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ABSTRACT 

This dissertation is devoted to development of a unified resonance self-shielding methodology 

for generation of multi-group effective cross-sections in lattice physics calculation of light water 

reactor (LWR) core analysis. The new methodology can accurately and efficiently treat generalized 

multi-region geometry in a reactor core with extensive neutron spectrum conditions for LWRs. 

The present methodology is established by theoretical enhancement and integration of 

conventional three resonance treatments, i.e., equivalence theory, ultra-fine-group slowing-down 

calculation and sub-group method. The integration works have been accomplished from the view 

point of maximizing the advantages and minimizing the disadvantages for each method. As a result, 

several important technical issues for conventional resonance treatments, i.e.,  

(i) limitation for generalized lattice geometry, 

(ii)  black neutron absorber assumption, 

(iii)  scattering source approximation, 

(iv) resonance interference treatment, 

(v) radially/azimuthally dependent intra-pellet self-shielding treatment, 

(vi) non-uniform fuel composition and temperature treatment within a pellet, 

are simultaneously resolved in the framework of the unified theory. Solution for (i)(ii)(v) and 

(iii)(iv)(vi) enables treatment of generalized geometry and extensive spectrum conditions, 

respectively. 

The present resonance self-shielding methodology can generate multi-group effective 

cross-sections used for the subsequent multi-group flux calculation, by considering complicated 

energy/space self-shielding effects driven by resonance absorption of heavy nuclides such as 238U. 

By applying the effective cross-sections obtained from the present methodology to the lattice physics 

calculations, it is demonstrated that major neutronics parameters such as neutron multiplication 

factor and reactivities can be accurately predicted for generalized geometry under extensive 

spectrum conditions. The accuracy is comparable to the continuous energy Monte-Carlo results. 

From the technical achievements in this dissertation, it is concluded that the present resonance 

treatment can accurately and efficiently generate effective cross-sections used in LWR core analysis. 

The present achievements will enable to perform the more accurate and efficient core nuclear design 

and safety analysis, which contributes to the activities for improvement of nuclear power safety. 
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CHAPTER 1.  INTRODUCTION 

 

1.1 Background 

1.1.1 Latest Requirements for Nuclear Core Analysis Methodologies 

The Fukushima-Daiichi nuclear power plant accident in 2011 reconfirmed 

importance of nuclear safety, and improvement of nuclear power safety has strongly 

been promoting. The control of fission chain reaction in a reactor core is a key 

technology to assure nuclear power safety, and the safety is mainly confirmed through 

reactor core analysis. Therefore, the advancement of reactor core analysis methodology 

will directly contribute to the activities for further improvements of nuclear power 

safety, e.g., reflection of the latest knowledges, enhancement of analysis technologies. 

Conventionally, the reactor core analysis for commercial LWR (light water reactor) 

nuclear power plants is composed of core nuclear design, thermal-hydraulic design, fuel 

mechanical design and safety design. In the framework of these design analyses, the 

core nuclear design is usually the uppermost stream both for the reactor analysis and 

total plant design. 

The nuclear design can create the basic concept of a reactor core, and suggest the 

fundamental specifications of the core, e.g., core thermal power, core size, nuclear fuel 

specifications and reactivity control method for fission chain reaction. That is why the 

fundamental technologies associated with the nuclear design characterize many 

specifications of a nuclear power plant. 

In addition, the various neutronics parameters obtained from nuclear design are 
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supplied as interface data for the subsequent stream of the design analyses. Therefore, 

the quality of nuclear design methodology influences on the analysis results of 

subsequent designs. 

In order to improve the nuclear power safety, the advanced core analysis 

methodologies have been continuously investigated. From the view point of 

best-estimate evaluation for setting the more realistic safety margin in the nuclear 

reactor analysis, the core nuclear design methodology has been incorporated into the 

detailed safety analysis methodology based on a three-dimensional, 

nuclear/thermal-hydraulic coupling calculations [1-3]. 

In order to apply the nuclear design methodology as a part of the advanced safety 

analysis scheme, its applicable range must be extended to the irregular core conditions 

assumed in safety analysis. In the recent requirements for safety analysis, DEC (design 

extended conditions) and SA (severe accident) are assumed, in addition to the 

conventional application range, i.e., normal operating and DBE (design based event) 

conditions. 

In order to preserve the appropriate prediction accuracy of nuclear design 

calculations against the extended application range for safety analysis, the advanced 

core nuclear design methodologies are now strongly required. The advancement will 

contribute not only to the enhancement of safety analysis methodology, but also to the 

further improvement of nuclear core design itself. Therefore, the advanced nuclear 

design methodology will contribute to the activities for enhancement of both the safety 

and economy in nuclear power. 
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1.1.2 Overview of Current Core Nuclear Design Methodology 

From the extended requirements for core analysis methodology, this dissertation 

focuses on the core nuclear design methodology based on a reactor physics theory [4-8]. 

As shown in Figure 1.1, the current core nuclear design is generally based on a 

two-step calculation scheme [8], which is composed of lattice physics calculation 

followed by core calculation. Since a huge amount of core analysis is performed in the 

nuclear design for various fuel loading patterns, the lattice physics calculation (fuel 

assembly calculation) and the core calculation are separated for calculation efficiency. 

 

 

Figure 1.1 Current flow of core nuclear design based on a two-step calculation. 
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By tracing the flow of core nuclear design calculation stream, it can be seen that the 

final prediction accuracy of core neutronics parameters depends on the accuracy of 

assembly-averaged nuclear constants obtained from lattice physics calculations, which 

are the most important input data for the core calculations. 

Here, the typical flow of lattice physics calculation is shown in Figure 1.2. The 

accuracy of lattice physics calculation itself is determined by the solutions of neutron 

transport calculation for fuel assembly geometry, i.e., space-dependent, multi-group 

neutron fluxes. If the appropriate multi-group effective cross-sections are generated 

from resonance calculation, and supplied as input of the rigorous neutron transport 

calculations, the neutron fluxes can accurately be obtained. The details for the resonance 

calculation are described in sub-sections 1.1.3 and 1.1.4. 

 

 

Figure 1.2 Typical flow of lattice physics calculation. 
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Recently, the method of characteristics (MOC) [9] is widely applied as a standard 

neutron transport calculation scheme in order to explicitly consider heterogeneous 

geometry such as pin-cell, fuel assembly and even full core. The MOC can be applied 

by utilizing the current high computational performance. 

In contrast to the neutron transport calculation, the resonance calculation has several 

technical issues from the view point of sufficient accuracy with practical computation 

time. The accuracy of multi-group effective cross-sections obtained from the resonance 

calculation should be well-balanced with that of neutron fluxes. 

The current core nuclear design calculation scheme suggests that the accuracy of 

multi-group effective cross-sections and its source (nuclear data) strongly influences on 

the final accuracy of core neutronics parameters. From this point of view, this 

dissertation is devoted to improvement of the accuracy for multi-group effective 

cross-sections. 

As shown in Figure 1.3, the multi-group effective cross-sections are defined as the 

averaged cross-sections of original continuous energy cross-sections in a specific energy 

range. The multi-group energy structure is generally defined by dividing the whole 

neutron energy range in a reactor core (1.0×10-5eV-20MeV) into approximately several 

dozen-a few hundreds energy groups. Since the group-averaged process for generating 

the effective cross-sections is especially important for resonance energy ranges, e.g., 

6.0-8.0eV for 238U, its processing is called as the resonance calculation [6]. In this 

dissertation, a new resonance calculation methodology is developed. 



 

 

 

 

Figure 11.3 Relation between continuous energy cross
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1.1.3 Boltzmann’s Neutron Transport Equation and Multi-Group Theory 

The core nuclear design methodology is based on a reactor physics theory [4-8]. In 

the reactor physics theory, a fundamental equation to solve the neutron behavior in a 

reactor core is a Boltzmann’s neutron transport equation written as: 

),,(),,(),(),,( ΩrΩrrΩrΩ EQEEE t =Σ+∇⋅ ψψ .   (1.1) 

In the equation, the neutron population within a reactor core is modeled as if it were 

the gas transported in the media of reactor core. By providing the material-wise 

cross-sections Σ  which correspond to the probability of neutron-nucleus reactions, the 

angular neutron flux ψ , i.e., the neutron density in a reactor core that depends on six 

phase spaces (spatial position ),,( zyx=r , neutron energy E  and neutron flight 

direction ),( ϕθ=Ω ), is solved for a target reactor core. 

As for the steady-state critical core, the neutron transport equation is numerically 

solved as an eigenvalue problem. For the eigenvalue problem, neutron source in 

Equation (1.1) is written as: 

.),(),(
4

),(1

),,(),,(),,(

eff
∫

∫ ∫
′′Σ′+

′′→′→′Σ′′=

EEEd
E

k

EEEdEdEQ

f

s

rr
r

ΩrΩΩrΩΩr

φν
π

χ

ψ
  (1.2) 

The most fundamental solutions for Equations (1.1)-(1.2) are effective neutron 

multiplication factor effk  (eigenvalue) and neutron flux ),,( Ωr Eψ  (eigenvector). 

In the actual nuclear design calculations, the reactivity change ρ∆  and the 

reaction-rates )(rR  are often evaluated from effk  and ψ  (or scalar flux φ ) as 
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follows: 

effeffeff

eff

eff

eff 1111

kkk

k

k

k

′
−=







 −
−








′
−′

=∆ρ ,    (1.3) 

∫ Σ= ),(),()( EEdER rrr φ ,     (1.4) 

where the scalar flux is obtained by integrating the angular flux solution. 

The typical examples of the neutronics parameters obtained from a LWR nuclear 

design are listed in Table 1.1. Though the various neutronics parameters are evaluated 

in the nuclear design, many of them are essentially the byproducts of effk  and φ . 

 

Table 1.1 Typical examples of neutronics parameters obtained from a LWR 

nuclear design. 

  

 

Parameter type Main category Detailed category
Doppler temperature coefficient

Doppler power defect
Moderator temperature coefficient

Moderator density coefficient
Boron worth

Differential worth
Integral worth

Isothermal temperature coefficient
Shut-down margin

Microscopic reaction-rate
Thimble reaction-rate for instrumented assembly

(used for processing measured power distribution)
Radial assembly power distribution

Axial power distribution
Pin power distribution

Nuclear enthalpy-rise hot channel factor
(axially-integrated peak pin power)

Thermal flux hot channel factor
(3D local peak power)

Reactivity change

Reaction-rate

Doppler reactivity

Moderator reactivity

Control rod worth

Others

Macroscopic reaction-rate
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As can be observed in Equations (1.1)-(1.2), the neutron transport equation can 

analytically be solved only for a very simple case, e.g., 
)(

1
)(

EE
E

tΣ
=φ  in the case 

that the target system is an infinite homogeneous medium ( 0),,( =∇⋅ ΩrΩ Eψ ) and 

neutron source is asymptotic for neutron energy ( EEQ /1)( = ). That is why the 

transport equation is numerically solved in the practical core nuclear design calculations. 

In the reactor physics theory, the fundamental equation has already been given as 

Equations (1.1)-(1.2). Therefore, the main interest for research and development is how 

to solve Equations (1.1)-(1.2) from the practical point of view. 

The numerical approach to solve the transport equation is generally classified into 

two categories, i.e., stochastic method [10-11] and deterministic method [6]. In the 

stochastic method (or often referred as the Monte-Carlo method), there are no 

approximations for the treatment of each phase space. The space, energy and angular 

dependences of neutron flux are treated as continuous manner by directly tracing a 

series of neutron life with random number. As a result, the stochastic method enables 

accurate estimation of effk  and φ , as long as many neutrons are traced and the 

corresponding statistical errors are negligible. 

For the practical application of the stochastic method, the acceptable computation 

time is limited since the nuclear design calculations should be completed in the limited 

period for in-core fuel management. In such a realistic situation, the number of traced 

neutrons is limited, and the statistical error can be an issue for design calculation. 

Especially for the evaluation of small reactivity changes such as the Doppler 

reactivity coefficient, and spatially local parameters such as pin-by-pin power 
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distribution, a huge amount of neutrons should be traced to reduce the statistical error in 

a practical level. In general, the number of traced neutrons is determined so that the 

statistical errors for the target neutronics parameters are sufficiently smaller than the 

neutronics uncertainties for the parameters used in the nuclear designs and their 

interface design applications. 

In contrast, the deterministic method can evaluate neutronics parameters without 

statistical error. To perform computation within a practical computation time, the 

deterministic method introduces several modeling approximations associated with 

discretization and/or function expansion of each phase space (space, energy and angle). 

In spite of the approximations, the deterministic method is widely applied to the 

current nuclear design calculations for LWRs owing to its high calculation efficiency. 

As for the approximate treatment on neutron energy, which is a main interest of this 

dissertation, the whole neutron energy range in a reactor core (1.0×10-5eV-20MeV) is 

generally divided into the multi-group, as shown in Figure 1.4. 
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Figure 1.4 Concept of multi-group treatment. 
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In the multi-group treatment for neutron energy, the original transport equation for 

continuous energy form is transformed to the multi-group form. The multi-group 

transport equation for group g  is derived by integrating Equation (1.1) for the 

corresponding energy range as follows: 

),(),()(),( , ΩrΩrrΩrΩ gggtg Q=Σ+∇⋅ ψψ .   (1.5) 

In the derivation, the multi-group cross-sections, the neutron fluxes and the neutron 

sources are defined as: 

∫
∫

∫
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≡Σ
g

g t

g

g t

gt
EdE

EEdE

EdE

EEdE

),(
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)(,

r

rr

Ωr

Ωrr
r

φ

φ

ψ

ψ
,  (1.6) 

∫≡
gg EdE ),,(),( ΩrΩr ψψ ,     (1.7) 

∫≡
gg EdEQQ ),,(),( ΩrΩr .     (1.8) 

where the angular dependence of neutron flux within a energy group g  is 

approximately ignored in Equation (1.6). The multi-group cross-section gΣ  is defined 

so that the energy-integrated reaction-rate within the group g  is preserved in the 

multi-group treatment, i.e., ∫ Σ=Σ
ggg EEdE ),()()( ΩΩ ψψ . 

Here, it should be noted that the multi-group angular flux gψ  is accurately solved 

by Equation (1.5) only if the accurate multi-group cross-sections gΣ  are generated in 

advance. However, the multi-group cross-sections are defined as an averaged 
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cross-section for the specific energy range with the energy-dependent flux as a 

collapsing weight, as shown in Equation (1.6). This fact indicates that the 

energy-dependent neutron flux is necessary in advance, in spite that the neutron flux 

itself is a solution of the transport equation. This is “the chicken or the egg” situation, 

and an essential issue for multi-group treatment. 

The example of continuous energy and corresponding multi-group cross-sections for 

238U is shown in Figure 1.5 [12]. As for the smooth cross-section ranges, the above 

issue for flux weight is not essential as long as the continuous energy cross-section can 

be regarded as an almost constant within the specific energy group. In contrast, the 

continuous energy cross-sections for resonance ranges steeply vary for neutron energy. 

The corresponding energy-dependent neutron flux is strongly influenced by the 

resonance cross-sections. Therefore, the special care is necessary for generation of 

accurate multi-group cross-sections in which the original continuous energy 

cross-sections include resonances. The care corresponds to the reaction-rate 

preservation for each energy group mentioned above. It is sure that the reaction-rate 

preservation is performed by considering the temperature dependence of resonance 

cross-sections. 

 

  



 

Figure Figure 1.5 Continuous energy and corresponding multiontinuous energy and corresponding multi
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The multi-group cross-sections obtained by considering the resonances are called as 

“effective cross-sections”, and their generation process is called as “resonance 

calculation” [6]. The resonance calculation is very important process for deterministic 

nuclear design calculations since the cross-sections of 238U, which is a base nuclide of 

nuclear fuel material for LWRs, include several large resonances. This dissertation 

focuses on the resonance calculation methodology for LWR core analysis applications. 

 

  



 

1.1.4

The resonance calculation is to generate multi

considering the resonances in original continuous 

the example of very simple case for the solution of neutron transport equation in the 

previous sub

where the target system is assumed 

neutron source is regarded as 

from Equation (

macroscopic total cross

corresponding to the resonance cross

in Figure 

 

Figure 

1.1.4 Resonance Self

The resonance calculation is to generate multi

considering the resonances in original continuous 

the example of very simple case for the solution of neutron transport equation in the 

previous sub-section, the neutron flux is written as:

)(E =φ

where the target system is assumed 

neutron source is regarded as 

from Equation (

macroscopic total cross

corresponding to the resonance cross

Figure 1.6. 

Figure 1.6 Relation between resonance cross

Resonance Self-Shielding Treatment

The resonance calculation is to generate multi

considering the resonances in original continuous 

the example of very simple case for the solution of neutron transport equation in the 

section, the neutron flux is written as:

)(

1

EE tΣ
= ,  

where the target system is assumed 

neutron source is regarded as 

from Equation (1.9), the energy

macroscopic total cross-sections for the targ

corresponding to the resonance cross

Relation between resonance cross

Shielding Treatment

The resonance calculation is to generate multi

considering the resonances in original continuous 

the example of very simple case for the solution of neutron transport equation in the 

section, the neutron flux is written as:

  

where the target system is assumed 

neutron source is regarded as an asymptotic function

), the energy-dependent neutron flux is proportional to the inverse of 

sections for the targ

corresponding to the resonance cross-sections for neutron energy is depressed, as shown 

Relation between resonance cross

neutron flux.

16 

Shielding Treatment 

The resonance calculation is to generate multi

considering the resonances in original continuous 

the example of very simple case for the solution of neutron transport equation in the 

section, the neutron flux is written as:

 

where the target system is assumed as an inf

asymptotic function

dependent neutron flux is proportional to the inverse of 

sections for the target medium. Therefore, the neutron flux 

sections for neutron energy is depressed, as shown 

Relation between resonance cross

neutron flux.

The resonance calculation is to generate multi-group effective cross

considering the resonances in original continuous energy cross

the example of very simple case for the solution of neutron transport equation in the 

section, the neutron flux is written as: 

 

an infinite homogeneous medium, and the 

asymptotic function for neutron energy. As can be seen 

dependent neutron flux is proportional to the inverse of 

et medium. Therefore, the neutron flux 

sections for neutron energy is depressed, as shown 

Relation between resonance cross-section and the corresponding 

neutron flux. 

group effective cross

energy cross-sections. By reminding 

the example of very simple case for the solution of neutron transport equation in the 

  

inite homogeneous medium, and the 

for neutron energy. As can be seen 

dependent neutron flux is proportional to the inverse of 

et medium. Therefore, the neutron flux 

sections for neutron energy is depressed, as shown 

section and the corresponding 

group effective cross-sections by 

sections. By reminding 

the example of very simple case for the solution of neutron transport equation in the 

 (1.9)

inite homogeneous medium, and the 

for neutron energy. As can be seen 

dependent neutron flux is proportional to the inverse of 

et medium. Therefore, the neutron flux 

sections for neutron energy is depressed, as shown 

 

section and the corresponding 

sections by 

sections. By reminding 

the example of very simple case for the solution of neutron transport equation in the 

) 

inite homogeneous medium, and the 

for neutron energy. As can be seen 

dependent neutron flux is proportional to the inverse of 

et medium. Therefore, the neutron flux 

sections for neutron energy is depressed, as shown 

section and the corresponding 



17 

 

 

By considering the definition of multi-group cross-section, the effective 

cross-section is generated by the average of the continuous energy resonance 

cross-sections with corresponding fluxes as a collapsing weight: 

∫
∫

=
g

g
g

EdE

EEdE

)(

)()(

φ

φσ
σ .      (1.10) 

The neutron flux is strongly depressed for the resonance peak range. Thus the 

effective cross-section is smaller than the simple energy-averaged one. This mechanism 

is called as “resonance self-shielding effect” [6] since the large resonance cross-section 

itself reduces the corresponding effective cross-sections due to the flux depression. 

The accurate and efficient treatment of self-shielding effect is a key issue for 

resonance calculation. The above self-shielding phenomenon is generally called as 

“energy self-shielding effect” since the effect is driven by the flux depression for 

neutron energy. 

There is another self-shielding phenomenon called as “spatial self-shielding effect” 

[6] driven by the spatial flux depression within a fuel region. Since the fuel material for 

LWR is a strong neutron absorber, the incoming neutrons from the fuel surface is 

exponentially attenuated in the fuel region. Therefore the neutron flux has spatially 

distribution within a fuel region, as shown in Figure 1.7. The effective cross-sections 

show the spatial dependence, whose values are larger for the fuel surface than for the 

fuel center regions, due to spatial distribution of neutron flux. 
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Table 1.2 Comparison of current resonance self-shielding treatment. 

 

 

  

Space Neutron energy
Ultra-fine-group

calculation
Simple

(First principle) MOC
(1)

/CPM
(2) Slowing-down equation Simplified Fine

Accurate calculation
for small geometry

Sub-group method Simple MOC/CPM NR
(3)

/IR
(4)

 approximation Fine Simplified
Efficient calculation

for complicated geometry

Equivalence theory Complicated
Rational approximation
+Dancoff correction

NR/IR approximation
Fine

/Simplified
Simplified

Efficient calculation
for simplified geometry

(1) Method of characteristics
(2) Collision probability method
(3) Narrow resonance
(4) Intermediate resonance

Suitable application targetMethodology
Characteristics

for theory
Treatment

for geometry
Treatment

for scattering source
Modeling resolution
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(a) Ultra-fine-group calculation [14] 

The ultra-fine-group calculation is to directly solve the energy-dependent neutron 

flux )(Eφ  for generation of effective cross-sections. 

The example of energy-dependent neutron flux obtained from the ultra-fine-group 

calculation is shown in Figure 1.8. In the ultra-fine-group calculation, the obtained flux 

is directly used as a collapsing weight of resonance cross-sections in the ultra-fine 

energy group (or continuous energy) resolution. 

 

 

Figure 1.8 Energy-dependent neutron flux obtained from ultra-fine-group 

calculation. 

 

The rigorous estimation of )(Eφ  does not make sense, since the flux is not a 

pre-determined input data but a primary solution of neutron transport equation. 
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Therefore, the approximated transport equation is solved for the treatment of energy 

dependence on neutron flux. The corresponding equation is referred as the 

“slowing-down equation”, and is written as: 

∫
∞

′→′Σ′=Σ
E st EEEEdEE )()()()( φφ .    (1.11) 

In the slowing-down equation, the fission source is usually ignored owing that the 

fission source is relatively smaller than the scattering source for the resonance energy 

ranges [15]. For the scattering source treatment, only the down scattering by elastic 

neutron-nucleus collision in the center-of-mass is taken into account since the other 

types of scattering reaction are commonly negligible for the target resonance energy 

ranges. 

As shown in Equation (1.11), the neutron flux itself is included in the energy 

integration of scattering source, thus the slowing-down equation cannot analytically be 

solved in general. Fortunately, the scattering source includes only the down-scattering 

component in the slowing-down equation. Therefore, the neutron flux can numerically 

be solved from the upper to the lower energy ranges by using a recurrent relation. Any 

iterative calculations are not necessary, as different from general multi-group transport 

calculation for LWRs. That is why the energy-dependent neutron flux for the resonance 

energy ranges can efficiently be solved by the slowing-down equation. 

Owing to the direct treatment of energy dependences for cross-section and neutron 

source, the ultra-fine-group calculation can accurately treat the energy-dependent 

scattering source and the resonance interference effect [8], which cannot be treated 

accurately in the sub-group method and the equivalence theory. 
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For the general heterogeneous geometry, the slowing-down equation is extended as: 

∑ ∫
∞

→ ′→′Σ′=Σ
j

E jjsjijiiit EEEEdVEPVEE )()()()()( ,, φφ ,  (1.12) 

where the integral form of neutron transport equation based on the collision probability 

method [16] is applied as an example. While the slowing-down equation for the 

homogeneous system (Equation (1.11)) is efficiently solved, the slowing-down equation 

for the heterogeneous system requires a huge amount of computation burden due to the 

collision probability calculation for the ultra-fine-group resolution. Especially for the 

large and complicated geometry such as a fuel assembly or full core, the collision 

probability calculation for all the region-to-region combination is not practical for actual 

core nuclear design applications. 

Therefore, the small geometry such as a pin-cell or multi-cell is a practical target for 

the current ultra-fine-group calculation. 

 

(b) Sub-group method [17-18] 

The sub-group method generates the effective cross-sections by dividing the specific 

energy range of multi-group resolution into several sub-groups according to the 

magnitude of resonance cross-section level, as shown in Figure 1.9. 
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Figure 1.9 Concept of sub-group method (discrete energy range for sub-group 2 is 

shown as an example). 

 

Since the energy dependence of neutron flux is almost proportional to the inverse of 

resonance cross-section (see Equation (1.9)), the sub-group definition according to the 

resonance cross-section level can efficiently consider the relation between the 

cross-section and the flux. 

By solving the spatial neutron transport for each sub-group, the complicated 

geometry is efficiently treated for generation of effective cross-sections. 

In the sub-group method, the following sub-group neutron transport equation is 

solved: 

),(),()(),( , ΩrΩrrΩrΩ sgsgsgtsg Q=Σ+∇⋅ ψψ .   (1.13) 

Here, the problem-independent sub-group cross-sections are usually generated in 
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advance based on a numerical scheme such as the fitting method [17] or the moment 

method [18]. 

By collapsing the sub-group cross-sections sgσ  with the obtained sub-group fluxes 

sgφ  multiplied by the band probabilities sgp , the effective cross-section is generated 

as: 

∑

∑

∈

∈=

gsg
sgsg

gsg
sgsgsg

g p

p

φ

φσ
σ .      (1.14) 

Here, the band probability corresponds to the integration of energy width for the 

sub-group from the physical point of view. It should be noted that the concrete energy 

ranges are not explicitly specified in the fitting or the moment method. 

The sub-group method can efficiently treat complicated geometry with the smaller 

number of sub-groups than the conventional multi-group energy discretization. 

The sub-group method has an essential issue for prediction accuracy of effective 

cross-sections for several specific applications. Since the sub-group cross-sections are 

generated with the corresponding band probabilities, the corresponding energy ranges 

for each sub-group are not explicitly defined. In other words, the sub-group is implicitly 

defined through band probability. This fact leads to inconsistency of energy ranges 

among different temperature conditions because the resonance cross-sections strongly 

depend on temperature, and the pair of sub-group cross-sections and band probabilities 

are independently estimated for each temperature condition. 

Therefore, the sub-group method includes the cause of error in the case of explicit 
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treatment for intra-pellet fuel temperature distribution. The error comes from the 

inconsistency of an implicit energy range for each spatial region with different 

temperatures in the sub-group transport calculation. 

 

(c) Equivalence theory [6] 

The equivalence theory generates the effective cross-sections for heterogeneous 

system by interpolating the pre-tabulated multi-group cross-sections for homogeneous 

system. 

In the equivalence theory, the homogeneous multi-group cross-sections are tabulated 

in advance as a function of background cross-section, the definition of which is 

described later. Then the background cross-section for heterogeneous system is 

estimated by considering various heterogeneous effects for actual fuel assembly 

geometry. Finally, the effective cross-sections for the target heterogeneous system are 

generated by interpolating the homogeneous multi-group cross-sections with the 

background cross-section as an interpolation argument. 

In this scheme, the homogeneous and the heterogeneous systems are assumed to be 

equivalent from the viewpoint of the resonance self-shielding effect, if the background 

cross-section for both systems is identical. That is why the method is called as 

equivalence theory. In the following, the theoretical background of the equivalence 

theory is qualitatively described. 

First, the energy-dependent neutron flux is assumed to be proportional to the inverse 

of cross-sections, by reminding the very simple case for the solution of neutron 
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transport equation in sub-section 1.1.3. Then the neutron flux is expressed as: 
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tΣ
=φ .       (1.15) 

Here, the target system is assumed as an infinite homogeneous medium which is 

composed of target resonance nuclide and hydrogen. The typical example of the 

resonance nuclide is 238U, which is a main nuclide for nuclear fuel material. Hydrogen is 

a main contributor for neutron scattering source in LWRs. 

In this assumption, the macroscopic total cross-section of the homogeneous system 

composed of a target resonance nuclide r  and hydrogen is rewritten as: 
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where bσ  denotes the background cross-section defined as: 

r

p
b N

N H
Hσ

σ ≡ .       (1.17) 

As shown in Equation (1.17), the background cross-section is defined as sum of 

cross-sections of other nuclide(s) per resonance nuclide. 

Then the neutron flux is expressed as: 
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)( .      (1.18) 

The relation between resonance cross-section of the target resonance nuclide and 

flux is shown in Figure 1.10. From Equation (1.18), the magnitude of flux depression 

depends on the background cross-section. This fact leads to make the background 
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actual LWR fuel assembly,

distributed, i.e., the heterogeneous system. Therefore, 

the various heterogeneous effects should be considered to the effective cross

the equivalence theory, the heterogeneous effect is simply considered by correcting the 

section used for the effective cross

The example of homogeneous and heterogeneous systems is shown in 

In the homogeneous system, the fuel material (resonance

homogeneously compounded in the medium, thus an escape probability of neutrons 

from the homogeneous medium is zero. 

Homogeneous and heterogeneous systems

eterogeneous system)

, the escape probability is always positive for general heterogeneous 

regions of fuel and moderator. The positive escape 

actual LWR fuel assembly, the fuel (

, i.e., the heterogeneous system. Therefore, 

the various heterogeneous effects should be considered to the effective cross

effect is simply considered by correcting the 

section used for the effective cross-section interpolation.

The example of homogeneous and heterogeneous systems is shown in 

In the homogeneous system, the fuel material (resonance

homogeneously compounded in the medium, thus an escape probability of neutrons 

Homogeneous and heterogeneous systems ((a) H

eterogeneous system). 

, the escape probability is always positive for general heterogeneous 

of fuel and moderator. The positive escape 

the fuel (238U) and the moderator 

, i.e., the heterogeneous system. Therefore, 

the various heterogeneous effects should be considered to the effective cross

effect is simply considered by correcting the 

section interpolation.

The example of homogeneous and heterogeneous systems is shown in 

In the homogeneous system, the fuel material (resonance nuclides such as 

homogeneously compounded in the medium, thus an escape probability of neutrons 

((a) Homogeneous system, 

, the escape probability is always positive for general heterogeneous 

of fuel and moderator. The positive escape 

U) and the moderator 

, i.e., the heterogeneous system. Therefore, 

the various heterogeneous effects should be considered to the effective cross-section. In 

effect is simply considered by correcting the 

section interpolation. 

The example of homogeneous and heterogeneous systems is shown in Figure 

nuclides such as 238

homogeneously compounded in the medium, thus an escape probability of neutrons 

 

omogeneous system, 

, the escape probability is always positive for general heterogeneous 

of fuel and moderator. The positive escape 

U) and the moderator 

, i.e., the heterogeneous system. Therefore, 

section. In 

effect is simply considered by correcting the 

Figure 1.13. 

238U) is 

homogeneously compounded in the medium, thus an escape probability of neutrons 

omogeneous system, 

, the escape probability is always positive for general heterogeneous 

of fuel and moderator. The positive escape 



 

probability promotes the 

thus it leads to increase the effective cross

increase of effective cross

against the background cross

The 

corresponds to the inverse of chord length for fuel lump

fuel volume to 

The above discussion for heterogeneous system 

i.e., only one fuel lump is surrounded by infinite moderator. For the actual condition of 

LWR fuel assembly, the multiple cylind

configuration, as shown in 

 

Figure 

 

probability promotes the 

thus it leads to increase the effective cross

increase of effective cross

against the background cross

b →σσ

The numerator of 

corresponds to the inverse of chord length for fuel lump

volume to surfac

The above discussion for heterogeneous system 

i.e., only one fuel lump is surrounded by infinite moderator. For the actual condition of 

LWR fuel assembly, the multiple cylind

configuration, as shown in 

Figure 1.14 

probability promotes the mitigation 

thus it leads to increase the effective cross

increase of effective cross

against the background cross

r

e
b N

Σ
+σ .  

numerator of heterogeneous term 

corresponds to the inverse of chord length for fuel lump

surface ratio.

The above discussion for heterogeneous system 

i.e., only one fuel lump is surrounded by infinite moderator. For the actual condition of 

LWR fuel assembly, the multiple cylind

configuration, as shown in 

 Isolated and lattice systems for heterogeneous geometry

isolated system, (b)

mitigation of 

thus it leads to increase the effective cross

increase of effective cross-section is considered by adding the heterogeneous term 

against the background cross-section a

  

heterogeneous term 

corresponds to the inverse of chord length for fuel lump

e ratio. 

The above discussion for heterogeneous system 

i.e., only one fuel lump is surrounded by infinite moderator. For the actual condition of 

LWR fuel assembly, the multiple cylind

configuration, as shown in Figure 1.14

Isolated and lattice systems for heterogeneous geometry

isolated system, (b)

31 

of flux depression due to the resonance absorption, 

thus it leads to increase the effective cross-section. In the equivalence theory, the 

section is considered by adding the heterogeneous term 

section as follows: 

 

heterogeneous term eΣ  is called as escape cross

corresponds to the inverse of chord length for fuel lump

The above discussion for heterogeneous system 

i.e., only one fuel lump is surrounded by infinite moderator. For the actual condition of 

LWR fuel assembly, the multiple cylindrical fuel rods are arranged with a la

Figure 1.14. 

Isolated and lattice systems for heterogeneous geometry

isolated system, (b) fuel lattice system)

flux depression due to the resonance absorption, 

section. In the equivalence theory, the 

section is considered by adding the heterogeneous term 

 

 

is called as escape cross

corresponds to the inverse of chord length for fuel lump. The chord length

The above discussion for heterogeneous system considers an 

i.e., only one fuel lump is surrounded by infinite moderator. For the actual condition of 

fuel rods are arranged with a la

Isolated and lattice systems for heterogeneous geometry

uel lattice system)

flux depression due to the resonance absorption, 

section. In the equivalence theory, the 

section is considered by adding the heterogeneous term 

  

is called as escape cross

The chord length

considers an isolated 

i.e., only one fuel lump is surrounded by infinite moderator. For the actual condition of 

fuel rods are arranged with a la

Isolated and lattice systems for heterogeneous geometry

uel lattice system). 

flux depression due to the resonance absorption, 

section. In the equivalence theory, the 

section is considered by adding the heterogeneous term 

 (1.19

is called as escape cross-section, and it 

The chord length depends on 

isolated fuel system, 

i.e., only one fuel lump is surrounded by infinite moderator. For the actual condition of 

fuel rods are arranged with a la

 

Isolated and lattice systems for heterogeneous geometry ((a) fuel 

flux depression due to the resonance absorption, 

section. In the equivalence theory, the 

section is considered by adding the heterogeneous term 

19) 

section, and it 

depends on 

fuel system, 

i.e., only one fuel lump is surrounded by infinite moderator. For the actual condition of 

fuel rods are arranged with a lattice 

uel 



32 

 

By taking into account of lattice configuration, the escape probability for the lattice 

system becomes smaller than that for the isolated system due to the resonance 

absorption of neighboring fuel rods. This effect is called as “shadowing effect” in the 

equivalence theory. 

By incorporating the shadowing effect of neighboring fuel rods, the effective 

cross-sections become smaller than that for the isolated system. The decrease of 

effective cross-section is considered by correcting the heterogeneous term of the 

background cross-section as follows: 

r

e
beb N

C
Σ

−+→+ )1(σσσ .     (1.20) 

The correction term C  is called as a Dancoff correction factor [5-7], and it depends 

on the mean optical length of neutron for moderator in the lattice system. 

As discussed above, the effective cross-section for the heterogeneous system is 

generated by interpolating the effective cross-section for the homogeneous system. The 

background cross-section is utilized as an interpolation argument for the magnitude of 

resonance self-shielding effect which includes various heterogeneous effects. 

Though the above discussion is a little qualitative description, the equivalence 

theory is actually based on a complicated theoretical background. As a result of the 

many efforts in the theoretical derivation, it can achieve a very simple scheme for 

generation of effective cross-sections in the actual lattice physics calculation. This is an 

advantage of the equivalence theory, and at the same time, it is also a disadvantage for 

prediction accuracy of effective cross-sections due to many theoretical approximations. 
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1.1.5 Requirements for Advanced Resonance Self-Shielding Treatment 

As shown in Table 1.3, the resonance self-shielding treatment influences on various 

neutronics parameters and related analyses. 

 

Table 1.3 Neutronics parameters mainly related to resonance calculation. 

 

 

In the conventional core design for LWRs, the equivalence theory has widely been 

applied as a standard resonance self-shielding treatment. It has an advantage for 

calculation efficiency in routine nuclear design works, while the several approximations 

are used. It should be reminded that the approximation sometimes assumes normal 

operating and shutdown condition. Thus care should be taken on the treatment of 

extended neutron spectrum conditions including lower moderator density ranges 

appeared in safety analysis. 

Instead of the equivalence theory, the ultra-fine-group calculation has been applied 

as an alternative resonance treatment in recent years. The ultra-fine-group calculation 

can directly contribute to the accurate prediction of neutronics parameters such as 

reactivities and intra-pellet power distribution, while its huge amount of calculation 

Neutronics parameter mainly
related to resonance calculation

Interface analysis

Criticality
Core nuclear design
Criticality safety design
 (e.g., Spent nuclear fuel pool)

Doppler/moderator reactivities Safety analysis

Intra-pellet power distribution
Fuel mechanical design
(Evaluation of fuel centerline temperature)
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burden is an issue for practical use. In the current state, application of the 

ultra-fine-group calculation is generally limited to small geometries such as a pin-cell or 

multi-cell. 

The sub-group method has the intermediate nature for calculation accuracy and 

efficiency, compared with the above two methods. As for the typical advantage of the 

sub-group method, it can efficiently predict the intra-pellet power distribution through 

generation of spatially-dependent effective cross-sections within a pellet. In spite of the 

advantage, it has also an issue for the prediction accuracy of Doppler reactivity 

considering non-uniform fuel temperature distribution. 

From the above qualitative discussion among resonance treatments, it can be seen 

that the establishment of a unified resonance self-shielding methodology is an essential 

issue, in order to achieve both high accuracy and high efficiency for various application 

targets. Though the selection of the most appropriate method is one of the realistic 

approaches for each design application, the establishment of a unified resonance 

treatment will be a good alternative. The unified resonance treatment will have an 

advantage for the seamless treatment of extensive application ranges in the safety 

analysis. 
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1.1.6 Overall Direction for Development and Current Technical Issues 

As discussed in the previous sub-section, the conventional three resonance 

treatments have its own advantages and disadvantages. Since all of the three resonance 

treatments have not been screened out on the basis of past huge amount of researches 

and development works, further improvement for each method is not very easy. 

From this point of view, in the present study, a new resonance self-shielding 

methodology is developed by unifying the conventional three methods rather than the 

individual improvements for each method. 

The target performance of the new methodology for the calculation accuracy and 

efficiency is illustrated in Figure 1.15. 
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Figure 1.15 Target performance of the new methodology for the calculation accuracy and efficiency. 
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In the present study, the conventional equivalence theory is set as a starting point of 

the development. This is because the equivalence theory has an advantage for high 

calculation efficiency and its rich experiences for the application of lattice physics 

calculations. By analyzing the theoretical approximations in the conventional 

equivalence theory, the following technical issues can be extracted for the accuracy of 

equivalence theory: 

(i) limitation for generalized lattice geometry 

(ii)  black neutron absorber assumption 

(iii)  scattering source approximation 

(iv) resonance interference treatment 

(v) radially/azimuthally dependent intra-pellet self-shielding treatment 

(vi) non-uniform fuel composition and temperature treatment within a pellet 

In the present study, the above issues are solved with step-by-step approach. In 

concrete, the essences of the ultra-fine-group calculation and the sub-group method are 

incorporated into the equivalence theory, while limiting additional computational 

burden. 

By solving the above issues simultaneously, the accurate and efficient treatments of 

generalized geometry with extensive neutron spectrum conditions are achieved in the 

resonance calculation. The image for the extension of the applicable range is illustrated 

in Figures 1.16-1.17. 

  



 

 

Figure 1.16 Image for the extension of Image for the extension of Image for the extension of global 
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global applicable range in the present resonance treatment.applicable range in the present resonance treatment.applicable range in the present resonance treatment.applicable range in the present resonance treatment. 

 



 

 

 

Figure 1.17  Image for the extension of local applicable range in the present resonance treatment.

 

Image for the extension of local applicable range in the present resonance treatment.
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40 

 

1.2 Objective 

From the background in the previous section, the objective of the present study is 

enhancement of the reactor analysis methodology through developing a unified 

resonance self-shielding treatment. 

 

In this dissertation, the new resonance self-shielding methodology is established by 

simultaneously solving the several technical issues shown in the previous sub-section. 

As a result, the accurate and efficient treatments of generalized geometry with extensive 

neutron spectrum conditions are achieved in the resonance calculation. 

Treatment of generalized geometry contributes to improvement of prediction 

accuracy for core nuclear design. It is also suitable for next generation core analysis 

methodology which can be applied to the uncertainty quantification and/or reduction of 

neutronics parameters. 

Treatment of extensive neutron spectrum conditions contributes to the application of 

transient and severe accident conditions (lower moderator density ranges) appeared in 

safety analysis. 

Through the enhancement of the methodology, the prediction accuracy of neutronics 

characteristics is improved, not only for the normal operation but also for the severe 

accident conditions of the reactors. These enhancements associated with the core 

analysis methodology contribute to the activities for improvement of nuclear power 

safety, which is an overall objective of this study. 
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1.3 Contents of This Dissertation 

In this dissertation, the six technical issues for the resonance calculation (see 

sub-section 1.1.6) are solved with the step-by-step approach. By setting the 

conventional equivalence theory as a starting point of the development, each two issues 

are solved in Chapters 2-4, respectively. In a final methodology, the six issues are all 

solved simultaneously. 

According to the above flow of the development, the contents for each chapter are 

briefly described as follows: 

 

< Chapter 1 > 

The background and the objective of the present study are described. 

 

< Chapter 2 > 

An advanced resonance self-shielding methodology based on the equivalence theory is 

developed. In the development, the two issues, i.e., (i) limitation for generalized lattice 

geometry and (ii) black neutron absorber assumption, are addressed by improving the 

conventional equivalence theory. 

 

< Chapter 3 > 

A hybrid resonance self-shielding methodology based on the equivalence theory and the 

ultra-fine-group calculation is developed. In the development, the two issues, i.e., (iii) 
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scattering source approximation and (iv) resonance interference treatment, are addressed 

by incorporating the essence of the ultra-fine-group calculation into the equivalence 

theory based method in Chapter 2. 

 

< Chapter 4 > 

A unified resonance self-shielding methodology based on the equivalence theory, the 

ultra-fine-group calculation and the sub-group method is developed. This is a final form 

of the new methodology. In the development, the two issues, i.e., (v) 

radially/azimuthally dependent intra-pellet self-shielding treatment and (vi) 

non-uniform fuel composition and temperature treatment within a pellet, are addressed 

by further incorporating the essence of the sub-group method into the hybrid method in 

Chapter 3. In the incorporating process, the sub-group method itself is improved for the 

non-uniform fuel composition and temperature treatment. Through the development in 

Chapters 2-4, all the six issues (i)-(vi) are solved simultaneously. 

 

< Chapter 5 > 

The summary and the future works of the present study are described. 
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CHAPTER 2.  DEVELOPMENT OF ADVANCED 

RESONANCE SELF-SHIELDING METHODOLOGY 

FOR GENERALIZED LATTICE GEOMETRY AND 

GRAY NEUTRON ABSORBER BASED ON 

EQUIVALENCE THEORY 

 

2.1 Introduction 

In a recent trend of the neutron transport method, the method of characteristics 

(MOC) [1] is widely applied especially for the lattice calculation field. On this basis, 

numerical errors in multi-group neutron flux calculations become negligible. From this 

point of view, generation of an appropriate multi-group effective cross-section, which is 

used in the neutron flux calculations as an input, becomes crucial in lattice physics 

calculations. In the lattice physics code GALAXY [2], MOC has already been 

implemented as the basic method for the flux calculation. Therefore, this paper 

describes the detail of a new effective cross-section generation method for GALAXY. 

Generation process of the effective cross-section is called the resonance calculation. 

In general, the resonance calculation method is classified into three categories [3], i.e., 

ultra-fine-group method [4], sub-group method [5] and Dancoff method [6] with 

equivalence theory [7]. The ultra-fine-group method gives an accurate effective 

cross-section, but has a limitation for the practical design applications of large and 

complicated geometries in the fuel assembly level because of the long computation time. 
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The sub-group method enables carrying out of the resonance calculation with more 

realistic calculation costs than the ultra-fine-group method, but it is still difficult to 

generate an appropriate sub-group cross-section with sufficient robustness. In contrast, 

the equivalence theory is the most suitable for design applications because of its short 

computation time and historically rich validation experiences, so it is adopted for many 

current lattice physics codes. However, the equivalence theory has not been improved 

for over 30 years, in spite of its many approximations which should be removed and are 

described later. From this point of view, in the present paper, the equivalence theory is 

selected for the improvement of its accuracy with keeping its short computation time. 

The equivalence theory introduces background cross-section for considering the 

magnitude of resonance self-shielding effect. The multi-group cross-section is 

pre-tabulated as a function of the background cross-section in the homogeneous 

medium. Then the background cross-section for the heterogeneous system is generated 

considering lattice effect and multi-group effective cross-section for heterogeneous 

system is calculated by interpolating the above multi-group effective cross-section for 

homogeneous system. The equivalence theory leads to a reasonable calculation scheme 

because detailed information of an energy dependent cross-section is pre-computed in 

the cross-section library generation. However, the following approximations, which 

become drawbacks, are generally applied in the equivalence theory: 

 

(1) Multi-group cross-section tabulation for discrete background cross-sections, 

(2) Rational approximation for first-flight fuel escape probability, 
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(3) Black limit approximation for Dancoff correction, 

(4) Two region approximation for heterogeneous system, 

(5) Lump approximation for resonance material. 

 

These approximations directly contribute to the reduction of calculation costs, but 

these are also drawbacks of the equivalence theory and cause several calculation errors. 

In the present study, the above drawbacks (1)-(5) are resolved by introducing several 

unique and challenging techniques. The concept of the new resonance self-shielding 

method is described below. 

Drawback (1) is resolved by developing a new cross-section library generation 

method based on polynomial hyperbolic tangent formulation. Drawback (2) causes 

inaccurate treatment of fuel escape probability for the isolated system, so it is improved 

by adopting multi-term rational equation for fuel escape probability with reaction-rate 

preservation scheme. Drawback (3) causes inaccurate treatment of fuel escape 

probability for the lattice system because actual resonance material is not a black 

material (perfect neutron absorber), so it is improved by determining coefficients in 

rational equation so that accuracy of the escape probability is preserved in gray 

resonance range. Drawback (4) is improved by executing two dimensional one-group 

fixed source MOC flux calculations and determining the rational coefficients using 

these MOC results. Drawback (5) is resolved by deriving a spatially dependent 

resonance self-shielding method for generation of spatially dependent effective 

cross-section within pellet. 
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In order to develop the new resonance self-shielding method, all the calculation 

processes based on the equivalent theory from cross-section library preparation to 

effective cross-section generation are reviewed and reframed by adopting the current 

enhanced methodologies for lattice calculations. On the basis of the above concepts, 

contents of each section in the present paper are summarized as follows. 

Section 2.2 reviews the basic concept of the equivalence theory and derives a new 

cross-section library generation method. Section 2.3 clarifies the approximations of the 

conventional resonance self-shielding methods and derives a new resonance 

self-shielding method with multi-term rational approximation. Section 2.4 refers to the 

conventional intra-pellet power profile generation scheme and derives a new resonance 

self-shielding method for the treatment of spatially dependent resonance self-shielding 

within pellet. Section 2.5 mentions the conventional problem for the accuracy of 

multi-group reaction-rate and derives a formula for the reaction-rate preservation with 

multi-term rational equation. Section 2.6 verifies and validates the present resonance 

self-shielding method with lattice physics code GALAXY. Section 2.7 summarizes the 

conclusions of the present paper. 
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2.2 Cross-Section Library 

2.2.1 Equivalence Theory 

By applying isotropic and elastic down-scattering approximation in the 

center-of-mass system and ignoring fission source, the integral form of neutron 

transport equation is transformed to slowing down equation. The slowing down 

equation in the homogeneous medium is simplified by applying narrow resonance (NR) 

approximation for scattering source: 

E
EE p

t

Σ
=Σ )()( φ ,       (2.1) 

where )(EtΣ , )(Eφ , and pΣ  denote macroscopic total cross-section and neutron flux 

for neutron incident energy E , and macroscopic potential scattering cross-section, 

respectively. From Equation (2.1), the neutron flux is rewritten as: 
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1
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)( ,     (2.2) 

where )(Er
tσ  and r

pσ  denote microscopic total and potential scattering cross-sections 

of the specific resonance nuclide r , respectively. Absorption and resonance scattering 

reactions for all the nuclides excluding nuclide r  are ignored in the right hand side of 

Equation (2.2). In the following formulation, intermediate resonance (IR) parameter [8] 

proposed by Goldstein and Cohen will be multiplied to r
pσ . r

bσ  corresponds to the 

background cross-section defined as: 
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r
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k
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r
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N∑
≠≡

σ
σ ,       (2.3) 

where kN  denotes number density of the nuclide k . r
bσ  handles the magnitude of 

resonance self-shielding effect with competition of )(Er
tσ  in the denominator of 

Equation (2.2). 

Multi-group effective cross-section for multi-group transport calculation is derived 

with neutron flux weight for reaction-rate preservation within the energy group. Then 

the multi-group cross-section for group g  is defined as follows: 

∫
∫

≡
g

g
g

EdE

EEdE

)(

)()(

φ

φσ
σ .      (2.4) 

As will be described in section 2.3.1, neutron flux in heterogeneous system is 

derived with the same form of the homogeneous one expressed in Equation (2.2). Then 

the same background cross-section value between heterogeneous (described in section 

2.3.1) and homogeneous (Equation (2.3)) systems is regarded as an equivalent 

resonance self-shielding level. This assumption is called the “equivalence principle” 

between homogeneous and heterogeneous systems. The resonance self-shielding theory 

derived with the assumption of the equivalence principle is called “equivalence theory”. 

On the basis of the above assumption, detailed information on the energy 

dependency of neutron flux for the resonance cross-section can be calculated in the 

homogeneous system. Specifically, the ultra-fine-group slowing down equation in 

homogeneous medium composed of a single resonant nuclide r  (e.g., 238U) and 

hydrogen (typical neutron moderator in LWR), is numerically solved at several bσ  
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levels. Then energy dependency of )(Eφ  is calculated for each bσ . By considering 

the definition of Equation (2.4), the multi-group cross-section in the homogeneous 

system is clearly expressed as a function of bσ : 

∫
∫

=
g b

g b

bg
EdE

EEdE

),(

),()(
)(

σφ

σφσ
σσ .     (2.5) 

In general resonance treatment, effective multi-group cross-section, which depends 

on the background cross-section, is pre-tabulated for each nuclide, reaction type, energy 

group and temperature, and edited as a cross-section library. Instead of the multi-group 

cross-section, self-shielding factor or resonance integral is often tabulated for the 

consistency of adopted resonance calculation methods. The self-shielding factor is 

defined as: 
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bgf σ
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σ ,      (2.6) 

and resonance integral is defined as: 

g

g b

bg u
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≡
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σφσ

σ ,     (2.7) 

where gu∆  denotes lethargy width for group g . 
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2.2.2 New Derivation of Polynomial Hyperbolic Tangent Format Library 

In many traditional lattice physics codes, the multi-group cross-section (or the 

resonance integral) table is prepared against less than 10 background cross-section 

points due to the NJOY [9] (cross-section processing code) execution constraints. This 

treatment is valid in the framework of conventional transport methods and energy group 

resolutions because the influence of cross-section interpolation accuracy is relatively 

small in the lattice calculations. However, the transport method adopted in GALAXY 

[2] is based on the more enhanced technology, i.e., the method of characteristics (MOC) 

[1], and the detailed XMAS 172 energy group structure [10] is directly handled in 

GALAXY. So the interpolation accuracy of the multi-group cross-section becomes 

“relatively” more obvious and the conventional expression of the cross-section library 

would be insufficient for cross-section interpolation. Furthermore, the multi-term 

rational approximation in section 2.4 handles the more wide range of background 

cross-section, so the cross-section interpolation accuracy should be preserved in the 

wide application range. From this point of view, a new robust representation method of 

the multi-group cross-section library is derived as follows. 

The multi-group cross-section gσ  as a function of the background cross-section 

bσ  generally shows a logistic curve such as hyperbolic tangent function. Figure 2.1 

shows the example of logistic curve for gσ  versus bσ . As shown in Figure 2.1, 

infinite dilution condition ( ∞=bσ ) gives a maximum value of the multi-group 

cross-section, and perfect self-shielding condition ( 0=bσ ) gives a minimum one. So 



 

the following representation equati

where 

→bσ

 

By substituting Eq

hyperbolic tangent function of 

the following representation equati

bg =σσ )(

where A , B , 

∞→  or bσ

g =∞)(σ

g =)0(σ

Figure 2.1

By substituting Eq

hyperbolic tangent function of 

the following representation equati
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

= lntanh
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BA += ,  
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1 Logistic curve of multi

By substituting Equations

hyperbolic tangent function of 

the following representation equation can be inductively derived:
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 denote arbitrary constants (

and B  are analytically determined as:

  

  

Logistic curve of multi

cross

uations (2.9) and (

hyperbolic tangent function of bσ : 
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on can be inductively derived:

B ,  

denote arbitrary constants (

are analytically determined as:

 

 

Logistic curve of multi-group cross

cross-section.

9) and (2.10) into Equation

on can be inductively derived:

 

denote arbitrary constants (>b

are analytically determined as:

 

 

group cross-section versus background 

section. 

2.10) into Equation 

on can be inductively derived: 

  

0> ). By taking a limit to 

are analytically determined as: 

  

  

section versus background 

(2.8), gσ  is expressed as a 

 (2.8)

). By taking a limit to 

 (2.9)

 (2.10)

section versus background 

 is expressed as a 

8) 

). By taking a limit to 

9) 

10) 

 

section versus background 

is expressed as a 
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If the appropriate values of a  and b  are determined in all the bσ  range, the 

reproducibility of gσ  is improved. This equation is originally proposed for sub-group 

parameter generation [11], but bσ  dependency for the usual multi-group cross-section 

is larger than that for the sub-group cross-section. In order to improve the interpolation 

accuracy of gσ , the polynomial hyperbolic tangent formulation is derived in the 

present study as a natural extension of Equation (2.11): 
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=

L

l
lc .        (2.13) 

Here, la , lb  and lc  denote l -th coefficients ( 0>lb ), and L  denotes the number of 

polynomial expansion, respectively. The summation of lc  is normalized as unity. The 

coefficients ),,( lll cba  are determined by fitting the accurate cross-section set 

))(,( bgb σσσ  with the non-linear least square fitting method. The present polynomial 

hyperbolic tangent expansion method enables to reduce the library storage because only 

)(∞gσ , )0(gσ  and ),,( lll cba  are preserved. The present library represents the 

multi-group cross-section in all the background cross-section range with high accuracy 

and enough robustness when L  is set to 5, as described in section 2.6.1. 
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2.3 Resonance Calculation with Multi-Term Rational Equation 

2.3.1 Conventional Dancoff Method 

The integral form of neutron transport equation for two region heterogeneous system 

consisting of fuel and moderator is written as: 

[ ]m
m
pfmf

f
pffff

f
t VEPVEP

E
VEE Σ+Σ=Σ →→ )()(

1
)()( φ ,  (2.14) 

where NR (or IR) approximation is applied for scattering source. Indices f  and m 

denote fuel region and moderator region, respectively. Here, the fuel and moderator 

regions correspond to the typical resonance and non-resonance material regions, 

respectively. V  denotes region volume. )(EP ff →  and )(EP fm→  denote collision 

probabilities, e.g., )(EP fm→  is the probability that neutrons having incident energy E  

born in the moderator region suffer their first collisions in the fuel region. 

By substituting the following reciprocity theorem and probability constraint into 

Equation (2.14): 

f
f
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m
pfm VEEPVEP )()()( Σ=Σ →→ ,    (2.15) 

)(1)( EPEP mfff →→ −= ,      (2.16) 

neutron flux in the fuel region is formulated with analytical expression as follows: 
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where mfP →  is rewritten as feP , , which corresponds to first-flight escape probability 
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from the fuel region. 

Expression of the fuel escape probability is the main feature for the resonance 

self-shielding theory in the heterogeneous system based on the equivalence theory [7]. 

The fundamental expression is one-term rational approximation proposed by Wigner: 

1)(

1
)(, +Σ

=
f

f
t

iso
fe lE

EP ,      (2.18) 

where fl  denotes mean chord length of the fuel lump and chord length distribution is 

assumed to be the exponential function. Equation (2.18) denotes the escape probability 

in isolated system, i.e., a single isolated fuel lump in an infinite moderator medium. 

In the actual fuel assembly, multiple fuel rods are bundled with lattice arrangement 

and the escape probability becomes effectively smaller than that for the isolated system 

due to the shadowing effect of neighboring fuel rods. Physical property of the above 

phenomenon is considered as lattice effect in general resonance self-shielding theory. 

By applying isotropic approximation for incident neutrons, the fuel escape probability 

in the lattice system is derived as [12]: 
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where C  denotes Dancoff correction. By substituting Equation (2.18) into Equation 

(2.19), lat
feP ,  is generated as: 
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D
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where D  corresponds to Dancoff factor, which satisfies: 
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CD −≡1 .       (2.21) 

By substituting Equation (2.20) into Equation (2.17), the neutron flux is formulated 

as: 
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where background cross-section for the heterogeneous lattice system is defined as: 
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where f
kN  denotes number density of the nuclide k  in the fuel region. Equation 

(2.22) shows that the neutron flux in a heterogeneous system has the same form as that 

in a homogeneous system shown in Equation (2.2). In many legacy codes, the Dancoff 

factor is generated with the black limit condition and the heterogeneous background 

cross-section is calculated by Equation (2.23). Then the multi-group effective 

cross-section for the heterogeneous system is interpolated from the homogeneous 

cross-section library regarding the background cross-section as an interpolation 

variable. 

In order to improve the accuracy of fuel escape probability, the following multi-term 

rational approximation for the isolated system is often applied instead: 
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where N  denotes the number of rational equation terms. na  and nb  denote the n
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-th rational coefficients. For the cylindrical fuel lump, two-term coefficients proposed 

by Carlvik [7] are often used: 

)1,3,2,2(),,,( 2211 −=baba .      (2.26) 

The values in Equation (2.26) are generated by the black and white limit conditions 

for the escape probability and the blackness. By substituting Equations (2.24) and (2.25) 

into Equation (2.19) and using Equation (2.26), the escape probability in the lattice 

system is analytically derived [7] as follows: 
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These coefficients, which correspond to the correction of Carlvik’s two-term 

coefficients for considering the lattice effect, were formulated by Stamm’ler. Though 

C  in Equations (2.28), (2.29) and (2.30) is calculated by taking into account the fuel 

transparency in the Stamm’ler correction, the transmission probability from the fuel 

surface to the cell boundary included in C  is generated in the black limit condition. So 

the Stamm’ler correction still utilizes the black approximation. The Carlvik’s two-term 

rational approximation with the above Stamm’ler correction is widely adopted in many 

current lattice physics codes.   
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2.3.2 Enhanced Neutron Current Method and Generalized Stamm’ler Correction 

In the recent studies, the improved treatments for the resonance self-shielding are 

suggested. One is for complicated geometry handling [13], and another is for gray 

resonance treatment [14]. The above two methods are the basic concept of the new 

method derived in the next sub-section, so they are simply reviewed in this sub-section. 

The Dancoff factor in Equation (2.23) is generally calculated by the collision 

probability method. Yamamoto proposed the Dancoff factor generation scheme by 

incorporation of MOC [13]. This is called the “enhanced neutron current method”. By 

applying the black limit approximation consistent with the conventional Dancoff 

method, macroscopic total reaction-rate is converged as: 
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where fφ  denotes lethargy averaged neutron flux derived by Equation (2.22) with 

one-group approximation. Dancoff factor is then formulated by Equation (2.32) as: 
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fφ  is numerically obtained by the transport calculation with MOC. So the complicated 

spatial dependency of Dancoff factor can be handled explicitly by including neutron 

flux within the formulation. 

On the other hand, Carlvik’s two-term rational approximation with Stamm’ler 

correction described in the previous sub-section is often applied in many current lattice 

physics codes. Hébert proposed the generalization of Stamm’ler correction with 
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three-term equation [14]. The fuel-to-fuel collision probability in the lattice system is 

given by: 
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where n -th rational coefficients nα  and nβ  are semi-analytically generated as 

described later, which is different from the scheme of the Stamm’ler correction. 

Specifically, lat
ffP →  is calculated with the collision probability method at five points of 

macroscopic cross-section point p  and a set of ( )( pf
tΣ , )( pPlat

ff → ) is generated. Then 

the escape function is defined as: 
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In the following, the escape function )(
~ f

te ΣΣ  is considered instead of lat
ffP →  for 

convenience because )(
~ f

te ΣΣ  does not strongly depend on ftΣ . From the above set of 

( )( pf
tΣ , )( pPlat

ff → ) with Equation (2.36), a set of ( )( pf
tΣ , )( pE ) is easily obtained. 
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te ΣΣ  can be reproduced with the following quadratic rational equation as: 
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where a , b , c , d  and e  denote constants determined so that the set of ()( pf
tΣ ,

)(
~

peΣ ) is satisfied. By substituting Equation (2.37) into Equation (2.36), lat
ffP →  is 
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rewritten as: 

cebda

ed
P

f
t

f
t

f
t

f
t

f
t

f
tlat

ff +Σ++Σ++Σ
+Σ+Σ⋅Σ=→ )())(()(

}){(
23

2

.    (2.38) 

On the other hand, lat
ffP →  is expressed with nα  and nβ  by reducing Equation 

(2.34) to a common denominator as: 
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By comparing the denominator of Equations (2.38) and (2.39), the cubic equation 

for f
tΣ  is solved and nα  are obtained. Furthermore, by comparing the numerator of 

Equations (2.38) and (2.39), and considering Equation (2.35), nβ  are analytically 

generated with d , e  and nα . 

Though the calculation process of the Hébert method is a little complicated because 

medium parameter )(
~ f

te ΣΣ  is introduced, the essence of the method is that nα  and 

nβ  in Equation (2.34) are determined so that the accurate escape probability of lattice 

system is reproduced in the various macroscopic total cross-section f
tΣ  including gray 

resonance range. This corresponds to the calculation process of coefficients (a , b , c , 

d  and e) in Equation (2.37). nα  are finally generated by the above five coefficients 

and nβ  by nα , d  and e . 

On the Hébert method, the black limit approximation is excluded in the formulation. 
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In concrete, the accuracy of the escape probability is adaptively improved with the 

one-group fixed source transport calculations for various f
tΣ  points. In contrast, 

Carlvik’s two-term rational approximation with the Stamm’ler correction includes the 

black approximation for derivation of the coefficients in the isolated system and the 

transmission probability. So the Hébert method is considerably different from the 

Stamm’ler correction in which the one-group fixed source transport calculation is 

carried out only for the black limit point. Besides, the Hébert method enables to treat the 

complicated geometry for which the collision probability is obtained. In the 

conventional methods, only the Hébert method can exactly treat the gray resonances and 

the complicated geometry in the framework of the multi-term rational approximation. 
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2.3.3 New Derivation of Multi-Term Rational Equation for General Lattice Geometry 

with Gray Resonance Absorbers 

The resonance calculation method implemented in GALAXY [15] is based on the 

equivalence theory with multi-term rational equation. Though the classical equivalence 

theory has some approximations such as black limit assumption, the method adopted in 

GALAXY resolves some of these approximations and treat the more realistic neutronics 

behaviors for the resonance self-shielding than the conventional methods. 

The conventional resonance self-shielding method adopted in many lattice physics 

codes for design applications, e.g., CASMO-4 [16] PHOENIX-P [7] and PARAGON 

[17], is based on Carlvik’s two-term rational approximation with Stamm’ler correction 

[7]. It assumes the resonance material as a blackbody, i.e., a perfect neutron absorber. 

Furthermore, the geometrical configurations are treated with one-dimensional 

cylindrical approximation. Hébert’s enhanced method adopted in DRAGON [14] can 

treat gray resonance absorbers (the actual material in the reactor core is not black but 

gray neutron absorber in general). However, it cannot be extended to the large lattice 

geometry because it is based on the collision probability method. 

On the other hand, the new resonance calculation method described as follows can 

treat the general lattice geometry of the fuel assembly with the gray resonance absorbers 

by combination of Yamamoto’s Dancoff factor generation scheme [13] and Hébert’s 

resonance self-shielding method [14], both of which are reviewed in the previous 

sub-section. 

In the framework of the multi-term rational approximation, the first-flight fuel 

escape probability in the lattice system is expressed by [14]: 
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nα  corresponds to the parameter for considering the lattice effect, and nβ  

corresponds to the weight of rational equation normalized as: 

1
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By substituting Equations (2.40) and (2.41) into Equation (2.17), the neutron flux is 

rewritten as: 
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Here, n -th background cross-section is defined as: 

f
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Then, the microscopic effective cross-section for resonance nuclide r , reaction x  

and energy group g  in a fuel region is derived as: 
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by substituting Equation (2.42) using the definition of Equation (2.7) and considering 

Equation (2.41). Here, r
xσ  denotes the continuous energy cross-section for the 

resonance nuclide r  and reaction x . )(,
nr
b

r
gxI σ  denotes the effective resonance 

integral per lethargy width of the group for the resonance nuclide r , reaction x ( ax =  

for absorption reaction) and energy group g  in the homogeneous medium, 

interpolated from the cross-section library with nr
bσ  as an argument.  

Especially for the one-term rational approximation, the relationship between 

resonance integral and effective cross-section is derived from Equation (2.44) for 

reaction x  and absorption reaction. By substituting the relation into Equation (2.44), 

the final form of effective cross-section is formulated as [15]: 
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where )(,
nr
b

r
gx σσ  denotes the effective cross-section for the resonance nuclide r , 

reaction x ( ax =  for absorption reaction) and energy group g  in the homogeneous 

medium, interpolated from the cross-section library with nr
bσ  as an argument. )( nr

b
r
g σϕ  

corresponds to the neutron flux of the n -th term defined as: 
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The microscopic effective scattering cross-section is derived in the same manner as: 
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The form of Equation (2.44) and the intermediate form of Equation (2.47), which are 

expressed by the resonance integral, are the conventional expression and are not used in 

GALAXY. Instead, the final form of Equations (2.45) and (2.47), which is derived by 

using the relation between the resonance integral and effective cross-section, is applied. 

In the present method, nα  and nβ  are numerically calculated in order to 

accurately treat general lattice geometry and gray resonances. By averaging Equation 

(2.42) for the arbitrary lethargy range and assuming total cross-section to be constant in 
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this specific range (one-group approximation), lethargy averaged neutron flux fφ  is 

formulated as: 
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in the same manner of Equation (2.32). 

Neutron flux is calculated by MOC at several macroscopic cross-section points p  

and a set of ( )( pf
tΣ , )( pfφ ) is generated. Then nα  and nβ  are numerically optimized 

so as to minimize the following objective function based on the least square fitting 

method: 
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(2.49) 

where P  denote the number of ( )( pf
tΣ , )(, pP lat

fe ) data. Normalizing condition of nβ  

in Equation (2.41) is explicitly considered in Equation (2.49). By minimizing 2
objφ∆ , 

nα  and nβ  in Equation (2.42) are determined so that the accurate neutron flux is 

reproduced in the various optical length f
f
t lΣ  including gray resonance range. 

Essentially, minimization of 2
objφ∆  is equivalent to determination of nα  and nβ  so 

that the reproducibility of fuel escape probability in Equation (2.40) is improved. In this 

procedure, the rational coefficients in the isolated system are not necessary for 

derivation of the coefficients in the lattice system, which is a different point from the 
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Stamm’ler correction. Therefore, the present method enables to handle general 

geometries which beyond the simple infinite cylinder or the slab. Furthermore, the 

present method can treat the arbitrary number of rational equation term in principle 

because generation of nα  and nβ  is merely numerical fitting procedure in accordance 

with Equation (2.49). As different from the present method, the number of rational 

equation term in the Hébert method is limited to three because the analytical solution of 

N -th equation can be derived substantially by the 3rd equation. 

In the actual numerical treatment, several points of f
tΣ  between black (e.g., 

105[1/cm]) and white (e.g., 10-5[1/cm]) limit including actual gray resonance range (e.g., 

10.0, 1.0, 0.1[1/cm]) are set and one group fixed source problem is solved for each ftΣ  

value. The same f
tΣ  value is set to all the resonance region because the accurate 

region-wise f
tΣ  is not pre-known. MOC can be adopted in the transport calculations 

because Equation (2.48) is expressed not as a collision probability, but as a neutron flux. 

In the present method, general lattice geometry can be exactly treated because MOC is 

directly applied for the flux calculations. Furthermore, gray resonance absorbers can be 

accurately treated because not only the black limit but also the gray resonance range of 

macroscopic total cross-sections are explicitly considered for generation of pin-wise 

nα  and nβ  values. The present gray resonance self-shielding method can consistently 

treat both black and gray resonance self-shielding, and as a result, it can generate 

effective cross-sections with high accuracy. 

In the Carlvik method with Stamm’ler correction, physical constraints only for the 

black and white limits are satisfied from the theoretical point of view. So the effect of 
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gray resonance is not “theoretically” and explicitly taken into account. On the other 

hand, the present resonance self-shielding method “theoretically” and explicitly takes 

into account the constraint to increase the accuracy of escape probability in gray 

resonance range with the fitting equation. 

The advantage of the present method, i.e., the exact gray resonance treatment, is 

similar to that of the Hébert method, but the calculation process of the coefficients nα  

and nβ  is different between the present method and the Hébert method. In the Hébert 

method, the analytical treatment is partially introduced to the coefficient evaluation with 

a constraint which is necessary for the three-term rational equation, but the present 

method simply adopts to the numerical fitting procedure without any additional 

constraints. So the implementation of the present method is simpler than that of the 

Hébert method. 
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2.4 Spatial Self-Shielding Calculation for Intra-Pellet Power Profile Generation 

2.4.1 Conventional Explicit Methods 

Radial power profile within fuel pellet is required as input data for fuel integrity 

evaluation. In the evaluation, fuel centerline temperatures for various types of pellets are 

calculated with the radial power profile data given by a neutronics design code for the 

pin or assembly level. In order to make intra-pellet power profile data, a spatially 

dependent effective cross-section within the pellet should be generated. 

Equivalence theory assumes that the configuration of resonance material is a lump. 

So, the direct formulation of the spatially dependent effective cross-sections for each 

ring region within the cylindrical fuel lump is a difficult task. For generation of the 

detailed effective cross-section data within the pellet, the more accurate resonance 

self-shielding methods such as sub-group method [5] or ultra-fine-group calculation 

method [4] are applied in general. These methods consider the detailed information of 

the spatial and energetic resonance self-shielding effects within each energy group, so it 

can directly treat the neutron balance within the pellet. In spite of this advantage, 

however, these methods require large calculation costs. From this background, a more 

simple and efficient method is desirable which suits daily design applications. 
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2.4.2 Stoker-Weiss Method 

A resonance self-shielding method for generation of spatially dependent effective 

cross-section, which is based on the equivalence theory, was proposed by Stoker and 

Weiss [18]. In the Stoker-Weiss method, fuel escape probability from a specific ring 

region within the fuel lump is formulated by combination of the escape probability from 

each lump component. This method enables simplifying the generation scheme of 

spatially dependent effective cross-section. But the above escape probability of the ring 

region is derived for the fuel isolated system and the escape probability of ring i  for 

the lattice system is approximately given by: 

)()( ,, EDPEP iso
ie

lat
ie = .      (2.50) 

This approximation is not consistent with the general treatment of lattice effect in 

the equivalence theory, i.e., Equation (2.19). 
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2.4.3 New Derivation of Spatially Dependent Gray Resonance Self-Shielding Method 

Inconsistency of the fuel escape probability treatment for the lattice system in 

Stoker-Weiss method is completely resolved in SDDM (Spatially Dependent Dancoff 

Method) [19] proposed by Matsumoto. But SDDM is an extension of Stamm’ler 

correction, so the black limit approximation, which assumes the resonance material as a 

blackbody, is still left. From this point of view, a new resonance self-shielding method, 

SDGM (Spatially Dependent Gray-Resonance-Self-Shielding Method), is derived in the 

present study. 

SDGM is an extension of a new gray resonance self-shielding method described in 

section 2.3.3. Furthermore, SDGM incorporates a basic concept of the escape 

probability formulation for the ring region in Stoker-Weiss method and SDDM. It 

should be noted that the final form of effective cross-section in SDGM is the same as 

that in SDDM, but the coefficients nα , nβ  included in the effective cross-section are 

different between SDGM and SDDM. 

In the Carlvik method with Stamm’ler correction, which is the basis of SDDM, the 

accuracy of fuel escape probability in gray resonance range is improved comparing with 

Wigner method with Dancoff correction. However, physical constraints only for the 

black and white limits are satisfied in the Carlvik method from the theoretical point of 

view. So the effect of gray resonance is not “theoretically” and explicitly taken into 

account. On the other hand, the present resonance self-shielding method described in 

section 2.3.3, which is the basis of SDGM, “theoretically” and explicitly takes into 

account the constraint to increase the accuracy of escape probability in gray resonance 
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range with the fitting equation. As a result, SDGM is a different approach from SDDM 

for the theoretical consideration of gray resonance. 

Figure 2.2 shows the concept of formulating spatially dependent fuel escape 

probability in SDGM. It is based on the ideas of Stoker-Weiss method and SDDM. 

From this geometrical approach, the fuel escape probability of the specific ring i  in a 

fuel region for the lattice system is formulated by extending the original definition of 

the escape probability as follows: 
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where mi,γ  denotes the coefficient which captures the geometrical information of the 

ring i  and is defined as: 
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Figure 2.2 Geometrical treatment of spatially dependent fuel escape probability. 

 

Here, il  denotes the mean chord length derived as fii SVl 4= ( iV :volume of the ring 

i , fS :pellet surface). iρ  and 1−iρ  denote the relative outer and inner radii of the ring 

i , respectively (normalized by the pellet radius R ). mil ,  denotes the mean chord 

length of m-th lump (see Figure 2.2) derived by the following analytical form: 
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As shown in Equation (2.51), the escape probability of the fuel ring is expressed by 

adding and subtracting the contribution of the lumps 1, 2, 3, and 4. The relative radius 

ρ  corresponds to the fraction of incoming neutrons which see the specific lump m 

from the pellet surface. So, ρ  is multiplied to the first-flight blackness of each lump 

for considering effective escape fraction of neutrons. It should be noted that the 

blackness of a lump for optical length x  is expressed by: 
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Then, the neutron flux in the region i  within a fuel region is described in the same 

manner of Equation (2.17) as: 
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By substituting Equation (2.51) into Equation (2.55), the neutron flux is rewritten as: 
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by using the following normalizing condition for mi,γ : 

1
4
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which is easily obtained by substituting Equation (2.53) into Equation (2.52). 
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By dividing both of the numerator and the denominator in Equation (2.56) by the 

number density of nuclide r , Equation (2.56) is transformed to the nuclide dependent 

flux as: 
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where n -th background cross-section for m-th lump is defined as: 
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Finally, by using Equation (2.58), the microscopic effective cross-section for the 

resonance nuclide r , reaction x  and energy group g  in a region i  within the fuel 

pellet is derived as: 
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         (2.60) 

The present resonance self-shielding method can generate spatially dependent 

effective cross-sections by Equation (2.60) with numerically generated coefficients nα , 

nβ  and analytically calculated coefficient mi,γ  which capture the effect of exact gray 

resonances and detailed geometrical configurations. Though the fundamental derivation 

of the spatially dependent effective cross-section is based on SDDM, nα  and nβ  of 
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SDDM correspond to those of Stamm’ler correction derived in section 2.3.1, which is 

based on the black assumption in Dancoff correction. In contrast for SDGM, nα  and 

nβ  are generated considering the exact gray resonances as described in section 2.3.3. It 

means that SDGM can handle the more actual behavior of neutrons to resonance 

material than SDDM for generation of spatially dependent effective cross-section. 
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2.5 Reaction-Rate Preservation for Multi-Term Rational Equation 

2.5.1 Conventional Methods 

Many lattice physics codes adopt multi-term rational approximation such as 

Carlvik’s two-term method with Stamm’ler correction. In spite of the remarkable 

improvement in the accuracy of escape probability, however, the multi-term method 

often shows less accuracy for multi-group reaction-rate than Wigner’s one-term method 

with Dancoff correction. This problem has been solved by empirical correction of 

resonance integral table or partial implementation of the ultra-fine-group slowing down 

calculation in many current lattice physics codes. 
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2.5.2 Derivation of Constraint for Integrated Reaction-Rate Preservation 

In the present study, a fundamental reason for the reaction-rate error based on the 

multi-term rational approximation is discussed and a constraint equation is derived from 

the view point of the reaction-rate preservation, which is completely consistent with the 

multi-term expression based on the equivalence theory. 

This method is originally suggested in Ref. 20, and a detailed explanation of this 

method is described there, so supplementary verification is carried out in section 2.6.4 

with the gray resonance self-shielding method (see section 2.3.3). 

The integrated reaction-rate for the resonance nuclide r , reaction x  and energy 

group g  in fuel region (resonance material region) is rigorously written as: 

∫=
g f

r
x

fr
gx EEdEcontinuousRR )()()(,

, φσ .    (2.61) 

It can be evaluated by the continuous energy Monte-Carlo or the ultra-fine-group 

slowing down calculations. 

On the other hand, for the deterministic lattice code, multi-group effective 

cross-section fr
gx

,
,σ  is generated by resonance calculation, and by using fr

gx
,
,σ , 

multi-group neutron flux gf ,φ  is obtained by transport calculation. On this basis, the 

integrated reaction-rate is derived as: 

gf
fr
gx

fr
gx groupmultiRR ,

,
,

,
, )( φσ= .     (2.62) 

Ratio of the reaction-rates based on multi-group (Equation (2.62)) and the 

continuous energy (Equation (2.61)) is transformed to the ratio of fluxes as follows: 
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In the multi-term rational approximation, neutron flux per lethargy is derived from 

Equation (2.42): 
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By substituting Equation (2.64) into Equation (2.63) and considering Equation 

(2.42), the reaction-rate ratio is expressed as: 
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The right hand side of Equation (2.65) is not unity except for the one-term rational 

approximation ( 1=N ). This fact implies that the multi-group reaction-rate does not 

reproduce the continuous energy-based reaction-rate on the assumption of the 

multi-term rational approximation. This is why the multi-term rational approximation 

cannot obtain high accuracy of the multi-group reaction-rate without empirical 

corrections. 

On the other hand, the present resonance self-shielding method described in section 

2.3.3 reproduces the multi-group neutron flux or the reaction-rate based on the 
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multi-term rational approximation. Here, it should be noted that the non-preservation of 

the reaction-rate shown in Equation (2.65) is discussed within the framework of the 

multi-term rational approximation based on the equivalence theory, thus the present 

discussion cannot be expanded to other resonance treatments such as the 

ultra-fine-group method. The general discussion for the non-preservation of the 

reaction-rate in a resonance calculation is described in Ref. 21 using the SPH factor. 

In order to improve the accuracy of resonance calculation, the effective cross-section 

should be generated so that the continuous energy-based reaction-rate is preserved. By 

considering Equation (2.42) and the effective cross-section derivation scheme in 

Equation (2.44), the continuous energy-based reaction-rate is transformed as: 
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On the other hand, the multi-group-based reaction-rate is expressed as: 
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As shown in the above discussion through Equation (2.65), Equations (2.66) and 

(2.67) are not consistent in multi-term rational approximation. From this point of view, 

the effective cross-section in Equation (2.67) should be modified so that the 
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reaction-rate given by Equation (2.67) reproduces that by Equation (2.66). By defining 

the modified effective cross-section and neutron flux as fr
gx
,
,

~σ  and gf ,

~φ , respectively, 

Equation (2.67) is rewritten as: 
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(2.68) 

where fr
gx
,
,

~σ  in Equation (2.68) is different from the result of Equation (2.45), and gf ,

~φ  

in Equation (2.68) is formulated by integrating Equation (2.42) for the energy group g  

and assuming total cross-section to be constant in this specific group (one-group 

approximation). Equation (2.68) consists with the formulation of the multi-term rational 

equation. 

For generation of the appropriate fr
gx
,
,

~σ , the right hand side of Equation (2.68) 

should preserve the right hand side of Equation (2.66). From this necessary condition, 

the following equation is derived: 
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Each physical quantity except for fr
gx
,
,

~σ  is already generated in the conventional 

resonance calculation scheme described in section 2.3.3. For the actual generation of 

fr
gx
,
,

~σ , the effective absorption cross-section is first modified by the following iteration 

scheme: 
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where Equation (2.70) is derived from Equation (2.69). )n(~ ,
,

fr
gaσ  and )1n(~ ,

, +fr
gaσ  

denote the modified effective absorption cross-sections in n-th and n+1-th iterations, 

respectively. fr
ga

,
,

~σ  for n+1-th iteration is generated by using n-th iteration results and 

the iteration is repeated until fr
ga

,
,

~σ  is converged. The modified effective cross-section 

except for absorption reaction is then generated by once through process as: 
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The method can easily generate the effective cross-section that preserves the 

multi-group reaction-rate, only by using the intermediate quantities generated in the 

resonance calculation. 
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2.6 Verification and Validation 

In this section, verification and validation of the present resonance self-shielding 

method are carried out. Sub-sections 2.6.1-2.6.4 correspond to the verification of key 

component methods described in sections 2.2, 2.3, 2.4 and 2.5, respectively. 

Sub-sections 2.6.5-2.6.7 correspond to the validation of the present resonance 

self-shielding method with transport and depletion calculation methods adopted in the 

lattice physics code GALAXY. The actual contents of each sub-section are shown 

below. 

 

<Sub-section 2.6.1> 

Verification of cross-section interpolation accuracy for polynomial hyperbolic tangent 

format library described in section 2.2 

<Sub-section 2.6.2> 

Verification of one-group, multi-term reaction-rate accuracy for gray resonance optical 

range based on new and conventional methods described in section 2.3 

<Sub-section 2.6.3> 

Verification of reaction-rate accuracy for intra-pellet multi-region geometry based on a 

new spatially dependent resonance self-shielding method described in section 2.4 

<Sub-section 2.6.4> 

Verification of multi-group reaction-rate accuracy based on a reaction-rate preservation 

scheme described in section 2.5 
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<Sub-section 2.6.5> 

Validation of effective multiplication factor and pin-by-pin fission rate accuracies of 

fuel assembly calculated by the present resonance self-shielding method with the 

method of characteristics, which is the transport method implemented to GALAXY 

The validation is carried out by comparison with continuous energy Monte-Carlo 

calculation results. 

<Sub-section 2.6.6> 

Validation of spatially dependent burnup and nuclide composition accuracies calculated 

by the present resonance self-shielding method with the transport and depletion methods 

implemented to GALAXY 

The validation is carried out by the post irradiation examination analysis. 

<Sub-section 2.6.7> 

Validation of fuel rod power accuracies calculated by the present resonance 

self-shielding method with the transport method implemented to GALAXY 

The validation is carried out by the critical experiment analysis of VIP.  
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2.6.1 Interpolation Accuracy of Hyperbolic Tangent Library 

First verification is to evaluate the interpolation accuracy of cross-section for 

hyperbolic tangent format library described in section 2.2.2. The accuracy of the 

multi-group capture cross-section of 238U for 300.0K in 6.16-7.52eV (88th group in 

XMAS 172 group structure [10]) is verified because large resonance of 238U in 6.7eV 

corresponds to the most typical resonance of fuel material and its calculation accuracy is 

important in LWR lattice calculations. 40 sets of the multi-group cross-section versus 

background cross-section data between infinite dilution and fully self-shielding 

conditions are prepared by execution of NJOY GROUPR module [9]. The order of 

polynomial L  in Equation (2.12) is changed from 1 to 5 in order to confirm an 

appropriate L  value. It should be noted that the larger L  becomes, the better 

accuracy is expected, but at the same time, the more memory storage is necessary. 

Figure 2.3 shows the result of the above verification with reference cross-section 

and indicates that accuracy of the cross-section for overall range of the background 

cross-section is merely less than 0.5% when L  is set to 5. The influence of maximum 

error (0.5%) to the effective multiplication factor is very small. 
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2.6.2 Reconstruction Accuracy of Reaction-Rate for Gray Resonance 

Second verification is to evaluate the reconstruction accuracy of reaction-rate for 

gray resonance self-shielding method described in section 2.3.3. Rational coefficients 

( nα , nβ ) are numerically generated and the following multi-term rational equation based 

on macroscopic total reaction-rate is reconstructed: 
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The coefficients ( nα , nβ ) of the present gray resonance self-shielding method are 

generated by fitting procedure of Equation (2.49). For comparison, (nα , nβ ) of the 

conventional methods are also calculated. In Wigner’s one-term rational approximation 

with Dancoff correction, ( nα , nβ ) are given by: 

)1,(),( 11 D=βα ,       (2.73) 

which is easily obtained by comparison between Equation (2.20) and Equation (2.40). 

On the other hand, in Carlvik’s two-term rational approximation with Stamm’ler 

correction, ( nα , nβ ) are given by Equations (2.28)-(2.31). Stoker-Weiss method with 

no-subdivision of pellet needs a little different treatment. By applying Equation (2.24) 

to Equation (2.50) and substituting the escape probability into Equation (2.17) with a 

little complicated formulation, the following macroscopic total reaction-rate is derived: 
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where coefficients (na , nb ) for isolated system are given by Equation (2.26) in the 

present verification. Dancoff factor D  (or Dancoff correction C ) used in the above 

conventional methods is calculated by Equation (2.33). 

The benchmark problem for the present verification is a simplified single fuel pin 

cell model shown in Figure 2.4. Details of the model are shown in Table 2.1. These 

conditions represent a typical LWR situation. The uranium oxide fuel and the water 

moderator in the room temperature condition are assumed. The cladding is omitted for 

simplicity. The detailed calculation conditions are shown in Table 2.2. 

  

Table 2.1 Specifications of the unit-cell model. 

 

 

  

Set up value
238

U 2.0x10
-2

235
U 1.0x10

-3

16
O 4.0x10

-2

1
H 6.0x10

-2

16
O 3.0x10

-2

Temperature[K] 293
Fuel radius[cm] 0.4
Cell pitch[cm] 1.26

Physical quantity

Number density in fuel region[1/barn/cm]

Number density in moderator region[1/barn/cm]



 

 

Table

equation. 

(2.72) and (

Methods for evaluating background cross
section and Dancoff correction factor

Table 2.3 shows the calculated results of coefficients for the multi

equation. Figure 

72) and (2.74) versus various optical length 

Calculated quantity

Energy group

Flux solver
Cell boundary condition

Evaluated nuclear data file
Point wise cross section calculator

Methods for evaluating background cross
section and Dancoff correction factor

Energy range

Another methods for comparison

Table 

Figure 

shows the calculated results of coefficients for the multi

Figure 2.5 shows the accuracy of reaction

74) versus various optical length 

Item

Calculated quantity

Energy group

Flux solver
Cell boundary condition

Evaluated nuclear data file
Point wise cross section calculator

Methods for evaluating background cross
section and Dancoff correction factor

Energy range

Another methods for comparison

Table 2.2 Calculation conditions.

Figure 2.4 Simplified unit

shows the calculated results of coefficients for the multi

shows the accuracy of reaction

74) versus various optical length 

Calculated quantity

Cell boundary condition
Evaluated nuclear data file

Point wise cross section calculator

Methods for evaluating background cross
section and Dancoff correction factor

Another methods for comparison
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Calculation conditions.
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75
th
:  33.72-37.27[eV]
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:  55.60-67.90[eV]

67
th
:  75.67-91.66[eV]
GALAXY [2]
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reaction-rate depends on the accuracy of flux in Equation (2.42). Fundamentally, it is 

equivalent to the accuracy of fuel escape probability in Equation (2.40). The reference 

reaction-rate is generated by the one-group fixed source MOC transport calculations for 

each f
tΣ . 

 

Table 2.3 Results of coefficients for multi-term rational equation. 

 

 

  

Method Wigner Stamm'ler Present
The number of terms 1 2 1 2 3

0.77915 
1)

1.14774 0.81306 1.62393 1.16794

1.00000 1.12600 1.00000 4.73022 23.98950

4.07311 1.85156 1.34937

-0.12600 -3.73022 -11.39820

1.02325

-11.59130
1)
 Dancoff factor

Coefficients[-]

1α

1β

2α

2β

3α

3β
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Figure 2.5 Reconstruction accuracy of macroscopic total reaction-rate for each 

method. 

 

As shown in Figure 2.5, Wigner’s one-term method with Dancoff correction 

preserves the reaction-rate in the black limit, but cannot reconstruct the reaction-rate in 

gray resonance range. Carlvik’s two-term method with Stamm’ler correction improves 

the accuracy of Wigner’s method. The accuracy of the Stoker-Weiss method with 

no-subdivision of pellet has an intermediate trend between Wigner and Carlvik methods. 

The present multi-term gray resonance self-shielding method further improves the 

accuracy of Carlvik method with Stamm’ler correction. 
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solutions is shown in Table 2.4. The reference solutions are obtained from the direct 

ultra-fine-group calculation for heterogeneous geometry. In order to quantify the net 

improvement for the present method, the NR approximations are applied to the 

scattering source for the reference calculations. 

From Table 2.4, it can be seen that the present method for 3=N  produces the 

more accurate results than the Stamm’ler’s method for all the energy groups. It is also 

found that the present method can consistently generate the effective cross-sections 

including “gray resonances” with high accuracy. The present method for 2=N  

produces slightly better results than that for 3=N  in most cases, but 3=N  gives 

better results for 67th group, which is rather small resonance thus considered as gray 

compared to other resonances. 

 

Table 2.4 Relative difference of 238U effective capture cross-sections from reference 

solutions for unit-cell. 

 

 

This verification clarifies the effectiveness of considering gray resonances in 

Equation (2.49). While the conventional methods do not explicitly treat the gray 

88
th
 gr. 80

th
 gr. 75

th
 gr. 69

th
 gr. 67

th
 gr.

Wigner 1 -0.37 -1.38 -2.10 -3.69 -6.72
Stamm'ler 2 0.72 0.55 0.59 0.58 -0.21

1 0.87 -0.01 -0.51 -1.94 -5.33
2 0.14 0.05 0.04 0.06 -0.37
3 -0.22 -0.17 -0.14 0.08 -0.13

Relative diference[%]
Method

Present

The number of rational
function terms
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resonance range to the reaction-rate (or the fuel escape probability), the present gray 

resonance self-shielding method explicitly handles the gray resonance absorption. From 

the discussion, the applicability of the present method for the effective cross-section 

generation is confirmed. The present gray resonance self-shielding method shows high 

accuracy in gray resonance range, so the method improves the accuracy not only for the 

large and wide resonances in low energy range but also for the narrow resonances in the 

higher energy range (> 100eV). 

Simplified multi-cell model is also prepared as shown in Figure 2.6. It consists of  

4×4 square unit-cells and the part of them is water cells without any resonance nuclides. 

The composition of isotopes in the water cell is the same with the moderator 

composition for the above pin-cell model. The irregular lattice effect in this model can 

easily be considered by the present method without any analytical formulation efforts 

such as Stamm’ler’s [7]. 

 

 

Figure 2.6 Simplified multi-cell model. 

Homogenized water cell

Fuel cell1 2

3 4 5

6 7 8 9

10 11 12 13
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The relative difference of 238U effective capture cross-sections from reference 

solutions is shown in Table 2.5. Effective cross-sections for 67th group are generated 

since 67th group includes the gray resonances of 238U. Each region number in Table 2.5 

corresponds to those in Figure 2.6. From Table 2.5, it is confirmed that the present 

method can generate effective cross-sections with high accuracy not only for the 

simplified single pin-cell model, but also for the irregular multi-cell model. 

 

Table 2.5 Relative difference of 238U effective capture cross-sections from reference 

solutions for multi-cell. 

 

 

  

Reg.1 Reg.2 Reg.3 Reg.4 Reg.5 Reg.8 Reg.9 Reg.13
Wigner 1 -7.24 -6.86 -7.64 -6.96 -6.79 -6.84 -6.77 -6.79

Stamm'ler 2 -0.20 -0.36 -0.22 -0.33 -0.28 -0.33 -0.27 -0.30
1 -5.78 -5.45 -6.12 -5.53 -5.40 -5.43 -5.38 -5.38
2 -0.48 -0.39 -0.57 -0.41 -0.39 -0.38 -0.38 -0.37
3 -0.15 -0.13 -0.18 -0.13 -0.13 -0.15 -0.13 -0.13

Method
The number of rational

function terms

Relative difference [%]

Present



96 

 

2.6.3 Comparison with Monte-Carlo Results for Intra-Pellet Multi-Region Geometry 

Third verification is to evaluate the accuracy of intra-pellet reaction-rate distribution 

generated by SDGM described in section 2.4.3. The gray resonance self-shielding 

method in section 2.3.3 and SDGM have been implemented to GALAXY. For the 

verification of SDGM, absorption reaction-rate distributions within a fuel pellet 

obtained by GALAXY are compared with those by continuous energy Monte Carlo 

code MVP [22]. The simple pin cell models for the typical UO2 and MOX fuel at room 

temperature condition of PWR are prepared for the calculations. Reflective boundary 

condition is applied. The absorption reaction-rate distributions of the important actinide 

nuclides are calculated by subdividing the pellet into 10 equal volume rings for radial 

direction. The specifications of the calculation condition are shown in Table 2.6, and 

geometrical configuration is shown in Figure 2.7. 

 

Table 2.6 Specifications of the unit-cell Monte-Carlo benchmark. 

 

Physical quantity Set up conditions
Material temperature[K] 300.0

Pellet radius[cm] 0.4095
Pellet division 10 regions with equal volume

Cladding outer radius[cm] 0.4750
Cladding thickness[cm] 0.0655 (gap is omitted for simplicity)

Cell pitch[cm] 1.260

Fuel type UO2(4.1wt%
235

U)
MOX (7.1wt%Pu fissile contents)

Cladding type
Zr4 (Few nuclides except for
Zr are omitted for simplicity)

Moderator type H2O

Boron concentration[ppm] 500
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The verification of SDGM for irregular multi-cell geometry is also carried out. The 

specifications of the calculation condition are shown in Table 2.7, and the geometrical 

configuration is shown in Figure 2.12. Each pellet is numbered (1 to 8) for 

convenience. 

 

Table 2.7 Specifications of the multi-cell Monte-Carlo benchmark. 

 

 

Physical quantity Set up conditions
Material temperature[K] 300.0

Pellet radius[cm] 0.4095
Pellet division 10 regions with equal volume

Cladding outer radius[cm] 0.4750
Cladding thickness[cm] 0.0655 (gap is omitted for simplicity)

Guide tube outer radius[cm] 0.612
Guide tube thickness[cm] 0.041

Cell pitch[cm] 1.260

UO2(4.1wt%
235

U)
Fuel type MOX (7.1wt%Pu fissile contents)

UO2(2.6wt%
235

U) with 6.0wt%Gd2O3

Cladding and guide tubes type
Zr4 (Few nuclides except for
Zr are omitted for simplicity)

Moderator type H2O

Boron concentration[ppm] 500
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in the asymmetrical position. Boundary condition of this problem is perfect reflection, 

so the guide tube region simply simulates a large water hole located in the center of 

BWR fuel assembly. On this basis, each pellet region is divided into 10 equal volume 

rings for radial direction. Four types of color cells in the range between black and white 

resonance absorption are irregularly arranged, i.e., MOX fuels and UO2 + Gd2O3 fuels 

are almost black, UO2 fuels are gray and guide tube region is almost white from the 

viewpoint of resonance calculation. If the calculation accuracy for the present four-color 

problem is good, the robustness of SDGM can be confirmed. 

Figure 2.13 shows the comparison of the energy-integrated macroscopic absorption 

reaction-rate distributions for each pellet between GALAXY with SDGM (points) and 

MVP (rectangular lines). The relative differences are smaller than 2% for all rings in 

each pellet. From this result, the good agreement is confirmed. Because MOX and UO2 

+ Gd2O3 fuels are the strong neutron absorbers, the steep gradient of reaction-rate 

distribution is observed within pellet. As widely known in the field of "microscopic 

reactor physics", the gradient for UO2 + Gd2O3 pellet is especially remarkable from the 

neutronics point of view. 
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Figure 2.13 Comparison of intra-pellet macroscopic absorption reaction-rate 

distribution between GALAXY with SDGM and MVP for each fuel rod. 

 

Both SDGM and SDDM (conventional method) obtain effective cross-sections of an 

annularly sub-divided pellet (multi-region system) based on the resonance calculation 

result of a pellet (one-region system) using the geometrical information of intra-pellet 

sub-division. So the improvement from SDDM (implemented to the current nuclear 

design code) to SDGM (implemented to GALAXY) is shown in the difference of pellet 

one-region result between the current nuclear design code and GALAXY. 

From the view point of applicability to PWR core analysis, the accuracy of reactivity 

is excellent in both codes, but the accuracy of fuel rod power is improved in GALAXY 

within the uncertainty of nuclear hot channel factor. Not only the pin-cell but also the 3×

3 multi-cell results shown above already clarify the effect of gray resonance and 
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two-dimensional lattice treatment in GALAXY. The effect of overall improvement from 

the current nuclear design code to GALAXY would be more clearly shown through 

comparison with the reference value, i.e., measurement. From this point of view, 

calculation accuracy of fuel rod power is confirmed through critical experiment analysis 

in sub-section 2.6.7. 

It can be concluded that SDGM can accurately predict the reaction-rate distribution 

of highly heterogeneous system with the complicated geometry. It means that 

GALAXY can execute both transport and resonance calculations consistently with the 

exact two-dimensional geometry from the pellet to assembly level. 
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2.6.4 Comparison with Monte-Carlo Results for Multi-Group Reaction-Rate 

Fourth verification is to evaluate the accuracy of multi-group reaction-rate with 

reaction-rate preservation method described in section 2.5.2. The method has been 

implemented to GALAXY. The simple pin cell models for the typical UO2 fuel at room 

temperature condition of PWR are prepared for the calculations. The multi-group 

transport calculation is carried out and both the effective multiplication factor and the 

multi-group absorption reaction-rate of 238U are obtained. The specification of the 

calculation condition is the same as that of the UO2 pin cell problem in the section 2.6.3, 

but pellet region is not sub-divided. The gray resonance self-shielding method with 

reaction-rate preservation is applied in GALAXY calculation. Furthermore, the gray 

resonance self-shielding method without reaction-rate preservation and Wigner’s 

one-term method with Dancoff correction are also carried out for comparison. The 

reference result is obtained by MVP. 

Table 2.8 shows the comparison of the effective multiplication factor between 

GALAXY and MVP. Figure 2.14 shows the absolute difference of the multi-group 

absorption reaction-rate between GALAXY and MVP. In the case of the gray resonance 

self-shielding method without reaction-rate preservation, the overestimation for 

multi-group absorption reaction-rate of 238U influences the underestimation of the 

multiplication factor. On the other hand, the gray resonance self-shielding method with 

reaction-rate preservation improves the accuracy of multi-group reaction-rate, and as a 

result, the multiplication factor is accurately calculated. Wigner’s one-term method with 

Dancoff correction generates the accurate effective multiplication factor, but it is a 

result of group-to-group cancel-out, as shown in Figure 2.14. From this result, the 
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applicability of the present method for the reaction-rate preservation is confirmed. 

 

Table 2.8 Comparisons of effective multiplication factor between GALAXY and 

MVP. 

 

 

 

Figure 2.14 Comparison of multi-group reaction-rate between GALAXY and 

MVP. 

 

  

Code Methodology Effective multiplication factor[-] Difference from MVP results[pcm]
Gray resonance method

with reaction rate preservation
1.38313 -17

Gray resonance method
without reaction rate preservation

1.37956 -275
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with Dancoff correction

1.38369 23

MVP
Continuous energy

Monte-Carlo method
1.38337 10 (Statistical error)
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2.6.5 Extensive Monte-Carlo Benchmark for Commercial PWR Fuel Assembly 

For the total validation of new resonance self-shielding methods with multi-group 

MOC transport calculation, the effective multiplication factor and the pin-by-pin fission 

rate distribution in commercial PWR fuel assembly obtained by GALAXY are 

compared with those by MVP. The verification of each key method described in 

sections 2.2, 2.3, 2.4 and 2.5 has been carried out in the previous sub-sections. The 

objective of this validation is to confirm the overall accuracy of the present resonance 

self-shielding method with the transport calculation method for the PWR fuel assembly 

calculations, which are the main use of the lattice physics code GALAXY. 

The specifications of the calculation condition are shown in Table 2.9. As shown in 

Table 2.9, fuel type, lattice arrangement, fuel composition, thermal-hydraulic condition, 

boron concentration and type of inserted rod are widely changed for overall validation. 

The present extensive benchmark problem is generated by orthogonal table [23], which 

is widely applied in quality engineering field. The number of parameter combinations 

based on Table 2.9 is about several tens of thousands, so the reduction of the benchmark 

set is required for efficient validation. By introducing the orthogonal table, the number 

of calculations in the benchmark is effectively reduced to less than one thousand. 
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Table 2.9 Specifications of the extensive Monte-Carlo benchmark. 

 

 

Figure 2.15 shows the difference of effective multiplication factor between 

GALAXY and MVP. The differences are almost smaller than 200pcm (0.2%k∆ ) in all 

cases. The accuracy of effective cross-section has a large influence for predicting the 

appropriate effective multiplication factor, so the present resonance self-shielding 

methods drastically contribute to the robust accuracy of lattice physics calculations. 

 

Parameter Condition

Fuel type UO2, UO2 with Gd2O3, MOX, UO2 with Er2O3

Lattice arrangement 14x14, 15x15, 17x17

0.75-9.0wt% 
235

U in UO2

6.0, 10.0wt% Gd2O3 in UO2 + Gd2O3

3.1-13.0wt% Pu contents in MOX

5.0wt% Er2O3 in UO2 + Er2O3

Thermo-hydraulic condition 300-1800K for fuel temperature
Boron concentration 0-3500ppm

Inserted rod Non insertion, RCC, BP (Pyrex, B4C)

Fuel composition
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2.6.6 Post Irradiation Examination Analysis 

For the total validation of new resonance self-shielding methods including SDGM 

with multi-group MOC transport and microscopic depletion calculations, the post 

irradiation examination (PIE) analysis is carried out. The spatial burnup and nuclide 

composition distributions within a fuel pellet obtained by GALAXY are compared with 

those by measurements reported by Central Research Institute of Electric Power 

Industry (CRIEPI) [24]. The verification of each component method described in 

sections 2.2, 2.3, 2.4 and 2.5 has been carried out in the previous sub-sections. The 

objective of this validation is to confirm the overall accuracy of the present resonance 

self-shielding method with the transport and depletion calculation methods of 

GALAXY. 

In the microscopic depletion calculation of GALAXY, Krylov sub-space method is 

adopted for direct loop chain treatment in exponential depletion matrix [25]. UO2 

(3.8wt% 235U) pellet is irradiated and the maximum averaged burnup is 74.5GWd/t in 

this PIE. For the calculation of GALAXY, the pellet is first divided into 10 equal 

volume rings and then the outer 3 rings are re-divided into 13 equal volume rings. So, 

the pellet is totally divided into 20 rings for radial direction. Pellet temperature is 

assumed to be constant for radial direction and 900K is used. 

Figures 2.17, 2.18 and 2.19 show the comparison of the spatial burnup and nuclide 

composition distributions within a fuel pellet between calculations by GALAXY 

(rectangular lines) and measurements (circle points). For the evaluation of nuclide 

composition, 235U, 236U and 238U are taken into account for the uranium isotopes (U), 

and 238Pu, 239Pu, 240Pu, 241Pu and 242Pu are for the plutonium isotopes (Pu), respectively. 
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Figure 2.19 Comparison of Pu composition distribution between calculation by Comparison of Pu composition distribution between calculation by Comparison of Pu composition distribution between calculation by 

GALAXY and measurement.
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Comparison of Pu composition distribution between calculation by 

XY and measurement.
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2.6.7 Critical Experiment Analysis 

For the overall validation of new resonance self-shielding methods with multi-group 

MOC transport calculation, the critical experiment analysis is carried out. The VENUS 

International Program (VIP) critical experiment is chosen for analysis. The fuel rod 

powers obtained by the current nuclear design code and GALAXY are compared with 

those by the measurements reported in Ref. 26. Pellet region is not sub-divided in the 

calculations. The objective of this validation is to confirm the difference of overall 

accuracy between the current nuclear design code and GALAXY. 

The VIP critical experiments were mainly conducted by Belgonucléaire (B/N) and 

the Belgian Nuclear Research Center (SCK/CEN). The power distribution was 

measured for the PWR 17×17 lattice configuration shown in Figure 2.20. The layout of 

the experiment consists of a MOX fuel assembly surrounded by 4 UO2 fuel assemblies. 

The uranium enrichment of UO2 assembly is 3.0 wt%. The MOX fuel assembly has 

three different plutonium total contents. The total plutonium contents ((Pu+241Am)/(U+ 

Pu+241Am+16O)) are 12.6 wt%, 8.6 wt% and 4.8 wt% for the high-, medium- and 

low-content MOX rods, respectively. These fuel assemblies are surrounded by a driver 

fuel region with 3.0 wt% and 4.0 wt% UO2 fuel rods. 
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Figure 2.20 Core configuration of VIP critical experiment. 

 

The fuel rod power distributions obtained by the current nuclear design code and 

GALAXY are compared with the measurements obtained by the gamma scan method. 

The differences of power distribution for “current nuclear design code calculation 

versus measurement” and “GALAXY calculation versus measurement” are depicted in 

Figures 2.21 and 2.22 for MOX and UO2 fuel assemblies, respectively. The maximum 

differences of rod power in the current nuclear design code and GALAXY calculations 

 High-Content MOX (12.6wt%Pu-t)

 Medium-Content MOX (8.6wt%Pu-t)

 Low-Content MOX (4.8wt%Pu-t)

 UO2 (3.0wt%)

 UO2 (4.0wt%)

 Water Hole
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are 5.7% and -3.6%, respectively. For the current nuclear design code, the standard 

deviations of the difference are 2.2% and 1.5% for MOX and UO2, respectively. In 

contrast, in GALAXY, the standard deviations are 0.8% and 1.2% for MOX and UO2, 

respectively. 

 

 

Figure 2.21 Calculation to measurement ratio of power distribution for MOX fuel 

assembly in VIP critical experiment. 
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Figure 2.22 Calculation to measurement ratio of power distribution for UO2 fuel 

assembly in VIP critical experiment. 

 

From these results, the improvement of overall calculation accuracy from the current 

nuclear design code to GALAXY is confirmed. 
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2.7 Conclusion 

A new resonance self-shielding method based on the equivalence theory is 

developed for general application to the lattice physics calculations. The present scope 

includes commercial light water reactor design applications which require both 

calculation accuracy and calculation speed. In order to develop the new resonance 

self-shielding method, all the calculation processes from cross-section library 

preparation to effective cross-section generation are reviewed and reframed by adopting 

the current enhanced methodologies for lattice calculations. The new method is 

composed of the following four key methods: (1) cross-section library generation 

method with a polynomial hyperbolic tangent formulation, (2) resonance self-shielding 

method based on the multi-term rational approximation for general lattice geometry and 

gray resonance absorbers, (3) spatially dependent gray resonance self-shielding method 

for generation of intra-pellet power profile and (4) integrated reaction-rate preservation 

method between the multi-group and the ultra-fine-group calculations. From the various 

verifications and validations, applicability of the present resonance treatment is totally 

confirmed. As a result, the new resonance self-shielding method is established, not only 

by extension of a past concentrated effort in the reactor physics research field, but also 

by unification of newly developed unique and challenging techniques for practical 

application of the lattice physics calculations. 

In addition to the topics of the present study, treatment of the thermal motion of 

heavy nuclides for resonance scattering kernel [27], [28] is important for the exact 

modeling of the actual physical phenomenon. Furthermore, consideration of the 

resonance interference effect is also important theme of resonance treatment from the 
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view point of improvement of the reactor physics theory and reduction of the 

calculation error. These are still open problems. 

Conventionally, the validity of resonance self-shielding method has not sufficiently 

been analyzed so far when the method was implemented to lattice physics codes, in 

spite of the many approximations in the resonance self-shielding theory. However, the 

resonance treatment is a key part of reactor physics theory and would dominate the final 

accuracy of lattice physics calculations. From this point of view, a series of products in 

the present study will be useful, not only for the development of GALAXY, but for the 

deeper insight and improvement of reactor physics theory. 
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CHAPTER 3.  DEVELOPMENT OF HYBRID 

RESONANCE SELF-SHIELDING METHODOLOGY 

FOR ENERGY DEPENDENT SCATTERING SOURCE 

AND RESONANCE INTERFERENCE EFFECT BASED 

ON INTEGRATION OF EQUIVALENCE THEORY AND 

ULTRA-FINE-GROUP SLOWING-DOWN 

CALCULATION 

 

3.1 Introduction 

Resonance treatment is one of the important elements for the lattice physics 

calculation in the reactor physics field. In the current lattice physics codes, the 

microscopic reaction-rates and the neutron multiplication factor are usually evaluated 

through the resonance calculation and the (single or multi stage) flux calculation. The 

resonance calculation is to generate multi-group effective cross-sections considering the 

resonance self-shielding effect. The choice of the method for resonance self-shielding 

treatment is very important because the effective cross-section directly influences on the 

result of subsequent multi-group flux calculation in a heterogeneous geometry. 

In conventional lattice physics codes, the equivalence theory [1] has been widely 

applied as a fundamental method for resonance self-shielding treatment. The 

equivalence theory can easily treat the resonance self-shielding effect by assuming the 
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equivalence between homogeneous and heterogeneous systems using the background 

cross-section. The resonance self-shielding treatment based on the equivalence theory 

has been successfully applied by its simple and fast calculation features, which are the 

most advantages of this method. 

In the recent trend of core analysis, extension of the applicable range tends to be 

required for the lattice physics code while keeping its prediction accuracy. For the 

resonance self-shielding treatment based on the equivalence theory, the following three 

features are especially the important items to be addressed to extend the applicable 

range with keeping sufficient accuracy, i.e., (1) flexible geometry treatment, (2) 

consideration for the variety of fuel compositions and (3) wider application range for 

the water moderator density. Items (1) and (2) are important for the innovative fuel 

designs, and (3) is important for the safety analysis applications of LWRs (Light Water 

Reactors). In the conventional equivalence theory, the above three items are 

approximately treated as follows: 

 

(1) Geometry: One-dimensional cylindrical approximation [2] with 

Dancoff method [1], 

(2) Fuel composition: No resonance interference effect [1] among 

multiple resonance nuclides in the fuel material, 

(3) Moderator density: Optimized for the normal operation condition 

assuming the 1/E asymptotic spectrum for the scattering source 

approximation. 
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In order to reduce the influence of the above approximations, the ultra-fine-group 

treatment has been investigated for the resonance calculation in the recent studies [3, 4, 

5]. In this treatment, the resonance cross-sections steeply varying to the neutron energy 

is directly taken into account on the ultra-fine energy group resolution. The direct 

ultra-fine-group slowing-down calculation is an approach to generate effective 

cross-sections with high accuracy, but its application is usually limited to the pin-cell 

geometry. Extension to the fuel assembly geometry considering the variety of pin-wise 

fuel compositions and the irregular lattice effect due to the non-fuel cells is not very 

easy. 

To remove the limitation in the ultra-fine-group treatment, the more direct approach 

has also been investigated by reflecting the current high computational performance, i.e., 

increasing the number of energy groups for the multi-group flux calculation step in the 

fuel assembly geometry [6, 7]. The influence of the resonance calculation can be 

reduced by increasing the number of energy groups, and the detailed energy dependence 

of the resonance cross-section and the neutron flux is directly taken into account in flux 

calculation step. This treatment is surely straightforward approach, but it cannot be 

applied easily for the design applications which require many branch calculations in the 

nuclear constants generation. 

By investigating the past beneficial studies for the resonance treatment mentioned 

above, the advanced method for resonance self-shielding treatment is newly developed 

in the present study. The target of the new method is to achieve high accuracy without 

increasing the number of energy groups in the flux calculation step. Especially, the main 



130 

 

features to address the above three approximated treatments are summarized as follows: 

 

(1) Geometry 

In the past study, the gray resonance self-shielding treatment method [8] based on 

the equivalence theory was established for MHI (Mitsubishi Heavy Industries, Ltd.) 

lattice physics code GALAXY [9]. This method can generate the coefficients of the 

multi-term rational equation (nα  and nβ  shown in section 2) to consider the 

heterogeneity between fuel and non-fuel regions, and the irregular lattice effect in the 

fuel assembly geometry. The coefficients are generated so as to obtain the accurate flux 

response by the rational equation against all the optical length ranges of the fuel regions. 

The optical length includes the intermediate range between the black (perfect neutron 

absorber) and the white (pure neutron scatter) limit conditions, and this intermediate 

range is called as the “gray resonance range” [8] in contrast to the “black” or “white” 

limits. In the method, the effect of gray resonance and the two-dimensional exact 

geometry can be directly handled by using the one-group MOC (method of 

characteristics) [10] fixed source calculations. 

In the resonance self-shielding treatment newly established in the present study, the 

coefficients of the multi-term rational equation for the neutron flux in the heterogeneous 

system capture the various spatial effects for the exact geometry mentioned above. To 

achieve the efficient spatial treatment, a new form of energy dependent neutron flux is 

proposed based on the flux derivation scheme in the equivalence theory consistent with 

the multi-term rational equation of the gray resonance treatment method. The 

coefficients can be generated for pin-by-pin resolution, thus the new method can 
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efficiently handle a two-dimensional exact assembly geometry. 

 

(2) Fuel composition 

The spatial effect is accurately treated by the concept described in (1). Another 

important element is the accurate treatment of energy dependence for the neutron flux. 

In the equivalence theory, the resonance cross-sections except for the target resonance 

nuclide are usually not considered to achieve the simple and fast calculations. The 

approximated treatment of the cross-sections neglects the resonance interference effect 

among the multiple resonance nuclides in the fuel region. Though the resonance 

interference effect itself can be considered easily by the RIF (resonance interference 

factor) method [11, 12], another important approximation in the equivalence theory, i.e., 

the scattering source approximation, also needs to be reviewed for the more accurate 

treatment [13]. To remove the above two approximations, all the resonance 

cross-sections for the important resonance nuclides in the fuel region, and the accurate 

scattering source in the fuel region which appears on the slowing-down equation, are 

taken into account for the flux derivation scheme in the present study. 

 

(3) Moderator density 

The scattering source of the non-fuel region is also important element. The simple 

1/E spectrum is assumed as a flux for the non-fuel regions in the conventional 

equivalence theory [1]. The approximation may be valid for the normal operation 

condition of LWR, in which plenty hydrogen exists in the moderator region and many 

neutrons are slowed down to the epi-thermal energy ranges. The 1/E flux approximation 
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is not sufficient for the low moderator density condition, and the flux in the moderator 

region is directly influenced by the flux in the fuel region. It should be noted that the 

prediction accuracy of the moderator flux also affects the accuracy of the fuel flux 

through the scattering source provided from the moderator region, hence the accurate 

moderator flux treatment is important. In order to treat the scattering source of the 

non-fuel region more accurately, the resonance self-shielding effect in the fuel region is 

theoretically taken into account to the flux in the non-fuel region in the present study. 

 

By the above three treatments, a new form of energy dependent neutron flux is 

derived. The fundamental form is the multi-term rational equation, and at the same time, 

it is the slowing-down equation. The former aspect corresponds to consideration of the 

spatial dependence of the flux (pin-by-pin resolution), and the latter corresponds to 

consideration of the energy dependence of the flux (ultra-fine-group resolution), 

respectively. As a result of the new derivation scheme, a new method for resonance 

self-shielding treatment is established as a hybrid model of the equivalence theory and 

the ultra-fine-group slowing-down calculation. 

On the basis of the above concepts, contents of each section in the present paper are 

summarized as follows. 

 

<Section 3.2> 

A new slowing-down equation is proposed with a multi-term rational form. The 

equivalence theory and the ultra-fine-group treatment are theoretically integrated in the 
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derivation scheme. 

 

<Section 3.3> 

A correction factor equation is derived to preserve the reaction-rate between 

multi-group and ultra-fine-group treatments. 

 

<Section 3.4> 

Numerical treatments with discretized equations are shown for actual implementation of 

the new method. 

 

<Section 3.5> 

A new method for resonance self-shielding treatment established in sections 3.2-3.4 is 

verified for unit pin-cell problem with lattice physics code GALAXY. 

 

<Section 3.6> 

A new method for resonance self-shielding treatment is verified for UO2/MOX 

multi-assembly problem with lattice physics code GALAXY. 

 

<Section 3.7> 

Extensive Monte-Carlo pin-cell benchmark is carried out for infinite multiplication 
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factor (k-infinity) and reactivity coefficients in wide application range by comparison 

between GALAXY and continuous energy Monte-Carlo code MVP. 

 

<Section 3.8> 

The conclusions of the present study are summarized. 
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3.2 Derivation of Slowing-Down Equation with Multi-Term Rational Form 

3.2.1 Slowing-Down Equation for Two-Region Heterogeneous System 

The integral form of neutron transport equation for two region heterogeneous system 

consisting of fuel and non-fuel regions is written as: 

)()()()()()( EPVESEPVESVEE fnfnfnfffffff
f
t →→ +=Σ φ .  (3.1) 

In the following derivation, the non-fuel region is defined as multiple regions except 

for fuel. For the typical LWR (light water reactor) unit cell, non-fuel region is composed 

of cladding and moderator regions. 

In the resolved resonance energy ranges, the fission source can be omitted. The (n, 

2n) reaction is also negligible in this energy range. Therefore the neutron source term 

for fuel region can be written as scattering source: 

∑∫
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kf EEENEdES

0
)()()( φσ ,    (3.2) 

The neutron source for non-fuel region can be written as the same manner. 

By applying the isotropic and elastic-down scattering in the center-of-mass system, 

the scattering cross-section matrix is derived as: 
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By substituting Equation (3.3) into Equation (3.2), the scattering source for the fuel 

region is written as: 
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The scattering source for the non-fuel region is also written as: 
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By substituting Equations (3.4) and (3.5) into Equation (3.1), neutron slowing-down 

equation for the fuel region can be obtained as: 
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The equation for the non-fuel region is obtained as the same manner. The more 

general equation for the multiple region system (more than two regions) can be easily 

derived in similar way. In the resonance self-shielding treatment based on the 

conventional ultra-fine-group calculation, the slowing-down equation for a 

heterogeneous system is directly solved with several tens of thousands of energy groups. 

As can be seen from Equation (3.6), the slowing-down equation cannot be solved 

analytically except for the very simple case because the flux itself is included in the 

scattering source term. In the actual numerical treatment of Equation (3.6), the 

ultra-fine-group flux is solved from the fast to the lower energy ranges as a fixed source 

problem without fission source updates (outer iterations) and scattering source updates 

(inner iterations).  
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3.2.2 Flux and Scattering Source for Non-Fuel Region 

In the present study, the ultra-fine-group slowing-down equation in the 

heterogeneous system, i.e., Equation (3.6) or the more general one, is not directly solved 

for fast calculation. Besides, the NR or IR approximation [1, 14] of the scattering source 

conventionally used in the equivalence theory is not also applied to improve the 

prediction accuracy of energy dependent neutron flux. To achieve this concept, further 

theoretical approximations are not applied for the scattering source of the fuel region. 

The efficient treatment of non-fuel region is more important for fast and accurate 

resonance calculation. The effect of resonance scattering for the non-fuel region is 

usually small relative to that for the fuel region. By using this assumption, the scattering 

source for the non-fuel region (Equation (5)) is approximated as: 
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where k
pσ  denotes the microscopic potential scattering cross-section of nuclide k . 

The neutron flux in the non-fuel region ( )(Enfφ ) is usually influenced by the flux in 

the fuel region. )(Enfφ  is not a simple E/1  asymptotic spectrum, and includes the 

self-shielding effect induced by the resonances in the fuel region. The treatment of 

non-asymptotic effect is especially important for the low moderator density conditions 

assumed in safety analysis. To incorporate the effect, )(Enfφ  is expressed as a 

following equation in the present study: 
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E nfnf ϕθθφ −+= ,     (3.8) 

where )(Enfϕ  denotes the non-asymptotic component of the flux in the non-fuel 

region. θ  denotes the ratio of asymptotic spectrum ( 10 ≤≤ θ ). )(Enfϕ  can be 

derived from corrected neutron flux in the fuel region ( )(Efφ ). )(Efφ  is not derived 

in this intermediate process, hence the concrete form of )(Enfϕ  is discussed in the 

following sub-section (section 3.2.4). 

In the extreme condition for 0→θ , )(Enfφ  approaches to )(Enfϕ (or )(Efφ ). 

This special case corresponds to the situation in which the neutrons would not collide in 

the non-fuel region. This means that the non-fuel region is in the vacuum condition. For 

the typical example in the reactor core or the spent nuclear fuel pool for the LWR, most 

of the water surrounding the fuel rods evaporates and becomes low density mist 

condition. 

By substituting Equation (3.8) into Equation (3.7), )(ESnf  can be transformed as: 
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where nf
pΣ  denotes the macroscopic potential scattering cross-section in the non-fuel 

region. 
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By defining the part of the intermediate product in Equation (3.9) by: 
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)(ESnf  is rewritten as: 

)()()()( EE
E

EES as
nf
p

nf
p

nf ϕµµ Σ≡
Σ

= ,    (3.11) 

where the asymptotic spectrum E/1  is rewritten as )(Easϕ . 

The conventional form of )(ESnf  is Enf
p /Σ  in the equivalence theory, therefore 

)(Eµ corresponds to the correction factor to consider the self-shielding effect by the 

resonances in a fuel region. 
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3.2.3 Incorporation of Multi-Term Rational Equation for Fuel Escape Probability 

By substituting Equation (3.11) into Equation (3.1), the transport equation for the 

two region heterogeneous system is rewritten as: 

)()()()()()()( EPVEEEPVESVEE fnfnfas
nf
pffffff

f
t →→ Σ+=Σ ϕµφ . (3.12) 

The following formulation is based on the flux derivation scheme for the multi-term 

rational approximation [8] in the equivalence theory. The fuel to fuel collision 

probability satisfies the following probability relation: 

)(1)(1)( EPEPEP enffff −=−= →→ ,     (3.13) 

where )(EP nff →  denotes the fuel to non-fuel collision probability, which corresponds 

to the first-flight fuel escape probability in the lattice system, )(EPe  [1]. )(EPe  

includes the lattice effect due to the neutron current induced by the neighboring fuel 

rods or the non-fuel regions. 

The reciprocity theorem between the fuel and the non-fuel regions is also written as: 

)()()( EPVEPVE fnfnf
nf
pnfff

f
t →→ Σ=Σ ,    (3.14) 

where the total cross-section for the non-fuel region is approximated as the potential 

scattering cross-section, i.e., nf
p

nf
s

nf
t EE Σ≅Σ≅Σ )()( , in the right hand side of the 

equation. In this approximation, the non-fuel material is assumed as a pure scatterer to 

the neutron for the target resonance energy ranges, which do not include the thermal 

energy ranges. The effect of resonance scattering for the non-fuel region is also regarded 

as small relative to that for the fuel region, which is consistent with the assumption in 
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Equation (3.7). 

By substituting Equations (3.13) and (3.14) into the right hand side of Equation 

(3.12), Equation (3.12) is rewritten as: 
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(3.15) 

Further transformation of Equation (3.15) can yield: 
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(3.16) 

where 

)(

)(
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E

ES
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as

ff
sd ϕ

≡Σ .       (3.17) 

)(Ef
sdΣ  denotes the “slowing-down cross-section” newly named and defined in the 

present study. It should be noted that the dimension for )(Easϕ  in Equation (3.17) 

corresponds to that for the neutron flux. Considering that the dimension for )(ESf  

corresponds to that for the macroscopic reaction-rate (i.e., product of the macroscopic 

cross-section and the flux), the dimension for )(Ef
sdΣ  is, after all, equal to that for the 

macroscopic cross-section. It is sure that )(Ef
sdΣ  is not a pure cross-section in the 
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physical point of view, but it can be converted to the macroscopic potential 

cross-section in case of the NR approximation (details are discussed in section 3.2.6). 

Thus )(Ef
sdΣ  is formally written as a cross-section. 

In the multi-term rational approximation of the fuel escape probability, )(EPe  is 

expressed as [1, 8]: 
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where fl denotes the mean chord length of the fuel lump. N  denotes the number of 

rational equation terms. nα  corresponds to the n -th coefficient considering the 

heterogeneous and lattice effects. nβ  corresponds to the weight of rational equation 

normalized as: 

1
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=∑
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N

n
nβ .       (3.19) 

By substituting Equations (3.18) and (3.19) into Equation (3.16), the energy 

dependent neutron flux in the fuel region is derived as: 
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3.2.4 A New Set of Slowing-Down Equation 

From Equations (3.4), (3.10), (3.17) and (3.20), the neutron flux in the fuel region is 

formulated as: 
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As referred in section 3.2.2, )(Enfϕ  in Equation (3.23) denotes the non-asymptotic 

component of the flux in the non-fuel region. For the neutron flux in the non-fuel region, 

the self-shielding effect propagated by the resonances of the fuel region is somewhat 

mitigated. Therefore )(Enfϕ  can be approximated by correcting the heterogeneous 

term nα  of Equation (3.21) as: 
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where nε  denotes the n -th coefficient considering the mitigation of resonance 

self-shielding effect in the non-fuel region. 

Equations (3.21)-(3.24) are the new set of slowing-down equation for a two-region 



145 

 

heterogeneous system. In the actual numerical treatment, )(Efφ , )(Ef
sdΣ , )(Eµ  and 

)(Enfϕ  are solved successively from the fast to the lower energy ranges as a fixed 

source problem without fission source updates (outer iterations) and scattering source 

updates (inner iterations). The detail of the numerical treatment is described in section 

3.4.1. 

With the byproducts of the solution for Equations (3.21)-(3.24), the neutron flux in a 

non-fuel region can be reconstructed using Equations (3.8) and (3.24) as: 
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3.2.5 Essential Roles of θ  and nε  

The coefficients θ  and nε  are the essential elements to represent the flux in a 

non-fuel region by the following reasons. 

 

(1) Essential role and the number of H atom dependence of θ  

Figure 3.1 shows the typical example of fluxes in a fuel and a non-fuel region for 

the wide range of fuel optical length obtained from the MOC one-group fixed source 

calculation. In this figure, fluxes are calculated on 4.8wt%UO2 pin-cell geometry 

analyzed in section 3.5. In the black limit, the macroscopic total cross-section reaches to 

∞→Σ f
t , as a result of ∞→Σ f

a . In this extreme case, the flux in a fuel region is 

converged as zero ( 0lim =
∞→Σ ff

t

φ , see Equation (3.21)), but the flux in a non-fuel region 

must be always positive ( 0>nfφ ) due to the scattering source in the non-fuel region, as 

long as some materials exist in the non-fuel region. The value of θ  plays a role in the 

asymptotic component of nfφ  which is independent to variation of f
tΣ , whereas 

nfϕθ )1( −  depends on f
tΣ . These properties can be followed by Figure 3.1. 

Mathematical meaning of θ  is clarified in section 3.2.7 (Equation (3.38)). 

Note that θ  strongly depends on the moderator density. Figure 3.2 shows the 

example for moderator density dependence of θ . In this figure, θ  is plotted for 

various moderator density conditions of 4.8wt%UO2 pin-cell geometry analyzed in 

section 3.5. The moderator density dependence is shown both for the normal cell pitch 
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condition of PWR (Pressurized Water Reactor) and the pseudo wide pitch condition. 

The moderator to fuel volume ratios (Vm/Vf) are 1.67 and 10.71, respectively. As shown 

in Figure 3.2, θ  is larger for the water enriched conditions than for the lower 

moderator density conditions. By rearranging the behavior of θ  shown in Figure 3.2, 

θ  depends on the number of 1H atom in a fuel cell, as shown in Figure 3.3 (the number 

of 1H atom is normalized by that of 238U atom). As shown in Figure 3.3, θ  is large for 

the high 1H/238U conditions than for the lower 1H/238U, respectively. 

 

(2) Essential role of nε  

As described in section 3.2.2, )(Enfφ  approaches to )(Enfϕ  in case of the limited 

condition, i.e., 0→θ . In this extreme case, the non-fuel region is on the vacuum 

condition, hence the corresponding two region system is, after all, equivalent to the 

homogeneous medium composed of the fuel material only. Therefore, 

)()()( EEE fnfnf φϕφ ==  in case of 0→θ . In this extreme case, 1=nε . 

Application of nε  is more important for the heterogeneous geometry ( 10 ≤<θ ) 

than for the homogeneous medium ( 0=θ ). In the general heterogeneous case, the 

non-asymptotic component of the flux in the non-fuel region, i.e., )(Enfϕ , is not 

completely equal to )(Efφ . Therefore, nε  is newly introduced as a correction factor 

in order to well approximate )(Enfϕ  by means of correcting )(Efφ . 

As shown in Figure 3.1, the gradient (or sensitivity) of nfφ  or nfϕθ )1( −  
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associated with f
tΣ  change is generally different from that of fφ . The above 

sensitivity is essentially determined by the relation of magnitude between f
f
t lΣ  and 

nα  in the denominator of Equation (3.21). The different sensitivity effect of a non-fuel 

region comparing with a fuel region can be controlled by correcting nα  in the rational 

equation. Therefore nε  plays a role in the sensitivity correction factor in a non-fuel 

region against f
tΣ  change. The sensitivity of nfϕ  (Equation (3.24)) induced by f

tΣ  

change can be mitigated by nε . 
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Figure 3.1 Fluxes by the MOC one-group fixed source calculations for wide range 

of optical length and expression of non-fuel flux. 
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Figure 3.2 Moderator density dependence of θ . 

 

  

Figure 3.3 1H/238U (ratio for the number of atom) dependence of θ . 
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3.2.6 Comparison with Conventional Equivalence Theory 

A new set of the slowing-down equation shows a theoretical hybrid form of the 

equivalence theory and the ultra-fine-group treatment. In this sub-section, it is 

confirmed that Equations (3.21)-(3.25) can be transformed to the equations generally 

used in the equivalence theory by the conventional scattering source approximation. 

By the NR approximation, Equation (3.22) is approximated as: 

f
p

f
p

k

E

E

k
p

k

f
kf

sd E
E

EE

EdN
EE

k

Σ=
Σ

⋅=
⌡

⌠
′′

′
−

≈Σ ∑
α σ

α

/
1

)1(
)( ,  (3.26) 

where f
pΣ  denotes the macroscopic potential scattering cross-section in the fuel 

region. 

The NR approximation is also applied for the non-fuel region. The flux in the 

non-fuel region is approximated as a simple E/1 form, thus 1≈θ . As a result, the 

following simple relation is derived from Equation (3.23): 

1)( ≈Eµ .       (3.27) 

By substituting Equations (3.26) and (3.27) into Equations (3.21), and by 

considering 1≈θ , the flux in the fuel and the non-fuel regions are approximated as: 

∑
= +Σ

+Σ
≈

N

n nf
f
t

nf
f
p

nf lE

l

E
E

1 )(

1
)(

α
α

βφ ,     (3.28) 

E
Enf

1
)( ≈φ .       (3.29) 

Equations (3.28) and (3.29) are the general form of the neutron flux in the 

equivalence theory using the NR approximation. As can be confirmed by comparisons 



152 

 

of Equations (3.21) and (3.25) with Equations (3.28) and (3.29), a new form of the 

slowing-down equations is completely equivalent to the conventional equations based 

on the equivalence theory by applying the following conversion. 

 

<Numerator in Equation (3.21)> 

f
p

f
sd E Σ→Σ )(  

<Numerator in Equation (3.21)> 

1)( →Eµ  

<Equation (3.25)> 

1→θ  
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3.2.7 Numerical Generation of Rational Coefficients for Gray Resonance Ranges 

In the present method, the coefficients nα , nβ , nε  and θ  in the rational equation 

are required in advance to solve Equations (3.21)-(3.24). The coefficients are generated 

so as to reproduce the neutron fluxes by one-group fixed source MOC (method of 

characteristics) calculations against the several optical lengths including gray resonance 

ranges. The fundamental concept is the same as that for the gray resonance 

self-shielding treatment method [8]. 

In the fixed source MOC calculations, the neutron transport equation is written as: 

π
ψψ

4

)(
),()(

),( EQ
EsE

ds

Esd
t =Σ+ ,     (3.30) 

where ),( Esψ  denotes the angular flux for neutron energy E  at spatial position s  

along with the specific characteristics line. The neutron source is assumed to be 

isotropic and written as π4)(EQ . In the NR approximation consistent with Equation 

(3.26), the neutron source of Equations (3.4) and (3.5) can be expressed as 

EEQ pΣ=)(  by approximating the scattering cross-sections as the potential 

scattering cross-sections, and the fluxes within the energy integration as the E/1  

asymptotic form. Then Equation (3.30) is rewritten as: 

π
ψψ

4

1
),()(

),( p
t E

EsE
ds

Esd Σ
=Σ+ .     (3.31) 

By multiplying E  for both sides of Equation (3.31), the following equation is 

derived: 

π
ψψ

4
),()(

),( p
t usu

ds

usd Σ
=Σ+ ,     (3.32) 
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where ),( EsEψ  is rewritten as ),( usψ  denoting the angular flux for lethargy unit. 

By assuming one-group fixed source problem, Equation (3.32) is simplified as: 

π
ψψ

4
)(

)( p
t s

ds

sd Σ
=Σ+ .      (3.33) 

The scalar fluxes for each heterogeneous region are obtained by integrating the 

angular flux solutions of Equation (3.33) against each characteristics line, polar and 

azimuthal angles. As shown in Equation (3.33), the one-group equation is completely 

independent to the energy groups. In the MOC calculations for the present method, the 

final target is to generate the energy independent coefficients nα , nβ , nε  and θ  for 

the rational equation, i.e., the flux response to the macroscopic total cross-section 

change. The energy dependence of the flux is implicitly taken into account on the 

fluctuation of the macroscopic cross-section instead of energy, which covers the range 

between the black and the white limits including the real gray resonance optical length. 

The flux in the fuel region is expressed as Equation (3.28) in the equivalence theory. 

By averaging Equation (3.28) to the specific energy ranges assuming constant 

cross-section, the lethargy averaged flux in the fuel region becomes independent to 

energy and is written as a function of the optical length f
f
t lΣ : 

∑
= +Σ

+Σ
=Σ

N

n nf
f
t

nf
f
p

nf
f
tf l

l
l

1

)(
α
α

βφ .     (3.34) 

In the present method, the coefficients nα , nβ  are first generated so as to well 

reproduce the one-group MOC result by Equation (3.34). In concrete, the following 

objective function is minimized: 
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where ( f
lt ,Σ , lf ,φ ) denote the set of macroscopic total cross-section and the flux in the 

fuel region by the MOC calculations for several macroscopic cross-section points (L : 

the number of macroscopic cross-section points). Value of f
lt ,Σ  covers the range 

between the black and the white limits including the gray resonance ranges. Value of 

lf ,φ  is obtained from the one-group fixed source calculation in the exact geometry by 

MOC. Thus the effect of geometry is directly incorporated into the fitted coefficients 

nα , nβ  for the pin-by-pin resolution in a fuel assembly. 

In the present method, the coefficients nε  and θ  for the flux in the non-fuel 

region are also required. By substituting only Equations (3.26) and (3.27) into Equation 

(3.25), the flux in the non-fuel region is expressed as: 
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By averaging Equation (3.36) to the specific energy ranges assuming constant 

cross-section, the lethargy averaged flux in the non-fuel region becomes independent to 

energy and is also written as a function of the optical length f
f
t lΣ : 

∑
= +Σ

+Σ
−+=Σ

N

n nnf
f
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nnf
f
p

nf
f
tnf l

l
l

1

)1()(
αε
αε

βθθφ .    (3.37) 

From Equation (3.37), the coefficient θ  is easily obtained as the non-fuel flux in 



156 

 

the black limit condition: 

)(lim f
f
tnf l

f
t

Σ=
∞→Σ

φθ .      (3.38) 

In the nα , nβ  and θ  fixed condition, nε  is then generated so as to well 

reproduce the one group MOC result by Equation (3.37). In concrete, the following 

objective function is minimized: 
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, (3.39) 

where ( f
lt ,Σ , lnf ,φ ) denote the set of macroscopic total cross-section in the fuel region 

and the flux in the non-fuel region by the MOC calculations for several points. lnf ,φ  is 

obtained from the above one-group fixed source calculation by the MOC. The effects of 

geometry and moderator density are also directly incorporated into the coefficients nε , 

θ  for the pin-by-pin resolution in a fuel assembly. 
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3.3 Derivation of Correction Factor Equation for Reaction-Rate Preservation 

3.3.1 Conventional SPH Method for Reduction of Multi-group Condensation Error 

In the multi-group (100~200 energy groups) transport calculation, the effective 

cross-section is used as the input data. The effective cross-section for g –th energy 

group is defined as: 

∫
∫

=
g f

g f
r
x

fr
gx

EdE

EEdE

)(

)()(
,
, φ

φσ
σ ,      (3.40) 

where )(Er
xσ  denotes the continuous energy cross-section for the resonance nuclide r  

and the reaction type x . In the multi-group treatment, the multi-group reaction-rate for 

the resonance nuclide r , the reaction type x  and the energy group g  in the fuel 

region, which is expressed by fr
gxrr ,

, , is written as: 

gf
fr
gx

fr
gxrr ,

,
,

,
, )pmulti_grou( φσ= ,     (3.41) 

where gf ,φ  denotes the multi-group neutron flux obtained from the transport 

calculation using fr
gx

,
,σ . 

In contrast to the above multi-group calculation, the multi-group reaction-rate 

obtained from the continuous energy or the ultra-fine-group (several tens of thousands 

of energy groups) treatment is written as: 

∫=
g f

r
x

fr
gx EEdErr )()()_energycontinuous(,

, φσ .   (3.42) 

In usual, Equations (3.41) and (3.42) are not equal, that is: 
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gf
fr
gxg f

r
x EEdE ,

,
,)()( φσφσ ≠∫ .     (3.43) 

The above inconsistency comes from the error due to cross-section condensation on 

energy. Flux obtained by multi-group transport solution does not reproduce that 

obtained by ultra-fine-group calculation even if the exact multi-group effective 

cross-sections, i.e., those directly obtained by ultra-fine-group calculation, are used. As 

a result, )pmulti_grou(,
,

fr
gxrr  cannot preserve )_energycontinuous(,

,
fr

gxrr  without 

correction. 

The inconsistency on the multi-group reaction-rates obtained by the continuous 

energy and by the multi-group treatments directly causes the difference of the neutron 

multiplication factor between two treatments. In order to reduce the difference in the 

multi-group treatment, the following approach ((1) or (2)) is usually applied: 

 

(1) Increasing the number of energy groups in the multi-group transport 

calculation [6, 7], 

(2) Applying the cross-section correction methods such as SPH (Super 

homogenization) method [3]. 

 

Approach (2) is the more efficient one in order to avoid the additional computation 

time in the transport calculation. The SPH method is usually applied for the reduction of 

spatial homogenization error [15], but it can also be applied for the reduction of 

multi-group condensation error. In the SPH method, the effective cross-section is 
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corrected by the group dependent correction factor gf  as follows: 

fr
gxg

fr
gx f ,

,
,
,

~ σσ = .       (3.44) 

The role of gf  is to preserve the multi-group reaction-rate obtained from the 

continuous energy treatment, therefore the following relation is derived: 

gf
fr
gxgg f

r
x fEEdE ,

,
, )()()( φσφσ ⋅=∫ .     (3.45) 

By using the definition of the effective cross-section (Equation (3.40)), gf  is 

rewritten as: 
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gf  can be generated using the results of resonance calculation based on the 

ultra-fine-group treatment. The numerator of Equation (3.46) is directly calculated by 

integrating the neutron flux from the ultra-fine-group slowing-down calculation. The 

denominator of Equation (3.46) is calculated by the additional one-group fixed source 

calculation for each group g . As for the well-known SPH method, the iterative 

transport calculation is required so that the left and right hand sides of Equation (3.45) 

become equal. The correction factor gf  is converged as the iteration proceeds. 

For the additional fixed source MOC calculations, the following one-group neutron 

transport equation is solved independently for each energy group g : 
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π
ψ

ψ
4

)(
)(

,
g

ggtg
g S

sf
ds

sd
=Σ+ ,     (3.47) 

where )(sgψ  denotes the angular flux for group g  at spatial position s  along with 

the specific characteristics line. The scalar fluxes for each heterogeneous region are 

obtained by integrating the angular flux solutions of Equation (3.47) against each 

characteristics line, polar and azimuthal angles. 

The neutron source is assumed to be isotropic and written as π4gS . The 

macroscopic effective total cross-section gt,Σ  is given from the ultra-fine-group flux 

weight scheme based on Equation (3.40). The neutron source gS  is generated from 

∫=
gg EdESS )(  by integrating the energy dependent scattering source )(ES  within 

group g , which is the byproduct of the ultra-fine-group slowing-down calculation. The 

SPH factor gf  is multiplied to gt,Σ  for solving Equation (3.47) and it is updated in 

the iterative scheme until gf  is converged. 
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3.3.2 A Correction Factor Equation for Reaction-Rate Preservation 

The new method for resonance self-shielding treatment derived in section 3.2 is 

based on the ultra-fine-group calculation, thus the SPH method described in section 

3.3.1 can be applied in principle. The SPH method requires the additional flux 

calculations with iterative scheme, which requires longer computation time. 

Fortunately, the present resonance self-shielding treatment includes the essence of 

the equivalence theory. The energy dependent neutron flux can be reconstructed by the 

analytical form of the multi-term rational equation. This feature becomes advantage 

comparing with the conventional SPH method, which is based on a pure numerical 

approach. In the following part, an equation to solve the correction factor gf , which 

corresponds to the SPH factor in Equation(3.46), is derived based on the fundamental 

concept of the reaction-rate preservation scheme in the equivalence theory [16]. 

By using Equations (3.40) and (3.42), the multi-group reaction-rate obtained from 

the ultra-fine-group treatment is rewritten as: 
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  (3.48) 

In the multi-group treatment, the multi-group reaction-rate in Equation (3.41) is 

corrected as: 

gf
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gxggf
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gx frr ,
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~)pmulti_grou( φσφσ == ,    (3.49) 
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where Equation (3.44) is applied for Equation (3.41). 

By assuming the constant cross-section within the energy group g  for Equation 

(3.21), which is consistent with the multi-group treatment, the neutron flux in Equation 

(3.49) is derived as: 
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where the scattering source term for the fuel region, and the self-shielding correction 

term for the non-fuel region, are each defined as: 
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By substituting Equation (3.50) into Equation (3.49), the following equation is 

derived: 
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α
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Finally, by assuming that Equation (3.53) is equal to Equation (3.48), and dividing 

both sides by fr
gx

,
,σ , the following equation to solve gf  is formulated as: 
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Equation (3.54) is a correction factor equation for reaction-rate preservation, which 

suits with the hybrid method for resonance self-shielding treatment in section 3.2. All 

the terms except for gf  are byproducts of the solution of the new set of slowing-down 

equation in section 3.2.4. gf  is easily obtained from iterative calculation until gf  is 

converged. From Equation (3.54), gf  for (i+1)-th iteration is generated using i-th 

result as follows: 
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The method includes the iteration scheme, but any additional iterative flux 

calculations are no longer required. The calculation time of gf  is negligible comparing 

with the conventional SPH method. Besides, Equation (3.54) can be rewritten as N -th 

order linear equation. Therefore the analytical solution of gf  is easily obtained in case 

of the one-term or the two-terms rational equation, in which the iteration of Equation 

(3.55) is not necessary at all. 
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3.4 Numerical Procedure and Calculation Flow 

3.4.1 Numerical Discretization and Calculation Scheme for Slowing-Down Equation 

A new set of the slowing-down equation is solved numerically by energy 

discretization. The discretized form of the equation and its fundamental calculation 

scheme are described in this section. 

)(Efφ , )(Enfϕ , )(Ef
sdΣ  and )(Eµ  in section 3.2.4 are discretized for energy and 

written as: 
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where 

FG :  The number of ultra-fine energy group, 

fg :  An ultra-fine energy group for the range 1−<≤ fgfg EEE , 

1−fgE , fgE : Upper and lower energy boundaries for group fg , 



165 

 

fgE :  Lethargy averaged energy for group fg  ( fgfgfg EEE 1−= ), 

fgE∆ :  Energy width for group fg  ( fgfgfg EEE −=∆ −1 ), 

}|{ kfggffggfk EEEEgf α≤<=′ ′′ : Incoming neutron energy group for scattering source 

integration of the nuclide k . 

 

In the energy discretization, the ultra-fine-group structure is assumed to be fine 

enough so that the resonance cross-sections are constant within each group fg  and the 

self-scattering can be ignored. Besides, the energy width fgE∆  for each 

ultra-fine-group is assumed to be small enough relative to the scattering length for 

energy, i.e., fgkfg EE −α . In the actual implementation, the ultra-fine-group structure 

is designed so as to satisfy the above assumptions. 

For the slowing-down calculation, the ultra-fine-group neutron flux is solved 

successively from the fast to the lower energy ranges without iteration. This feature is 

specific for the slowing-down equation. 

First, the 1st group fluxes are solved based on Equations (3.56)-(3.59) as: 
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Second, the 2nd group slowing-down cross-section and self-shielding correction 
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factor are obtained based on Equations (3.58)-(3.59) using the above numerical 

solutions for 1,fφ , 1,nfϕ  as: 
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Then the 2nd group fluxes are solved based on Equations (3.56)-(3.57) using the 

above numerical solutions for f
sd 2,Σ , 2µ . From the 3rd group calculations, ( f

fgsd,Σ , fgµ ) 

and ( fgf ,φ , fgnf ,ϕ ) are solved simultaneously. The above procedure is repeated for 

successive energy groups. 
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3.4.2 Fast Calculation Scheme for Scattering Source Integration 

The energy integration of the scattering source, i.e., ( f
fgsd,Σ , fgµ ) calculation in this 

paper, needs long computation time. In order to reduce the computation time, the energy 

group boundary min,kfg  corresponding to the maximum energy kfgE α  for the fg -th 

group scattering source integration, is pre-evaluated and tabulated in cross-section 

library. This treatment enables to avoid the conditional branch processing for the 

scattering source integration in the actual implementation. 

For the additional fast calculation, the scattering source for fg -th group is 

calculated using )1( −fg -th group result based on the efficient numerical scheme 

developed by Kier [17]. The fg -th group scattering source for the fuel region, which is 

a part of f
fgsd,Σ , is written as: 

∑ ∑
′ ′

′′′∆
−

=
k gf gf
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k

f
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k k
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.    (3.64) 

The relation of scattering source integration range between fg -th and )1( −fg -th 

groups is shown in Figure 3.4. As shown in Figure 3.4, the majority of the scattering 

integration range is common. Therefore, fg -th scattering source f
fgS  is easily 

obtained from )1( −fg -th source f
fgS 1−  by adding )1( −fg -th integration part and 

subtracting the part which is out of the fg -th integration range. The corresponding 

equation is derived as: 
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where the energy integration range for the subtracting part is only 

1)1( min,min, −′≤′≤′− kkk gfgffg  ( min,kgf ′ : Minimum incoming neutron energy group for 

scattering source integration of nuclide k  to the outgoing neutron energy group fg ). 

This treatment is very effective comparing with the direct integration for all the energy 

ranges in Equation (3.64). 

 

 

Figure 3.4 Relation of scattering source integration range between fg -th and 

)1( −fg -th groups. 

 

Finally, the slowing-down cross-section can be obtained as f
fgfg

f
fgsd SE=Σ , . fgµ  

can also be obtained with the same manner. 

 

  

E (Neutron energy)
fg-1 fg-2 fg’k,min (fg-1)’ k,min

fg-th group integration range

Common integration range between fg-th and (fg-1)-th energy group

(fg-1)-th group integration range
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3.4.3 Calculation Flow of New Resonance Self-Shielding Treatment 

Calculation flow of the method established in sections 3.2-3.4 is shown in Figure 

3.5. The calculation procedure is described as follows: 

 

(1) Read the microscopic ultra-fine-group cross-section data fgσ  ( fg : 

ultra-fine-group number) from the library. 

(2) Read the relative atomic weight to the neutron, A , and the microscopic 

potential scattering cross-section pσ . 

(3) Read the heterogeneous region volume V  and the number density N . 

(4) Perform the one-group MOC fixed source calculations using Equation 

(3.33) and obtain the fluxes for each region. In this step, each non-fuel 

region such as the cladding and moderator is treated as the individual 

regions. Each non-fuel region data are homogenized in steps (6) and (7). 

(5) Generate nα  and nβ  by fitting the MOC flux data for fuel region using 

Equation (3.35). 

(6) Calculate nf
kN  and nf

pΣ  from the non-fuel heterogeneous regions data for 

the cladding and moderator. Here, nf
kN  is a volume averaged number 

density in the non-fuel region and is obtained as ∑∑
∈∈

=
nfi

i
nfi

i
i
k

nf
k VVNN  ( i : 

each heterogeneous region included in the non-fuel region). nf
pΣ  is then 
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obtained as ∑=Σ
k

k
p

nf
k

nf
p N σ . 

(7) Calculate )( f
tnf Σφ  using the one-group MOC results for the non-fuel 

heterogeneous regions. )( f
tnf Σφ  is a volume averaged flux in the non-fuel 

region and is obtained as ∑∑
∈∈

Σ=Σ
nfi

i
nfi

i
f
ti

f
tnf VV)()( φφ . 

(8) Generate the rational coefficient θ  by substituting value of )(lim f
tnff

t

Σ
∞→Σ
φ  

based on Equation (3.38). 

(9) Generate nε  by fitting the MOC flux data for non-fuel region using 

Equation (3.39). 

(10) Calculate the first group flux data (1,fφ , 1,nfϕ ) in the ultra-fine-group 

resolution using Equations (3.60) and (3.61). 

(11) Calculate the fg -th ultra-fine-group f
fgsd,Σ  and fgµ  based on 

Equations (3.58) and (3.59). In the actual numerical scheme, the scattering 

source term is solved by Equation (3.65) using )1( −fg -th group results 

(The part of fgµ  can also be obtained with the same manner). 

(12) Calculate the fg -th ultra-fine-group flux data ( fgf ,φ , fgnf ,ϕ ) using 

f
fgsd,Σ , fgµ  and Equations (3.56) and (3.57). 

(13) Carry out the steps (11) and (12) for FGfg ≤≤2  ( FG : the number 

of ultra-fine-group) successively without iterations. 



171 

 

(14) Generate the effective cross-section fr
gx

,
,σ  using fgf ,φ  and Equation 

(3.40). 

(15) Calculate the correction factor gf  using Equation (3.54) and multiply 

it to fr
gx

,
,σ . 

(16) Apply the evaluated effective cross-sections for the multi-group flux 

calculation. 

 

In case of the fuel assembly calculations, step (4) (one-group MOC fixed source 

calculations) is performed for the exact two-dimensional assembly geometry, not for the 

unit pin-cell. The flux data is obtained for pin-by-pin resolution by the MOC 

calculations, thus the following steps (5)-(15) can be performed individually for each 

fuel cell in the target geometry. 
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Figure 3.5 Calculation flow of a new resonance self-shielding treatment. 
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3.5 Verification for Unit Pin-Cell Problem 

3.5.1 Analysis Condition 

In this section, verifications of the new method for resonance self-shielding 

treatment are carried out using unit pin-cell problem. The present method is 

implemented in the MHI (Mitsubishi Heavy Industries, Ltd.) lattice physics code 

GALAXY [8, 9], and the GALAXY is used for all the verifications. 

The one hundred and twenty thousands (120,000) of ultra-fine energy group 

cross-section library is generated by editing the output of NJOY BROADR module [18] 

using the ENDF/B-VII.0 nuclear data files [19]. The obtained ultra-fine-group library is 

incorporated as a part of the GALAXY cross-section library based on the 

ENDF/B-VII.0. The list of nuclides considering the ultra-fine-group resonance 

cross-section and the scattering source in this verification are shown in Table 3.1. The 

energy group structure of the 120,000 groups is shown in Table 3.2, which is based on 

the structure of SLAROM-UF code [5] except for the fast and thermal energy ranges. It 

should be noted that the multi-group flux calculation is carried out with XMAS 172 

energy group structure [20] in GALAXY. The above ultra-fine-group library is used 

only for the ultra-fine-group flux calculations to generate the multi-group effective 

cross-sections. 
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Table 3.1 List of nuclides considered in the verification of ultra-fine-group 

calculation. 

 

 

Table 3.2 Ultra-fine-group energy structure. 

 

 

The number of rational equation term is 2=N . The ultra-fine-group flux 

calculation by the new method is carried out from the fast to the epithermal energy 

ranges (20MeV-0.625eV). The effective cross-sections in the range between 

0.82MeV-0.625eV are generated by the present method. The effective cross-sections 

except for the above energy ranges are generated by the gray resonance self-shielding 

method [8] based on the equivalence theory. The effective cross-sections for Zr nuclides 

in the cladding region are generated by the enhanced neutron current method [21]. 

Condition Target heterogeneous region Nuclides

Consideration of both ultra-fine-group resonance XS
1)

and scattering source
Fuel

235
U, 

238
U, 

238
Pu, 

239
Pu, 

240
Pu, 

241
Pu,

242
Pu, 

241
Am, 

16
O (in fuel region)

Consideration of only ultra-fine-group scattering
source with potential scattering XS

Non-fuel
1
H, 

16
O (in moderator region), 

10
B,

90
Zr, 

91
Zr, 

92
Zr, 

94
Zr, 

96
Zr

1) XS:  cross-section

Upper Lower
20000000 52475 10000

52475 9118.8 56000
9118.8 4307.4 12000
4307.4 961.12 12000
961.12 130.07 8000
130.07 0.32242 12000
0.32242 0.00001 10000

Mesh division
(Equal division for lethargy)

Energy boundary [eV]
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These conditions are applied for all the analyses in this article. 

UO2 (4.8wt% 235U) and MOX (7.2wt% Pu fissile contents) pin-cells with Hot Full 

Power (HFP) operating conditions are set as the typical LWR (Light Water Reactor) 

neutron spectrum conditions. The specifications of the pin-cell problem are shown in 

Table 3.3, and the geometrical configuration is shown in Figure 3.6. 

 

Table 3.3 Specifications of the pin-cell model. 

 

 

Specification

UO2 case: 4.8wt% 
235

U UO2

MOX case: 7.2wt%Pu-f MOX
Cladding Zr

Moderator Borated water
Fuel 976K

Cladding 600K
Moderator 580K

1000ppm
Cell pitch 1.26cm

Pellet radius 0.4095cm
Cladding outer radius 0.475cm
Cladding thickness
(Gap is omitted)

0.0655cm

Item

Material

Temperature

Boron concentration

Geometry

Fuel
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Figure 3.6 Geometry of pin-cell model. 

 

Especially for sub-sections 3.5.3, 3.5.4 and 3.5.6, the calculation results by 

GALAXY are compared with those by continuous-energy Monte-Carlo code MVP [22]. 

ENDF/B-VII.0 [19] nuclear data library is used in all the MVP calculations to be 

consistent with GALAXY calculations. The total number of neutron sampling for MVP 

calculations is set to 100 million histories, in which the one sided statistical uncertainty 

of k-infinity is about 5pcm ( kk /105 5 ∆× − ). 

 

  

Fuel pellet

Moderator

Cladding 

0.4095cm=fR 0.475cm=cR

1.26cm

fR
cR
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3.5.2 Reproducibility of Flux for Gray Resonance Ranges 

The reproducibility of the flux by the rational equation is confirmed in this 

sub-section for the calculation conditions shown in section 3.5.1 

As described in section 3.2.7, the coefficients nα , nβ , nε  and θ  in the 

multi-term rational equation are generated so as to reproduce the flux by the MOC 

one-group fixed source calculations. The above set of the coefficients have an important 

role in the fundamental accuracy of the present method. 

For the UO2 pin-cell case, the reproducibility of the fluxes by the rational equation 

of Equations (3.34) and (3.37) is shown in Figure 3.7. In Figure 3.7, the MOC results 

are set as a reference. As shown in Figure 3.7, the multi-term rational equation of 

Equations (3.34) and (3.37) can well reproduce the MOC results for overall optical 

length ranges between black and white limits including gray resonance ranges. The 

reproducibility can be confirmed both for the fuel and the non-fuel regions. 

 

 

Figure 3.7 Reproducibility of fluxes by the rational equation for wide range of 

optical length. 
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3.5.3 Ultra-Fine-Group Neutron Flux 

The ultra-fine-group neutron flux by the present resonance self-shielding treatment 

is compared with the continuous-energy Monte-Carlo result in this sub-section. 

As described in section 3.2.4, a new set of the slowing-down equations (Equations 

(3.21)-(3.24)) are solved to calculate the ultra-fine-group neutron flux. The prediction 

accuracy of the flux directly influences on the accuracy of the multi-group effective 

cross-section. 

The ultra-fine-group fluxes in a fuel region by GALAXY with the present method 

and those by MVP are shown in Figures 3.8-3.9 for UO2 and MOX cases against the 

important resonance energy ranges of 238U. The fluxes based on the equivalence theory 

with NR approximation are also shown for comparisons. The equivalence theory based 

fluxes are analytically obtained from the multi-term rational equation assuming that the 

target resonance nuclide is 238U. 

As shown in these Figures, the present method can accurately predict the 

ultra-fine-group neutron flux, which is almost equivalent to the continuous-energy 

Monte-Carlo results. The present method can directly consider the resonance 

interference effect (local flux depression) induced by the multiple resonance nuclides 

except for 238U. The equivalence theory cannot incorporate the effect without some 

additional cares [11-13]. 

It should be noted that both GALAXY and MVP codes uses the scattering kernel 

based on the asymptotic model shown in Equation (3.3), thus the treatment of scattering 

source term is consistent between GALAXY and MVP in this verification. 
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Figure 3.8 Comparison of ultra-fine-group fluxes between GALAXY and MVP for 

UO2 fuel ((a) 6-8eV, (b) 19-23eV, (c) 33-38eV, (d) 55-70eV). 
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Figure 3.9 Comparison of ultra-fine-group fluxes between GALAXY and MVP for 

MOX fuel ((a) 6-8eV, (b) 19-23eV, (c) 33-38eV, (d) 55-70eV). 
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The important byproducts of the ultra-fine-group flux calculations in the present 

method, i.e., )(Ef
sdΣ (Equation (3.22)) and )(Eµ (Equation (3.23)), are also shown in 

Figures 3.10-3.11 for UO2 case. As discussed in section 3.2.6, the conventional 

equivalence theory corresponds to f
p

f
sd E Σ≈Σ )(  and 1)( ≈Eµ . From these figures, the 

differences of )(Ef
sdΣ  from f

pΣ  and )(Eµ  from unity are clearly observed. 

 

 

Figure 3.10 Energy dependence of )(Ef
sdΣ . 

 

 

Figure 3.11 Energy dependence of )(Eµ . 
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The difference of )(Ef
sdΣ  from f

pΣ  corresponds to the effect of accurate 

intermediate resonance treatment for resonance cross-sections because f
pΣ  is obtained 

from the NR approximation. In the conventional equivalence theory, the effect of 

intermediate resonances is considered by the IR parameter and it is handled in 

multi-group resolution. The present method, in contrast, the intermediate resonances are 

directly considered in the ultra-fine-group resolution by the slowing-down calculation. 

The difference of )(Eµ  from unity corresponds to the correction factor for the 

accurate scattering source treatment in a non-fuel region (see Equation (3.11)). In the 

conventional equivalence theory, the scattering source for a non-fuel region is 

approximated as Enf
p /Σ , as mentioned in section 3.2.2. The actual scattering source 

has a locally more complicated energy dependence, and )(Eµ  can directly consider 

the effect. From the view point of numerical calculations, )(Eµ  essentially handles the 

slowing-down source in a non-fuel region, and it enables to carry out the 

ultra-fine-group flux calculation for the heterogeneous system as if it were the 

slowing-down calculation for the infinite homogeneous medium. This feature leads to 

the smaller computational burdens comparing with the pure numerical method for the 

heterogeneous slowing-down calculation. 

The accurate treatment of )(Ef
sdΣ  and )(Eµ  directly contributes to improve the 

accuracy of the ultra-fine-group flux against the equivalence theory without significant 

increase of computational burdens. 
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3.5.4 Multi-Group Effective Cross-Section 

The multi-group effective cross-section by the present resonance self-shielding 

treatment is compared with the continuous-energy Monte-Carlo result in this 

sub-section. 

The effective cross-sections in the fuel region by GALAXY with the present method 

and those by MVP are shown in Table 3.4 for UO2 and MOX cases against the 

important resonance energy ranges of 238U. As shown in Table 3.4, the present method 

can accurately predict the effective cross-section, as a result of good agreement for the 

ultra-fine-group flux between GALAXY and MVP shown in section 3.5.3. The 

applicability of the present method is confirmed in the next sub-section through the 

prediction accuracy of k-infinity (final results). 
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Table 3.4 Comparison of multi-group effective cross-sections between GALAXY and MVP. 

 

 

  

Macroscopic absorption XS [1/cm]
Upper Lower MVP

88 7.524 6.160 1.208 1.1 0.1
80 22.603 19.455 0.699 1.0 0.1
75 37.266 33.720 0.863 -0.5 0.1
69 67.904 55.595 0.181 -0.2 0.1
88 7.524 6.160 1.186 0.8 0.1
80 22.603 19.455 0.881 0.5 0.1
75 37.266 33.720 0.610 0.0 0.1
69 67.904 55.595 0.281 -0.3 0.1

UO2

MOX

Energy [eV]
Fuel type

Energy group in XMAS
172 group structure

Relative difference of XS [%]
((GALAXY-MVP)/MVP)

MVP statistical
error [%]
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3.5.5 Multi-Group Reaction-Rate and K-infinity 

The multi-group reaction-rate and k-infinity by the present resonance self-shielding 

treatment are compared with those obtained by the continuous-energy Monte-Carlo 

result in this sub-section. 

The multi-group reaction-rates in the fuel region by GALAXY with the present 

method and those by MVP are shown in Table 3.5 for UO2 and MOX cases against the 

important resonance energy ranges of 238U. The k-infinity results are also shown in this 

table. As shown in Table 3.5, the present method can accurately predict the reaction-rate. 

The reaction-rate preservation scheme efficiently reduces the difference of reaction-rate 

by GALAXY comparing with MVP result, and as a result, the k-infinity well agrees 

between the two codes. 
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Table 3.5 Comparison of multi-group reaction-rates and k-infinity between GALAXY and MVP. 

 

 

  

Upper Lower Without RR 
(1)

With RR 
(2) Without RR With RR

88 7.524 6.160 3.1 -0.9 0.1
80 22.603 19.455 4.3 0.8 0.1
75 37.266 33.720 6.2 2.7 0.1
69 67.904 55.595 2.0 0.5 0.1
88 7.524 6.160 3.2 -0.6 0.1
80 22.603 19.455 4.5 1.2 0.1
75 37.266 33.720 6.9 2.6 0.1
69 67.904 55.595 2.0 0.4 0.1

(1) Without RR: Do NOT apply reaction rate preservation scheme
(2) With RR: Apply reaction rate preservation scheme

4

-49 5

MVP statistical error
for k-infinity [pcm]

MOX

Fuel type
Energy group
in XMAS 172
group structure

Energy [eV]

-502

-360

Relative difference of macroscopic absorption
rate [%] ((GALAXY-MVP)/MVP) MVP statistical error

for reaction rate [%]

Relative difference of k-infinity [pcm]
((GALAXY-MVP)/MVP)

UO2 -46
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3.5.6 Calculation Time 

The breakdown of calculation time for the present method is shown in Table 3.6. As 

shown in Table 3.6, the calculation time for the ultra-fine-group flux is very short. On 

the basis of its short computation time, the present method can be easily applied for the 

fuel assembly geometry, i.e., the ultra-fine-group calculation by Equations (3.21)-(3.24) 

for each fuel cell independently with the cell dependent coefficients nα , nβ , nε  and 

θ . 

Here, it should be noted that reading of the ultra-fine-group cross-section library 

takes only once, thus the time is negligible against the total calculation time of the 

lattice physics calculations. 

 

Table 3.6 Calculation time. 

 

 

  

UO2 MOX

Ultra-fine-group XS library read (only one time) 0.31 0.28
Ultra-fine-group flux calculation 0.22 0.23

Generation of effective XS and correction factor 0.02 0.03

Process
CPU time [sec]



188 

 

3.5.7 Extension for Multi-Region Problem 

Treatment of Gd2O3 bearing fuel rod, which requires sub-division of the pellet, is 

also important theme for the resonance calculation, and it is still open problem to extend 

the present method for the general multi-region problem. Thus only UO2 and MOX 

fuels are covered in this paper. 

In order to apply for the general multi-region system such as radially sub-divided 

Gd2O3 bearing fuel rod, the more time consuming methods, i.e., the direct 

heterogeneous ultra-fine-group calculation or the sub-group method [1, 23], may be 

required. It is sure that the sub-group method can easily treat the multi-region system. 

However, the other important factors such as the resonance interference effect, which 

can be treated in the present method, cannot directly be taken into account in the 

sub-group method. Some investigations are carried out [24], but the more research is 

desired in this field. 
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3.6 Verification for UO2/MOX Multi-Assembly Problem 

3.6.1 Analysis Condition 

In this section, verifications of the new method for resonance self-shielding 

treatment are carried out using UO2/MOX multi-assembly color-set problem. The 

fundamental calculation condition is common for the unit pin-cell problem in section 

3.5. 

Objective of the verification is to show the applicability of the present method for 

the general multi-cell problem including several types of fuel rods whose compositions 

are different each other. The multi-assembly problem is designed based on PWR type 17

×17 UO2 and MOX fuel assemblies. The ratio for the number of loading between UO2 

and MOX assemblies is assumed to be 3:1 in order to yield the local gradient of the flux 

spatial distribution in the target system. Hot Full Power (HFP) operating conditions are 

set as the typical LWR neutron spectrum conditions. The specifications of the color-set 

problem are shown in Table 3.7, and the geometrical configuration is shown in Figure 

3.12 (details of cell arrangement are shown in section 3.6.2). As shown in Figure 3.12, 

calculation geometry consists of four quarter-assemblies with a perfect reflective 

boundary condition. 
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Table 3.7 Specifications of the multi-assembly model. 

 

 

  

Specification

UO2 assembly:  4.8wt% 
235

U UO2

MOX assembly: 
  High: 7.2wt% Pu-f MOX
  Middle: 4.2wt% Pu-f MOX
  Low: 3.1wt% Pu-f MOX

Cladding Zr
Moderator Borated water

Fuel 976K
Cladding 600K

Moderator 580K
1000ppm

Cell pitch 1.26cm
Pellet radius 0.4095cm

Cladding outer radius 0.475cm
Cladding thickness
(Gap is omitted)

0.0655cm

Assembly gap 0.08cm

Item

Material

Temperature

Boron concentration

Geometry

Fuel



 

 

The calculation results by GALAXY are compared with those by continuous

Monte

MVP calculations 

neutron sampling for MVP calculations is set to 100 million histories.

 

 

The calculation results by GALAXY are compared with those by continuous

Monte-Carlo code MVP [22]. ENDF/B

MVP calculations 

neutron sampling for MVP calculations is set to 100 million histories.

Figure 3

The calculation results by GALAXY are compared with those by continuous

Carlo code MVP [22]. ENDF/B

MVP calculations to be consistent with GALAXY calculation

neutron sampling for MVP calculations is set to 100 million histories.

3.12 Geometry of multi

The calculation results by GALAXY are compared with those by continuous

Carlo code MVP [22]. ENDF/B

consistent with GALAXY calculation

neutron sampling for MVP calculations is set to 100 million histories.
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Geometry of multi

The calculation results by GALAXY are compared with those by continuous

Carlo code MVP [22]. ENDF/B-VII.0 [19] nuclear data library is used in all the 

consistent with GALAXY calculation

neutron sampling for MVP calculations is set to 100 million histories.

Geometry of multi-assembly model.

The calculation results by GALAXY are compared with those by continuous

VII.0 [19] nuclear data library is used in all the 

consistent with GALAXY calculation

neutron sampling for MVP calculations is set to 100 million histories.

assembly model. 

The calculation results by GALAXY are compared with those by continuous

VII.0 [19] nuclear data library is used in all the 

consistent with GALAXY calculations. The total number of 

neutron sampling for MVP calculations is set to 100 million histories. 

The calculation results by GALAXY are compared with those by continuous-energy 

VII.0 [19] nuclear data library is used in all the 

s. The total number of 

 

energy 

VII.0 [19] nuclear data library is used in all the 

s. The total number of 
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3.6.2 Pin-by-Pin Effective Dancoff Factor 

As described in section 3.2.7, the rational coefficients nα , nβ  are generated for 

pin-by-pin resolution in a fuel assembly. In order to observe the trend of pin-by-pin 

rational coefficients, the equivalent 1-term Dancoff factor by the present resonance 

self-shielding treatment, which is named as the effective Dancoff factor in this paper, is 

generated by the following equation [1]: 

2

1 





= ∑

=

N

n
nneffD αβ ,      (3.66) 

where the multi-group cross-section or the resonance integral is assumed to be 

expressed as a function of the square root of heterogeneous term for the background 

cross-section. By taking into account that the heterogeneous term is proportional to nα , 

and nβ  corresponds to the weight of n-th term, effD  can be obtained by averaging 

nα  with nβ  weight. 

The pin-by-pin effective Dancoff factor in each fuel region by GALAXY with the 

present method is shown in Figure 3.13 for lower half part of the geometry. Figure 3.13 

also shows cell arrangement in the multi-assembly geometry. As shown in Figure 3.13, 

effD  is larger on the fuel rods near the water enriched non-fuel cells than on the other 

fuel rods. This trend is consistent with the fundamental property of the Dancoff factor. 

On the other hands, the fuel composition dependence of effD  is extremely small, as can 

be observed by comparison among the symmetric positions. effD  (or nα , nβ  in the 
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present method) essentially considers the geometry effect, and is generated to be 

constant against the change of optical length or macroscopic cross-section for each fuel 

rod. 
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Figure 3.13 Cell arrangement and pin-by-pin effective Dancoff factor. 

 

  

4.8wt% 235U concentration UO2 fuel cell

7.2wt% Pu-f content MOX fuel cell

4.2wt% Pu-f content MOX fuel cell

3.1wt% Pu-f content MOX fuel cell

Guide tube cell

Instrumentation thimble cell

Cell arrangement Pin-by-pin effective Dancoff factor

High (max: 0.836)

Low (min: 0.751)
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In the present method, the spatial and energy dependences of the flux are well 

decomposed by utilizing the rational equation. The spatial dependence is taken into 

account by the pin-by-pin coefficients nα , nβ  based on the equivalence theory, while 

the energy dependence is directly considered by the ultra-fine-group cross-sections for 

each fuel rod based on the slowing-down calculation. In this framework, the 

ultra-fine-group slowing-down calculations can be performed for each fuel cell 

individually through the pin-by-pin coefficients nα , nβ , even if the optical lengths of 

each fuel rod are different each other in an assembly. As a result, the present method can 

be applied for the general multi-cell problem in which the fuel compositions are 

different for each fuel rod in the target system. 

The above treatment is appropriate based on the fact that the more detailed spatial 

dependence of flux is obtained from the multi-group flux calculation step. The 

decomposition of space and energy is an efficient assumption for the purpose of the 

ultra-fine-group flux calculations, in which the obtained flux is not used as a final 

solution of the lattice physics calculation but as a weighting function to generate the 

appropriate multi-group effective cross-section against each limited energy range. 
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3.6.3 Pin-by-Pin Reaction-Rate and K-infinity 

The pin-by-pin absorption and fission rates and k-infinity by the present resonance 

self-shielding treatment are compared with those obtained by the continuous-energy 

Monte-Carlo result in this sub-section. 

The pin-by-pin absorption and fission rate distributions by GALAXY with the 

present method and the difference between GALAXY and MVP are shown in Figures 

3.14-3.15 for lower half part of the geometry. Here, 1σ  MVP statistical uncertainties 

of the reaction-rates are smaller than 0.3%. The k-infinity results for the multi-assembly 

system are also shown in Table 3.8. As shown in the results, the present method can 

accurately predict both the k-infinity and the pin-by-pin reaction-rate, even for the 

complicated geometry including both UO2 and different types of Pu content MOX fuel 

rods. 

 

Table 3.8 Comparison of k-infinity between GALAXY and MVP for 

multi-assembly problem. 

 

 

  

GALAXY MVP
1.27701 1.27790 -70 4

Relative difference of k-infinity [pcm]
((GALAXY-MVP)/MVP)

MVP statistical error for
k-infinity [pcm]

k-infinity
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Figure 3.14 Comparison of pin-by-pin absorption rate distribution between GALAXY and MVP. 

 

Pin-by-pin absorption rate (GALAXY) Relative difference of absorption rate
between GALAXY and MVP

High (max: 1.202)

Low (min: 0.777)

+1%

-1%

Standard deviation:       0.2%
Maximum difference: +0.8%

0%



198 

 

 

Figure 3.15 Comparison of pin-by-pin fission rate distribution between GALAXY and MVP. 

 

  

Pin-by-pin fission rate (GALAXY) Relative difference of fission rate
between GALAXY and MVP

High (max: 1.166)

Low (min: 0.733)

+1%

-1%

Standard deviation:       0.2%
Maximum difference: +0.5%

0%
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3.7 Extensive Monte-Carlo Benchmark 

3.7.1 Analysis Condition 

In this section, verifications of the reactivity prediction in lattice physics code 

GALAXY are carried out with the new resonance self-shielding treatment. The 

k-infinity and some important reactivity coefficients are compared between GALAXY 

with the present method and continuous-energy Monte-Carlo code MVP. 

The main application of GALAXY is generation of assembly nuclear constants used 

for core design and safety analysis of PWR. In these analyses, the prediction accuracy 

of Doppler and moderator reactivity is especially important. As a result, the 

corresponding Doppler temperature coefficient, the moderator density coefficient and 

the boron worth by GALAXY are verified by comparison with MVP results. The 

ENDF/B-VII.0 nuclear data library is used in all the MVP calculations to be consistent 

with GALAXY calculations. 
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3.7.2 Doppler Reactivity 

In this sub-section, the accuracy of Doppler reactivity prediction by GALAXY is 

evaluated. Fuel temperature change is the main factor for the Doppler reactivity in PWR. 

The corresponding reactivity coefficient is Doppler temperature coefficient (DTC). In 

the present Doppler benchmark, DTC generated by GALAXY is compared with that 

by MVP. 

The Doppler reactivity is mainly induced by change of the amount for 238U 

resonance absorption due to the fuel temperature changes. The contribution of 

resonance absorption for 238U depends not only on the fuel composition but on the range 

of fuel temperature and burnup. From this point of view, the Mosteller’s original 

benchmark [25, 26] is extended to the different fuel temperature and burnup ranges in 

the present study. The verification is essentially the investigation of the prediction 

accuracy for DTC against the systematic change of the number density and the energy 

dependent resonance cross-sections for each nuclide in the fuel region. The unit pin-cell 

benchmark is prepared for the simple and essential verification. 

The specification of Doppler reactivity benchmark is shown in Table 3.9. 

Calculation geometry is shown in Figure 3.16. The base condition is the same as that in 

Mosteller’s original benchmark. The gap region between pellet and cladding is 

explicitly treated in MVP calculations. In contrast, for GALAXY calculations, the gap 

region is smeared to the cladding region and the number density of cladding region is 

diluted so that the total number of atom is preserved. 
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Table 3.9 Specification of the Doppler reactivity benchmark. 

 

 

  

Figure 3.16 Geometry of pin-cell model for Doppler reactivity benchmark. 

 

The total number of neutron sampling for MVP calculations is set to 100 million 

histories, in which the one sided statistical uncertainty of k-infinity is about 5pcm 

( kk /105 5 ∆× − ). 

Item

Fuel type

UO2 (
235

U concentration)
0.711, 1.6, 2.4, 3.1, 3.9, 4.5, 5.0

(600K and 900K, 0GWd/t)

MOX (PuO2 content)
1.0, 2.0, 4.0, 6.0, 8.0

(600K and 900K, 0GWd/t)
Fuel temperature [K]

Burnup [GWd/t]

Specification

UO2, MOX (Reactor-recycle)

Fuel composition [wt%]

300, 600, 900, 1200, 1500, 1800, 2100
0, 20, 40, 60, 80

Fuel pellet

Moderator

Cladding 

GapfR

cR

gR





=
(HFP)0.39433cm

(HZP)0.39398cm
fR

0.45972cm=cR

6cm4022.0=gR

1.26678cm
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In the present benchmark, DTC is basically generated as follows: 
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   (3.67) 

where T  and k  denote the fuel temperature and k-infinity, respectively. Indices 

“HZP” and “HFP” denote the hot zero power and hot full power conditions, respectively. 

Both GALAXY and MVP calculations are based on the asymptotic scattering model, in 

which the scattering kernel is expressed as Equation (3.3). It should be noted that the 

recent topic for the more exact scattering modeling, i.e., the thermal motion and the 

temperature dependent resonance scattering treatment to the heavy nuclides [27, 28], is 

out of scope in this paper. 

In this benchmark, (1) fuel composition dependence (Mosteller’s original 

benchmark), (2) fuel temperature and (3) burnup dependences (extended benchmarks) 

of DTCs are verified. Topic (1) includes both UO2 and MOX fuel cells in which the 

fuel composition range satisfies the commercial PWR fuel specifications. Topics (2) 

and (3) are set by extending the original 5.0wt% UO2 and 8.0wt% MOX fuel conditions. 

For the fuel temperature dependence (2), only the fuel temperature is systematically 

changed between room temperature (300K) and very high temperature (2100K) 

conditions against the original HFP (900K) 5.0wt% UO2 and 8.0wt% MOX cases. The 

corresponding DTCs are generated for each temperature range, i.e., DTCs between 

300-600K, 600-900K,L , 1800K-2100K. 

For the burnup dependence (3), the depletion calculation is carried out by GALAXY 
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in advance against the same original HFP (900K) cases. 80GWd/t is set as the 

maximum burnup, and the obtained nuclide compositions for each burnup point are 

used in the verifications. The common number densities to the depleted fuels are used 

both for GALAXY and MVP, and the burnup calculation by MVP is not carried out at 

all. 

The differences of k-infinity between GALAXY and MVP are summarized in Table 

3.10. Here the difference for each case n is evaluated as: 

MVP,

MVP,GALAXY,)/(
n

nn
n k

kk
kk

−
=∆ ,     (3.68) 

where GALAXY,nk  and MVP,nk  denote the k-infinity for case n calculated by GALAXY 

and MVP, respectively. 

 

Table 3.10 Comparison of k-infinity between GALAXY and MVP in the Doppler 

reactivity benchmark. 

 

 

Average Maximum Average
Fuel composition 14 -61 -101 4
Fuel temperature 7 -65 -111 4

Burnup 10 28 120 5
Fuel composition 10 -31 -55 5
Fuel temperature 7 -56 -104 5

Burnup 10 29 148 6
Fuel composition 24 -49 -101 4
Fuel temperature 14 -61 -111 5

Burnup 20 28 148 5

Number of
samples

Difference [pcm] MVP statistical
error [pcm](GALAXY-MVP)/MVP

UO2

MOX

All

(UO2+MOX)

Fuel type Changed parameter
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The averaged and maximum differences avg)/( kk∆ , max)/( kk∆  are also evaluated as: 

∑
=

∆=∆
I

i
ikk

I
kk

1
avg )/(

1
)/( ,      (3.69) 

{ }ji
i

j kkkkjkkkk )/()/(max)/()/( max ∆=∆∆=∆ ,  (3.70) 

where I denotes the number of sample. These equations are also used in section 3.7.3. 

As shown in Table 3.10, the differences are very small for fuel composition, fuel 

temperature and fuel burnup changes. 

Figures 3.17-3.19 show the calculation results of DTC to each parameter change 

for UO2 and MOX fuel cells. The fuel temperatures in Figure 3.18 correspond to the 

midpoint between the neighboring two temperatures. The differences of DTC 

between GALAXY and MVP are summarized in Table 3.11. The average difference of 

DTC is almost within the 2~3σ s of statistical uncertainty for MVP propagated by 

k-infinity statistical errors, thus considering the 3σ s MVP statistical uncertainty, the 

differences for DTC  between GALAXY and MVP are small for each parameter 

change. 

It is concluded that GALAXY with the present resonance self-shielding treatment 

can accurately predict the Doppler reactivity. 
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Table 3.11 Comparison of Doppler temperature coefficient between GALAXY and 

MVP in the Doppler reactivity benchmark. 

 

 

Average Maximum Average
Fuel composition 7 1.4 2.4 0.6
Fuel temperature 6 2.3 3.8 0.8

Burnup 5 1.5 2.6 0.7
Fuel composition 5 1.9 2.5 0.7
Fuel temperature 6 1.9 2.4 0.8

Burnup 5 1.9 3.0 0.8
Fuel composition 12 1.6 2.5 0.7
Fuel temperature 12 2.1 3.8 0.8

Burnup 10 1.7 3.0 0.7

UO2

MOX

All

(UO2+MOX)

Fuel type Changed parameter
Number of

samples

Difference [%] MVP statistical
error [%](GALAXY-MVP)/MVP
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Figure 3.17 Comparison of Doppler temperature coefficient between GALAXY 

and MVP for fuel composition change ((a) UO2, (b) MOX). 
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Figure 3.18 Comparison of Doppler temperature coefficient between GALAXY 

and MVP for fuel temperature change ((a) UO2, (b) MOX). 
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Figure 3.19 Comparison of Doppler temperature coefficient between GALAXY 

and MVP for burnup change ((a) UO2, (b) MOX). 
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3.7.3 Moderator Reactivity 

In this sub-section, the accuracy of moderator reactivity prediction by GALAXY is 

evaluated. Moderator density and boron concentration changes are the main factors for 

the moderator reactivity in PWR. The corresponding reactivity coefficients are 

moderator density coefficient (MDC) and boron worth (BW ). In the present moderator 

benchmark, MDC and BW  generated by GALAXY are compared with those by 

MVP. 

Moderator reactivity is mainly induced by change of the amount for neutron 

moderation and absorption due to the moderator density and boron concentration 

changes. The Mosteller’s original benchmark [25, 26] is extended to the different 

moderator density and boron concentration in the present study. The verification is 

essentially the investigation of the prediction accuracy for MDC and BW  against 

the systematic change of the number density for each nuclide in the moderator region. 

The unit pin-cell benchmark is prepared for the simple and essential verification. 

The specification of moderator reactivity benchmark is shown in Table 3.12. The 

base condition such as calculation geometry is the same as that in Mosteller’s original 

benchmark. The number densities of the boron nuclides to the boron concentration bC  

are generated by using those for the original 1400ppm condition ( )ppm1400(BND ) 

based on the assumption of negligible displacement for the water: 

]ppm[1400

]ppm[
)ppm1400()( b

BbB

C
NDCND ⋅= .    (3.71) 
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Table 3.12 Specification of the moderator reactivity benchmark. 

 

 

The total number of neutron sampling for MVP calculations is set to 100 million 

histories, in which the one sided statistical uncertainty of k-infinity is about 5pcm 

( kk /105 5 ∆× − ). 

In the present benchmark, MDC and BW  are generated as follows: 
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where ρ , bC  and k  denote the moderator density, boron concentration and 

k-infinity, respectively. Indices 1 and 2 denote the different ρ  or bC  conditions, 

respectively. 

In this benchmark, (1) moderator density and (2) boron concentration dependences 

Item Specification

Fuel type UO2, MOX (Reactor-recycle)

Moderator density [g/cm
3
] 1.00, 0.80, 0.66163 (original condition), 0.55, 0.40, 0.25, 0.10

Boron concentration [ppm] 0, 700, 1400 (original condition), 2100, 2800, 3500, 4500
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of MDCs and BW s are verified for each fuel type. 

For the moderator density dependence (1), the moderator density is systematically 

changed between a typical room temperature condition (1.0g/cm3) and a mist condition 

(0.1g/cm3). The range includes the HFP normal operation condition (upper: ~ 0.8g/cm3), 

and, the loss of the main feed water supply + ATWS (Anticipated Transient Without 

Scram) conditions (lower: ~ 0.4g/cm3). For the boron concentration dependence (2), the 

boron concentration is systematically changed between 0 to 4500ppm corresponding to 

the typical boron concentration ranges in commercial PWRs. 

The MDCs are generated for each moderator density range, i.e., MDCs between 

1.0-0.8g/cm3, 0.8-0.66163g/cm3,L , 0.25-0.1g/cm3. The BW s are generated for each 

boron concentration range, i.e., BW s between 0-700ppm, 700-1400ppm,L , 

3500-4500ppm. 

The differences of k-infinity between GALAXY and MVP are summarized in Table 

3.13. As shown in Table 3.13, the differences are very small for moderator density and 

boron concentration changes. 
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Table 3.13 Comparison of k-infinity between GALAXY and MVP in the moderator 

reactivity benchmark. 

 

 

Figures 3.20-3.21 show the calculation results of MDC  and BW  to each 

parameter change for UO2 and MOX fuel cells. The moderator densities and boron 

concentrations in the figures correspond to the midpoint between the neighboring two 

conditions. The differences of MDC and BW  between GALAXY and MVP are 

summarized in Tables 3.14-3.15, respectively. The average difference of MDC and 

BW  is almost within the 2~3σ s of statistical uncertainty for MVP propagated by 

k-infinity statistical errors, thus considering the 3σ s MVP statistical uncertainty, the 

differences for MDC and BW  between GALAXY and MVP are small for each 

parameter change. 

In Figure 3.20, MDC  based on the equivalence theory are also shown for 

comparisons. The present method can accurately predict MDC  including lower 

moderator density ranges than the concentional equivalence theory. 

  

Average Maximum Average

Moderator density 7 -14 111 4

Boron concentration 7 -47 -74 4

Moderator density 7 -37 -67 5

Boron concentration 7 -33 -58 5
Moderator density 14 -26 111 5

Boron concentration 14 -40 -74 5

MOX

All (UO2+MOX)

Number of
samples

Difference [pcm]
Fuel type Changed parameter

MVP statistical
error [pcm](GALAXY-MVP)/MVP

UO2
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Table 3.14 Comparison of moderator density coefficient between GALAXY and 

MVP in the moderator reactivity benchmark. 

 

 

Table 3.15 Comparison of boron worth between GALAXY and MVP in the 

moderator reactivity benchmark. 

 

 

Average Maximum Average

UO2 6 -0.9 -2.2 0.5

MOX 6 -0.1 -2.9 0.3

All (UO2+MOX) 12 -0.5 -2.9 0.4

Fuel type
Number of

samples

Difference [%] MVP statistical
error [%](GALAXY-MVP)/MVP

Average Maximum Average

UO2 6 -0.1 -0.2 0.1

MOX 6 -0.4 -0.8 0.4

All (UO2+MOX) 12 -0.3 -0.8 0.3

Fuel type
Number of

samples

Difference [%] MVP statistical
error [%](GALAXY-MVP)/MVP
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Figure 3.20 Comparison of moderator density coefficient between GALAXY and 

MVP ((a) UO2, (b) MOX). 
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Figure 3.21 Comparison of boron worth between GALAXY and MVP ((a) UO2, (b) 

MOX). 

 

Figure 3.22 shows the calculation results of MDC  by forcing 1=θ  in the 
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asymptotic spectrum for the non-fuel region. The differences of MDC  between 

GALAXY and MVP are still small as well as Figure 3.20. In the hard spectrum 

conditions such as a lower moderator density situation, the influence of epi-thermal 

energy ranges including the wide resonance of 238U is relatively small. This fact leads to 

the small effect of non-fuel scattering source treatment using θ . 

It is concluded that GALAXY with the present resonance self-shielding treatment 

can accurately predict the moderator reactivity. 
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Figure 3.22 Comparison of moderator density coefficient between GALAXY and 

MVP for 1=θ  ((a) UO2, (b) MOX). 
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3.8 Conclusion 

A new hybrid resonance self-shielding treatment method in the reactor physics field 

is developed in the present study. The present method is constructed by integrating the 

equivalence theory and the ultra-fine-group slowing-down calculation from the 

theoretical point of view. The main features of the present method are summarized as 

follows. 

The fundamental flux derivation scheme is based on the equivalence theory. The 

essence of the ultra-fine-group slowing-down equation is effectively incorporated into 

the scattering source calculation. The accurate non-fuel flux is efficiently treated by 

utilizing the multi-term rational approximation and its coefficients. A new form of 

energy dependent neutron flux has two aspects: (1) multi-term rational approximation 

(equivalence theory), (2) slowing-down calculation (ultra-fine-group treatment). The 

multi-group condensation error can be eliminated by incorporating a semi-analytical 

reaction-rate preservation scheme. 

The present method is implemented in the MHI lattice physics code GALAXY. By 

comparing the neutronics characteristics obtained by GALAXY and continuous energy 

Monte-Carlo code MVP, the good agreements between two codes are confirmed for the 

wide range of state point parameters from the normal operation to the accident 

conditions for PWR. From the verification results, applicability of the present method 

for general lattice physics calculations is confirmed. 

GALAXY implemented with the new method achieves high accuracy with short 

computation time. Therefore it can be efficiently applied to generation of the nuclear 

constants used in nuclear design and safety analysis of commercial light water reactors. 
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CHAPTER 4.  DEVELOPMENT OF GENERALIZED 

RESONANCE SELF-SHIELDING METHODOLOGY 

FOR INTRA-PELLET MULTI-REGION GEOMETRY 

AND NON-UNIFORM EFFECT BASED ON A UNIFIED 

THEORY 

 

4.1 Introduction 

Resonance self-shielding treatment [1] is an important part for the lattice physics 

calculations in reactor physics field. Accurate treatment of 238U wide resonance 

cross-sections and their influences on flux depressions is a key issue to guarantee a 

sufficient prediction accuracy of criticality and reactivity coefficients for commercial 

LWRs (light water reactors) core analysis. 

In order to establish a practical resonance treatment method, the effective 

cross-section is required to be generated with short computation time, while keeping its 

sufficient accuracy. In the past studies conducted by the authors, many of the technical 

issues have been solved to establish a sophisticated resonance treatment. A brief 

summary and the development history of the past and present studies are shown in 

Figure 4.1 [2-11]. In the present study, a unified resonance treatment method is 

developed to obtain the sufficient accuracy for effective cross-sections without a direct 

heterogeneous ultra-fine-group calculation. As shown in Figure 4.1, treatment of the 

complicated spatial self-shielding effect for radially and azimuthally sub-divided 
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multi-region geometry within each fuel rod is addressed in the present paper. 

 

 

Figure 4.1 Brief summary and development history of the past and present studies. 

 

Equivalence theory

Gray resonance treatment method [4]
(Equivalence theory)

Hybrid resonance treatment method [7]
(Equivalence theory + Ultra-fine-group slowing-down calculation)

Unified resonance treatment method [Present study]
(Equivalence theory + Ultra-fine-group slowing-down calculation

+ Sub-group method)

Issues solved
• Approximation for geometry
• Black neutron absorber assumption

-Enhanced neutron current method [2]
(Dancoff factor calculation for general geometry)

-Generalized Stamm'ler method [3]
(3-terms rational approximation for improvement
of escape probability)

-Ultra-fine-group slowing-down calculation [5-6]

• Scattering source approximation
• Resonance interference treatment

-Stoker-Weiss method [8]
-Spatially Dependent Dancoff Method (SDDM)
[9]
(Extension for spatial self-shielding within pellet)

-Sub-group method [10-11]

• Complicated spatial self-shielding treatment 
(radial/azimuthal dependences)

• Treatment for isotope composition and temperature 
distributions within fuel lump

Issues solved

Issues solved
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In the first technical achievement by the authors [4], approximation for geometry 

and black neutron absorber assumption in the equivalence theory [1] are solved. Several 

spatial effects in a lattice physics theory (i.e., heterogeneous effect between fuel and 

non-fuel regions, shadowing effect due to the neighboring fuel rods, and irregular lattice 

effect by the local water enriched regions) can be incorporated into the pin-by-pin 

rational coefficients. The flux response as a function of macroscopic total cross-sections 

obtained from MOC (Method of characteristics) [12] fixed source calculations is 

directly taken into account for pin-by-pin resolution. 

In the second technical achievement by the authors [7], scattering source and 

resonance interference treatments are improved. The essence of the ultra-fine-group 

slowing-down calculation [5-6] is incorporated into the equivalence theory, and the 

hybrid resonance treatment method is established. At this stage, the resonance treatment 

for both pin-cell and fuel assembly geometries is established to generate accurate 

effective cross-sections with short computation time. It can be applied to the wide range 

of neutron spectrum conditions including low moderator density ranges in severe 

accident states, as long as each fuel region is not sub-divided. 

In the current development state, extension of the above hybrid resonance treatment 

is desired for a complicated spatial self-shielding treatment of each fuel lump. 

Especially for the cylindrical fuel rod geometry, which is widely adopted for 

commercial LWR fuel assemblies, generation of radially and azimuthally dependent 

effective cross-sections is not easy with keeping sufficient accuracy. 

From the above background, an objective of the present study is to develop a new 
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resonance treatment method that can accurately take into account the complicated 

spatial self-shielding effect with short computation time. In order to solve this issue, the 

essence of sub-group method [10-11] is incorporated into the hybrid resonance 

treatment method in the second achievement [7] mentioned above. As a result, the 

unified resonance treatment is established as a multi-hybrid model of the equivalence 

theory, the ultra-fine-group calculation and the sub-group method. Although another 

concept of unified approach for the three methods has already been suggested by the 

authors [13], the present method is based on a more robust scheme from the theoretical 

point of view. 

In the current methodologies related to the resonance treatment, the simpler 

approaches have already been proposed, e.g., a pin-cell based direct ultra-fine-group 

slowing-down calculation with pre-tabulated collision probabilities [6]. The present 

method in this study adopts rather complicated calculation procedures in actual 

implementation than the direct slowing-down calculation mentioned above. However, 

the present method has an advantage on accurate and efficient spatial treatment for 

radially/azimuthally sub-divided fuel regions defined on the detailed core analysis 

applications. Especially for the azimuthally sub-divided fuel rods adjacent to a large 

water region, the pin-cell based slowing-down calculation cannot directly be applied. 

Therefore, the present method has a potential to become an alternative approach against 

the direct slowing-down calculation, from the view point of its capability to treat 

complicated calculation conditions. 

In the enhancement activities for core analysis methodology, a general direction of 

the development is to increase a resolution of space/energy dependences for neutron 
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flux in the transport calculation. A possible computational performance in the future 

application phase is considered in the development. Therefore, the suggestion of an 

extended capability for azimuthal resonance treatment will be useful as a new option for 

the advanced analysis scheme, even though the current lattice physics codes do not treat 

the azimuthal dependece of the effective cross-sections. 

In this paper, the fundamental theory and the verification results of the new 

resonance treatment are described in detail. The contents of each section are 

summarized as follows. 

 

<Section 4.2> 

The unified resonance treatment is proposed based on a two-step cross-section 

collapsing scheme. The equivalence theory, the ultra-fine-group calculation and the 

sub-group method are integrated. 

 

<Section 4.3> 

A two-step reaction-rate preservation scheme for the reduction of energy discretization 

error is established, which is consistent with the unified resonance treatment. 

 

<Section 4.4> 

Verification of the new method is carried out. 
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<Section 4.5> 

Conclusions of this study are summarized. 
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4.2 Unified Resonance Self-Shielding Treatment 

4.2.1 Concept for Two-Step Resonance Calculation 

The new method is established by enhancing and integrating the conventional 

methods, and its concept is based on two-step neutron flux calculations. The 1st step 

calculation is performed to obtain ultra-fine-group fluxes on a simple geometry based 

on the hybrid treatment of equivalence theory and ultra-fine-group slowing-down 

calculation. Then, by using the obtained ultra-fine-group fluxes, sub-group 

cross-sections and sources are generated for discrete energy ranges explicitly defined by 

the resonance cross-section level. Next, the 2nd step calculation is performed to obtain 

sub-group fluxes on an exact geometry based on the sub-group method. Finally, 

multi-group effective cross-sections are generated by the sub-group cross-sections and 

the sub-group fluxes. 

A concept of the two-step resonance treatment is shown in Table 4.1. By utilizing a 

concept of multi-stage cross-section collapsing strategies [14] widely used in reactor 

physics field, two-step calculation, i.e., “coarse geometry + fine energy” (1st step) and 

“fine geometry + coarse energy” (2nd step) calculations, is performed. Here, the main 

calculations in the present method are summarized in Table 4.2. The corresponding 

section numbers for each main calculation are also shown in the table. 
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Table 4.1 Concept of two-step resonance treatment. 

 

 

Table 4.2 Summary of the main calculation procedures for the present method. 
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The main features of the new method are summarized below. 

In the 1st step calculation, the hybrid resonance treatment based on the equivalence 

theory and the ultra-fine-group calculation [7] is applied, and the ultra-fine-group flux 

for each fuel region is accurately obtained. 

In the case of radial multi-region problem with treating the concentric cylinder 

within a fuel rod, the ultra-fine-group flux for each fuel lump is expanded to each ring 

region coupled with the basic idea of Stoker-Weiss method [8] and SDDM 

(Spatially-Dependent Dancoff Method) [9]. The direct heterogeneous ultra-fine-group 

transport calculation is not required at all. 

Because the effective cross-sections generated by direct collapsing with the above 

ultra-fine-group fluxes for each ring region are not sufficiently accurate for the radial 

multi-region problem, the ultra-fine-group cross-section is collapsed not for the whole 

multi-group energy range, but for the partial sub-group energy range defined by the 

resonance cross-section level. Note that several sub-groups are generally included in 

each multi-group. 

In the 2nd step calculation, the sub-group method is applied to the exact geometry 

by using the sub-group cross-sections obtained from the 1st step calculation. In the case 

of azimuthally-dependent self-shielding treatment, MOC is used as a flux calculation 

method. 

The effective cross-section, i.e., the final product of resonance calculation, is 

generated by collapsing the sub-group cross-section with the sub-group flux as a 

weighting function. 
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4.2.2 Integration of Equivalence Theory and Ultra-Fine-Group Slowing-Down 

Calculation 

In the past study, the hybrid resonance self-shielding method has been established by 

the authors through integrating the equivalence theory and the ultra-fine-group 

slowing-down calculation [7]. According to Reference [7], a final form of the neutron 

flux for each fuel region in a fuel assembly is written as: 

∑
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4.2.3 Extension of Neutron Flux to the Radial Multi-Region Geometry 

Although the hybrid resonance self-shielding method described in Section 4.2.2 can 

treat any type of fuel lump geometry in an assembly that can be handled by MOC flux 

calculation, the spatially-dependent resonance self-shielding effect within a specific fuel 

lump cannot be directly treated. One of the important issues in this research field is 

consideration of the radially-dependent resonance self-shielding effect within a 

cylindrical fuel rod. In this section, the neutron flux in a local ring region within a fuel 

rod is derived as a natural extension of Equations (4.1)-(4.4). Here, the radially 

sub-divided fuel rod discussed in this section is shown in Figure 4.2. 

 

 

Figure 4.2 Radially sub-divided fuel rod. 

 

The integral form of neutron transport equation for multi-region heterogeneous 

system consisting of multiple fuel ring regions and a non-fuel region is written as: 

Fuel assembly (example)

Fuel cell (example)

Fuel pellet ( f )

Cladding

Moderator

Specific ring region ( i )
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In the following derivation, the non-fuel region is defined as the multiple regions 

except for fuel region. For a typical LWR unit cell, non-fuel region is composed of 

cladding and moderator regions. 

The reciprocity theorem between regions i  and j  is written as: 
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t →→ Σ=Σ .    (4.6) 

By applying Equation (4.6) to the neutron source term, the 1st term in the right-hand 

side of Equation (4.5) is rewritten as: 
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The 2nd term in the right-hand side of Equation (4.5) is also rewritten as: 
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By assuming that the macroscopic total cross-section and scattering source are 

spatially flat within a fuel pellet, Equation (4.7) is approximated as: 
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where )(ESf  denotes the scattering source for the fuel region, and the following 
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relation for collision probability is used: 
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When the scattering source for the non-fuel region is written as 
E
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which is consistent with the hybrid resonance treatment briefly described in Section 

4.2.2, Equation (4.8) is approximated as: 
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where )(Eµ  is already defined by Equation (4.3) in Section 4.2.2. 

Substitution of Equations (4.9) and (4.11) into the right-hand side of Equation (4.5), 

and some transformations can yield: 
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Since the scattering source for the fuel region is expressed as 
E
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is consistent with the hybrid resonance treatment in Section 4.2.2, Equation (4.12) is 

further modified as: 
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In the multi-term rational approximation of the fuel escape probability, )(EP nfi→  is 

formulated as [4]: 
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Equation (4.14) is identical to the SDGM (Spatially-Dependent Gray resonance 

self-shielding Method) formulation [4], and its derivation idea is based on the 

Stoker-Weiss method [8] and SDDM [9]. A geometrical treatment of the escape 

probability, which is composed of four lump components ( 4,3,2,1=m ), is shown in 

Figure 4.3. 

 

 

Figure 4.3 Geometrical treatment of spatially-dependent fuel escape probability. 

 

Here, mi,γ  in Equation (4.14) denotes the coefficient that captures the geometrical 

information of the ring i  and is defined as: 
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mil ,  denotes the mean chord length of m-th lump derived by the following analytical 

form: 
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By substituting Equation (4.16) into Equation (4.15), 1
4

1
, =∑

=m
miγ . Considering that 

1
1

=∑
=

N

n
nβ , the following relation is derived: 

1
4

1 1
, =∑ ∑

= =m

N

n
nmi βγ .       (4.17) 

By substituting Equations (4.14) and (4.17) into Equation (4.13), the 

energy-dependent neutron flux for the ring region i  within a fuel pellet is derived as: 
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The scattering source )(ESi  is also calculated as Equation (4.19), which is 

consistent with the hybrid resonance treatment: 
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Here, the isotropic and elastic down-scattering approximations in the center-of-mass 

system are applied to each ring region within a fuel pellet. The scattering source for the 

non-fuel region is consistent with the hybrid resonance treatment. 

By considering the spatially-dependent scattering source within a fuel pellet, the 

neutron flux is modified from Equation (4.18) as: 
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where 

)()( EESE i
i
sd ≡Σ ,      (4.21) 

and )(Eη  denotes the energy-dependent flux normalization factor in which the 

fuel-pellet averaged flux obtained from Equation (4.1) can be preserved. )(Ei
sdΣ  and 

)(Eη  are the only differences between Equations (4.20) and (4.18). 
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4.2.4 1st Step Resonance Calculation Based on Equivalence Theory and 

Ultra-Fine-Group Slowing-Down Calculation 

As described in Section 4.2.1, the two-step resonance calculations are performed in 

the present method. The 1st step calculation is based on the equivalence theory and the 

ultra-fine-group slowing-down calculation, and the space-dependent ultra-fine-group 

neutron fluxes for each fuel region are appropriately obtained. 

As already shown in Section 4.2.2, the ultra-fine-group fluxes for each fuel region 

within an assembly are calculated from a set of slowing-down equations shown in 

Equations (4.1)-(4.4). Besides, as derived in Section 4.2.3, spatially-dependent 

ultra-fine-group fluxes and scattering sources for each ring region within a fuel pellet 

can be obtained. It should be noted that the fluxes for each ring can be obtained 

analytically with small computational burdens. )(Ef
sdΣ  and )(Eµ  in Equation (4.18) 

are the byproducts of the solution of Equations (4.1)-(4.4), and thus fluxes for each ring 

region are easily regenerated. 

In principle, the radially-dependent effective cross-sections for each ring region can 

be generated at this single step by using the ultra-fine-group flux solution as a 

collapsing weight. However, as shown in a derivation scheme of the equation, the 

following assumptions are applied. 

The ultra-fine-group macroscopic total cross-section and scattering source are 

spatially flat within a fuel pellet (Equation (4.9)). The fuel escape probabilities for each 

fuel ring are expressed by the multi-term rational approximation based on the SDGM 

formulation (Equation (4.14)). 
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As shown in the verification results of Section 4.4, these assumptions cause the 

prediction error of effective cross-sections for each ring region, as a result of the 

prediction error of the ultra-fine-group flux. 

In order to mitigate the influence of prediction error for the flux, the effective 

cross-sections are not generated at this step. Instead, the sub-group cross-sections are 

generated by using the ultra-fine-group fluxes obtained from the 1st step calculation. A 

more accurate spatial transport of neutrons within a fuel pellet is taken into account in 

the 2nd step calculation by the additional transport calculations based on the sub-group 

method. The lack of accurate collision probability information for all the 

region-to-region combinations in a target system, which is due to the assumptions in 

Equations (4.9) and (4.14), is compensated by the 2nd step calculation. The details are 

described in the next section. 
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4.2.5 2nd Step Resonance Calculation Based on Sub-Group Method 

The 2nd step calculation is based on the sub-group method, and the space-dependent 

sub-group neutron fluxes for each region are obtained. 

In the typical resonance energy ranges, the scattering source is isotropic [6] and the 

fission source can be ignored. Therefore, the integro-differential form of neutron 

transport equation is written as: 

π
ψψ

4

)(
),()(),(

ES
EEE i

i
i
ti =Σ+∇⋅ ΩΩΩ ,    (4.22) 

where Ω  denotes unit vector for direction, and ),( ΩEiψ  denotes angular flux for 

region i . 

By integrating Equation (4.22) against an explicit sub-group energy range )( gsg ∈ , 

in which the discrete energy range is permitted, the sub-group transport equation is 

derived as: 

π
ψψ

4
)()( ,

i
sgi

sg
i

sgt
i
sg

S
=Σ+∇⋅ ΩΩΩ ,     (4.23) 

where 

∫
∫ Σ

≡Σ
sg i

sg i
i
t

i
sgt

EdE

EEdE

)(

)()(
, φ

φ
: macroscopic sub-group total cross-section, 

∫≡
sg i

i
sg EdE ),()( ΩΩ ψψ : sub-group angular flux, 

∫≡
sg i

i
sg EdESS )( : sub-group scattering source. 

Here, the angular dependence of energy-dependent flux within each sub-group is 
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ignored. 

The typical scheme to solve Equation (4.23) is MOC or SN (discrete ordinate) 

method. If MOC is adopted as a flux calculation scheme for Equation (4.23), the 

spatially-dependent flux for each sub-group can be obtained for any type of complicated 

geometry, which can be represented by the MOC. Although the integro-differential form 

of neutron transport equation is shown as a typical example, the integral form of 

equation based on the collision probability method can also be utilized. 

The microscopic sub-group cross-section for resonance nuclide r  and reaction type 

x  is also defined in the same manner as: 

∫
∫

≡
sg i

sg i
r
x

ir
sgx

EdE

EEdE

)(

)()(
,
, φ

φσ
σ ,     (4.24) 

The sub-group cross-sections are generated by the direct energy collapsing of )(Er
xσ  

with )(Eiφ  weight obtained from the 1st step calculation. 

As described in Section 4.2.4, the sub-group transport calculation is performed in 

order to mitigate the influence of prediction error of )(Eiφ  for ir
sgx
,
,σ . From this point 

of view, sub-group energy structure should be divided not by the neutron energy but by 

the resonance cross-section level. Based on a reference ultra-fine-group cross-section 

)(ref EΣ , the sub-group energy structure is determined as: 

{ }bound
max,ref

bound
min, )( sgsg EEsg Σ<Σ≤Σ= ,     (4.25) 

where bound
max,sgΣ  and bound

min,sgΣ  denote the maximum and minimum resonance cross-section 
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boundaries for sub-group )( gsg ∈ , respectively. Typically, )(ref EΣ  is defined by a 

volume-averaged ultra-fine-group cross-section for all the fuel regions in a target 

system such as a fuel assembly. According to the preliminary sensitivity studies, the 

macroscopic absorption cross-section is a better index than the total cross-section. 

Though the boundaries bound
max,sgΣ  and bound

min,sgΣ  are determined for each sub-group sg  

with arbitrary interval division of resonance cross-section within a group g , the equal 

interval with logarithmic scale is better than that with linear scale. A concept for 

determination of sub-group structure is shown in Figure 4.4. 

 

 

Figure 4.4 Concept for determination of sub-group structure (discrete energy 

range for sub-group 2 is shown as an example). 
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used for all the spatial regions in sub-group cross-section generation. Even if the fuel 

temperature distribution within a fuel pellet is taken into account, the only one 

sub-group structure, e.g., a structure defined by )(ref EΣ  for effective fuel temperature 

[15] condition, must be applied. If the different sub-group energy structures are used for 

each region in sub-group cross-section generation, i.e., the different )(ref EΣ s are 

applied to each region, the neutron balance among each region and each sub-group is 

not preserved due to inconsistency of energy group structure for each sub-group, which 

is an essential issue for the conventional sub-group method. By applying a union 

sub-group energy structure, the treatment of fuel temperature distribution is improved. 

Therefore, the sub-group method itself is improved on the unifying process of the 

conventional three resonance treatments in the present study. 

In the conventional sub-group method, the concrete energy ranges are not explicitly 

specified for each sub-group. In other words, the sub-group is implicitly defined 

through “band probability” (see section 1.1.4). In contrast, the present method explicitly 

defines the sub-group energy structure and applys the fixed structure even for the fuel 

temperature distribution case. This improved treatment resolves the inconsistency of an 

energy range for each spatial region with different temperatures, and enables to perform 

the sub-group transport calculation with high accuracy. 

The sub-group scattering source ∫=
sg i

i
sg EdESS )(  is also generated from )(ESi  

based on Equation (4.19). From the viewpoint of computational efficiency, the 

sub-group scattering source calculation in the present method has an advantage 

compared with the conventional sub-group method. The scattering source can be 

calculated with fine energy resolution by Equation (4.19), and thus the accurate 
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sub-group scattering source is easily obtained in advance by energy integration of 

)(ESi . This fact enables to treat the scattering source term as a constant in Equation 

(4.23), as well as the sub-group cross-section. Therefore, Equation (4.23) can be solved 

independently for each sub-group, and any considerations of sub-group to sub-group 

transmission probability are not required at all. 

Finally, the sub-group flux i
sgφ  is obtained by integrating the angular flux solutions 

of Equation (4.23). In addition to the integro-differential form of equation, i
sgφ  can also 

be obtained from the integral form of transport equation based on the collision 

probability method. 

By using the sub-group cross-sections and fluxes, the microscopic effective 

cross-section for resonance nuclide r , reaction type x  and energy group g  is 

derived as: 
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  (4.26) 

As described before, ir
sgx
,
,σ  is generated by the ultra-fine-group flux solution )(Eiφ  

in the 1st step resonance calculation (see Sections 4.2.2-4.2.4). ir
sgx
,
,σ  has a fuel rod 

position dependence within a fuel assembly because Equations (4.1)-(4.4) are solved 
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with position-dependent rational coefficients. In addition, ir
sgx
,
,σ  has a radial 

dependence within each fuel pellet because the solution of Equations (4.1)-(4.4) can be 

extended to the radial multi-region geometry for cylindrical fuel rod based on a 

derivation in Section 4.2.3. 

On the other hand, i
sgφ  is calculated by using ir

sgx
,
,σ  and i

sgS . i
sgφ  is obtained with 

a fine spatial resolution which can be treated by the adopted flux solver. Therefore, at 

least, fuel rod position and intra-pellet radial dependences of effective cross-sections 

can be taken into account in the present method. Besides, intra-pellet azimuthal 

dependence of effective cross-sections can also be considered through i
sgφ  if the flux 

calculation scheme such as the MOC and the collision probability method is adopted for 

a sub-group flux calculation. 
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4.2.6 Calculation Flow 

A calculation flow of the two-step resonance treatment is shown in Figures 4.5-4.6. 

The calculation procedure is described below. Steps (1)-(9) and (10)-(15) correspond to 

the 1st and 2nd step resonance calculations, respectively. Note that the details for Step (4) 

are described in Reference [7]. 

 

(1) Read the microscopic ultra-fine-group cross-section data fgσ  ( fg : 

ultra-fine-group number) from the library. (Note: In the following 

description, continuous energy-dependent parameters are converted to 

ultra-fine-group form, e.g., fgE σσ →)( , for numerical treatment.) 

(2) Read the relative atomic weight to the neutron, A , and the microscopic 

potential scattering cross-section pσ . 

(3) Read the heterogeneous region volume V  and the number density N . 

(4) Perform the hybrid resonance self-shielding calculation [7] based on 

integration of the equivalence theory and the ultra-fine-group calculation. 

(5) Generate the ultra-fine-group source terms (f
fgsd,Σ  and fgµ ) for 

FGfg ≤≤1  ( FG : the number of ultra-fine-group). 

(6) Generate mil ,  and mi,γ  based on Equations (4.16) and (4.15), respectively. 

(7) Calculate the ring-region-dependent ultra-fine-group flux fgi ,φ  for 
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FGfg ≤≤1  based on Equation (4.18), by using fgi ,φ  and fgµ . 

(8) Calculate the ring-region-dependent ultra-fine-group scattering source 

fgiS ,  for FGfg ≤≤1  based on Equation (4.19), by using fgi ,φ  and fgµ . 

(9) Update fgi ,φ  based on Equations (4.20)-( 4.21). 

(10) Set the reference cross-section refΣ  and the cross-section boundaries 

(maximum: bound
max,sgΣ , minimum: bound

min,sgΣ ) for each sub-group used in 

Equation (4.25). 

(11) Define the discrete energy structure for each sub-group based on 

Equation (4.25). 

(12) Generate the sub-group cross-section ir
sgx
,
,σ  for SGsg ≤≤1  ( SG: 

the number of sub-group) based on Equation (4.24), by using fgi ,φ . 

(13) Generate the sub-group scattering source i
sgS  for SGsg ≤≤1  based 

on ∫=
sg i

i
sg EdESS )( , by using fgiS , . 

(14) Perform the one-group fixed source calculations for each sub-group, 

and obtain the fluxes i
sgφ  for each region. 

(15) Generate the effective cross-section ir
gx

,
,σ  based on Equation (4.26), 

by using ir
sgx
,
,σ  and i

sgφ . 
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Figure 4.5 Calculation flow of unified resonance treatment (1st step). 
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Figure 4.6 Calculation flow of unified resonance treatment (2nd step). 
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4.2.7 Relation to the Conventional Methods 

As described in Section 4.1, the present resonance treatment is a unified approach of 

the conventional three methods, i.e., equivalence theory, ultra-fine-group slowing-down 

calculation and sub-group method. 

The present method is equivalent to the equivalence theory, if (i) NR approximation 

of the scattering source, i.e., f
p

f
sd E Σ≈Σ )(  and 1)( ≈Eµ  (see Equations (4.2)-(4.3)), is 

applied to the 1st step calculation, (ii) the resonance absorptions of background isotopes 

are ignored, and (iii) the number of sub-groups is set as one for the 2nd step calculation. 

The present method is also equivalent to the ultra-fine-group slowing-down calculation, 

if the sub-group is the same as the ultra-fine energy group structure for the 2nd step 

calculation. If the problem-independent sub-group parameters are prepared in advance, 

the present method is equivalent to the sub-group method. Therefore, the present 

resonance treatment is a generalized approach of the conventional three resonance 

self-shielding methods. 
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4.3 Reaction-Rate Preservation for Reduction of Energy Discretization Error 

4.3.1 Concept for Two-Step Reaction-Rate Preservation Scheme 

The effective cross-sections obtained from the direct energy collapsing with flux 

weight cannot be directly applied to the subsequent multi-group flux calculation due to 

the energy collapsing error. In order to reduce the error, a reaction-rate preservation 

scheme is necessary for heterogeneous geometry. In the conventional scheme [6-7] 

based on the SPH method [16], the group-dependent correction factor i
gf  is derived as: 
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where i
gφ~  denotes the flux obtained with ir

gx
i

gf ,
,σ . 

The present resonance self-shielding treatment, especially for the 1st step calculation, 

is based on the ultra-fine-group calculation, and thus the conventional scheme can be 

applied in principle. 

Besides, the present method includes the essence of the equivalence theory. The 

energy-dependent neutron flux can be regenerated by the analytical form of the 

multi-term rational equation. Considering the fundamental concept of the reaction-rate 

preservation scheme in the equivalence theory [17], the following equation to solve i
gf  

is formulated as a natural extension of the hybrid resonance treatment in Reference [7]: 
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where 
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Equations (4.20)-(4.21) are used in the above derivation. Here, it should be noted that 

Equations (4.27) or (4.28) is valid only if )(Eiφ  is obtained with high accuracy. As 

described in Section 4.2.3, some approximations are applied to the derivation process of 

)(Eiφ , and thus )(Eiφ  is not necessarily so accurate for direct application to Equations 

(4.27) or (4.28). Therefore, a new reaction-rate preservation scheme is developed in the 

present study so that the influence of prediction error of )(Eiφ  is mitigated. 

The fundamental form of reaction-rate preservation equation is written as: 

i
g

ir
gx

i
gg i

r
x fEEdE φσφσ ~

)()( ,
,=∫ .     (4.31) 

From the viewpoint of consistency with the present two-step resonance treatment 

described in Section 4.2, Equation (4.31) is divided into the following two equations: 

∑∫
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i
g

ir
gx

i
g

gsg
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sgx

i
sg ff φσφσ ~~ ,

,
,
, =∑

∈

,     (4.33) 

where i
sgφ~  denotes the flux obtained with ir

sgx
i

sgf ,
,σ . Equation (4.32) is the reaction-rate 

preservation equation between ultra-fine-group and sub-group treatments, and Equation 

(4.33) is the reaction-rate preservation equation between sub-group and multi-group 

treatments. Equation (4.32) is decomposed for each sub-group as: 
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i
sg

ir
sgx

i
sgsg i

r
x fEEdE φσφσ ~

)()( ,
,=∫ .     (4.34) 

Note that Equation (4.32) is satisfied if Equation (4.34) is valid. 

In the present resonance treatment, the sub-group-wise correction factor i
sgf  and 

the corrected flux i
sgφ~  are generated as the 1st step calculation by Equation (4.34). Then, 

the multi-group-wise correction factor igf  is obtained as the 2nd step calculation by 

Equation (4.33). If Equations (4.28)-(4.30) are directly used, a significant error for i
gf  

is induced, as shown in Section 4.4.3.4. By utilizing the sub-group based information, 

direct propagation of )(Eiφ  prediction error to i
gf  is mitigated. This treatment is 

called the two-step reaction-rate preservation scheme in the present study, and its detail 

is described in the following sections. 
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4.3.2 1st Step Correction Factor Calculation for Sub-Group Level 

The correction factor calculation for the 1st step is carried out based on Equation 

(4.34). By the same derivation scheme for the reaction-rate preservation in the hybrid 

resonance treatment, Equation (4.34) is rewritten as: 

∫∑ ∑ =
+Σ

+Σ

= =
sg i

m

N

n nmi
i

sgt
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sg

nsgmi
i

sgsd
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i
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f )(
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1 1 ,,

,,
, φ
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βγ ,   (4.35) 

where 

∫≡Σ
sg i

i
sgsd ESEdE )()(, η ,      (4.36) 


⌡
⌠≡

sg
sg EE

E
dE )()(

1 µηµ .     (4.37) 

Equations (4.20)-(4.21) are used in the above derivation. 

Equation (4.35) is used to calculate a correction factor for reaction-rate preservation, 

which is consistent with the resonance treatment in Sections 4.2.2-4.2.3. All the terms 

except for i
sgf  are byproducts of the solution of the methods described in Sections 

4.2.2-4.2.3. i
sgf  is easily obtained from iterative calculation until i

sgf  is converged. 

From Equation (4.35), i
sgf  for (s+1)-th iteration is generated by using s-th result as 

follows: 

∑ ∑
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φ
.   (4.38) 

The method includes the iteration scheme, but any additional iterative flux calculations 
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are no longer required. The calculation time of i
sgf  is negligible compared with the 

conventional scheme. 
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4.3.3 2nd Step Correction Factor Calculation for Multi-Group Level 

The correction factor calculation for the 2nd step is carried out based on Equation 

(4.33). By substituting Equation (4.26) into Equation (4.33), the correction factor is 

derived as: 
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In the above equation, the microscopic cross-section is included in i
gf , and thus it 

depends on resonance nuclide and reaction type. This definition of correction factor 

leads to the large computational burdens. 

In order to avoid the nuclide and reaction type dependent correction factor 

calculations, the modified correction factor igf
~

 and the effective cross-section ir
gx
,
,

~σ  

are defined so as to satisfy the following relation: 

ir
gx

i
g

ir
gx

i
g ff ,

,
,
,

~~ σσ = .       (4.40) 

By substituting Equation (4.40) into the right-hand side of Equation (4.33), the 

following equation is obtained: 

i
g
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gx

i
g

gsg

i
sg

ir
sgx

i
sg ff φσφσ ~~~~ ,

,
,
, =∑

∈

.     (4.41) 

Here, ir
gx
,
,

~σ  is defined as an effective cross-section in which the energy discretization 

error associated with the collapsing only from the ultra-fine-group to the sub-group is 

removed, that is: 
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By substituting Equation (4.42) into Equation (4.41), the modified multi-group 

correction factor i
gf

~
 is derived as: 
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As shown in Equation (4.43), i
gf

~
 does not depend on resonance nuclide and reaction 

type like an SPH factor. In other words, ir
gx
,
,

~σ  is defined in Equation (4.42) so that the 

resonance nuclide and reaction type dependence of the correction factor can be 

removed. 

Finally, the corrected effective cross-section, which is provided for the subsequent 

multi-group flux and depletion calculations in a lattice physics code, is ir
gx

i
gf

,
,

~~ σ . It 

should be noted that the effective cross-section, which is comparable to the continuous 

energy Monte-Carlo results tallied by a simple flux weight scheme, is ir
gx

,
,σ . 
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4.3.4 Calculation Flow 

Calculation flow of the two-step reaction-rate preservation scheme established in 

Sections 4.3.1-4.3.3 is shown in Figure 4.7. The calculation procedure is described as 

follows: 

 

(1) Generate the sub-group-wise correction factor i
sgf  based on Equation 

(4.35) with iteration scheme of Equation (4.38). 

(2) Perform one-group fixed source calculations for each sub-group by using 

the corrected sub-group cross-section ir
sgx

i
sgf ,

,σ  as an input, and obtain the 

sub-group flux i
sgφ~ . This calculation can be carried out independently. 

(3) Generate the partially-corrected effective cross-section ir
gx
,
,

~σ , in which the 

energy discretization error from the ultra-fine-group to the sub-group 

collapsing is removed, based on Equation (4.42). 

(4) Set the initial value of i
gf

~
 as 1

~ =i
gf . 

(5) Perform one-group fixed source calculation for each multi-group by using 

the corrected effective cross-section ir
gx

i
gf ,

,
~~ σ  as an input, and obtain the 

multi-group flux i
gφ~ . This calculation can be carried out independently. 

(6) Generate the multi-group-wise modified correction factor i
gf

~
 based on 

Equation (4.43). 
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(7) Iterate (5)-(6) until i
gf

~
 is converged. 

 

Steps (1)-(3) and (4)-(7) correspond to the 1st and 2nd step correction factor 

calculations, respectively. 

 

 

Figure 4.7 Calculation flow of two-step reaction-rate preservation scheme. 
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4.4 Verification 

4.4.1 Concept 

In this section, the present resonance treatment is verified by the numerical 

calculations. The present method is composed of multiple components based on a 

unified theory, and thus each component is verified first (Section 4.4.3). Then, the 

effective cross-sections, i.e., final products of the resonance calculation, are analyzed 

for various cases as a total verification (Section 4.4.4). The reference solutions are 

obtained from the continuous energy Monte-Carlo calculations based on the exact 

geometry modeling and fine cross-section representation with continuous energy 

resolution. A part of the references is obtained from the heterogeneous ultra-fine-group 

slowing-down calculation based on a deterministic method. 

The analysis condition is shown in Section 4.4.2. The verification results for 

fundamental parameters of the present method are shown in Section 4.4.3. The 

application results for various pin-cell and multi-cell problems are shown in Section 

4.4.4. The verification list is shown in Table 4.3. 
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Table 4.3 Verification list. 

 

 

  

Section Objective Geometry Verified model Verified parameter Sub-section
Slowing-down calculation with multi-term

rational equation
Ultra-fine-group neutron flux 4.4.3.1

Sub-group definition according to
resonance cross-section level

Sub-group cross-section 4.4.3.2

Final product of resonance calculation Effective cross-section 4.4.3.3
Reaction-rate preservation scheme Cross-section correction factor 4.4.3.4

Final product of lattice physics calculation Reaction-rate 4.4.3.5

Radially-dependent effective cross-sections with
isotope composition distribution

4.4.4.1

Radially-dependent effective cross-sections with
temperature distribution

4.4.4.2

Spatial self-shielding treatment
Radially and azimuthally dependent effective

cross-sections
4.4.4.3

3x3 multi-cell
Spatial self-shielding treatment for

irregular lattice
Azimuthally-dependent effective cross-sections

with large water region
4.4.4.4

Spatial self-shielding treatment with
spatial variation of ultra-fine-group

macroscopic cross-section

4.4.3

Confirm prediction
accuracy of main
products in the
present method

Pin-cell

4.4.4

Confirm applicability
of the present

method for various
pin-cell and multi-cell

problems

Pin-cell
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4.4.2 Analysis Condition 

Analysis condition of the new resonance treatment is described in this section. 

In order to perform each process in the calculation scheme of the present method 

(see Sections 4.2.6 and 4.3.4), a standalone program is developed. The MHI (Mitsubishi 

Heavy Industries, Ltd.) lattice physics code GALAXY (Geometrically Arbitrary, Lattice 

physics and Assembly calculation code in X-Y coordinate system) [18, 4, 7, 21] is used 

for several steps in the process. In concrete, ‘(1)-(5) and (14)’ in Figures 4.5-4.6 and ‘(2) 

and (5)’ in Figure 4.7 are performed by GALAXY. The GALAXY ultra-fine-group 

cross-section library (120,000 groups) [7] based on ENDF/B-VII.0 [19] is also utilized. 

The number of rational equation terms used for one-region fuel is set to 2=N . 

Note that the total number of terms used for multi-region fuel is 84 =N  (see Equation 

(4.18)). The microscopic effective capture cross-sections of 238U are generated for 88th 

energy group (6.16-7.52eV) of the XMAS 172 energy group structure [20], in which the 

wide resonance cross-section of 238U is included. The number of sub-groups is 5, and 

the sub-group energy structure is determined by Equation (4.25) based on the 

ultra-fine-group macroscopic absorption cross-section of the fuel region as )(ref EΣ . 

The sub-group boundary for the absorption cross-section is determined by a division 

with equal interval in logarithmic scale. The sub-group transport calculation is 

performed by the collision probability method based on the equivalent Dancoff method 

[21]. These conditions are applied to almost all the analyses in this paper. The 

sensitivities for the above calculation conditions against effective cross-sections are 

investigated in advance, and it is confirmed that the calculation conditions are sufficient 



264 

 

from the view point of prediction accuracy for effective cross-sections. 

UO2 (4.8wt% 235U) pin-cells with HFP (hot full power) operating conditions are set 

as the typical LWR neutron spectrum condition. The specifications of the pin-cell 

problem are shown in Table 4.4, and the geometrical configuration is shown in Figure 

4.8. The pellet region is sub-divided into 10 equal volume rings for radial direction. The 

fuel composition and temperature are assumed to be flat within a pellet. Calculation for 

the one-region pellet model is also performed for comparisons. 

 

Table 4.4 Specifications of the pin-cell model. 

 

 

Specification

Fuel UO2 (4.8wt% 
235

U)
Cladding Zr

Moderator Borated water
Fuel 976K

Cladding 600K
Moderator 580K

1000ppm
Cell pitch 1.26cm

Pellet radius 0.4095cm
Cladding outer radius 0.475cm
Cladding thickness
(Gap is omitted)

0.0655cm

Geometry

Item

Material

Temperature

Boron concentration
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Figure 4.8 Geometry of pin-cell model. 

 

In Sections 4.4.3.1, 4.4.3.3 and 4.4.3.5, the calculation results by the present method 

are compared with those by the continuous energy Monte-Carlo code MVP (Monte 

Carlo code for vector processors) [22]. The ENDF/B-VII.0 nuclear data library is used 

in all the MVP calculations to be consistent with the calculations by the present method. 

The total number of neutron sampling for MVP calculations is set to 100 million 

histories, in which the σ1  statistical error of the effective cross-sections is about 0.1%. 

For the scattering kernel treatment, all the analyses including the reference 

calculations by the continuous energy Monte-Carlo are performed with the conventional 

asymptotic scattering model, as shown in Equation (4.2). In this paper, discussion for 

the selection of scattering model, i.e., the asymptotic model or the exact resonance 

scattering model [23, 24], is out of scope. The present resonance treatment is verified 

with reference calculations based on the same scattering model. 

In Sections 4.4.3.2 and 4.4.3.4, the calculation results by the present method are 

0.4095cm=fR 0.475cm=cR

1.26cm

Fuel pellet 
(sub-divided into 10 regions)

Moderator

Cladding fR
cR
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compared with those by the direct ultra-fine-group slowing-down calculation with 

heterogeneous geometry. The heterogeneous slowing-down calculation is performed by 

the equivalent Dancoff method [21] implemented in GALAXY, which is a different 

resonance treatment from the hybrid resonance treatment [7] and the present method. 

The equivalent Dancoff method is applied to a part of the reference calculations, in 

which the continuous energy Monte-Carlo calculations cannot be used to obtain 

reference results since specific conditions dedicated for the deterministic method are 

used and cannot be reproduced by the Monte-Carlo method. The reliability of the 

equivalent Dancoff method itself is also shown in Section 4.4.3.3 through comparisons 

of effective cross-sections against the MVP results. 
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4.4.3 Verification for Fundamental Parameters of the Present Method 

4.4.3.1 Ultra-Fine-Group Neutron Flux 

The ultra-fine-group neutron flux by the 1st step calculation of the present method is 

compared with the continuous energy Monte-Carlo result in this section. 

As described in Section 4.4.2.2, a set of the slowing-down equations (Equations 

(4.1)-(4.4)) are solved for one-region pellet system, based on the hybrid resonance 

treatment [7] of the equivalence theory and the ultra-fine-group slowing-down 

calculation. )(Ef
sdΣ  and )(Eµ  are numerically obtained as byproducts of the solution 

for Equations (4.1)-(4.4). Then by Equations (4.20)-(4.21), which are derived in Section 

4.2.3, the ultra-fine-group flux for each sub-region of a pellet is analytically obtained. 

The ultra-fine-group fluxes for each sub-region of a pellet by the present method and 

those by the continuous energy Monte-Carlo calculation (MVP) are shown in Figure 

4.9 including 88th energy group (6.16-7.52eV) of XMAS 172 energy group structure. 

The results for Regions 1, 8, 9 and 10 (sequentially numbered from the center to the 

surface of a pellet) are plotted for convenience. As shown in Figure 4.9, the present 

method (1st step calculation) can roughly predict the ultra-fine-group neutron flux 

comparable to the continuous energy Monte-Carlo results. However, a slight difference 

is observed. The flux differences are induced by the approximation of 

spatially-dependent fuel escape probability and scattering source within a pellet, which 

are applied to the flux derivation scheme in Section 4.2.3. As shown in Section 4.4.3.3, 

the differences of the ultra-fine-group flux directly cause the differences of effective 

cross-section between the present method “without 2nd step calculation” and the MVP. 

The differences of effective cross-section owing to ultra-fine-group flux estimation are 
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mitigated by the 2nd step calculation based on the sub-group flux, as shown in Section 

4.4.3.3. 

 

 

Figure 4.9 Comparison of ultra-fine-group fluxes between the present method (1st 

step calculation) and the continuous energy Monte-Carlo calculation (MVP) ((a) 

region 1, (b) region 8, (c) region 9, (d) region 10). 
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A breakdown of the calculation time for ultra-fine-group flux calculation in all the 

ring regions within a pellet is shown in Table 4.5. As shown in Table 4.5, the calculation 

time is very short, and thus the time is negligible against the total computation time of 

the lattice physics calculations. On the basis of its short computation time, the present 

method can be easily applied to the large and heterogeneous geometry such as a fuel 

assembly. In the present method, at first, the fuel-rod-wise ultra-fine-group flux is 

independently obtained for each fuel cell by Equations (4.1)-(4.4) and the 

cell-dependent coefficients nα , nβ , nε  and θ . Then, the obtained ultra-fine-group 

data in each fuel rod is expanded for each ring region by using the ring-dependent 

coefficients mγ . Utilization of a set of coefficients for the rational equation improves 

the computational efficiency of the ultra-fine-group calculation, compared with the 

direct heterogeneous ultra-fine-group transport calculation. 

 

Table 4.5 Calculation time for the ultra-fine-group flux. 

 

 

  

Process CPU time [sec]

Ultra-fine-group cross-section library read (only one time) (*) 0.31

Ultra-fine-group flux calculation for two region problem (*) 0.22

Spatially-dependent flux calculation 0.07

Spatially-dependent scattering source calculation 0.04

Flux update 0.08

(*) Reference [7]
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4.4.3.2 Sub-Group Cross-Section 

The sub-group cross-sections in fuel regions are generated by the present method. 

The results are compared with the reference solutions obtained from the direct 

heterogeneous ultra-fine-group calculation by the equivalent Dancoff method. 

The sub-group cross-sections and the corresponding differences from the direct 

heterogeneous ultra-fine-group calculation results are shown in Figure 4.10. The 

differences of the effective cross-section between the present method “without 2nd step 

calculation” and the reference solution are also shown in the figure. As shown in Figure 

4.10, the present method can accurately predict the sub-group cross-sections, while the 

effective cross-section generated by the present method “without 2nd step calculation” 

includes some differences. 
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Figure 4.10 Sub-group cross-sections and their differences from the direct 

heterogeneous ultra-fine-group calculation results ((a) Reference solution of 

microscopic capture cross-section of 238U, (b) Difference from reference solution). 

 

The influence of ultra-fine-group flux error (see Section 4.3.1) on sub-group 

cross-section is mitigated by defining the sub-group energy structure, not for energy but 

for macroscopic absorption cross-section level. 
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4.4.3.3 Effective Cross-Section 

The effective cross-sections in fuel regions are generated by the present method. The 

results are compared with the reference solutions obtained from the continuous energy 

Monte-Carlo code MVP. The results based on the equivalence theory (SDGM [4] with 

the NR approximation), the direct heterogeneous ultra-fine-group calculation (the 

equivalent Dancoff method [21]) and the present method “without 2nd step calculation” 

are also obtained for comparison. 

The effective cross-sections and the corresponding differences from the MVP results 

are shown in Figure 4.11. As shown in Figure 4.11, the present method (1st + 2nd step 

calculation) can accurately predict the effective cross-sections. 
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Figure 4.11 Effective cross-sections and their differences from the continuous 

energy Monte-Carlo calculation (MVP) ((a) Reference solution of microscopic 

effective capture cross-section of 238U, (b) Difference from reference solution, (c) 

Difference from reference solution (high accuracy results only)). 
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In contrast, the results obtained by the equivalence theory with NR approximation 

and by the present method “without 2nd step calculation” show the large difference from 

the reference solutions. For the latter method, the difference is due to the prediction 

error of ultra-fine-group fluxes in the case of treating radially sub-divided fuel region 

(see Section 4.4.3.1). 

From the result, the effectiveness of incorporating the sub-group method as the 2nd 

step calculation is confirmed. The influence of ultra-fine-group flux error on the final 

effective cross-section is efficiently reduced by the two-step flux calculation scheme of 

the present method, i.e., the flux calculation for “coarse geometry + fine energy” (1st 

step) and that for “fine geometry + coarse energy” (2nd step). The prediction accuracy of 

effective cross-section is appropriately improved by reflecting the more detailed 

information of spatial neutron transport within a pellet based on the 2nd step sub-group 

calculation. 

The differences of the effective cross-sections from those of the MVP results are 

summarized in Table 4.6. The results obtained by one-region pellet model are also 

shown in the table. From Table 4.6, the present two-step method provides an excellent 

result for multi-region case, which is almost comparable to the direct heterogeneous 

ultra-fine-group calculation. 
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Table 4.6 Differences of effective cross-section from the continuous energy 

Monte-Carlo calculation (MVP). 

 

 

The calculation efficiency is also an important viewpoint for the total performance 

of a target method. The required number of one-group fixed source transport 

calculations is estimated in Table 4.7. In the conventional equivalence theory based on 

the Dancoff method, the one-group calculation is required only one time in the black 

neutron absorber condition. If the equivalence theory based on the gray resonance 

treatment [4] is adopted, the one-group calculation is required several times for a wide 

range of macroscopic total cross-section conditions. After all, the conventional 

equivalence theory requires only 1-20 times of one-group transport calculations. In 

contrast to the equivalence theory, the direct heterogeneous ultra-fine-group method 

generally requires 10,000-200,000 times of one-group transport calculations, which is 

large computational burden. 

 

  

Average Maximum

Continuous energy Monte-Carlo calculation (MVP) (*) 0.06 0.11 0.15

Equivalence theory (NR approximation) 1.53 6.23 15.92

Direct heterogeneous ultra-fine-group calculation 0.41 0.20 1.04

Present method (without 2
nd

 step calculation) 1.08 -4.08 -9.52

Present method (1
st
 + 2

nd
 step calculation) 1.17 0.37 1.01

(*) Statistical error

Relative difference of effective cross-section from MVP[%]

Pellet multi-region problemPellet one-region
problem

Method
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Table 4.7 Estimation for the number of one-group fixed source transport 

calculations. 

 

 

The present method has an intermediate feature between the above two methods. If 

the number of multi-groups, in which the resonance self-shielding treatment is required, 

is 100, and the number of sub-groups is set to 5 for each group, the required number of 

one-group transport calculations is 100×5=500. As a result, the required number of 

one-group transport calculations in the present method is less than 1/10 of that in the 

direct heterogeneous ultra-fine-group method, as shown in Table 4.7. 

The calculation time for a fuel assembly geometry is an important point for practical 

lattice physics calculations. The calculation time for a fuel assembly is estimated in 

Table 4.8. In the estimation, the steady-state calculations for a typical PWR type 17×17 

4.8wt% UO2 assembly are carried out by the lattice physics code GALAXY. 

As for the treatment of fuel pellet, the two cases (“no-division” and “sub-division for 

radial direction with 10 equal volume rings”) are analyzed. For each case, the resonance 

treatment methods based on the equivalence theory [4] and the direct ultra-fine-group 

calculation [21] are applied for comparison with the present method, and their 

calculation times are directly measured. Since the present method is not implemented 

Method The number of one-group flux calculations [-]

Equivalence theory 1-20

Direct heterogeneous ultra-fine-group calculation 10,000-200,000

Present method 500-1,000
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into the GALAXY code at the current development state, the result for the present 

method is inferred by the results for the other methods and the quantitative information 

in Tables 4.5 and 4.7. The multi-group flux calculation is performed by “172 group 

CCCP (current-coupling collision probability) method + 22 group MOC” [21] for all 

cases. 

As shown in Table 4.8, the estimated calculation times by the present method are 

less than one-third of those by the direct ultra-fine-group calculation for resonance 

calculation part. The ratios of resonance calculation part against the “resonance + flux” 

calculations are less than 1/2 in the present method. From the results, the present 

method can efficiently generate effective cross-sections for large and complicated 

geometry such as a fuel assembly, comparing with the direct ultra-fine-group 

calculation. 
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Table 4.8 Brief estimation for the calculation time on fuel assembly geometry. 

 

 

  

Comparison with direct het. ufg. calc.
(*)

Contribution of resonance calc.
(**)

Equivalence theory 0.17 0.15

Direct heterogeneous ultra-fine-group calculation 1.00 0.49

Present method 0.30 0.23

Equivalence theory 0.08 0.39

Direct heterogeneous ultra-fine-group calculation 1.00 0.88

Present method
(***) 0.12 0.46

(*) CPU time ratio between "specific method" and "direct ultra-fine-group calculation" for resonance calculation part
(**) CPU time ratio between "resonance calculation" and "resonance + multi-group flux calculation" for each method
(***) Estimated values from other results

No

Yes

CPU time ratio[-]
Pellet division Method
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Finally, the total performance is benchmarked for major resonance treatments, 

taking into account of the quantitative information in Tables 4.6-4.8. The result of 

qualitative comparison is summarized in Table 4.9. As shown in Table 4.9, the present 

method is better than all the three conventional methods, from the viewpoint of both 

calculation accuracy and time. 

 

Table 4.9 Qualitative comparison of overall performance for resonance 

self-shielding treatments. 

 

 

  

Calculation accuracy Calculation time

Equivalence theory Acceptable (normal design condition) Excellent

Ultra-fine-group calculation Excellent Acceptable (pin-cell)

Sub-group method good good

Excellent goodPresent

Method

Conventional
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4.4.3.4 Cross-Section Correction Factor 

The correction factors for effective cross-section in fuel regions to reduce energy 

discretization error are generated by the present method. The results are compared with 

the reference solutions obtained from the direct heterogeneous ultra-fine-group 

calculation by the equivalent Dancoff method (see Equation (4.27) in Section 4.3.1). 

The results based on the present method “without 2nd step sub-group calculation” (see 

Equation (4.28) in Section 4.3.1) are also obtained for comparison. 

In the two-step reaction-rate preservation scheme, the relative convergence criterion 

of the correction factors is set as 0.1%. Only 10 iterations are necessary for the 2nd step 

calculation in this verification with this convergence criterion. 

The correction factors and the corresponding differences from the direct 

heterogeneous ultra-fine-group calculation results are shown in Figure 4.12. As shown 

in Figure 4.12, the present method (1st + 2nd step calculation) can accurately predict the 

correction factor. 
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Figure 4.12 Correction factors and their differences from the direct heterogeneous 

ultra-fine-group calculation results ((a) Reference solution of cross-section 

correction factor, (b) Difference from reference solution). 
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ultra-fine-group fluxes in the case of treating radially sub-divided fuel region is the 

cause of the difference (see Section 4.3.1). 

From the result, the effectiveness of incorporating the sub-group method as the 2nd 

step calculation is confirmed. The influence of ultra-fine-group flux error on the final 

correction factor is efficiently reduced by the two-step reaction-rate preservation 

scheme, i.e., the ultra-fine-group to the sub-group collapsing, and the sub-group to the 

multi-group collapsing. 
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4.4.3.5 Reaction-Rate 

One of the final product of lattice physics calculation is reaction-rate. In order to 

confirm the influence of effective cross-section differences on reaction-rate, the 

energy-integrated macroscopic absorption rates in fuel regions are generated from the 

multi-group transport calculation by the lattice physics code GALAXY. The 

radially-dependent microscopic effective cross-section set, which is generated from a 

standalone program based on the present method, is directly supplied to the GALAXY. 

The results are compared with the reference solutions obtained from the continuous 

energy Monte-Carlo code MVP. The results based on the direct heterogeneous 

ultra-fine-group calculation by GALAXY are also obtained for comparison. In the 

reaction-rate calculation for each method, the neutron fluxes are normalized so that the 

volume and energy integrated neutron generation rate is unity. 

The absorption rates and the corresponding differences from the MVP results are 

shown in Figure 4.13. In this analysis, the σ1  statistical error of absorption rates by 

MVP is about 0.02%. The maximum relative differences from the MVP results are 

-0.4% for the present method, and -0.2% for the direct ultra-fine-group calculation, 

respectively. The difference is less than ± 0.1% for most ring regions in both methods, 

thus the present method can accurately predict the reaction-rates, which is comparable 

to the direct ultra-fine-group calculation. 
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Figure 4.13 Reaction-rates and their differences from the continuous energy 

Monte-Carlo calculation (MVP) ((a) Reference solution of macroscopic absorption 

rate, (b) Difference from reference solution). 
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4.4.4 Application for Various Pin-Cell and Multi-Cell Problems 

4.4.4.1 Radially-Dependent Effective Cross-Sections with Non-Uniform Isotope 

Composition for Unit Pin-Cell 

In this section, the pin-cell with non-uniform isotope composition is treated, in 

which the fuel composition is radially distributed. As a typical application for the LWR 

lattice calculations, the depleted fuel and the annular fuel are taken into account. For 

both fuels, the calculation conditions except for the number densities in fuel regions are 

the same as those given in Section 4.4.2. 

For the depleted fuel case, the GALAXY depletion calculation is performed in 

advance, and the number densities for each nuclide and each ring region within a pellet 

are obtained. In this verification, the number densities only for main actinide nuclides, 

i.e., 235U, 238U, 239Pu, 240Pu and 241Pu, are extracted for simplicity on the burnup 

condition of 60GWd/t, as shown in Figure 4.14. The typical Pu build-up effect on a 

peripheral region of the pellet can be observed from the figure. 
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Figure 4.14 Distribution of fuel isotope composition within a pellet. 

 

In this verification, the microscopic effective capture cross-sections of 238U are 

generated with the given region-dependent number densities. The effective 

cross-sections generated by the present method are compared with the reference 

solutions obtained from the continuous energy Monte-Carlo code MVP. The results are 

shown in Figure 4.15. As shown in the figure, the present method can accurately predict 

the effective cross-sections with radially-distributed isotope composition. The 

spatially-dependent biases against fresh fuel condition also agree well with the 

Monte-Carlo results, and therefore the consistency between uniform and non-uniform 

fuel composition treatments is confirmed for the present method. 
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Figure 4.15 Effective cross-sections and their differences from the continuous 

energy Monte-Carlo calculation (MVP) with non-uniform isotope composition ((a)  

Reference solution, (b) Difference from reference solution, (c) Ratio against fresh 

fuel condition). 
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fuel treatments is confirmed for the present method. 

 

 

Figure 4.16 Effective cross-sections and their differences from the continuous 

energy Monte-Carlo calculation (MVP) for annular fuel ((a) Reference solution, (b)  

Difference from reference solution, (c) Ratio against solid fuel condition). 
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4.4.4.2 Radially-Dependent Effective Cross-Sections with Non-Uniform Temperature 

for Unit Pin-Cell 

In this section, the pin-cell with non-uniform temperature is treated, in which the 

fuel temperature is radially distributed. The calculation conditions except for the fuel 

temperatures are the same as those given in Section 4.4.2. 

The fuel temperature distribution used for the verification is shown in Figure 4.17. 

The corresponding effective fuel temperature which is averaged with a chord weight 

[15] is the same as that in Table 4.4. 

 

 

Figure 4.17 Distribution of fuel temperature within a pellet. 

 

In this verification, the microscopic effective capture cross-sections of 238U are 

generated with the given region-dependent temperatures. The effective cross-sections 
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4.18. As shown in the figure, the spatially-dependent biases against flat temperature 

condition agree well with the Monte-Carlo results, and therefore the consistency 

between uniform and non-uniform fuel temperature treatments is confirmed for the 

present method. 

 

 

Figure 4.18 Effective cross-sections and their differences from the continuous 

energy Monte-Carlo calculation (MVP) with non-uniform fuel temperature ((a)  

Reference solution, (b) Difference from reference solution, (c) Ratio against flat 

fuel temperature condition). 

 

  

0

50

100

150

200

0.0 0.2 0.4 0.6 0.8 1.0

E
ffe

ct
iv

e 
cr

o
ss

-s
ec

tio
n 

[b
ar

n]

Relative radius [-]

Continuous energy
Monte-Carlo
calculation (MVP)

-4

-2

0

2

4

0.0 0.2 0.4 0.6 0.8 1.0

R
el

a
tiv

e 
d

iff
er

en
ce

 o
f 

ef
fe

ct
iv

e 
cr

o
ss

-s
ec

tio
n 

[%
]

Relative radius [-]

0.90

0.95

1.00

1.05

1.10

0.0 0.2 0.4 0.6 0.8 1.0

E
ffe

ct
iv

e 
cr

o
ss

-s
e

ct
io

n
 r

at
io

 
ag

a
in

st
 fl

a
t t

e
m

pe
ra

tu
re

 
co

n
di

tio
n

 [-
]

Relative radius [-]

Present method

Continuous energy Monte-
Carlo calculation (MVP)

(a) (b)

(c)



291 

 

4.4.4.3 Radially and Azimuthally Dependent Effective Cross-Sections for Unit Pin-Cell 

In this section, the radially and azimuthally divided pin-cell is treated. The 

calculation conditions except for the sub-division of fuel region in azimuthal direction 

are the same as those given in Section 4.4.2. The fuel pellet is sub-divided into 32 sector 

regions for 2π  with equal azimuthal angle interval. 

In this verification, the azimuthally-dependent microscopic effective capture 

cross-sections of 238U are generated. The sub-group cross-sections are generated as the 

azimuthally-independent values in the 1st step of the present method. The azimuthal 

dependence against the final effective cross-sections is taken into account by the 2nd 

step sub-group flux calculation with direct two-dimensional geometry modeling based 

on MOC. 

It should be noted that the azimuthal dependence denotes the sector region 

dependence of effective cross-sections. The azimuthal dependence is not equal to the 

angular dependence of effective cross-sections due to the angular dependence of 

neutron flux for polar and azimuthal directions. 

The effective cross-sections generated by the present method are compared with the 

reference solutions obtained from the continuous energy Monte-Carlo code MVP. The 

total number of neutron sampling for MVP calculations is set to 500 million histories, in 

which the σ1  statistical error of the effective cross-sections is about 0.1-0.2%. 

The results are shown in Figure 4.19. As shown in the figure, the present method 

can accurately predict the azimuthally-dependent effective cross-sections, in which the 

cross-sections tend to be larger for the diagonal directions than that for the horizontal 
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Both the radially and azimuthally dependent effective cross-sections are also 

compared with the reference solutions from MVP. The results for 

azimuthally-dependent effective cross-section ratios for each ring region are shown in 

Figure 4.20. The results for radially-divided regions 1, 7, 8, 9, and 10 (sequentially 

numbered from the center to the surface of a pellet) are plotted for convenience. As 

shown in the figure, the present method can accurately predict both the radial and 

azimuthal dependences of effective cross-sections. 
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center (region 1) due to the difference of distance from moderator region. The 

heterogeneous effect, which is a main contributor for yielding azimuthal dependence, is 

small for the pellet center. Thus the effective cross-sections are azimuthally flat for 

pellet center region. 

Though the difference of effective cross-sections between the present method and 

MVP is not shown in Figure 4.20, the difference is confirmed to be less than ± 2% for 

all the 320 regions, which is a consistent result with Figure 4.11 in Section 4.4.3. 

Therefore, the present method can accurately predict spatially-dependent effective 

cross-sections for both radially and azimuthally sub-divided fuel condition. 

 

  



296 

 

4.4.4.4 Azimuthally-Dependent Effective Cross-Sections for 3×3 Multi-Cell Including 

Large Water Region 

Finally, the 3×3 multi-cell divided in azimuthal direction is treated. A large water 

cell is set in the center region, simply simulating a guide thimble or an instrumentation 

tube in a typical PWR (Pressurized Water Reactor) fuel assembly. The calculation 

conditions of fuel regions except for the sub-division of fuel region in azimuthal 

direction are the same as those given in Section 4.4.2. The fuel pellet is sub-divided into 

32 sector regions for 2π  with equal azimuthal angle interval. 

The effective cross-sections generated by the present method are compared with the 

reference solutions obtained from the continuous energy Monte-Carlo code MVP. The 

total number of neutron sampling for MVP calculations is set to 1 billion histories, in 

which the σ1  statistical error of the effective cross-sections is about 0.3%. 

The results are shown in Figure 4.21 and Figure 4.22. As shown in the figures, the 

present method can accurately predict the azimuthally-dependent effective 

cross-sections. The spatially-dependent biases against one-region fuel also agree well 

with the Monte-Carlo results, and therefore the consistency between one-region fuel and 

azimuthal multi-region treatments is confirmed for the present method. 
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the present method is an efficient alternative to treat azimuthally-dependent resonance 

self-shielding effect, while keeping sufficient accuracy. 
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4.5 Conclusion 

The unified resonance self-shielding method is developed for general application of 

lattice physics calculations. The present method can accurately treat the radially and 

azimuthally dependent resonance self-shielding effect without the direct heterogeneous 

ultra-fine-group calculation. 

A calculation scheme of the present method is based on the concept of multi-stage 

cross-section collapsing strategies, and is composed of two-step calculation, i.e., “coarse 

geometry + fine energy” (1st step) and “fine geometry + coarse energy” (2nd step) 

calculations. The 1st step calculation corresponds to the hybrid model of the equivalence 

theory and the ultra-fine-group calculation, and the 2nd step corresponds to the 

sub-group method. The two-step reaction-rate preservation scheme is also established to 

reduce energy discretization error. 

From the various verification results, radially and azimuthally dependent effective 

cross-sections generated by the new method show good agreement with the continuous 

energy Monte-Carlo results for pin-cell and multi-cell geometries including 

non-uniform fuel compositions and temperature distributions within a pellet. 

The present method can accurately generate effective cross-sections with short 

computation time in lattice physics calculations, and has a potential for the general 

application toward the next generation core analysis codes that require high fidelity and 

sophisticated modeling of reactors. 
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CHAPTER 5.  CONCLUSIONS 

 

5.1 Summary of This Dissertation 

This dissertation is devoted to development of a new resonance self-shielding 

methodology for generation of effective cross-sections, which are the input of neutron 

flux calculation in lattice physics calculation of fuel assembly geometry for light water 

reactors (LWRs) core analysis. 

In general, core design calculation for commercial LWRs is composed of two-step 

calculations, i.e., lattice physics calculation followed by core calculation. In the lattice 

physics calculation, the detailed neutronics characteristics of fuel assembly are solved 

and the assembly-averaged cross-sections (nuclear constants) are generated. Then the 

core calculation is performed by using the nuclear constants as input data. 

The lattice physics calculation scheme is composed of resonance calculation and 

neutron flux calculation, and the nuclear constants are generated based on the results of 

resonance and flux calculations. 

In the resonance calculation, the averaged cross-sections for resonance energy 

ranges, i.e., effective cross-sections, are generated by taking into account of resonance 

self-shielding effect. The resonance self-shielding effect is driven by resonance 

absorptions of neutrons and their influences on flux depressions, which are mainly 

induced by heavy nuclides such as 238U. 238U is a main nuclide for LWR nuclear fuel. 

The various fuel assembly specifications, e.g., geometry, fuel composition and 

temperature conditions, are considered in the resonance calculation. Then in the flux 



305 

 

calculation, the spatial and energy distribution of neutron flux within a fuel assembly is 

calculated by solving neutron transport equation for the fuel assembly geometry. The 

multi-group effective cross-sections obtained from the resonance calculation are used as 

input data in the flux calculation. 

As for the flux calculation, the detailed neutron transport method based on the 

method of characteristics (MOC) is widely applied in the current high performance 

computers. For the resonance calculation, in contrast, several technical issues exist from 

the view point of calculation accuracy within practical computation time which is 

suitable to the combination of flux calculation method. 

In the present study, a new resonance self-shielding methodology is developed for 

the treatment of generalized geometry and extensive neutron spectrum conditions. The 

treatment of generalized geometry contributes to the improvement of prediction 

accuracy for core nuclear design. It is also suitable for next generation core analysis 

methodology which can be applied to the uncertainty quantification and/or reduction of 

neutronics parameters. The treatment of extensive neutron spectrum conditions 

contributes to the application of transient and severe accident conditions (lower 

moderator density ranges) appeared in safety analysis. 

From these backgrounds, the objective of this dissertation is to enhance the reactor 

analysis methodology through developing a new resonance self-shielding treatment by 

solving the above issues. 

Through the enhancement of the methodology, the prediction accuracy of neutronics 

characteristics is improved, not only for the normal operation but also for the severe 

accident conditions of the reactors. These enhancements associated with the core 
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analysis methodology contribute to the activities for improvement of nuclear power 

safety, which is an overall objective of this study. 

 

The current resonance self-shielding treatment is mainly classified into three 

categories, i.e., the equivalence theory, the ultra-fine-group calculation and the 

sub-group method. 

The equivalence theory has rich experiences to the applications for the conventional 

lattice physics calculations, and its calculation efficiency is in practical level. However, 

it is difficult to guarantee accuracy for the wide application range. Especially for the 

calculation accuracy, the fundamental improvement of its theory has not been conducted 

in the past 30 years. 

In contrast, the ultra-fine-group calculation enables to obtain high accurate results, 

while it requires long computation time. Therefore, it has rarely been applied to a large 

and complicated geometry such as a fuel assembly for LWRs. 

The sub-group method has intermediate nature between the equivalence theory and 

the ultra-fine-group calculation from the view point of calculation accuracy and 

efficiency. Since the sub-group method has an issue for prediction of Doppler reactivity 

considering non-uniform fuel temperature distribution, it has rarely been applied to the 

practical core designs. 

In order to solve the above issues for calculation accuracy and efficiency on the 

conventional resonance treatments, a new resonance self-shielding methodology has 

been established in the present study, by theoretically enhancing and integrating the 



307 

 

conventional three methods. The present resonance self-shielding methodology is 

developed for the treatment of generalized geometry and extensive neutron spectrum 

conditions. The summary of technical achievements is described as follows. 

 

(1) DEVELOPMENT OF ADVANCED RESONANCE SELF-SHIELDING 

METHODOLOGY FOR GENERALIZED LATTICE GEOMETRY AND GRAY 

NEUTRON ABSORBER BASED ON EQUIVALENCE THEORY (Chapter 2) 

In the 1st stage of the development, the equivalence theory is focused and its 

fundamental theory is improved. 

In the conventional equivalence theory, the energy-dependent neutron flux is 

approximated as a rational equation. In the approximation, the fuel material is assumed 

as a black body (perfect neutron absorber) for treating an effect for lattice arrangement 

of each fuel rod within an assembly. The approximation is a cause of error for resonance 

calculation. 

In order to remove the cause of error, a new resonance treatment has been developed. 

In the new treatment, gray neutron absorption effect, which means that the fuel material 

is not necessarily a perfect neutron absorber, is theoretically incorporated based on a 

multi-term rational equation of the neutron flux. 

The gray effect is taken into account by performing neutron flux calculations for the 

wide range of fuel material conditions between black and white body (non neutron 

absorber) including gray neutron absorber. 

In the present method, the neutron fluxes are calculated based on the MOC, which 
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can treat generalized geometry. Therefore, the present method enables to remove both 

the geometrical modeling approximation and the black body approximation, and to 

precisely treat the complicated lattice geometry within a fuel assembly. 

 

(2) DEVELOPMENT OF HYBRID RESONANCE SELF-SHIELDING 

METHODOLOGY FOR ENERGY DEPENDENT SCATTERING SOURCE AND 

RESONANCE INTERFERENCE EFFECT BASED ON INTEGRATION OF 

EQUIVALENCE THEORY AND ULTRA-FINE-GROUP SLOWING-DOWN 

CALCULATION  (Chapter 3) 

Though the conventional equivalence theory can generate effective cross-sections 

with short computation time, it has several issues due to its theoretical approximations. 

The issues to be solved in this chapter are scattering source approximation which is 

important for consideration of extensive neutron spectrum conditions, and ignoring the 

effect of multiple resonance nuclides on flux depression (resonance interference effect). 

As the 2nd stage of the development, a derivation scheme of the energy-dependent 

neutron flux in the equivalence theory is reviewed based on the 1st technical 

achievement in Chapter 2. In concrete, the accurate scattering source treatment in the 

ultra-fine-group slowing-down calculation is incorporated into the conventional 

equivalence theory. 

As a result, a new form of energy-dependent neutron flux in the fuel region is 

derived. The new hybrid equation leads to a theoretical integration of the conventional 

equivalence theory and the ultra-fine-group calculation. 



309 

 

By applying the new hybrid resonance treatment, various neutronics parameters 

such as reactivity, which is important for safety analysis, can accurately be predicted 

with short computation time. The predicted values obtained from the present method 

agree well with those from the continuous energy Monte-Carlo method, and the 

computation time of the present method is confirmed to be the practical level in LWR 

assembly calculations. 

 

(3) DEVELOPMENT OF GENERALIZED RESONANCE SELF-SHIELDING 

METHODOLOGY FOR INTRA-PELLET MULTI-REGION GEOMETRY AND 

NON-UNIFORM EFFECT BASED ON A UNIFIED THEORY (Chapter 4) 

The hybrid resonance treatment based on integration of the equivalence theory and 

the ultra-fine-group calculation can accurately generate effective cross-sections with 

short computation time for the extensive range of neutron spectrum conditions, as long 

as each fuel region within a fuel assembly is not sub-divided. This hybrid method 

cannot be applied to the fuel regions which are each sub-divided into the multiple 

regions. 

In this chapter, a new resonance treatment, which can be applied to the sub-divided 

regions, has successfully been developed by further incorporating the efficient treatment 

in the sub-group method into the hybrid resonance treatment developed in Chapter 3. 

In the new method, a concept of multi-stage neutron transport method generally 

adopted in the field of core nuclear design calculation is incorporated into the resonance 

calculation. From its concept, a two-step resonance calculation scheme is constructed by 
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combining the “simplified geometry + ultra-fine energy group” and “exact geometry + 

few energy group” calculation. 

In the 1st step calculation, the ultra-fine-group neutron fluxes are calculated for the 

simplified geometry, and the sub-group cross-sections are generated by using the flux as 

a collapsing weight. The sub-group structure is defined as a discrete energy range by 

considering the magnitude of resonance cross-section. 

Then in the 2nd step calculation, the sub-group neutron flux is calculated by using 

the sub-group cross-section in a fine geometry. Finally, the spatially-dependent effective 

cross-sections are generated by collapsing the sub-group cross-sections with the 

sub-group fluxes as a weight. 

The 1st step calculation corresponds to the hybrid method of “equivalence theory + 

ultra-fine-group calculation”, and the 2nd step calculation corresponds to the sub-group 

method, respectively. Therefore, a generalized resonance treatment is now established 

based on the unified theory of the conventional three methods. 

By comparison of the results by the present method with those by the continuous 

energy Monte-Carlo method, it is confirmed that the present method can accurately 

generate spatially-dependent effective cross-sections for radially sub-divided 

multi-region geometry within a fuel pellet. The accurate results are obtained, not only 

for the spatially flat fuel composition and temperature conditions, but also for the 

spatially dependent fuel composition and temperature conditions. 

Furthermore, it is also confirmed that the present method can accurately generate 

both radially and azimuthally dependent effective cross-sections, which has been 
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difficult for efficient treatment in the conventional methods. 

The present method can be applied, not only to the conventional lattice physics 

calculations for pin-cell or single fuel assembly geometry, but also to the multi-group 

heterogeneous transport calculations for multi-assembly or full core geometry with large 

and detailed spatial/energy resolutions. The present method has a potential to provide 

the accurate effective cross-section sets with practical computation time for such 

applications. 

 

As a result of the above technical achievements in the present study, several issues 

associated with the calculation accuracy and calculation efficiency is solved in the field 

of resonance calculation. Applicability of the new resonance self-shielding treatment to 

the LWR core analysis is confirmed. The verified performance of the new methodology 

for the calculation accuracy and efficiency is illustrated in Figure 5.1. The figure is 

made from Figure 1.15 with the typical verification results of Tables 4.6 and 4.8. 

 

For the development of the new resonance self-shielding methodology, treatment of 

generalized geometry is achieved through (1) and (3), and treatment of extensive 

neutron spectrum conditions is achieved through (2) and (3), respectively. From the 

achievements, the core analysis methodology is enhanced, and the advanced technology 

will contribute to the activities for improvement of nuclear power safety. 
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Figure 5.1 Verified performance of the new methodology for the calculation accuracy and efficiency. 
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5.2 Recommendations for Future Works 

In the present study, the fundamental applicability of the proposed resonance 

treatment is confirmed. In order to apply the present resonance treatment as the more 

practical one to the nuclear reactor core analysis, several technical issues should be 

addressed. The issues are summarized as five items, and are described as follows. 

 

(1) Improvement of macroscopic total cross-section points for one-group fixed source 

MOC calculation (related to Chapter 2) 

As described in Chapter 2, the present resonance treatment requires one-group fixed 

source MOC calculation for several macroscopic total cross-section points. As different 

from the conventional Dancoff method which requires the only one flux calculation 

against black limit condition, the present method executes multiple flux calculations. 

The number of flux calculations directly influences on the total computation time of 

the resonance calculation, thus the optimum selection of macroscopic cross-section 

conditions is desirable. The macroscopic cross-section values and their number of points 

should be selected from the view point of both calculation accuracy and efficiency. 

 

(2) Optimization of sub-group definition based on discrete energy structure (related to 

Chapter 4) 

Related to Chapter 4, the definition of sub-group energy structure directly influences 

on the prediction accuracy of effective cross-sections in the case of small number of 

sub-groups. Though the best definition of the structure in the present study is an equal 
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interval division for the logarithm of macroscopic absorption cross-section, the result is 

qualitatively obtained, and its theoretical background is not sufficient. 

From this view point, the theoretical foundation to define the best sub-group energy 

structure is desirable to reduce the number of sub-groups while keeping the sufficient 

accuracy of effective cross-sections. 

One of the ideas is to define the explicit sub-group energy structure so that the 

energy range within the target multi-group reproduces the band probability obtained 

from the fitting or moment method. 

 

(3) Simplification of calculation scheme for unified resonance treatment (related to 

Chapter 4) 

If a more simplified implementation of the unified resonance self-shielding 

treatment is desired for existing lattice physics code, several calculation steps can be 

replaced by the alternative approach. 

For example, generation scheme for rational coefficients can be replaced by the 

scheme based on the Carlvik’s two-term rational coefficients with correction of lattice 

effect proposed by Stamm’ler. In this case, only one transport calculation is required 

with the black limit condition, and non-linear least square fitting process can be 

removed. 

For another example, the calculation of non-fuel slowing-down term )(Eµ  can be 

removed if )(Eµ  is assumed to be unity, which is almost valid for normal operation 

condition of LWRs. On the basis of the above simplifications, prediction accuracy of the 
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ultra-fine-group flux may be worse than that by the original scheme. In such a situation, 

increasing the number of sub-groups is recommended to keep sufficient accuracy of 

effective cross-sections. 

 

(4) Application of faster calculation scheme on MOC transport calculation specified for 

one-group fixed source problem (related to Chapters 2, 3 and 4) 

The one-group fixed source calculation based on the MOC is utilized both for 

generation of rational coefficients in the energy-dependent flux (Chapters 2 and 3) and 

sub-group flux calculation (Chapter 4). Since the computational burden of these flux 

calculations is relatively high in the resonance calculation, the fast calculation scheme 

dedicated for a one-group fixed source problem is desirable. 

Since the neutron sources are not updated at all for the application to the resonance 

calculation, the dedicated programing of MOC flux solver specified for one-group fixed 

source calculation is an efficient approach to improve calculation efficiency. 

 

(5) Application of unified resonance treatment for eigenvalue problem on fuel assembly 

or full core geometries (related to Chapter 4) 

Though some of the present resonance treatments, i.e., equivalence theory based 

method (Chapter 2) and “equivalence theory + ultra-fine-group calculation” based 

hybrid method (Chapter 3), have been implemented to a lattice physics code, the final 

product of this study, i.e., the unified resonance treatment (Chapter 4), has not been 

implemented yet. 
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The application of the unified resonance treatment for eigenvalue problem on fuel 

assembly or full core geometries is desirable to demonstrate the influence on prediction 

accuracy for neutronics parameters. Therefore, the implementation of the unified 

resonance treatment for a core analysis code is an important issue. 

By applying the present resonance treatment, the heterogeneous region-wise 

effective cross-sections can be generated on detailed spatial resolution, both for single 

fuel assembly or full core level in principle. 

In these sophisticated modeling of nuclear reactors, the analysis of detailed 

phenomenon for neutronics (including the complicated depletion property), and some 

feedback effects, e.g., thermal-hydraulic and mechanical properties of fuel rods, will be 

possible. 
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APPENDIX 

 

A1 Sensitivity Analysis for Calculation Condition of a Unified Method 

In order to confirm the appropriateness of calculation conditions for the unified 

resonance treatment shown in Section 4.4.2, several sensitivity analyses are performed 

to confirm the variation of microscopic effective capture cross-sections of 238U: 

 

(i) Update for flux 

The effect of flux update described in Section 4.2.3 is shown in Figure A1. As 

shown in Figure A1, the differences of effective cross-sections without 2nd step 

calculation from the continuous energy Monte-Carlo results (MVP results) are 

efficiently reduced by the update scheme. This effect leads to the slight reduction of 

difference for final effective cross-section (1st + 2nd step calculation). 
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Figure A1 Effect of flux update on the difference of effective cross-sections ((a) 

Difference of effective cross-section (without 2nd step calculation) (b) Difference of 

effective cross-section (1st + 2nd step calculation)). 
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(ii)  Sub-group energy structure 

The sensitivities of the sub-group energy structure are investigated. The sub-group 

energy structure is determined by the following three candidates: 

 

(a) Equal division for continuous lethargy, 

(b) Equal division for macroscopic absorption cross-section, 

(c) Equal division for logarithm of macroscopic absorption cross-section. 

 

Definition (a) is a conventional multi-group approach and the sub-group energy 

structure is generated based on a continuous energy range. In contrast, Definitions (b) 

and (c) yield discrete energy group structure based on Equation (4.25). 

The differences of effective cross-sections from the MVP results are shown in 

Figure A2. As shown in Figure A2, Definition (c) shows the most accurate result. 

Definition (b) is better than (a), owing to the accuracy of sub-group cross-sections 

because the influence of ultra-fine-group flux error is mitigated (see Section 4.4.3.2). In 

this analysis, the numbers of ultra-fine-groups in each sub-group are (30, 15, 16, 20, 

319) for Definition (b), and (75, 36, 52, 132, 105) for Definition (c), in which the 

sub-group is numbered from the resonance peak range to the foot range. The number of 

ultra-fine-group groups is equally distributed in each sub-group in Definition (c) rather 

than (b). Therefore, (c) can utilize all the sub-group transport results more evenly and 

efficiently, and thus can improve the final accuracy of effective cross-sections. 
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Figure A2 Sensitivity of sub-group energy structure on the difference of effective 

cross-sections. 
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(iii)  Reference cross-section selection for sub-group definition 

The sensitivities of the reference macroscopic cross-section selection for sub-group 

definition in Equation (4.25) are investigated. The differences of effective cross-sections 

from the MVP results are shown in Figure A3. As shown in Figure A3, the difference is 

smaller for absorption cross-section than that for total cross-section, owing to the more 

direct reflection of resonance absorption information. As a result of the improvement for 

microscopic effective capture cross-sections of 238U, the accuracy of macroscopic total 

cross-section is also improved. 

 

 

 

Figure A3 Sensitivity of reference cross-section selection for sub-group definition on 

the difference of effective cross-sections. 
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(iv) Number of sub-group 

The sensitivities of the number of sub-groups are investigated. The differences of 

effective cross-sections from the MVP results are shown in Figure A4. As shown in 

Figure A4, the difference becomes smaller as the number of sub-groups increases. When 

the number of sub-groups is 5, the effective cross-sections are mostly converged to the 

finer results. 

 

 

 

Figure A4 Sensitivity of the number of sub-group on the difference of effective 

cross-sections. 
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(v) Scattering source treatment for ultra-fine-group flux calculation 

As shown in Section 4.4.3.3, the present method can obtain the accurate effective 

cross-sections. One of the important elements for its prediction accuracy is the 

energy-dependent scattering source treatment, which is carefully handled in Section 4.2 

from the viewpoint of both calculation accuracy and efficiency. In order to confirm the 

effect of an efficient scattering source treatment in the present method, the direct 

heterogeneous ultra-fine-group calculation with the scattering source based on the NR 

approximation is performed for comparison. 

The effect of energy-dependent scattering source treatment in Section 4.2 is shown 

in Figure A5. As shown in Figure A5, the differences of effective cross-sections from 

the MVP results are smaller for the present method than that for the direct 

heterogeneous ultra-fine-group calculation with the NR approximation. Therefore, the 

energy-dependent scattering source treatment is important for sufficient prediction 

accuracy. 

 

  



324 

 

 

 

 

Figure A5 Effect of energy-dependent scattering source treatment on the difference of 

effective cross-sections. 
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(vi) Selection of transport method for sub-group flux calculation 

The sensitivities of the transport method on the calculation result of sub-group flux 

are investigated. The differences of effective cross-sections from the MVP results are 

shown in Figure A6. As shown in Figure A6, both the collision probability method 

(one-dimensional cylindrical geometry with white boundary) and the MOC (exact 

two-dimensional geometry with reflective boundary) provide comparable results, at 

least for the radial multi-region system. 

 

 

 

Figure A6 Sensitivity of transport method for sub-group flux calculation on the 

difference of effective cross-sections. 
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A2 Azimuthally-Dependent Resonance Treatment Based on Equivalence Theory 

Another new resonance treatment for azimuthally-dependent self-shielding effect is 

derived as an extension of the conventional equivalence theory. In the conventional 

equivalence theory based on a multi-term rational equation with NR approximation, the 

flux for fuel region is written as: 
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In the present concept, the azimuthal dependence of flux is effectively incorporated by 

the chord length as follows: 

∑
= +Σ

+Σ
=

N

n neffi
f
t

neffi
f
p

ni lE

l

E
E

1 ,

,

)(

1
)(

α
α

βφ ,     (A2) 

where effil ,  is defined as “effective chord length” of sector region i  within a pellet. 

effil ,  incorporates the effect of difference for adjacent moderator region volume in each 

sector. 

In the black limit, i.e., a perfect neutron absorber assumption for fuel region 

consistent with Dancoff factor calculation, the total reaction-rate is converged as: 
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where )( f
ti Σφ  denotes lethargy-averaged neutron flux obtained from Equation A2. 

From Equation A3, effil ,  is derived as: 
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effil ,  can be generated by using )(lim f
ti

f
tf

t

ΣΣ
∞→Σ

φ  data obtained from one-group MOC 

fixed source calculation. 

As a natural extension of the conventional equivalence theory, the n -th background 

cross-section for resonance nuclide r  in sector region i  is written as: 
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By using Equation A5, the microscopic effective cross-section is generated based on 

multi-term rational equation. 

In a special case of one-term rational equation, i.e., 1=N , Equation A5 is 

simplified as: 
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where Equation A4 is used. The form of Equation A6 is consistent with the enhanced 

neutron current method, and therefore this treatment is an extended version of the 
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