

_ C, [ppm|
N (C,) = ND, (1400ppm) 5 62 (3.71)
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Table 3.12 Specification of the moderator reactivity benchmark.

Item Specification
Fuel type UQ, MOX (Reactor-recycle)
Moderator density [g/c%h 1.00, 0.80, 0.66163 (original condition), 0.55,00@.25, 0.10
Boron concentration [ppm)| 0, 700, 1400 (originalditon), 2100, 2800, 3500, 4500

The total number of neutron sampling for MVP cadtigns is set to 100 million
histories, in which the one sided statistical utaiaty of k-infinity is about 5pcm

(5%10°AK/K).

In the present benchmarlylDC and BW are generated as follows:

k,-1) (k, -1
MDC:K . j—( K H/(pz-pl)
(3.72)
— 1 k2_k1
_(pZ_le[ﬁ kK, J’

BW = (kfl}—(kl‘lﬂ/(cbz—cm
L k, K, ' ,

— 1 k, —k

B Cb,z - Cb,l k1k2 ,

where p, C, and k denote the moderator density, boron concentratod

(3.73)

k-infinity, respectively. Indices 1 and 2 denote the differgn or C, conditions,
respectively.

In this benchmark, (1) moderator density and (2pbaoncentration dependences
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of MDCs and BW s are verified for each fuel type.

For the moderator density dependence (1), the ratmtedensity is systematically
changed between a typical room temperature condffiddg/cni) and a mist condition
(0.1g/cr). The range includes the HFP normal operation itiomd(upper: ~ 0.8g/c),
and, the loss of the main feed water supply + AT{&S8ticipated Transient Without
Scram) conditions (lower: ~ 0.4g/&mFor the boron concentration dependence (2), the
boron concentration is systematically changed betm@&to 4500ppm corresponding to

the typical boron concentration ranges in commeRVIRS.

The MDCs are generated for each moderator density rarege, MDCs between
1.0-0.8g/cr, 0.8-0.66163g/cfy- , 0.25-0.1g/cth The BW' s are generated for each
boron concentration range, i.eBW s between 0-700ppm, 700-1400ppm,,

3500-4500ppm.

The differences ok-infinity between GALAXY and MVP are summarizedTiable
3.13. As shown in Table 3.13, the differences are \wemall for moderator density and

boron concentration changes.
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Table 3.13 Comparison of k-infinity between GALAXY and MVP in the moderator

reactivity benchmark.

Number of Difference [pcm] MVP statistical

Fuel type Changed parameter samples (GALAXY-MVP)/MVP error [pcm]

Average Maximum Average
UO» Moderator density 7 -14 111 4
Boron concentration 7 -47 -74 4
MOX Moderator density 7 -37 -67 5
Boron concentration 7 -33 -58 5
Al (UO 7+MOX) Moderator densiFy 14 -26 111 5
Boron concentration 14 -40 -74 5

Figures 3.20-3.21 show the calculation results oMDC and BW to each
parameter change for Y@nd MOX fuel cells. The moderator densities andobo
concentrations in the figures correspond to thepwiitt between the neighboring two
conditions. The differences oMDC and BW between GALAXY and MVP are
summarized inTables 3.14-3.15, respectively. The average difference MIDC and
BW is almost within the 2~8s of statistical uncertainty for MVP propagated by
k-infinity statistical errors, thus considering the 8 MVP statistical uncertainty, the

differences for MDC and BW between GALAXY and MVP are small for each

parameter change.

In Figure 3.20, MDC based on the equivalence theory are also shown for
comparisons. The present method can accuratelyicorddDC including lower

moderator density ranges than the concentional/atarice theory.
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Table 3.14 Comparison of moderator density coefficient between GALAXY and

MVPin the moderator reactivity benchmark.

Difference [%] MVP statistical

Fuel type N;;"n?;regf (GALAXY-MVP)MVP error [%]
Average Maximum Average
uo; 6 -0.9 -2.2 0.5
MOX 6 -0.1 -2.9 0.3
Al (UO+MOX) 12 -0.5 -2.9 0.4

Table 3.15 Comparison of boron worth between GALAXY and MVPin the

moder ator reactivity benchmark.

Difference [%] MVP statistical

Fuel type N;J;nn?;;:f (GALAXY-MVP)/MVP error [%]
Average Maximum Average
uo: 6 -0.1 -0.2 0.1
MOX 6 -0.4 -0.8 0.4
All (UO+MOX) 12 -0.3 -0.8 0.3
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Figure 3.22 shows the calculation results d¥IDC by forcing =1 in the

slowing-down equation. This situation corresponds the assumption ofl/E
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asymptotic spectrum for the non-fuel region. Thé&edences of MDC between

GALAXY and MVP are still small as well as Figure28. In the hard spectrum
conditions such as a lower moderator density sdoatthe influence of epi-thermal
energy ranges including the wide resonanc@f is relatively small. This fact leads to

the small effect of non-fuel scattering sourcettremt using 6.

It is concluded that GALAXY with the present resooa self-shielding treatment

can accurately predict the moderator reactivity.
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3.8 Conclusion

A new hybrid resonance self-shielding treatmenthoetin the reactor physics field
is developed in the present study. The presentodathconstructed by integrating the
equivalence theory and the ultra-fine-group slowdlogvn calculation from the
theoretical point of view. The main features of flresent method are summarized as

follows.

The fundamental flux derivation scheme is basedhenequivalence theory. The
essence of the ultra-fine-group slowing-down eaqumis effectively incorporated into
the scattering source calculation. The accuratefanenflux is efficiently treated by
utilizing the multi-term rational approximation ant coefficients. A new form of
energy dependent neutron flux has two aspectsn(ji-term rational approximation
(equivalence theory), (2) slowing-down calculati@uitra-fine-group treatment). The
multi-group condensation error can be eliminatediriorporating a semi-analytical

reaction-rate preservation scheme.

The present method is implemented in the MHI latpbysics code GALAXY. By
comparing the neutronics characteristics obtaineGALAXY and continuous energy
Monte-Carlo code MVP, the good agreements betwaercbdes are confirmed for the
wide range of state point parameters from the nbraperation to the accident
conditions for PWR. From the verification resulépplicability of the present method

for general lattice physics calculations is conédn

GALAXY implemented with the new method achieveshigccuracy with short
computation time. Therefore it can be efficientphed to generation of the nuclear

constants used in nuclear design and safety asafsommercial light water reactors.
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CHAPTER 4. DEVELOPMENT OF GENERALIZED
RESONANCE SELF-SHIELDING METHODOLOGY
FOR INTRA-PELLET MULTI-REGION GEOMETRY
AND NON-UNIFORM EFFECT BASED ON A UNIFIED

THEORY

4.1 Introduction

Resonance self-shielding treatment [1] is an ingarpart for the lattice physics
calculations in reactor physics field. Accurateatreent of U wide resonance
cross-sections and their influences on flux depoessis a key issue to guarantee a
sufficient prediction accuracy of criticality andactivity coefficients for commercial

LWRs (light water reactors) core analysis.

In order to establish a practical resonance treattmaethod, the effective
cross-section is required to be generated withtsfmmputation time, while keeping its
sufficient accuracy. In the past studies condubiethe authors, many of the technical
issues have been solved to establish a sophisticasonance treatment. A brief
summary and the development history of the past @edent studies are shown in
Figure 4.1 [2-11]. In the present study, a unified resonatr@atment method is
developed to obtain the sufficient accuracy foeeive cross-sections without a direct
heterogeneous ultra-fine-group calculation. As ghow Figure 4.1, treatment of the

complicated spatial self-shielding effect for rdigiaand azimuthally sub-divided
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multi-region geometry within each fuel rod is addhed in the present paper.

Equivalence theory

-Enhanced neutron current method [2]

(Dancoff factor calculation for general geometry)
-Generalized Stamm'ler method [3]

(3-terms rational approximation for improvement
L of escape probability)

Gray resonance treatment method [4]
(Equivalence theory)

» Approximation for geometry
Issues solve .
» Black neutron absorber assumptign

4—[ -Ultra-fine-group slowing-down calculation [5-6] ]
h 4

Hybrid resonance treatment method [7]
(Equivalence theory + Ultra-fine-group slowing-doeadculation)

e Scattering source approximation
+ Resonance interference treatment

Issues solve{

-Stoker-Weiss method [8]
-Spatially Dependent Dancoff Method (SDDM)
(9]

(Extension for spatial self-shielding within pellet)

4—[ -Sub-group method [10-11] ]
A 4
Unified resonance treatment method [Present study]
(Equivalence theory + Ultra-fine-group slowing-dowatdculation
+ Sub-group method)

« Complicated spatial self-shielding treatment
(radial/azimuthal dependences)
Treatment for isotope composition and temperature
distributions within fuel lump

Issues solve

Figure4.1 Brief summary and development history of the past and present studies.
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In the first technical achievement by the authalfs fpproximation for geometry
and black neutron absorber assumption in the elguiga theory [1] are solved. Several
spatial effects in a lattice physics theory (ileeferogeneous effect between fuel and
non-fuel regions, shadowing effect due to the rigigimg fuel rods, and irregular lattice
effect by the local water enriched regions) canirm®rporated into the pin-by-pin
rational coefficients. The flux response as a fiamcof macroscopic total cross-sections
obtained from MOC (Method of characteristics) [#2{ed source calculations is

directly taken into account for pin-by-pin resoduti

In the second technical achievement by the autholsscattering source and
resonance interference treatments are improved. eBsence of the ultra-fine-group
slowing-down calculation [5-6] is incorporated intike equivalence theory, and the
hybrid resonance treatment method is establishethi®\stage, the resonance treatment
for both pin-cell and fuel assembly geometries stalelished to generate accurate
effective cross-sections with short computatioretimh can be applied to the wide range
of neutron spectrum conditions including low moderadensity ranges in severe

accident states, as long as each fuel region isuibtlivided.

In the current development state, extension ofath@ve hybrid resonance treatment
is desired for a complicated spatial self-shielditngatment of each fuel lump.
Especially for the cylindrical fuel rod geometry,hieh is widely adopted for
commercial LWR fuel assemblies, generation of dadiand azimuthally dependent

effective cross-sections is not easy with keepufficsent accuracy.

From the above background, an objective of thegmtestudy is to develop a new
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resonance treatment method that can accurately itakeaccount the complicated
spatial self-shielding effect with short computatitme. In order to solve this issue, the
essence of sub-group method [10-11] is incorporated the hybrid resonance
treatment method in the second achievement [7] ioveed above. As a result, the
unified resonance treatment is established as &-hydrid model of the equivalence
theory, the ultra-fine-group calculation and thé-guoup method. Although another
concept of unified approach for the three methaals dready been suggested by the
authors [13], the present method is based on a nobrest scheme from the theoretical

point of view.

In the current methodologies related to the rescmatreatment, the simpler
approaches have already been proposed, e.g., @ebpibased direct ultra-fine-group
slowing-down calculation with pre-tabulated cothisi probabilities [6]. The present
method in this study adopts rather complicated utation procedures in actual
implementation than the direct slowing-down caltiola mentioned above. However,
the present method has an advantage on accurateffcidnt spatial treatment for
radially/azimuthally sub-divided fuel regions defth on the detailed core analysis
applications. Especially for the azimuthally subided fuel rods adjacent to a large
water region, the pin-cell based slowing-down caliton cannot directly be applied.
Therefore, the present method has a potentiald¢orbe an alternative approach against
the direct slowing-down calculation, from the vigwint of its capability to treat

complicated calculation conditions.

In the enhancement activities for core analysishodilogy, a general direction of
the development is to increase a resolution of esleaergy dependences for neutron
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flux in the transport calculation. A possible cortgiional performance in the future
application phase is considered in the developmEmerefore, the suggestion of an
extended capability for azimuthal resonance treatwd! be useful as a new option for
the advanced analysis scheme, even though thentlatgce physics codes do not treat

the azimuthal dependece of the effective crossesect

In this paper, the fundamental theory and the watibn results of the new
resonance treatment are described in detail. Thatents of each section are

summarized as follows.

<Section 4.2>

The unified resonance treatment is proposed baseda awo-step cross-section
collapsing scheme. The equivalence theory, thea-fihe-group calculation and the

sub-group method are integrated.

<Section 4.3>

A two-step reaction-rate preservation scheme ferréduction of energy discretization

error is established, which is consistent withdhdied resonance treatment.

<Section 4.4>

Verification of the new method is carried out.
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<Section 4.5>

Conclusions of this study are summarized.
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4.2 Unified Resonance Self-Shielding Treatment
4.2.1 Concept for Two-Step Resonance Calculation

The new method is established by enhancing andyretieg the conventional
methods, and its concept is based on two-step areditix calculations. The *1step
calculation is performed to obtain ultra-fine-groily;xes on a simple geometry based
on the hybrid treatment of equivalence theory aftda-dine-group slowing-down
calculation. Then, by using the obtained ultra-fgmeup fluxes, sub-group
cross-sections and sources are generated for @isamergy ranges explicitly defined by
the resonance cross-section level. Next, fHes@p calculation is performed to obtain
sub-group fluxes on an exact geometry based onsthegroup method. Finally,
multi-group effective cross-sections are generdétedhe sub-group cross-sections and

the sub-group fluxes.

A concept of the two-step resonance treatmentag/shn Table 4.1. By utilizing a
concept of multi-stage cross-section collapsingtsgies [14] widely used in reactor
physics field, two-step calculation, i.e., “coag@ometry + fine energy” flstep) and

nn

“fine geometry + coarse energy”"{2step) calculations, is performed. Here, the main
calculations in the present method are summarinetiable 4.2. The corresponding

section numbers for each main calculation are sttsovn in the table.
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Table 4.1 Concept of two-step resonance treatment.

lten—~LeP 1ststep 2d step
Equivalence theory
Theory + Sub-group method

Ultra-fine-group calculatior

Spatial
resolution Q or O of or

Energy Ultra-fine-group Sub-group
resolution (~100,000) (3~10 for each multi-group)
Collapsed | _LngU (B)a(E) | SQ.ZQJSQ@G

-sectioh Yss = Oy ="~
cross-section “sg LngW(E) Ty g
sglg

Table 4.2 Summary of themain calculation proceduresfor the present method.

. . Corresponding sections or Corresponding steps in
Main calculation procedures P 9 P g step

reference documents Section 4.2.6
Generation of pin-by-pin rational coefficients Refeces 4, 7 4)
Ultra-fine-group slowing-down calculation for sirfipd Reference 7, Section 4.2.2 (1)-(5)
geometry
Extension of uItra-flne.-groqp flux for each fuetirto radial Section 4.2.3 (6)-9)
multi-region problem
Generation of spatially-dependent sub-group paramet Sections 4.2.4-4.2.5 (1), (10)-(13)
Sub-group flux calculation Section 4.2.5 (14)
Generation of effective cross-section Section 4.2.5 15) (
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The main features of the new method are summahekxiv.

In the £ step calculation, the hybrid resonance treatmaseth on the equivalence
theory and the ultra-fine-group calculation [7]aigplied, and the ultra-fine-group flux

for each fuel region is accurately obtained.

In the case of radial multi-region problem withatiag the concentric cylinder
within a fuel rod, the ultra-fine-group flux for @afuel lump is expanded to each ring
region coupled with the basic idea of Stoker-Weisgethod [8] and SDDM
(Spatially-Dependent Dancoff Method) [9]. The dir&éeterogeneous ultra-fine-group

transport calculation is not required at all.

Because the effective cross-sections generatedrégt @ollapsing with the above
ultra-fine-group fluxes for each ring region are safficiently accurate for the radial
multi-region problem, the ultra-fine-group crosstsen is collapsed not for the whole
multi-group energy range, but for the partial subugp energy range defined by the
resonance cross-section level. Note that sevetalgsaups are generally included in

each multi-group.

In the 29 step calculation, the sub-group method is appiethe exact geometry
by using the sub-group cross-sections obtained frent" step calculation. In the case
of azimuthally-dependent self-shielding treatméQC is used as a flux calculation

method.

The effective cross-section, i.e., the final prddo€ resonance calculation, is
generated by collapsing the sub-group cross-sectith the sub-group flux as a

weighting function.
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4.2.2 Integration of Equivalence Theory and UltmaeFGroup Slowing-Down

Calculation

In the past study, the hybrid resonance self-simiglthethod has been established by
the authors through integrating the equivalenceortheand the ultra-fine-group
slowing-down calculation [7]. According to ReferenfZ], a final form of the neutron

flux for each fuel region in a fuel assembly isttem as:

Zu(E) +u(E)a,

¢ (E) = Z_;ﬂ ST E) (4.1)
where
. EZ » ak)JE/ak dE'ak(E’)cﬂf(E)’ 4.2)
U(E) =6+ (1- e) (ngk) J E/akw (4.3)
) ()= 2/3 ZLE), +ME)Ea, 4.4

= (B +ea,
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4.2.3 Extension of Neutron Flux to the Radial Miegion Geometry

Although the hybrid resonance self-shielding mettedcribed in Section 4.2.2 can
treat any type of fuel lump geometry in an assentiyf can be handled by MOC flux
calculation, the spatially-dependent resonancessadilding effect within a specific fuel
lump cannot be directly treated. One of the impuriasues in this research field is
consideration of the radially-dependent resonanel-shielding effect within a
cylindrical fuel rod. In this section, the neutrfbix in a local ring region within a fuel
rod is derived as a natural extension of Equatiph4)-(4.4). Here, the radially

sub-divided fuel rod discussed in this sectiorhisven inFigure 4.2.
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Figure 4.2 Radially sub-divided fuel rod.

The integral form of neutron transport equation foulti-region heterogeneous

system consisting of multiple fuel ring regions andon-fuel region is written as:
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Z(BE)Q(EWV, =X S, (EV, P (E)+ Sy (E)V, Py i (E). (4.5)

jof

In the following derivation, the non-fuel region defined as the multiple regions
except for fuel region. For a typical LWR unit ¢eflon-fuel region is composed of

cladding and moderator regions.

The reciprocity theorem between regionsand j is written as:
Z(E)V,R_(E)=Z!(E)V,P,_(E). (4.6)

By applying Equation (4.6) to the neutron souraentethe ' term in the right-hand

side of Equation (4.5) is rewritten as:

(B)

D> S,(E)V,P (E)= Z(E)Vz S, (E). (4.7)

jof jof ZJ (E)

The 2 term in the right-hand side of Equation (4.5)lsaewritten as:

i Pianf(E)
(E) nf nf |(E)ZZL(E)\/| Tsnf(E)i (48)

p
where the total cross-section for the non-fuel aegs approximated as the potential

scattering cross-section, i.ex," (E) Oy (E) 0% .

By assuming that the macroscopic total cross-secéiod scattering source are

spatially flat within a fuel pellet, Equation (4.i8)approximated as:

E)
S,(EV,P_,(E) 0% (E\V, S, (E)=S, (E\V, E
J%‘,() _i(B) ()mzft()() ()%‘, i (E) 4.9)

=S (BE)V, H1-R_ (B)},

where S, (E) denotes the scattering source for the fuel regand the following

234



relation for collision probability is used:

Zpiq (E)+P_,(E)=1.

(4.10)

nf

When the scattering source for the non-fuel reggonritten as S (E) = ,u(E)?p,

which is consistent with the hybrid resonance tnesit briefly described in Section

4.2.2, Equation (4.8) is approximated as:

nf

Sy (ENVy Ry i (E) D{/J(E) - } X (B

I:)iﬂnf (E)
=

(4.11)
=22/ (ENHEIR 4 (E)

where u(E) is already defined by Equation (4.3) in Sectidh 2.

Substitution of Equations (4.9) and (4.11) into tight-hand side of Equation (4.5),
and some transformations can yield:

a(B)=1-P_ EN D+ L E)p_, (E) (4.12)
{ i-nf th (E) E i-nf . .

%5(E)

Since the scattering source for the fuel regioexisressed asS; (E) = , Which

is consistent with the hybrid resonance treatmen®ection 4.2.2, Equation (4.12) is

further modified as:

_1 _ S(E)
Q(E)—E[E{l Pianf(E)}%-'-:u(E)Piﬂnf(E) . (4.13)

In the multi-term rational approximation of the ffescape probability,P,_ . (E) is

formulated as [4]:
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an(E) zylngﬁ W (414)

Equation (4.14) is identical to the SDGM (Spatidllgpendent Gray resonance
self-shielding Method) formulation [4], and its dettion idea is based on the
Stoker-Weiss method [8] and SDDM [9]. A geometricedatment of the escape

probability, which is composed of four lump compotse(m= 1234), is shown in

Figure4.3.
Fuel pellet
| nf(E) Zylmnzﬁ z (E)l
Specific ring
I
4 )
( m=1 m=2 )
< >
\. J
ﬁNm - KNM |
< >
| W W J

Figure 4.3 Geometrical treatment of spatially-dependent fuel escape probability.

Here, y,,, in Equation (4.14) denotes the coefficient thaiteees the geometrical

information of the ringi and is defined as:
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(4.15)

p||| 10||| 10| I| IOI I|
(yl’y2’y3’y4) ( = 2 3 J

l,,, denotes the mean chord length wkth lump derived by the following analytical

form:

m=1:+7p/2,p=p,

2R 1. T m=2:-7p/2,p=p,
=2 oMN1-p2 +=sint pr—p |, b 4.16
NEE e ZPJ m=3:+7p/2,p0=p, (4.40)

m=4:-7p/2,p=p,,

4
By substituting Equation (4.16) into Equation (4,1§ Vim =1. Considering that
m=1

N
Z,Bn =1, the following relation is derived:

n=1
4 N
D Vi B =1. (4.17)
m=l n=1

By substituting Equations (4.14) and (4.17) into u&ipn (4.13), the

energy-dependent neutron flux for the ring regiorwithin a fuel pellet is derived as:

¢r(E)=1E5{1—Rﬂm(E)}E?iL;u(E)RW(E)}
_1{;_1“‘“25 mzﬂy'mzﬂzm)l a}%((:))
_E_+,u(E)ZIy,mZ,B# | (4.18)
D e e ey
EPDYAS 2
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The scattering sourceS(E) is also calculated as Equation (4.19), which is

consistent with the hybrid resonance treatment:

NI (F'“dE'g*(E)g(E)
> 52— o7 (i Ofuel)
s@={" " ."“L :

,u(E)Ep (i Ononfuel)

(4.19)

Here, the isotropic and elastic down-scatteringraxgmations in the center-of-mass
system are applied to each ring region within & pedlet. The scattering source for the

non-fuel region is consistent with the hybrid resmoce treatment.

By considering the spatially-dependent scatteriogree within a fuel pellet, the

neutron flux is modified from Equation (4.18) as:

ZN:ﬁn ZIsd (E)llm +:u(E)an

1 4
E=—n(E !
@ (E) E/7( );ly.,mn:l STE). +a,

(4.20)

where
2w (E) = ES (E), (4.21)

and n(E) denotes the energy-dependent flux normalizatioctofain which the
fuel-pellet averaged flux obtained from Equationlj4can be preservedt’,(E) and

n(E) are the only differences between Equations (4a2d)(4.18).
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42.4 F' Step Resonance Calculation Based on Equivalenceoryh and

Ultra-Fine-Group Slowing-Down Calculation

As described in Section 4.2.1, the two-step resomaalculations are performed in
the present method. Thé' $tep calculation is based on the equivalence yhaod the
ultra-fine-group slowing-down calculation, and tBpace-dependent ultra-fine-group

neutron fluxes for each fuel region are appropiyatétained.

As already shown in Section 4.2.2, the ultra-fineegp fluxes for each fuel region
within an assembly are calculated from a set ofvisig-down equations shown in
Equations (4.1)-(4.4). Besides, as derived in 8actd4.2.3, spatially-dependent
ultra-fine-group fluxes and scattering sourcesdach ring region within a fuel pellet
can be obtained. It should be noted that the fluoeseach ring can be obtained
analytically with small computational burdens,, (E) and u(E) in Equation (4.18)
are the byproducts of the solution of Equation%)4.4), and thus fluxes for each ring

region are easily regenerated.

In principle, the radially-dependent effective @@®ctions for each ring region can
be generated at this single step by using the -fitteagroup flux solution as a
collapsing weight. However, as shown in a derivatstheme of the equation, the

following assumptions are applied.

The ultra-fine-group macroscopic total cross-sectend scattering source are
spatially flat within a fuel pellet (Equation (4)9The fuel escape probabilities for each
fuel ring are expressed by the multi-term ratiomgbroximation based on the SDGM

formulation (Equation (4.14)).
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As shown in the verification results of Section,4tdese assumptions cause the
prediction error of effective cross-sections forclkeaing region, as a result of the

prediction error of the ultra-fine-group flux.

In order to mitigate the influence of predictiorraerfor the flux, the effective
cross-sections are not generated at this stepedthsthe sub-group cross-sections are
generated by using the ultra-fine-group fluxes iieta from the 1 step calculation. A
more accurate spatial transport of neutrons wighfael pellet is taken into account in
the 29 step calculation by the additional transport calttons based on the sub-group
method. The lack of accurate collision probabiliipformation for all the
region-to-region combinations in a target systerhictv is due to the assumptions in
Equations (4.9) and (4.14), is compensated by ¥st8p calculation. The details are

described in the next section.
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4.2.5 2 Step Resonance Calculation Based on Sub-Groupadeth

The 2" step calculation is based on the sub-group method the space-dependent

sub-group neutron fluxes for each region are obthin

In the typical resonance energy ranges, the scajtepurce is isotropic [6] and the
fission source can be ignored. Therefore, the mtegfferential form of neutron

transport equation is written as:

QMy, (E,Q)+Z (E), (E,Q) :%, (4.22)

where Q denotes unit vector for direction, anf (E,2) denotes angular flux for
region i .

By integrating Equation (4.22) against an explstib-group energy rangeg(C g),
in which the discrete energy range is permitte@, shb-group transport equation is

derived as:

A o S
QY () + Z' (4, () = 4?; ; (4.23)

where

_[ 9= (B (E)
[ dEaeE)

: macroscopic sub-group total cross-section,

Wi, (Q) E.[ dEy, (E,Q): sub-group angular flux,
sg
S‘ng = LngS(E) : sub-group scattering source.

Here, the angular dependence of energy-dependextwithin each sub-group is
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ignored.

The typical scheme to solve Equation (4.23) is MOGCS, (discrete ordinate)
method. If MOC is adopted as a flux calculation esue for Equation (4.23), the
spatially-dependent flux for each sub-group caolit@ined for any type of complicated
geometry, which can be represented by the MOC.oAlgh the integro-differential form
of neutron transport equation is shown as a typeample, the integral form of

equation based on the collision probability methad also be utilized.

The microscopic sub-group cross-section for resomaniclide I and reaction type

X is also defined in the same manner as:

. _J,dEg(E)g(E)
== T dEa®

(4.24)

The sub-group cross-sections are generated byitbet @nergy collapsing ot (E)

with ¢ (E) weight obtained from thestep calculation.

As described in Section 4.2.4, the sub-group tramspalculation is performed in

order to mitigate the influence of prediction erofr ¢ (E) for o' . From this point

xsg
of view, sub-group energy structure should be digidot by the neutron energy but by

the resonance cross-section level. Based on aereferultra-fine-group cross-section

% . (E), the sub-group energy structure is determined as:

Zbound < Zref (E) < zbound }, (425)

sg,min sg max

sg:{E

where 3P gnd " denote the maximum and minimum resonance crosmsec

sg max sg,min
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boundaries for sub-groupg(C g), respectively. Typically,z (E) is defined by a
volume-averaged ultra-fine-group cross-section dtir the fuel regions in a target
system such as a fuel assembly. According to tleéinpinary sensitivity studies, the

macroscopic absorption cross-section is a bettdexinthan the total cross-section.

Though the boundarieg? and > are determined for each sub-grogp

sg max sg,min
with arbitrary interval division of resonance cr@gstion within a groupg , the equal
interval with logarithmic scale is better than thaith linear scale. A concept for

determination of sub-group structure is showfigure 4.4.

1]

Cross-section

-l —— -

Neutron energy

Figure 4.4 Concept for determination of sub-group structure (discrete energy

range for sub-group 2 is shown as an example).

Here, it should be noted that the defined sub-grexgrgy structure is commonly
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used for all the spatial regions in sub-group cisEsgion generation. Even if the fuel
temperature distribution within a fuel pellet iskéa into account, the only one

sub-group structure, e.g., a structure definedshy(g) for effective fuel temperature

[15] condition, must be applied. If the differemfosgroup energy structures are used for
each region in sub-group cross-section generatien, the differentz (E)s are
applied to each region, the neutron balance amany esgion and each sub-group is
not preserved due to inconsistency of energy gedwyzture for each sub-group, which
is an essential issue for the conventional subsgrowethod. By applying a union
sub-group energy structure, the treatment of feelperature distribution is improved.
Therefore, the sub-group method itself is improwed the unifying process of the

conventional three resonance treatments in theeptrasudy.

In the conventional sub-group method, the conaeetrgy ranges are not explicitly
specified for each sub-group. In other words, thé-group is implicitly defined
through “band probability” (see section 1.1.4)cbntrast, the present method explicitly
defines the sub-group energy structure and applydixed structure even for the fuel
temperature distribution case. This improved tremimesolves the inconsistency of an
energy range for each spatial region with diffetemperatures, and enables to perform

the sub-group transport calculation with high aacyr
The sub-group scattering sour(ﬁég :LngS(E) is also generated frong (E)

based on Equation (4.19). From the viewpoint of potational efficiency, the
sub-group scattering source calculation in the gresmethod has an advantage
compared with the conventional sub-group methode Bbattering source can be

calculated with fine energy resolution by Equati@hl9), and thus the accurate
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sub-group scattering source is easily obtaineddwaace by energy integration of

S(E). This fact enables to treat the scattering soteom as a constant in Equation

(4.23), as well as the sub-group cross-sectionrefbee, Equation (4.23) can be solved
independently for each sub-group, and any condidesaof sub-group to sub-group

transmission probability are not required at all.
Finally, the sub-group quxgd;g is obtained by integrating the angular flux sauos

of Equation (4.23). In addition to the integro-diéntial form of equationgﬂ;_,g can also

be obtained from the integral form of transport amn based on the collision

probability method.

By using the sub-group cross-sections and fluxég microscopic effective

cross-section for resonance nuclidle reaction type x and energy groupg is

derived as:
R HCEEPIREACLD
> LdEw(E) %JSQdEW(E)
LngaL(E)qq(E)I ) N (4.26)
i [ dEq(E) Xt
%Isngw(E) %@g

As described beforeg’; is generated by the ultra-fine-group flux solutigy(E)

in the T' step resonance calculation (see Sections 4.2.2)4.&;"39 has a fuel rod

position dependence within a fuel assembly bec&getions (4.1)-(4.4) are solved
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with position-dependent rational coefficients. Irdddion, a;"sg has a radial

dependence within each fuel pellet because théisolof Equations (4.1)-(4.4) can be

extended to the radial multi-region geometry folirgyrical fuel rod based on a

derivation in Section 4.2.3.

On the other handg, is calculated by usingr’,, and S};. ¢ is obtained with

a fine spatial resolution which can be treated sy adopted flux solver. Therefore, at
least, fuel rod position and intra-pellet radiapeedences of effective cross-sections

can be taken into account in the present methodidBs, intra-pellet azimuthal

dependence of effective cross-sections can alscobsidered througryd;g if the flux

calculation scheme such as the MOC and the calligiobability method is adopted for

a sub-group flux calculation.
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4.2 .6 Calculation Flow

A calculation flow of the two-step resonance treatims shown irFigures 4.5-4.6.
The calculation procedure is described below. S(gp$9) and (10)-(15) correspond to
the £'and 29 step resonance calculations, respectively. Natettie details for Step (4)

are described in Reference [7].

(1) Read the microscopic ultra-fine-group cross-sectiata o, ( fg :

ultra-fine-group number) from the library. (Noten Ithe following

description, continuous energy-dependent paramedegs converted to

ultra-fine-group form, e.g.o(E) - o, for numerical treatment.)

(2) Read the relative atomic weight to the neutran, and the microscopic

potential scattering cross-sectian, .

(3) Read the heterogeneous region volumeand the number densit\N .

(4) Perform the hybrid resonance self-shielding catcaha [7] based on

integration of the equivalence theory and the titra-group calculation.

(5) Generate the ultra-fine-group source termi;(fg and u, ) for

1< fg< FG (FG: the number of ultra-fine-group).

(6) Generatel,,, and y, based on Equations (4.16) and (4.15), respectively

(7) Calculate the ring-region-dependent ultra-fine-grodlux ¢ . for
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1< fg< FG based on Equation (4.18), by using,, and u,,.

(8) Calculate the ring-region-dependent ultra-fine-groscattering source

S

i,fg

for 1< fg<FG based on Equation (4.19), by using,, and u,,.

(9) Update ¢, ,, based on Equations (4.20)-( 4.21).

(10)  Set the reference cross-sectiar), and the cross-section boundaries

(maximum: 2 minimum: %" ) for each sub-group used in

sg max ? sg,min
Equation (4.25).

(11) Define the discrete energy structure for each sobyg based on

Equation (4.25).
(12) Generate the sub-group cross-sectia;[jng for 1<sg<SG (SG:

the number of sub-group) based on Equation (4t8Adsing ¢, -

(13) Generate the sub-group scattering souB@g for 1< sg< SG based

on S, =J’SngS(E), by using S, , .

(14) Perform the one-group fixed source calculationsefach sub-group,

and obtain the fluxesg,, for each region.
(15) Generate the effective cross-sectiorl'ig based on Equation (4.26),

by using o', and ¢ .

XSg
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Figure 4.5 Calculation flow of unified resonance treatment (1% step).
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Figure 4.6 Calculation flow of unified resonance treatment (2" step).
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4.2.7 Relation to the Conventional Methods

As described in Section 4.1, the present reson@eatment is a unified approach of
the conventional three methods, i.e., equivaleheery, ultra-fine-group slowing-down

calculation and sub-group method.

The present method is equivalent to the equivalémeery, if (i) NR approximation

of the scattering source, i.e%;(E)=Z] and u(E)=1 (see Equations (4.2)-(4.3)), is

applied to the 3 step calculation, (ii) the resonance absorptidrisackground isotopes
are ignored, and (iii) the number of sub-groupseisas one for thé"®step calculation.
The present method is also equivalent to the diltlegroup slowing-down calculation,

if the sub-group is the same as the ultra-fine gngroup structure for the"2step
calculation. If the problem-independent sub-groapameters are prepared in advance,
the present method is equivalent to the sub-grogphod. Therefore, the present
resonance treatment is a generalized approacheofcdimventional three resonance

self-shielding methods.
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4.3 Reaction-Rate Preservation for Reduction ofggnBiscretization Error
4.3.1 Concept for Two-Step Reaction-Rate Presema&cheme

The effective cross-sections obtained from theadtlienergy collapsing with flux
weight cannot be directly applied to the subsequoauiti-group flux calculation due to
the energy collapsing error. In order to reduce éh®r, a reaction-rate preservation

scheme is necessary for heterogeneous geometelrconventional scheme [6-7]

based on the SPH method [16], the group-depenadergation factor f; is derived as:

_JUET(BRE) | [ EqE)| /| [ EE)| [ dEGE) o
R Z J,4ER (E) .

where qu denotes the flux obtained withi jo7, .

The present resonance self-shielding treatmenécedfy for the &' step calculation,
is based on the ultra-fine-group calculation, amastthe conventional scheme can be

applied in principle.

Besides, the present method includes the essentdee aéquivalence theory. The
energy-dependent neutron flux can be regeneratedhbyanalytical form of the

multi-term rational equation. Considering the fumgstal concept of the reaction-rate

preservation scheme in the equivalence theory [hé&]following equation to solvef;

is formulated as a natural extension of the hylegbnance treatment in Reference [7]:

fzy.mnzlﬁ ;";.'”; el "= [ dEq(E). (4.28)

t,g" i,m

where
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Zhyo = | dER(E) £ 2L (E) = [ dER(EIS (). (4.29)

1
= | dEZNEME). (4.30)
g
Equations (4.20)-(4.21) are used in the above dgon. Here, it should be noted that
Equations (4.27) or (4.28) is valid only # (E) is obtained with high accuracy. As

described in Section 4.2.3, some approximationgppdied to the derivation process of

¢(E), and thus ¢ (E) is not necessarily so accurate for direct appboaio Equations

(4.27) or (4.28). Therefore, a new reaction-ragservation scheme is developed in the
present study so that the influence of predictivareof ¢ (E) is mitigated.
The fundamental form of reaction-rate preservatiquation is written as:

jngo—;(E)gq(E) =flolial. (4.31)

9

From the viewpoint of consistency with the presémb-step resonance treatment

described in Section 4.2, Equation (4.31) is digideo the following two equations:

[EEAGCTIGEDI N7 (4.32)
sdlg

> 140°0 = 1,000 (4.33)

sdlg

where @g denotes the flux obtained with o' . Equation (4.32) is the reaction-rate

preservation equation between ultra-fine-group sufgtgroup treatments, and Equation
(4.33) is the reaction-rate preservation equatietwben sub-group and multi-group

treatments. Equation (4.32) is decomposed for sabkgroup as:
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| AET(B)R(E) = 4,0, (4.34)
Note that Equation (4.32) is satisfied if EqQuat{dr84) is valid.
In the present resonance treatment, the sub-grosg-gorrection factorfs‘g and
the corrected ququsig are generated as th& dtep calculation by Equation (4.34). Then,
the multi-group-wise correction factof; is obtained as the"®step calculation by

Equation (4.33). If Equations (4.28)-(4.30) areedily used, a significant error fof;

is induced, as shown in Section 4.4.3.4. By utitigthe sub-group based information,

direct propagation ofg (E) prediction error to fgi is mitigated. This treatment is

called the two-step reaction-rate preservation sehim the present study, and its detail

is described in the following sections.
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4.3.2 £' Step Correction Factor Calculation for Sub-Groewél

The correction factor calculation for thé &tep is carried out based on Equation
(4.34). By the same derivation scheme for the reaette preservation in the hybrid

resonance treatment, Equation (4.34) is rewritten a

ngy.ng;ﬁ fsszszg'tlsr:l.mﬂ i n“ | E@(E), (4.35)

where
Zsusq = |, AEN(E)S (B), (4.36)
= Lngé/](E) U(E). (4.37)

Equations (4.20)-(4.21) are used in the above dton.

Equation (4.35) is used to calculate a correctamtdr for reaction-rate preservation,

which is consistent with the resonance treatmer@aantions 4.2.2-4.2.3. All the terms

except for fs‘g are byproducts of the solution of the methods daesd in Sections
4.2.2-4.2.3. f, is easily obtained from iterative calculation unfi, is converged.

From Equation (4.35),fog for (s+1)-th iteration is generated by using g¢Bult as

follows:
j qua(E)
LE+D= e (4.38)
sdsg im sg~n
Zylngﬁ (S)Ztsg i,m +an

The method includes the iteration scheme, but adytianal iterative flux calculations
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are no longer required. The calculation time Q'“g is negligible compared with the

conventional scheme.
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4.3.3 29 Step Correction Factor Calculation for Multi-Grougvel

The correction factor calculation for th8%atep is carried out based on Equation

(4.33). By substituting Equation (4.26) into Eqoati(4.33), the correction factor is

derived as:
SO0, DO, DL, T
fil=sde :Sgri : =599 — 9. (4.39)
’ T ¥y Zaisqusg N Zaisqusg %,
sglg ‘ §0i sglg
by
sglg

In the above equation, the microscopic cross-seasoincluded in f;, and thus it

depends on resonance nuclide and reaction type. définition of correction factor

leads to the large computational burdens.
In order to avoid the nuclide and reaction type etel@nt correction factor
calculations, the modified correction factcﬁéi and the effective cross-sectiafi;,

are defined so as to satisfy the following relation

figis =fiot (4.40)

g xg”’

By substituting Equation (4.40) into the right-hasdle of Equation (4.33), the

following equation is obtained:

Y oy = G0, (4.41)
sglg

Here, 5;;‘9 is defined as an effective cross-section in whith energy discretization

error associated with the collapsing only from tiiea-fine-group to the sub-group is

removed, that is:
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| ; FogO s
T X

sdlg

By substituting Equation (4.42) into Equation (4,4the modified multi-group

correction factor fgi is derived as:

Z fsiga;Yisngsig Z fsiga r>{isg§;sig z (Zsig

i _ sdlg _  sdg — sdlg
g~ ~ri i - fio g i (4.43)
oy 2 10 e 2
sglg i
i %
2%
sglg

As shown in Equation (4.43)5‘;i does not depend on resonance nuclide and reaction

type like an SPH factor. In other wordg;,"; is defined in Equation (4.42) so that the

resonance nuclide and reaction type dependenceheofcorrection factor can be

removed.

Finally, the corrected effective cross-section, akhis provided for the subsequent
multi-group flux and depletion calculations in atitse physics code, isf~gjo~';;‘g. It

should be noted that the effective cross-sectidn¢hwvis comparable to the continuous

energy Monte-Carlo results tallied by a simple fluight scheme, isa;;; .
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4.3.4 Calculation Flow

Calculation flow of the two-step reaction-rate gmesition scheme established in
Sections 4.3.1-4.3.3 is shown kingure 4.7. The calculation procedure is described as

follows:

(1) Generate the sub-group-wise correction faclfq'g based on Equation
(4.35) with iteration scheme of Equation (4.38).
(2) Perform one-group fixed source calculations forhesigb-group by using

the corrected sub-group cross-sectid)_jaa;'isg as an input, and obtain the

sub-group flux gZS; . This calculation can be carried out independently

(3) Generate the partially-corrected effective crosdise 5;;;, in which the

energy discretization error from the ultra-fineygpoto the sub-group

collapsing is removed, based on Equation (4.42).
(4) Set the initial value ong‘ as FQ; =1.

(5) Perform one-group fixed source calculation for eawliti-group by using

the corrected effective cross-sectio?rjﬁ;;‘g as an input, and obtain the

multi-group flux ¢~79' . This calculation can be carried out independently

(6) Generate the multi-group-wise modified correcti@ctor f~gi based on

Equation (4.43).
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(7) Iterate (5)-(6) until f~gi is converged.

Steps (1)-(3) and (4)-(7) correspond to th& dnd 29 step correction factor

calculations, respectively.

-Sub-group wise parameters

]

(1) Generate sub-group
correction factor

]

-Sub-group correction factofs,
-Corrected sub-group cross-sectidgo,

l

(2) Perform one-group fixed source
calculation for each sub-group

1 (4) Set initial value of multi-group
-Corrected sub-group ﬂuisg correction factor ad, =1

[
)

(3) Generate partially corrected effective (5) Perform one-group fixed source calculatifp

cross-section for each multi-group usind,

-Partially corrected -Corrected multi-group fluxg,
effective cross-sectiod, 1

___________

(6) Generate multi-group (7) ;

correction factor

-Multi-group correction factonﬂ

Correction factor
converged ?

Yes

-Converged multi-group correction fact@'

Figure 4.7 Calculation flow of two-step reaction-rate preservation scheme.
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4 .4 Verification
4.4.1 Concept

In this section, the present resonance treatmenteified by the numerical
calculations. The present method is composed ofiplellcomponents based on a
unified theory, and thus each component is verifiest (Section 4.4.3). Then, the
effective cross-sections, i.e., final products e resonance calculation, are analyzed
for various cases as a total verification (Sectio#.4). The reference solutions are
obtained from the continuous energy Monte-Carlacudations based on the exact
geometry modeling and fine cross-section repretientawith continuous energy
resolution. A part of the references is obtainexnfithe heterogeneous ultra-fine-group

slowing-down calculation based on a deterministithad.

The analysis condition is shown in Section 4.4.2e Tverification results for
fundamental parameters of the present method apgrshin Section 4.4.3. The
application results for various pin-cell and muiéH problems are shown in Section

4.4.4. The verification list is shown Trable 4.3.
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Table 4.3 Verification list.

Section Objective Geometry Verified model Verified pagder Sub-section
Slowing-down calculation with multi-term ,
g . . Ultra-fine-group neutron flux 4.4.3.1
rational equation
Confirm prediction Sub-group definition according to .
P . group . g Sub-group cross-section 4.4.3.2
4.4.3 accuracy of main Pin-cel resonance cross-section level

products in the Final product of resonance calculation Effectivessreection 4.4.3.3
present method Reaction-rate preservation scheme Cross-sectioaatom factor 4.4.3.4

Final product of lattice physics calculation Reattiate 4.4.3.5

Spatial self-shielding treatment with Radlally—.depe ndent effe.c.tlve 9ro§s—§ectlons Wlth4.4.4.1

, - . - . isotope composition distribution
Confirm applicability spatial variation of ultra-fine-group : : : .
. . . Radially-dependent effective cross-sections with
of the present Pin-cell macroscopic cross-section o 4.4.4.2
. temperature distribution
4.4.4 | method for various Radially and azimuthally dependent effective
pin-cell and multi-cell Spatial self-shielding treatment ) P 4.4.4.3
problems Cross-sections
. Spatial self-shielding treatment for ~ Azimuthally-dependent effective cross-sections
3x3 multi-cell P 9 ly-dep 4.4.4.4

irregular lattice with large water region
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4.4.2 Analysis Condition
Analysis condition of the new resonance treatmedescribed in this section.

In order to perform each process in the calculasolneme of the present method
(see Sections 4.2.6 and 4.3.4), a standalone prnogrdeveloped. The MHI (Mitsubishi
Heavy Industries, Ltd.) lattice physics code GALAX8eometrically Arbitrary, Lattice
physics and Assembly calculation code in X-Y cooatie system) [18, 4, 7, 21] is used
for several steps in the process. In concrete;(8Land (14)’ in Figures 4.5-4.6 and ‘(2)
and (5)" in Figure 4.7 are performed by GALAXY. THK&ALAXY ultra-fine-group

cross-section library (120,000 groups) [7] basedNDF/B-VII.0 [19] is also utilized.

The number of rational equation terms used for r@g@en fuel is set toN = 2.
Note that the total number of terms used for mmaigjion fuel is 4N =8 (see Equation
(4.18)). The microscopic effective capture crossieas of>*®U are generated for 88
energy group (6.16-7.52eV) of the XMAS 172 energyu@ structure [20], in which the
wide resonance cross-section’dU is included. The number of sub-groups is 5, and

the sub-group energy structure is determined byatou (4.25) based on the

ultra-fine-group macroscopic absorption cross-sectif the fuel region a< . (E).

The sub-group boundary for the absorption crossesecs determined by a division
with equal interval in logarithmic scale. The sulogp transport calculation is
performed by the collision probability method basedthe equivalent Dancoff method
[21]. These conditions are applied to almost ak tnalyses in this paper. The
sensitivities for the above calculation conditicegainst effective cross-sections are

investigated in advance, and it is confirmed thatdalculation conditions are sufficient
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from the view point of prediction accuracy for effige cross-sections.

UO, (4.8wt%**) pin-cells with HFP (hot full power) operatingraditions are set
as the typical LWR neutron spectrum condition. H™pecifications of the pin-cell
problem are shown imable 4.4, and the geometrical configuration is showrFigure
4.8. The pellet region is sub-divided into 10 equdlwae rings for radial direction. The
fuel composition and temperature are assumed ftabwithin a pellet. Calculation for

the one-region pellet model is also performed tonparisons.

Table 4.4 Specifications of the pin-cell model.

Item Specification
Fuel UO; (4.8wt%>>°U)
Material Cladding Zr
Moderator Borated water
Fuel 976K
Temperature Cladding 600K
Moderator 580K
Boron concentration 1000ppm
Cell pitch 1.26cm
Pellet radius 0.4095cm
Geometry Cladding outer radius 0.475cm
Cladding thickness 0.0655¢m

(Gap is omitted)
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Fuel pellet
(sub-divided into 10 regions)

— Cladding

<«——— Moderator

g »nl
< -1

' 1.26¢cm '

R; =0.4095cm R =0.475cm

Figure 4.8 Geometry of pin-cell model.

In Sections 4.4.3.1, 4.4.3.3 and 4.4.3.5, the tatiom results by the present method
are compared with those by the continuous energyntédGarlo code MVP (Monte
Carlo code for vector processors) [22]. The ENDNIBO nuclear data library is used
in all the MVP calculations to be consistent witle talculations by the present method.
The total number of neutron sampling for MVP cadtidns is set to 100 million

histories, in which thelo statistical error of the effective cross-sectimabout 0.1%.

For the scattering kernel treatment, all the amaysncluding the reference
calculations by the continuous energy Monte-Cardopgerformed with the conventional
asymptotic scattering model, as shown in EquatibB)( In this paper, discussion for
the selection of scattering model, i.e., the asptnptmodel or the exact resonance
scattering model [23, 24], is out of scope. Thespnt resonance treatment is verified

with reference calculations based on the sameescagtmodel.

In Sections 4.4.3.2 and 4.4.3.4, the calculatiagults by the present method are
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compared with those by the direct ultra-fine-graglpwing-down calculation with
heterogeneous geometry. The heterogeneous slowing-dalculation is performed by
the equivalent Dancoff method [21] implemented IALBXY, which is a different

resonance treatment from the hybrid resonanceniezdt[7] and the present method.

The equivalent Dancoff method is applied to a péthe reference calculations, in
which the continuous energy Monte-Carlo calculatiacannot be used to obtain
reference results since specific conditions dedatdbr the deterministic method are
used and cannot be reproduced by the Monte-Carlinade The reliability of the
equivalent Dancoff method itself is also shown ett®n 4.4.3.3 through comparisons

of effective cross-sections against the MVP results
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4 .4.3 Verification for Fundamental Parameters effnesent Method
4.4.3.1 Ultra-Fine-Group Neutron Flux

The ultra-fine-group neutron flux by thé' dtep calculation of the present method is

compared with the continuous energy Monte-Carlaltes this section.

As described in Section 4.4.2.2, a set of the sigwdown equations (Equations
(4.1)-(4.4)) are solved for one-region pellet systdased on the hybrid resonance
treatment [7] of the equivalence theory and theatfine-group slowing-down
calculation. =/,(E) and u(E) are numerically obtained as byproducts of thetswiu
for Equations (4.1)-(4.4). Then by Equations (4-@D21), which are derived in Section

4.2.3, the ultra-fine-group flux for each sub-regaf a pellet is analytically obtained.

The ultra-fine-group fluxes for each sub-regioragdellet by the present method and
those by the continuous energy Monte-Carlo calmnia(fMVP) are shown irFigure
4.9 including 8d' energy group (6.16-7.52eV) of XMAS 172 energy gratructure.
The results for Regions 1, 8, 9 and 10 (sequentralimbered from the center to the
surface of a pellet) are plotted for conveniencs.shown in Figure 4.9, the present
method (' step calculation) can roughly predict the ultreefgroup neutron flux
comparable to the continuous energy Monte-CarlaltesHowever, a slight difference
is observed. The flux differences are induced by tlapproximation of
spatially-dependent fuel escape probability andtegag source within a pellet, which
are applied to the flux derivation scheme in Secti®.3. As shown in Section 4.4.3.3,
the differences of the ultra-fine-group flux dingctause the differences of effective
cross-section between the present method “withBlst2p calculation” and the MVP.

The differences of effective cross-section owingitioa-fine-group flux estimation are
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mitigated by the %' step calculation based on the sub-group flux,h@sve in Section

4.4.3.3.

(@) (b)

100 ¢ 100 ¢
| —MVP - | —MVP
> 10 + | --—Present method > 10 + | ----Present method
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Figure 4.9 Comparison of ultra-fine-group fluxes between the present method (1%
step calculation) and the continuous energy Monte-Carlo calculation (MVP) ((a)

region 1, (b) region 8, (c) region 9, (d) region 10).
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A breakdown of the calculation time for ultra-figesup flux calculation in all the
ring regions within a pellet is shown Trable 4.5. As shown in Table 4.5, the calculation
time is very short, and thus the time is negligiatginst the total computation time of
the lattice physics calculations. On the basigothort computation time, the present
method can be easily applied to the large and bgéeeous geometry such as a fuel
assembly. In the present method, at first, the-foeéiwise ultra-fine-group flux is

independently obtained for each fuel cell by Eoquai (4.1)-(4.4) and the

cell-dependent coefficientsr,,, 5,, & and 8. Then, the obtained ultra-fine-group

data in each fuel rod is expanded for each ringoredpy using the ring-dependent

coefficients y,,. Utilization of a set of coefficients for the matial equation improves

the computational efficiency of the ultra-fine-gpowealculation, compared with the

direct heterogeneous ultra-fine-group transporcudation.

Table 4.5 Calculation timefor the ultra-fine-group flux.

Process CPU time [sec]
Ultra-fine-group cross-section library read (oredime) (*) 0.31
Ultra-fine-group flux calculation for two regiongislem (*) 0.22
Spatially-dependent flux calculation 0.07
Spatially-dependent scattering source calculation 04 0.
Flux update 0.08

(*) Reference [7]
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4.4.3.2 Sub-Group Cross-Section

The sub-group cross-sections in fuel regions aregged by the present method.
The results are compared with the reference solsitiobtained from the direct

heterogeneous ultra-fine-group calculation by téealent Dancoff method.

The sub-group cross-sections and the correspondiiifgrences from the direct
heterogeneous ultra-fine-group calculation resaits shown inFigure 4.10. The
differences of the effective cross-section betwienpresent method “withouf2step
calculation” and the reference solution are alsashin the figure. As shown in Figure
4.10, the present method can accurately predicsubegroup cross-sections, while the
effective cross-section generated by the presethade'without 2¢ step calculation”

includes some differences.
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Figure 4.10 Sub-group cross-sections and their differencesfrom the direct
heter ogeneous ultra-fine-group calculation results ((a) Reference solution of

microscopic capture cross-section of 22U, (b) Difference from reference solution).

The influence of ultra-fine-group flux error (seec8on 4.3.1) on sub-group
cross-section is mitigated by defining the sub-grenergy structure, not for energy but

for macroscopic absorption cross-section level.
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4.4.3.3 Effective Cross-Section

The effective cross-sections in fuel regions ameegated by the present method. The
results are compared with the reference solutidmnaimed from the continuous energy
Monte-Carlo code MVP. The results based on thevadgnce theory (SDGM [4] with
the NR approximation), the direct heterogeneousadiibe-group calculation (the
equivalent Dancoff method [21]) and the presenthoet‘without 2¢ step calculation”

are also obtained for comparison.

The effective cross-sections and the correspondiifgrences from the MVP results
are shown irFigure 4.11. As shown in Figure 4.11, the present methdt+2" step

calculation) can accurately predict the effectiv@ss-sections.
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Figure 4.11 Effective cross-sections and their differencesfrom the continuous
energy Monte-Carlo calculation (MVP) ((a) Reference solution of microscopic
effective capture cross-section of 22U, (b) Difference from reference solution, (c)

Difference from reference solution (high accuracy results only)).
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In contrast, the results obtained by the equivadheory with NR approximation
and by the present method “withotif &tep calculation” show the large difference from
the reference solutions. For the latter method,difference is due to the prediction
error of ultra-fine-group fluxes in the case ofatieg radially sub-divided fuel region

(see Section 4.4.3.1).

From the result, the effectiveness of incorporating sub-group method as th¥ 2
step calculation is confirmed. The influence ofaine-group flux error on the final
effective cross-section is efficiently reduced bg two-step flux calculation scheme of
the present method, i.e., the flux calculation ‘irarse geometry + fine energy”*(1
step) and that for “fine geometry + coarse ene(gy® step). The prediction accuracy of
effective cross-section is appropriately improvey feflecting the more detailed
information of spatial neutron transport within ellpt based on the"2step sub-group

calculation.

The differences of the effective cross-sectionsnfithose of the MVP results are
summarized inTable 4.6. The results obtained by one-region pellet model aso
shown in the table. From Table 4.6, the presentsigp method provides an excellent
result for multi-region case, which is almost congde to the direct heterogeneous

ultra-fine-group calculation.
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Table 4.6 Differences of effective cross-section from the continuous ener gy

Monte-Carlo calculation (MVP).

Relative difference of effective cross-section fighdP[%]

Method Pellet one-region Pellet multi-region problem
problem Average Maximum
Continuous energy Monte-Carlo calculation (MVP) (*) 0.06 0.11 0.15
Equivalence theory (NR approximation) 1.53 6.23 15.92
Direct heterogeneous ultra-fine-group calculation 410. 0.20 1.04
Present method (withouf2step calculation) 1.08 -4.08 -9.52
Present method {1+ 2" step calculation) 1.17 0.37 1.01

(*) Statistical error

The calculation efficiency is also an importantwpeint for the total performance
of a target method. The required number of oneqgréed source transport
calculations is estimated ifable 4.7. In the conventional equivalence theory based on
the Dancoff method, the one-group calculation guimed only one time in the black
neutron absorber condition. If the equivalence mhdmased on the gray resonance
treatment [4] is adopted, the one-group calculaisorequired several times for a wide
range of macroscopic total cross-section conditioAffer all, the conventional
equivalence theory requires only 1-20 times of grmip transport calculations. In
contrast to the equivalence theory, the directrbgneous ultra-fine-group method
generally requires 10,000-200,000 times of one4grvansport calculations, which is

large computational burden.
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Table 4.7 Estimation for the number of one-group fixed sour ce transport

calculations.
Method The number of one-group flux calculations [-]
Equivalence theory 1-20
Direct heterogeneous ultra-fine-group calculation ,00@-200,000
Present method 500-1,000

The present method has an intermediate featureeketthe above two methods. If
the number of multi-groups, in which the resonaseléshielding treatment is required,
is 100, and the number of sub-groups is set ta 8dch group, the required number of
one-group transport calculations is X#=500. As a result, the required number of
one-group transport calculations in the presenhotkis less than 1/10 of that in the

direct heterogeneous ultra-fine-group method, as/ehn Table 4.7.

The calculation time for a fuel assembly geometrgn important point for practical
lattice physics calculations. The calculation tifoe a fuel assembly is estimated in
Table 4.8. In the estimation, the steady-state calculatfonsa typical PWR type 1¥17

4.8wt% UQ assembly are carried out by the lattice physicke G6ALAXY.

As for the treatment of fuel pellet, the two caBes-division” and “sub-division for
radial direction with 10 equal volume rings”) aradyzed. For each case, the resonance
treatment methods based on the equivalence thdpind the direct ultra-fine-group
calculation [21] are applied for comparison withe tipresent method, and their

calculation times are directly measured. Sincepttesent method is not implemented
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into the GALAXY code at the current developmenttestahe result for the present
method is inferred by the results for the otherhods and the quantitative information
in Tables 4.5 and 4.7. The multi-group flux caltiola is performed by “172 group
CCCP (current-coupling collision probability) methe 22 group MOC” [21] for all

cases.

As shown inTable 4.8, the estimated calculation times by the preserthoteare
less than one-third of those by the direct ultreefgroup calculation for resonance
calculation part. The ratios of resonance caloutapart against the “resonance + flux”
calculations are less than 1/2 in the present rdethoom the results, the present
method can efficiently generate effective crosgsises for large and complicated
geometry such as a fuel assembly, comparing with direct ultra-fine-group

calculation.

277



Table 4.8 Brief estimation for the calculation time on fuel assembly geometry.

CPU time ratio[-]

Pellet division Method - —
Comparison with direct het. ufg. cal.  Contribution of resonance cdlc.

Equivalence theory 0.17 0.15
No Direct heterogeneous ultra-fine-group calculation 001. 0.49

Present method 0.30 0.23

Equivalence theory 0.08 0.39
Yes Direct heterogeneous ultra-fine-group calculation 001. 0.88
Present methdd’ 0.12 0.46

(*) CPU time ratio between "specific method" antect ultra-fine-group calculation” for resonancdceilation part
(**) CPU time ratio between "resonance calculatiantl "resonance + multi-group flux calculation” é@ch method
(**) Estimated values from other results
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Finally, the total performance is benchmarked fa@jon resonance treatments,
taking into account of the quantitative information Tables 4.6-4.8. The result of
qualitative comparison is summarizedTiable 4.9. As shown in Table 4.9, the present

method is better than all the three conventionathous, from the viewpoint of both

calculation accuracy and time.

Table 4.9 Qualitative comparison of overall performance for resonance

self-shielding treatments.

Method Calculation accuracy Calculation time
Equivalence theory Acceptable (normal design camjiti Excellent
Conventional Ultra-fine-group calculation Excellent Acceptablenpell)
Sub-group method good good
Present Excellent good
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4.4.3.4 Cross-Section Correction Factor

The correction factors for effective cross-sectiorfuel regions to reduce energy
discretization error are generated by the presethoad. The results are compared with
the reference solutions obtained from the directerdogeneous ultra-fine-group
calculation by the equivalent Dancoff method (segidfion (4.27) in Section 4.3.1).
The results based on the present method “withBUst2p sub-group calculation” (see

Equation (4.28) in Section 4.3.1) are also obtafioedomparison.

In the two-step reaction-rate preservation scheheerelative convergence criterion
of the correction factors is set as 0.1%. Onlyt&6ations are necessary for tH& &ep

calculation in this verification with this convergee criterion.

The correction factors and the corresponding diffees from the direct
heterogeneous ultra-fine-group calculation resaesshown irFigure 4.12. As shown
in Figure 4.12, the present method' (12" step calculation) can accurately predict the

correction factor.
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Figure 4.12 Correction factors and their differencesfrom the direct heterogeneous
ultra-fine-group calculation results ((a) Reference solution of cross-section

correction factor, (b) Difference from reference solution).

In contrast, the results obtained by the preseriode‘without 29 step calculation”

show the large difference from the reference sohsti The prediction error of
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ultra-fine-group fluxes in the case of treatingiaflg sub-divided fuel region is the

cause of the difference (see Section 4.3.1).

From the result, the effectiveness of incorporatimg sub-group method as th¥ 2
step calculation is confirmed. The influence ofadtine-group flux error on the final
correction factor is efficiently reduced by the tstep reaction-rate preservation
scheme, i.e., the ultra-fine-group to the sub-grooitapsing, and the sub-group to the

multi-group collapsing.
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4.4.3.5 Reaction-Rate

One of the final product of lattice physics caltigia is reaction-rate. In order to
confirm the influence of effective cross-sectiorffadtences on reaction-rate, the
energy-integrated macroscopic absorption ratesieéh fegions are generated from the
multi-group transport calculation by the Iattice yplts code GALAXY. The
radially-dependent microscopic effective crossisectet, which is generated from a

standalone program based on the present methdidecdly supplied to the GALAXY.

The results are compared with the reference solsitabtained from the continuous
energy Monte-Carlo code MVP. The results based loa direct heterogeneous
ultra-fine-group calculation by GALAXY are also alnted for comparison. In the
reaction-rate calculation for each method, the noeutiuxes are normalized so that the

volume and energy integrated neutron generati@isainity.

The absorption rates and the corresponding diftm®rirom the MVP results are
shown inFigure 4.13. In this analysis, thelo statistical error of absorption rates by
MVP is about 0.02%. The maximum relative differendeom the MVP results are
-0.4% for the present method, and -0.2% for theadtiultra-fine-group calculation,
respectively. The difference is less thar0.1% for most ring regions in both methods,
thus the present method can accurately predicteghetion-rates, which is comparable

to the direct ultra-fine-group calculation.
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Figure 4.13 Reaction-rates and their differencesfrom the continuous ener gy
Monte-Carlo calculation (MVP) ((a) Reference solution of macroscopic absor ption

rate, (b) Difference from reference solution).
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4.4.4 Application for Various Pin-Cell and Multi-iC@roblems

4.4.4.1 Radially-Dependent Effective Cross-Sectiomgh Non-Uniform Isotope

Composition for Unit Pin-Cell

In this section, the pin-cell with non-uniform ispe composition is treated, in
which the fuel composition is radially distribute&s a typical application for the LWR
lattice calculations, the depleted fuel and theuéamfuel are taken into account. For
both fuels, the calculation conditions except fa& humber densities in fuel regions are

the same as those given in Section 4.4.2.

For the depleted fuel case, the GALAXY depletiorcekation is performed in
advance, and the number densities for each nuahdesach ring region within a pellet
are obtained. In this verification, the number dt#ss only for main actinide nuclides,
i.e., U, 2, #%Pu, #Pu and*Pu, are extracted for simplicity on the burnup
condition of 60GWd/t, as shown figure 4.14. The typical Pu build-up effect on a

peripheral region of the pellet can be observenhfiioe figure.
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Figure 4.14 Distribution of fuel isotope composition within a pellet.

In this verification, the microscopic effective ¢tam cross-sections of°U are
generated with the given region-dependent numbensities. The effective
cross-sections generated by the present methodcargared with the reference
solutions obtained from the continuous energy Mdaelo code MVP. The results are
shown inFigure 4.15. As shown in the figure, the present method canrately predict
the effective cross-sections with radially-disttddi isotope composition. The
spatially-dependent biases against fresh fuel ¢omdialso agree well with the
Monte-Carlo results, and therefore the consistdyeyveen uniform and non-uniform

fuel composition treatments is confirmed for thegant method.
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Figure 4.15 Effective cross-sections and their differencesfrom the continuous
energy Monte-Carlo calculation (MVP) with non-uniform isotope composition ((a)
Reference solution, (b) Difference from reference solution, () Ratio against fresh

fuel condition).

For the annular fuel case, material for the innesthregion of the pellet, which is
sub-divided into 10 equal volume rings for radiakdtion, is assumed as air. Similar
with the above depleted fuel case, the comparidothe effective cross-sections is
shown inFigure 4.16. As shown in the figure, the present method canrately predict

the effective cross-sections of annular fuel. Theststency between solid and annular
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fuel treatments is confirmed for the present method
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Figure 4.16 Effective cross-sections and their differencesfrom the continuous
energy Monte-Carlo calculation (MVP) for annular fuel ((a) Reference solution, (b)

Difference from reference solution, (¢) Ratio against solid fuel condition).
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4.4.4.2 Radially-Dependent Effective Cross-Sectiwith Non-Uniform Temperature

for Unit Pin-Cell

In this section, the pin-cell with non-uniform teempture is treated, in which the
fuel temperature is radially distributed. The cétion conditions except for the fuel

temperatures are the same as those given in Sdctich

The fuel temperature distribution used for the figation is shown irFigure 4.17.
The corresponding effective fuel temperature whgkaveraged with a chord weight

[15] is the same as that in Table 4.4.
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Figure 4.17 Distribution of fuel temperaturewithin a pellet.

In this verification, the microscopic effective ¢tame cross-sections of°U are
generated with the given region-dependent tempeamtudhe effective cross-sections
generated by the present method are compared hétheference solutions obtained

from the continuous energy Monte-Carlo code MVPe Tasults are shown fRigure
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4.18. As shown in the figure, the spatially-dependeiasés against flat temperature
condition agree well with the Monte-Carlo resulesyd therefore the consistency
between uniform and non-uniform fuel temperatueatments is confirmed for the

present method.
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Figure 4.18 Effective cross-sections and their differencesfrom the continuous
energy Monte-Carlo calculation (MVP) with non-uniform fuel temperature ((a)
Reference solution, (b) Difference from reference solution, (¢) Ratio against flat

fuel temperature condition).
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4.4.4.3 Radially and Azimuthally Dependent Effeet®ross-Sections for Unit Pin-Cell

In this section, the radially and azimuthally detd pin-cell is treated. The
calculation conditions except for the sub-divisminfuel region in azimuthal direction
are the same as those given in Section 4.4.2. ddigéllet is sub-divided into 32 sector

regions for 21 with equal azimuthal angle interval.

In this verification, the azimuthally-dependent mi&copic effective capture
cross-sections df®U are generated. The sub-group cross-sectionsesrerated as the
azimuthally-independent values in th& dtep of the present method. The azimuthal
dependence against the final effective cross-sestis taken into account by th&2
step sub-group flux calculation with direct two-@nsional geometry modeling based

on MOC.

It should be noted that the azimuthal dependenasotds the sector region
dependence of effective cross-sections. The azahwatbpendence is not equal to the
angular dependence of effective cross-sections tdu¢ghe angular dependence of

neutron flux for polar and azimuthal directions.

The effective cross-sections generated by the ptesethod are compared with the
reference solutions obtained from the continuowerggnMonte-Carlo code MVP. The
total number of neutron sampling for MVP calculagas set to 500 million histories, in

which the 1o statistical error of the effective cross-sectianabout 0.1-0.2%.

The results are shown Figure 4.19. As shown in the figure, the present method
can accurately predict the azimuthally-dependeiecgfe cross-sections, in which the

cross-sections tend to be larger for the diagomaktions than that for the horizontal
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and vertical directions due to the difference gaeent moderator region volume. T

spatially-dependent biases agst oneregion fuel condition also agree well with f

Monte-Carlo results, and therefore the consistency betvege-region and azimuth:

multi-region treatments is confirmed for the present o
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—TUniform cross-section

=&=Relative difference of
effective cross-section
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-»¢-Continuous energy
Monte-Carlo
calculation (MVP)

Figure 4.19 Azimuthally-dependent effective cr oss-sections and their differences

from the continuous energy M onte-Carlo calculation (MVP) for unit pin-cell ((a)

Reference solution of microscopic effective capture cross-section of 22U, (b)

Difference from reference solution (c) Ratio against one-region fuel condition).
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Both the radially and azimuthally dependent effecticross-sections are also
compared with the reference solutions from MVP. Theesults for
azimuthally-dependent effective cross-section safar each ring region are shown in
Figure 4.20. The results for radially-divided regions 1, 7,98,and 10 (sequentially
numbered from the center to the surface of a pedlet plotted for convenience. As
shown in the figure, the present method can acelyrairedict both the radial and

azimuthal dependences of effective cross-sections.
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Figure 4.20 Azimuthally-dependent effective cross-section ratiosin each ring
region for unit pin-cell ((a) Region 1, (b) Region 7, (c) Region 8, (d) Region 9, (e)

Region 10).

As can be observed from Figu4.20, the azimuthal dependence of effec

cross«sections tends to be larger for the pellet sur{eegion 10) than that for the pel
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center (region 1) due to the difference of distafien moderator region. The
heterogeneous effect, which is a main contributoryfelding azimuthal dependence, is
small for the pellet center. Thus the effectivessrsections are azimuthally flat for

pellet center region.

Though the difference of effective cross-sectioatveen the present method and
MVP is not shown in Figure 4.20, the differenceamfirmed to be less thas 2% for
all the 320 regions, which is a consistent resuthwigure 4.11 in Section 4.4.3.
Therefore, the present method can accurately preghatially-dependent effective

cross-sections for both radially and azimuthallg-givided fuel condition.
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4.4.4.4 Azimuthally-Dependent Effective Cross-Sawdi for 33 Multi-Cell Including

Large Water Region

Finally, the 3*3 multi-cell divided in azimuthal direction is tted. A large water
cell is set in the center region, simply simulatanguide thimble or an instrumentation
tube in a typical PWR (Pressurized Water Reacto€l fissembly. The calculation
conditions of fuel regions except for the sub-dosisof fuel region in azimuthal
direction are the same as those given in Sectib2 4The fuel pellet is sub-divided into

32 sector regions for/2 with equal azimuthal angle interval.

The effective cross-sections generated by the ptesethod are compared with the
reference solutions obtained from the continuowerggnMonte-Carlo code MVP. The
total number of neutron sampling for MVP calculads set to 1 billion histories, in

which the 1o statistical error of the effective cross-sectianabout 0.3%.

The results are shown Figure 4.21 andFigure 4.22. As shown in the figures, the
present method can accurately predict the azinmytdependent effective
cross-sections. The spatially-dependent biasesistgane-region fuel also agree well
with the Monte-Carlo results, and therefore thesestency between one-region fuel and

azimuthal multi-region treatments is confirmed tloe present method.
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Figure 4.21 Azimuthally-dependent effective cross-sections and their differences

from the continuous energy Monte-Carlo calculation (MVP) for 3X3 multi-cell

with large water region (cor ner fuel) ((a) Reference solution of microscopic

effective capture cross-section of 2®U, (b) Difference from reference solution (c)

Ratio against one-region fuel condition).
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Figure 4.22 Azimuthally-dependent effective cr oss-sections and their differences

from the continuous energy Monte-Carlo calculation (MVP) for 3X3 multi-cell

with large water region (vertical fuel) ((a) Reference solution of microscopic

effective capture cross-section of >®U, (b) Difference from reference solution (c)

Ratio against one-region fuel condition).

In the conventional methods, only the direct hegenmous ulti-fine-group

slowinc-down calculation and the s-group method with tw-dimensional exac

geometry can generate the azimutt-dependent effective crc-sections. Therefor:
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the present method is an efficient alternativeréatt azimuthally-dependent resonance

self-shielding effect, while keeping sufficient acacy.
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4.5 Conclusion

The unified resonance self-shielding method is bigexl for general application of
lattice physics calculations. The present methau aecurately treat the radially and
azimuthally dependent resonance self-shieldingcefigthout the direct heterogeneous

ultra-fine-group calculation.

A calculation scheme of the present method is basethe concept of multi-stage
cross-section collapsing strategies, and is contpokavo-step calculation, i.e., “coarse
geometry + fine energy” flstep) and “fine geometry + coarse energy™ (&ep)
calculations. The®istep calculation corresponds to the hybrid mofléhe® equivalence
theory and the ultra-fine-group calculation, and tB" step corresponds to the
sub-group method. The two-step reaction-rate pvatien scheme is also established to

reduce energy discretization error.

From the various verification results, radially amzimuthally dependent effective
cross-sections generated by the new method shod gg@ement with the continuous
energy Monte-Carlo results for pin-cell and mubitc geometries including

non-uniform fuel compositions and temperature iigtrons within a pellet.

The present method can accurately generate effectioss-sections with short
computation time in lattice physics calculationad éhas a potential for the general
application toward the next generation core angalgetdes that require high fidelity and

sophisticated modeling of reactors.
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CHAPTER 5. CONCLUSIONS

5.1 Summary of This Dissertation

This dissertation is devoted to development of & mesonance self-shielding
methodology for generation of effective cross-sewj which are the input of neutron
flux calculation in lattice physics calculation foiel assembly geometry for light water

reactors (LWRS) core analysis.

In general, core design calculation for commerti&IRs is composed of two-step
calculations, i.e., lattice physics calculationldaled by core calculation. In the lattice
physics calculation, the detailed neutronics chareatics of fuel assembly are solved
and the assembly-averaged cross-sections (nuaestants) are generated. Then the

core calculation is performed by using the nucteanstants as input data.

The lattice physics calculation scheme is compasetesonance calculation and
neutron flux calculation, and the nuclear constanésgenerated based on the results of

resonance and flux calculations.

In the resonance calculation, the averaged cragmee for resonance energy
ranges, i.e., effective cross-sections, are geseiay taking into account of resonance
self-shielding effect. The resonance self-shieldieifect is driven by resonance
absorptions of neutrons and their influences omx fiiepressions, which are mainly
induced by heavy nuclides suchZ®J. *U is a main nuclide for LWR nuclear fuel.
The various fuel assembly specifications, e.g., nggoy, fuel composition and

temperature conditions, are considered in the sesmn calculation. Then in the flux
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calculation, the spatial and energy distributiometitron flux within a fuel assembly is
calculated by solving neutron transport equationtfie fuel assembly geometry. The
multi-group effective cross-sections obtained friva resonance calculation are used as

input data in the flux calculation.

As for the flux calculation, the detailed neutraansport method based on the
method of characteristics (MOC) is widely appliedthe current high performance
computers. For the resonance calculation, in ceptsgveral technical issues exist from
the view point of calculation accuracy within piaat computation time which is

suitable to the combination of flux calculation hnad.

In the present study, a new resonance self-shiglaiathodology is developed for
the treatment of generalized geometry and extenmsaron spectrum conditions. The
treatment of generalized geometry contributes te tmprovement of prediction
accuracy for core nuclear design. It is also sigtdbor next generation core analysis
methodology which can be applied to the uncertagpigntification and/or reduction of
neutronics parameters. The treatment of extensigatron spectrum conditions
contributes to the application of transient andesevaccident conditions (lower

moderator density ranges) appeared in safety dsalys

From these backgrounds, the objective of this digBen is to enhance the reactor
analysis methodology through developing a new rasoa self-shielding treatment by

solving the above issues.

Through the enhancement of the methodology, theigiren accuracy of neutronics
characteristics is improved, not only for the ndrmperation but also for the severe

accident conditions of the reactors. These enhamcEmassociated with the core
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analysis methodology contribute to the activities improvement of nuclear power

safety, which is an overall objective of this study

The current resonance self-shielding treatment @niy classified into three
categories, i.e., the equivalence theory, the dfillegroup calculation and the

sub-group method.

The equivalence theory has rich experiences tapipdications for the conventional
lattice physics calculations, and its calculatifficiency is in practical level. However,
it is difficult to guarantee accuracy for the widpplication range. Especially for the
calculation accuracy, the fundamental improveméitsdgheory has not been conducted

in the past 30 years.

In contrast, the ultra-fine-group calculation emabto obtain high accurate results,
while it requires long computation time. Therefateéhas rarely been applied to a large

and complicated geometry such as a fuel assembly¥Rs.

The sub-group method has intermediate nature bettfeeequivalence theory and
the ultra-fine-group calculation from the view pbiof calculation accuracy and
efficiency. Since the sub-group method has an ifsuprediction of Doppler reactivity
considering non-uniform fuel temperature distribatiit has rarely been applied to the

practical core designs.

In order to solve the above issues for calculateouracy and efficiency on the
conventional resonance treatments, a new resonsgltshielding methodology has

been established in the present study, by theafigtienhancing and integrating the
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conventional three methods. The present resonaalfesiselding methodology is
developed for the treatment of generalized geomatiy extensive neutron spectrum

conditions. The summary of technical achievementiescribed as follows.

(1) DEVELOPMENT OF ADVANCED RESONANCE SELF-SHIELDING
METHODOLOGY FOR GENERALIZED LATTICE GEOMETRY AND GRY

NEUTRON ABSORBER BASED ON EQUIVALENCE THEORY (Chapt2)

In the f' stage of the development, the equivalence thesrjo¢used and its

fundamental theory is improved.

In the conventional equivalence theory, the enelgyendent neutron flux is
approximated as a rational equation. In the appration, the fuel material is assumed
as a black body (perfect neutron absorber) fotitrgaan effect for lattice arrangement
of each fuel rod within an assembly. The approxiomis a cause of error for resonance

calculation.

In order to remove the cause of error, a new resmnreatment has been developed.
In the new treatment, gray neutron absorption &figbich means that the fuel material
is not necessarily a perfect neutron absorbehasretically incorporated based on a

multi-term rational equation of the neutron flux.

The gray effect is taken into account by perfornmegitron flux calculations for the
wide range of fuel material conditions between blaond white body (non neutron

absorber) including gray neutron absorber.

In the present method, the neutron fluxes are taked based on the MOC, which
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can treat generalized geometry. Therefore, theeptamethod enables to remove both
the geometrical modeling approximation and the llbaody approximation, and to

precisely treat the complicated lattice geometrihiwia fuel assembly.

(2) DEVELOPMENT OF HYBRID RESONANCE SELF-SHIELDING
METHODOLOGY FOR ENERGY DEPENDENT SCATTERING SOURGD
RESONANCE INTERFERENCE EFFECT BASED ON INTEGRATIONF
EQUIVALENCE THEORY AND ULTRA-FINE-GROUP SLOWING-DOW

CALCULATION (Chapter 3)

Though the conventional equivalence theory can rgemesffective cross-sections
with short computation time, it has several isst@s to its theoretical approximations.
The issues to be solved in this chapter are stajteource approximation which is
important for consideration of extensive neutroactpum conditions, and ignoring the

effect of multiple resonance nuclides on flux degren (resonance interference effect).

As the 29 stage of the development, a derivation schemé®fnergy-dependent
neutron flux in the equivalence theory is reviewbdsed on the ®°1 technical
achievement in Chapter 2. In concrete, the acciseaétering source treatment in the
ultra-fine-group slowing-down calculation is incorpted into the conventional

equivalence theory.

As a result, a new form of energy-dependent neufhan in the fuel region is
derived. The new hybrid equation leads to a theaeintegration of the conventional

equivalence theory and the ultra-fine-group cakiore
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By applying the new hybrid resonance treatmentjouar neutronics parameters
such as reactivity, which is important for safetalgsis, can accurately be predicted
with short computation time. The predicted valubsamed from the present method
agree well with those from the continuous energyntdeCarlo method, and the
computation time of the present method is confiredle the practical level in LWR

assembly calculations.

(3) DEVELOPMENT OF GENERALIZED RESONANCE SELF-SHIELDING
METHODOLOGY FOR INTRA-PELLET MULTI-REGION GEOMETRYAND

NON-UNIFORM EFFECT BASED ON A UNIFIED THEORY (Chagt4)

The hybrid resonance treatment based on integrafidghe equivalence theory and
the ultra-fine-group calculation can accurately eyate effective cross-sections with
short computation time for the extensive rangeeftron spectrum conditions, as long
as each fuel region within a fuel assembly is ndi-divided. This hybrid method
cannot be applied to the fuel regions which arehesub-divided into the multiple

regions.

In this chapter, a new resonance treatment, whachbe applied to the sub-divided
regions, has successfully been developed by funticerporating the efficient treatment

in the sub-group method into the hybrid resonarestiinent developed in Chapter 3.

In the new method, a concept of multi-stage neutransport method generally
adopted in the field of core nuclear design calouteis incorporated into the resonance

calculation. From its concept, a two-step resona@ateulation scheme is constructed by
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combining the “simplified geometry + ultra-fine egg group” and “exact geometry +

few energy group” calculation.

In the £' step calculation, the ultra-fine-group neutrorxés are calculated for the
simplified geometry, and the sub-group cross-sestare generated by using the flux as
a collapsing weight. The sub-group structure isngef as a discrete energy range by

considering the magnitude of resonance cross-sectio

Then in the ¥ step calculation, the sub-group neutron flux iEwated by using
the sub-group cross-section in a fine geometnalRinthe spatially-dependent effective
cross-sections are generated by collapsing thegsulp cross-sections with the

sub-group fluxes as a weight.

The F'step calculation corresponds to the hybrid metbfotequivalence theory +
ultra-fine-group calculation”, and thé%step calculation corresponds to the sub-group
method, respectively. Therefore, a generalizednasce treatment is now established

based on the unified theory of the conventionadhmethods.

By comparison of the results by the present methitd those by the continuous
energy Monte-Carlo method, it is confirmed that firesent method can accurately
generate spatially-dependent effective cross-sectidor radially sub-divided
multi-region geometry within a fuel pellet. The acate results are obtained, not only
for the spatially flat fuel composition and temgara conditions, but also for the

spatially dependent fuel composition and tempeeatonditions.

Furthermore, it is also confirmed that the presaethod can accurately generate

both radially and azimuthally dependent effectiv@ss-sections, which has been
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difficult for efficient treatment in the conventiahmethods.

The present method can be applied, not only toctheventional lattice physics
calculations for pin-cell or single fuel assembBogetry, but also to the multi-group
heterogeneous transport calculations for multi+agde or full core geometry with large
and detailed spatial/energy resolutions. The ptesmthod has a potential to provide
the accurate effective cross-section sets with tjmaccomputation time for such

applications.

As a result of the above technical achievementiénpresent study, several issues
associated with the calculation accuracy and catic efficiency is solved in the field
of resonance calculation. Applicability of the nesgonance self-shielding treatment to
the LWR core analysis is confirmed. The verifiedfpenance of the new methodology
for the calculation accuracy and efficiency is sthated inFigure 5.1. The figure is

made from Figure 1.15 with the typical verificatigsults of Tables 4.6 and 4.8.

For the development of the new resonance selfdihgeimethodology, treatment of
generalized geometry is achieved through (1) and 48d treatment of extensive
neutron spectrum conditions is achieved throughaf®) (3), respectively. From the
achievements, the core analysis methodology isrerth and the advanced technology

will contribute to the activities for improvemeritrmuclear power safety.
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Figure 5.1 Verified performance of the new methodology for the calculation accuracy and efficiency.
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5.2 Recommendations for Future Works

In the present study, the fundamental applicabibfy the proposed resonance
treatment is confirmed. In order to apply the pnégesonance treatment as the more
practical one to the nuclear reactor core analysseral technical issues should be

addressed. The issues are summarized as five issmisire described as follows.

(1) Improvement of macroscopic total cross-section fgofar one-group fixed source

MOC calculation (related to Chapter 2)

As described in Chapter 2, the present resonaeaérient requires one-group fixed
source MOC calculation for several macroscopicl totass-section points. As different
from the conventional Dancoff method which requitke only one flux calculation

against black limit condition, the present methredoaites multiple flux calculations.

The number of flux calculations directly influencas the total computation time of
the resonance calculation, thus the optimum selectif macroscopic cross-section
conditions is desirable. The macroscopic crosseaegtlues and their number of points

should be selected from the view point of both @ialiton accuracy and efficiency.

(2) Optimization of sub-group definition based on diterenergy structure (related to

Chapter 4)

Related to Chapter 4, the definition of sub-gronprgy structure directly influences
on the prediction accuracy of effective cross-seiin the case of small number of

sub-groups. Though the best definition of the stmecin the present study is an equal
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interval division for the logarithm of macroscopibsorption cross-section, the result is

qualitatively obtained, and its theoretical backgd is not sufficient.

From this view point, the theoretical foundationdifine the best sub-group energy
structure is desirable to reduce the number ofggobps while keeping the sufficient

accuracy of effective cross-sections.

One of the ideas is to define the explicit sub-gra@nergy structure so that the
energy range within the target multi-group reprastuthe band probability obtained

from the fitting or moment method.

(3) Simplification of calculation scheme for unifiedsomance treatment (related to

Chapter 4)

If a more simplified implementation of the unifiecesonance self-shielding
treatment is desired for existing lattice physicsle, several calculation steps can be

replaced by the alternative approach.

For example, generation scheme for rational caefits can be replaced by the
scheme based on the Carlvik’s two-term rationaffaments with correction of lattice
effect proposed by Stamm’ler. In this case, onlg dtrnsport calculation is required
with the black limit condition, and non-linear léasquare fitting process can be

removed.

For another example, the calculation of non-fuelwshg-down term y(E) can be
removed if 4(E) is assumed to be unity, which is almost valid formal operation

condition of LWRs. On the basis of the above sifigations, prediction accuracy of the
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ultra-fine-group flux may be worse than that by t¢inginal scheme. In such a situation,
increasing the number of sub-groups is recommendedeep sufficient accuracy of

effective cross-sections.

(4) Application of faster calculation scheme on MOQsjaort calculation specified for

one-group fixed source problem (related to ChagiteBand 4)

The one-group fixed source calculation based onM@C is utilized both for
generation of rational coefficients in the energpendent flux (Chapters 2 and 3) and
sub-group flux calculation (Chapter 4). Since tloenputational burden of these flux
calculations is relatively high in the resonanckwation, the fast calculation scheme

dedicated for a one-group fixed source problenessrdble.

Since the neutron sources are not updated atrathéoapplication to the resonance
calculation, the dedicated programing of MOC flakver specified for one-group fixed

source calculation is an efficient approach to imwprcalculation efficiency.

(5) Application of unified resonance treatment for enggue problem on fuel assembly

or full core geometries (related to Chapter 4)

Though some of the present resonance treatmeets,equivalence theory based
method (Chapter 2) and “equivalence theory + dltra-group calculation” based
hybrid method (Chapter 3), have been implementedl ledtice physics code, the final
product of this study, i.e., the unified resonatreatment (Chapter 4), has not been

implemented yet.

315



The application of the unified resonance treatnientigenvalue problem on fuel
assembly or full core geometries is desirable toalestrate the influence on prediction
accuracy for neutronics parameters. Therefore, ithglementation of the unified

resonance treatment for a core analysis codeimmortant issue.

By applying the present resonance treatment, thierdgeneous region-wise
effective cross-sections can be generated on ddtapatial resolution, both for single

fuel assembly or full core level in principle.

In these sophisticated modeling of nuclear reactthe analysis of detailed
phenomenon for neutronics (including the complidadepletion property), and some
feedback effects, e.g., thermal-hydraulic and meiciaé properties of fuel rods, will be

possible.

316



APPENDIX

Al Sensitivity Analysis for Calculation Conditioh @ Unified Method

In order to confirm the appropriateness of caldofatconditions for the unified
resonance treatment shown in Section 4.4.2, sesersitivity analyses are performed

to confirm the variation of microscopic effectivapture cross-sections ofU:

(1) Update for flux

The effect of flux update described in Section 3L.B. shown inFigure Al. As
shown in Figure Al, the differences of effectiveoss-sections without "2 step
calculation from the continuous energy Monte-Carksults (MVP results) are
efficiently reduced by the update scheme. Thisceffeads to the slight reduction of

difference for final effective cross-sectiori‘(t 2" step calculation).
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Figure Al Effect of flux update on the difference of effeeticross-sections ((a)
Difference of effective cross-section (withot &tep calculation) (b) Difference of

effective cross-section {1+ 2" step calculation)).
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(i) Sub-group energy structure

The sensitivities of the sub-group energy strucane investigated. The sub-group

energy structure is determined by the followingéhcandidates:

(a) Equal division for continuous lethargy,
(b) Equal division for macroscopic absorption crosdieac
(c) Equal division for logarithm of macroscopic absmptcross-section.

Definition (a) is a conventional multi-group apptbaand the sub-group energy
structure is generated based on a continuous emangge. In contrast, Definitions (b)

and (c) yield discrete energy group structure baseBquation (4.25).

The differences of effective cross-sections frore MVP results are shown in
Figure A2. As shown in Figure A2, Definition (c) shows theosh accurate result.
Definition (b) is better than (a), owing to the aracy of sub-group cross-sections
because the influence of ultra-fine-group flux eisomitigated (see Section 4.4.3.2). In
this analysis, the numbers of ultra-fine-groupsath sub-group are (30, 15, 16, 20,
319) for Definition (b), and (75, 36, 52, 132, 106y Definition (c), in which the
sub-group is numbered from the resonance peak ttantpe foot range. The number of
ultra-fine-group groups is equally distributed sch sub-group in Definition (c) rather
than (b). Therefore, (c) can utilize all the subtgr transport results more evenly and

efficiently, and thus can improve the final accyrat effective cross-sections.
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(i)  Reference cross-section selection for sub-grouipitieh

The sensitivities of the reference macroscopicsgestion selection for sub-group
definition in Equation (4.25) are investigated. Tikerences of effective cross-sections
from the MVP results are shownkiigure A3. As shown in Figure A3, the difference is
smaller for absorption cross-section than thatdtal cross-section, owing to the more
direct reflection of resonance absorption informatiAs a result of the improvement for
microscopic effective capture cross-section$®df, the accuracy of macroscopic total

cross-section is also improved.
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Figure A3 Sensitivity of reference cross-section selectmrstib-group definition on

the difference of effective cross-sections.
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(iv)  Number of sub-group

The sensitivities of the number of sub-groups arestigated. The differences of
effective cross-sections from the MVP results drews1 in Figure A4. As shown in
Figure A4, the difference becomes smaller as timelran of sub-groups increases. When
the number of sub-groups is 5, the effective ceexdions are mostly converged to the

finer results.
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Figure A4 Sensitivity of the number of sub-group on theetdéince of effective

cross-sections.
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(v) Scattering source treatment for ultra-fine-groux talculation

As shown in Section 4.4.3.3, the present methododdain the accurate effective
cross-sections. One of the important elements fer prediction accuracy is the
energy-dependent scattering source treatment, whicarefully handled in Section 4.2
from the viewpoint of both calculation accuracy afficiency. In order to confirm the
effect of an efficient scattering source treatmantthe present method, the direct
heterogeneous ultra-fine-group calculation with skattering source based on the NR

approximation is performed for comparison.

The effect of energy-dependent scattering souesgrtrent in Section 4.2 is shown
in Figure A5. As shown in Figure A5, the differences of effeetcross-sections from
the MVP results are smaller for the present methibdn that for the direct
heterogeneous ultra-fine-group calculation with Mfe approximation. Therefore, the
energy-dependent scattering source treatment i®riant for sufficient prediction

accuracy.
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effective cross-sections.
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(vi)  Selection of transport method for sub-group flubcakation

The sensitivities of the transport method on theuwation result of sub-group flux
are investigated. The differences of effective sreasctions from the MVP results are
shown inFigure A6. As shown in Figure A6, both the collision probdfpimethod
(one-dimensional cylindrical geometry with white upolary) and the MOC (exact
two-dimensional geometry with reflective boundaprpvide comparable results, at

least for the radial multi-region system.
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Figure A6 Sensitivity of transport method for sub-group fieedculation on the

difference of effective cross-sections.
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A2 Azimuthally-Dependent Resonance Treatment Baselquivalence Theory

Another new resonance treatment for azimuthallyedepnt self-shielding effect is
derived as an extension of the conventional egeinad theory. In the conventional
equivalence theory based on a multi-term ratiogab&on with NR approximation, the

flux for fuel region is written as:

+q

% (E)=— Zﬁ 5T (E)I - (A1)

+a,

In the present concept, the azimuthal dependendlenofs effectively incorporated by

the chord length as follows:

pllef'f
z (E)||eff +O’ (AZ)

m)——iﬁ

where |, is defined as “effective chord length” of sectegion i within a pellet.

l,x incorporates the effect of difference for adjaa@aiderator region volume in each
sector.

In the black limit, i.e., a perfect neutron absorl@ssumption for fuel region

consistent with Dancoff factor calculation, theataeaction-rate is converged as:

Zf a,

im = @(=!) = lim = 2,8 M im 53, et

PR PN Zt ||eff +a, -~ o Zf a,
Ii,eff (A3)

—5f =1
=3 +n—,

p

] iﬂnan

I i,eff
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where ¢g(z/) denotes lethargy-averaged neutron flux obtainesn fiEquation A2.

From Equation A3, is derived as:

z ﬂnan

I|m Z gq(z )=,

(A4)

l i,ef‘f

les Can be generated by usingm s/@(=!) data obtained from one-group MOC
: 5

fixed source calculation.

As a natural extension of the conventional equivagetheory, then -th background

cross-section for resonance nucliie in sector regioni is written as:

in _ k#r
b — N f . (AS)

r

By using Equation A5, the microscopic effective ss:@ection is generated based on

multi-term rational equation.

In a special case of one-term rational equatioa,, iIN =1, Equation A5 is

simplified as:
lim 2/ g(z/) -3,
N,/ 0 + — N,/ 0' +a, 2 oo
i ; Ieff kz,—:r: a,
g, = f f
N, N, (A6)
Jim 3{q(z))
=== Nf _O-rp’

where Equation A4 is used. The form of Equationi&\@onsistent with the enhanced

neutron current method, and therefore this treatneran extended version of the
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equivalence theot

This resonance treatment is applied to 3X3 multi-cell geometry in Sectio
4.4.4.4 N =2). The results of effective crc-sections divided by that for o-region
pellet condition are shown iFigure A7. As shown in the figure, this method
roughly predict the azimuthal dependence of effective «sections. Although th
prediction accuracy by the present unified methHeidures 4.2-22) is better than thi
by the equivalence theory based method (Figure #&®,latter method is an or
scheme whic can directly generate azimuthe-depender effective cros-sections

based on the equivalence the

7 —e—Equivalence theory
based method

-3¢-Continuous energy
Monte-Carlo
calculation (MVP)

Figure A7. Azimuthally-dependent effective crc-section ratio from equivalen
theory based methdor 3X3 multi-cell with large water regio ((a) Corner fuel, (b

Vertical fuel.
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