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A B S T R A C T

Purpose
Acute lymphoblastic leukemia (ALL) makes up a significant proportion of all pediatric cancers, and
relapsed ALL is a leading cause of cancer-associated deaths in children. Identification of risk factors
and druggable molecular targets in ALL can lead to a better stratification of treatments and sub-
sequent improvement in prognosis.

Patients and Methods
We enrolled 59 children with relapsed or primary refractory ALLwhowere treated in our institutions.
We primarily performed RNA sequencing (RNA-seq) using patients’ leukemic cells to compre-
hensively detect gene fusions and analyze gene expression profiles. On the basis of results obtained
by RNA-seq, we performed genetic validation, functional analysis, and in vitro drug sensitivity testing
using patients’ samples and an exogenous expression model.

Results
We identified a total of 26 gene fusions in 22 patients by RNA-seq. Among these, 19 were non-
random gene fusions already described in ALL, and four of the remaining seven involved identical
combination of MEF2D and BCL9. All MEF2D-BCL9–positive patients had B-cell precursor immu-
nophenotype and were characterized as being older in age, being resistant to chemotherapy, having
very early relapse, and having leukemic blasts that mimic morphologically mature B-cell leukemia
with markedly high expression of HDAC9. Exogenous expression of MEF2D-BCL9 in a B-cell
precursor ALL cell line promoted cell growth, increased HDAC9 expression, and induced resistance
to dexamethasone. Using a primary culture of leukemic blasts from a patient, we identified several
molecular targeted drugs that conferred inhibitory effects in vitro.

Conclusion
A novel MEF2D-BCL9 fusion we identified characterizes a novel subset of pediatric ALL, predicts
poor prognosis, and may be a candidate for novel molecular targeting.

J Clin Oncol 34:3451-3459. © 2016 by American Society of Clinical Oncology

INTRODUCTION

Acute lymphoblastic leukemia (ALL) is the most
common hematologic malignancy in childhood.
ALL was originally classified into several subtypes
on the basis of morphologic findings and sur-
face protein markers reflecting cell lineage and
differentiation. In addition, its pathognomonic
molecular mechanisms include chromosomal copy
number aberration, chromosomal rearrangements,
and somatic point mutations, each of which pro-
vides better understanding of leukemia progression

and directs the therapeutic approach.1 Historical
and recent comprehensive genetic studies have
unraveled a list of druggable gene rearrange-
ments that activate kinase signaling, including
BCR-ABL1.2,3

A significant improvement in treatment
outcome in pediatric ALL was achieved by the
incorporation of precise risk stratification, com-
bined chemotherapy approaches, allogeneic he-
matopoietic stem cell transplantation (HSCT),
and, in BCR-ABL1–positive ALL, the clinical use
of tyrosine kinase inhibitors.2,4 The 5-year over-
all survival rate of childhood ALL has reached
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approximately 90% in developed countries.1,4 However, a con-
siderable number of patients still experience relapse, for which the
prognosis is often poor. To tackle current issues in ALL, we applied
comprehensive transcriptome analysis to patients with relapsed/
refractory ALL to identify genetic alterations that may contribute to
the improvement of treatment outcome.

In this study, we identified a novel gene fusion of MEF2D and
BCL9 recurrently in patients with B-cell precursor ALL (B-ALL). To
our knowledge, this is the first report that describes MEF2D-BCL9
fusion and its functional analysis in leukemic cells. We further
provide encouraging data indicating its potential for molecular
targeted therapies obtained by in vitro drug sensitivity testing.

PATIENTS AND METHODS

Patients
Fifty-nine children with relapsed (56 patients) or primary refractory

(three patients, all with Philadelphia chromosome [Ph1]) ALL who were
treated in Nagoya University Hospital or Japanese Red Cross Nagoya First
Hospital were included in this study. Among them, three patients were infants,
three had mature B-cell, and four had T-cell immunophenotype. Ph1 was
identified in six patients. Written informed consent was obtained from the
patients or the patients’ parents. The institutional review board of Nagoya
University Graduate School of Medicine approved this study. All patients were
primarily treated according to a Japanese protocol for pediatric ALL.5,6

Samples
We used cryopreserved mononuclear cells obtained from patients’

bone marrow or peripheral blood containing leukemic blasts. In 56

patients with relapse, the samples were obtained at the time of the first
relapse, except for three patients for whom they were not available. For
these three patients, we used the samples obtained at the time of the
second relapse. RNA and genomic DNA were extracted using RNeasy
Mini Kits (QIAGEN, Hilden, Germany) and QIAamp DNA Blood Mini
Kits (QIAGEN), respectively.

Polymerase Chain Reaction
Amplification of target regions containing break point of chromo-

somal structural variations from template genomic DNA was performed
using PrimeSTAR GXL DNA Polymerase (TaKaRa Bio, Ohtsu, Japan).
Primer sequences are listed in the Data Supplement.

RNA Sequencing
The quality of extracted RNAwas assessed using an RNA ScreenTape

and a TapeStation 2200 system (Agilent, Santa Clara, CA). Sequencing
libraries were prepared using a NEBNext Ultra RNA Prep Kit for Illumina
(New England Biolabs, Ipswich, MA) according to the manufacturer’s
instructions. Prepared libraries were run on a HiSeq 2500 next-generation
sequencing (NGS) platform (Illumina, San Diego, CA). Obtained reads
were analyzed using Tophat-fusion (for gene fusions),7 Cufflinks (for
expression analysis),8 DESeq2 (for differential expression),9 and VarScan2
(for nucleotide variations).10 Candidate gene fusions were validated
by reverse transcription–polymerase chain reaction (RT-PCR) using
a ThermoScript Reverse transcription system (Life Technologies,
Carlsbad, CA) and PrimeSTAR GXL DNA Polymerase.

Clustering Analysis
We used Cluster 3.0 to group samples by hierarchical clustering using

the average linkage method.11 Fragments per kilobase of transcript per
million mapped reads values for each gene in each sample were log
transformed, and the values were adjusted to center the genes relative to
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Fig 1. Clinical features and fusion genes identified in each patient with acute leukemia analyzed by RNA sequencing. Each column indicates an individual patient. NCI,
National Cancer Institute.
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medians. We used both Spearman and Pearson’s correlation methods.
Clustering results were visualized with Java TreeView.12

Real-Time Quantitative PCR
Real-time quantitative PCR was performed using Mastermix, probes

(cat no. 4331182) and machine ABI PRISM 7000 sequence system (all
obtained from Life Technologies). The obtained data were analyzed by ABI
Prism 7000 SDS Software. Data were normalized to the expression level in
NALM-6 cells (MEF2D-BCL9–negative B-ALL cell line).

Whole-Exome Sequencing
Sequencing libraries were prepared using a SureSelect XT target

enrichment system and SureSelect Human All Exon v5 bait (Agilent)
according to the manufacturer’s instructions. The prepared libraries were
run on a HiSeq 2500 (Illumina). Sequences were aligned to the hg19
reference genome using Burrows-Wheeler aligner (http://bio-bwa.
sourceforge.net/) with a-mem option. PCR duplicates were removed
using Picard tools (http://broadinstitute.github.io/picard/). Sequence
variations were detected using VarScan2.

For germline variations, common single-nucleotide polymorphisms
with . 1% allele frequency defined by ExAC (http://exac.broadinstitute.
org/), 1000 genomes (http://www.1000genomes.org/), and ESP6500
(http://evs.gs.washington.edu/EVS/) were removed. Of the remaining
variants, those with inactivating effects (nonsense, frameshift, or splice
site) or pathogenicity reported in the literature were searched using the
Human Genome Mutation Database (http://www.hgmd.cf.ac.uk/) and
extensive search of existing literature. Genetic diagnoses were considered
on the basis of the mode of inheritance in each disease.

For somatic mutations, candidates with P , .01 were validated by
PCR-based deep sequencing of samples at diagnosis, complete remission,
and relapse. The sequences of primers are available on request. For copy
number analysis, sequence reads normalized for the mean coverage of each

sample were compared between paired tumor-normal samples. An esti-
mated copy number was simply calculated as 2 3 (normalized read
number in tumor sample)/(normalized read number in normal sample).

Immunofluorescent Analysis
Cells (5 3 104) were suspended in 500 mL of 1% fetal bovine serum

(FBS; Sigma-Aldrich, St. Louis, MO) –supplemented phosphate-buffered
saline (PBS; Life Technologies) and attached to a slide glass using Cyto-
spin4 (Thermo Fisher Scientific, Waltham, MA) at 1,000 rpm for
5 minutes. The cells were then fixed using 4% paraformaldehyde dissolved
in PBS for 15 minutes at room temperature, washed with PBS three times,
and blocked in 1% FBS and 0.3% Triton X-100 for 60 minutes at room
temperature. The cells were then incubated with an anti-PTPRZ1 antibody
(HPA015103, Sigma-Aldrich; 1:100 dilution) overnight at 4°C, followed by
staining with Alexa Fluor 488-conjugated goat anti-rabbit IgG antibody
(Thermo Fisher Scientific) for 120 minutes at room temperature. Cells
were also stained with 4,6-diamidino-2-phenylindole. Microscopic images
were obtained using an FSX100 (Olympus, Tokyo, Japan).

Establishment of Primary Cultured Cells
Patients’ peripheral blood mononuclear cells containing leukemic

blasts were cultured in RPMI1640 medium (Life Technologies) supple-
mented with 10% FBS. Half of the medium was replaced every 4 days over
6 weeks. After establishment of stably expanding cells, cells were main-
tained at a concentration of 0.2 to 1 3 106 cells/mL.

Establishment of MEF2D-BCL9–Transfected Cell Line
TheMEF2D-BCL9 complete coding sequence was cloned into CSIV-

CMV-MCS-IRES2-Venus, a self-inactivating lentiviral vector construct
(which was a generous gift from Dr. Hiroki Miyoshi, Riken BioResource
Center). HEK293T cells were transfected with the above-mentioned vector
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Fig 2. Genetic architecture ofMEF2D-BCL9
fusion. (A) Location of MEF2D and BCL9 in
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plasmid, the packaging plasmid (pCAG-HIVgp), and the VSV-G– and
Rev-expressing plasmid (pCMV-VSV-G-RSV-Rev) using ScreenFect A
(Wako Pure Chemical Industries, Osaka, Japan). The medium was re-
moved 16 hours later and the cells were incubated with complete
RPMI1640 medium containing 10 mM forskolin for 48 hours. The su-
pernatant was filtered through a 0.45-mm filter, and 1 3 106 NALM-6
cells were incubated with 2 mL of the supernatant. Venus-positive cells
were selected 5 days later using a FACSAria2 (BD Biosciences, Franklin
Lakes, NJ).

In Vitro Drug Sensitivity Testing
For the testing of cell lines and leukemic blasts, cells were cultured in

RPMI1640 medium supplemented with 20% FBS at a cell density of 1.25 3
105 cells/mL. Dexamethasone sodium phosphate (Wako Pure Chemical In-
dustries), vorinostat (Cayman Chemical, Ann Arbor, MI), quisinostat (Selleck
Chemicals, Houston, TX), and bortezomib (Selleck Chemicals) dissolved in
dimethylsulfoxide were added to the culture at the indicated concentrations.
Cells were harvested 48 hours later and stained with fluorescein isothiocyanate
or allophycocyanin-conjugated antiannexin-Vantibody (MBL, Nagoya, Japan)
and 7-amino-actinomycin D (Beckman Coulter, Brea, CA) and measured
using a FACSCalibur flow cytometer (BD Biosciences).

Minimal Residual Disease Detection
We measured minimal residual disease using an NGS-based method.

Briefly, PCR amplification of the IGH locus complementarity-determining
region 3 (CDR3) was performed essentially as described.13,14 A total of
3,200 ng of genomic DNAwas mixed in a 100:1 ratio with spike-in reference
DNA containing a known CDR3 sequence. The prepared DNA was then
amplified using multiplexed primers and PrimeSTARGXL DNA Polymerase
(Takara Bio). All sequence data obtained byNGSwere evaluated using IMGT
V-QUEST software.15,16 The sequences of primers are available on request.

Statistical Analysis
The probability of overall survival (OS) and event-free survival (EFS)

was calculated from first relapse (for EFS, second relapse, secondary ma-
lignant neoplasm, and death with any cause were censored as events) using
the Kaplan-Meier method. Differences between the two groups were cal-
culated using log-rank tests at 5 years from first relapse. All P values reported
are two sided, and P values , .05 were considered significant. All statistical
analyses were performed using EZR (Saitama Medical Center, Jichi Medical
University, Saitama, Japan), which is a graphical user interface for R (The R
Foundation for Statistical Computing, Vienna, Austria).17

RESULTS

We performed RNA-sequencing (RNA-seq) in 59 children with
relapsed or primary refractory ALL, including three infant patients,
three with mature B-cell leukemia, and four with T-cell immu-
nophenotype ALL (Fig 1; Data Supplement). We identified a total
of 26 gene fusions in 22 patients. Among these gene fusions, 19
were nonrandom gene fusions already described in ALL, including
ETV6-RUNX1, TCF3-PBX1, BCR-ABL1,MLL-AFF1,MLL-MLLT3,
P2RY8-CRLF2, NUP214-ABL1, and PAX5-NOL4L. Interestingly,
four of the remaining seven in-frame fusions involved identical
combination of MEF2D and BCL9 (Fig 1; Data Supplement).

MEF2D and BCL9 are located on chromosome regions 1q22
and 1q21.2, respectively. The distance between these two genes is
approximately 9 Mb, which is too small for chromosomal aber-
rations to be detected by G-banding (Fig 2A; Data Supplement).
We identified break points on chromosome 1 by direct sequencing
based on genomic DNA and confirmed that inversion in this

chromosomal region resulted in this fusion (Fig 2B). The product
generated by in-frame fusion ofMEF2D and BCL9 had a length of
573 to 653 amino acids, which contained N-terminal domains
derived from MEF2D and C-terminal peptides without reported
functional domains derived fromBCL9 (Fig 2C). The expression of
MEF2D-BCL9 was detectable both at the time of diagnosis and at
relapse (Data Supplement). BCL9-MEF2D was undetectable in
these four patients (data not shown).

All four patients with MEF2D-BCL9 fusion had similar
clinical characteristics, including age 10 years or older (range, 10 to
13 years), a diagnosis of B-ALL on the basis of a CD19+ CD202

HLA-DR+ immunophenotype, very early relapse, and uniform
morphologic findings characterized by large, densely basophilic,
and heavily vacuolated leukemic blasts, mimicking those of mature
B-cell leukemia (Fig 3; Data Supplement). Minimal residual disease
was detectable in three of four patients either at day 15 or the end of
induction therapy (Data Supplement). They died despite several
courses of intensified chemotherapy and allogeneic HSCT (case
reports in Data Supplement). Although the number of patients
with this fusion gene was limited, OS and EFS after relapse were
significantly inferior in four patients with MEF2D-BCL9 fusion
than in other patients (5-year OS, 0%; 95% CI, 0 to 0%; v 5-year
OS, 54.5%; 95% CI, 36.9 to 69.0%; P , .001; and 5-year EFS, 0%;
95% CI, 0 to 0%; v 5-year EFS, 49.3%; 95% CI, 32.7 to 64.0%; P ,
.001; Data Supplement). We screened this fusion gene among the
other 115 patients without relapse (85 B-ALL, 16 T-cell ALL, 12
acute myeloid leukemia, two mixed lineage leukemia) by RT-PCR
and genomic PCR; however, we did not detect MEF2D-BCL9 in
this nonrelapse cohort.

We performed whole-exome sequencing of paired tumor-
normal samples within the four patients with MEF2D-BCL9 fu-
sion (Fig 4; Data Supplement). We did not detect any germline
variations that were diagnostic of inherited blood disorders or
predisposition to cancer. We detected a total of 41 somatic

Patient 5 Patient 8

Patient 21 Patient 29

× 1,000

Fig 3. Morphology of leukemic blasts in patients with MEF2D-BCL9. May-
Grunwald-Giemsa stain of bone marrow smears at relapse in each MEF2D-
BCL9–positive patient (patients 5, 8, 21, and 29).
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mutations, of which 31 were specific to relapse phase. There was no
obvious driver mutation within mutations detectable at diagnosis,
whereas relapse-specific mutations contained driver somatic al-
terations, including TP53, KMT2D, ASXL1, and IKZF1mutations.
Every patient carried at least one relapse-specific somatic mutation
that suggested clonal evolution during therapy.

Expression profiles of leukemic blasts with MEF2D-BCL9
were assessed by clustering analysis (Data Supplement). Blasts with
MEF2D-BCL9 grouped into a compact cluster distinguishable from
those with ETV6-RUNX1, TCF3-PBX1, or BCR-ABL1 (Data
Supplement). The top three differentially expressed genes were
HDAC9, PTPRZ1, and DPYSL4 (Data Supplement). HDAC9 is
a class IIA histone deacetylase (HDAC), and its high expression has
been reported to predict poor prognosis in several cancers, in-
cluding ALL.18,19 We confirmed increased expression of HDAC9 in
blasts with MEF2D-BCL9 compared with those without MEF2D-
BCL9 by quantitative RT-PCR (Data Supplement). PTPRZ1 en-
codes a membrane-bound protein tyrosine phosphatase. Its
expression is restricted to the CNS, although aberrantly high
expression has been reported in several cancers.20,21 We confirmed
the protein expression of PTPRZ1 by immunostaining (Data
Supplement). DPYSL3, a member of DPYSL4, is strongly upre-
gulated byHLF, a transcription factor involved in TCF3-HLF fusion
and associated with poor prognosis.22 Markedly low CDKN2A

expression levels were observed, resulting from copy number
aberrations affecting this gene (Data Supplement).

NALM-6 cells exogenously overexpressing MEF2D-BCL9
showed increased growth rate by 17% at 48 hours compared
with mock control in vitro (Fig 5A). This cell line showed
resistance to dexamethasone, one of the key drugs in the
treatment of ALL (Fig 5B). High expression of HDAC9 in
MEF2D-BCL9–transduced cells was confirmed by quantita-
tive RT-PCR (Fig 5C). Several other genes that showed
strong differential expression in MEF2D-BCL9–positive pa-
tient samples were also upregulated in MEF2D-BCL9–
transduced NALM-6 cells (Data Supplement). These findings
suggest that this fusion gene is a driver gene and that some pro-
portion of phenotypes observed in MEF2D-BCL9–positive patients
were a result of this gene fusion.

We were able to establish a primary culture of leukemic blasts
harboring MEF2D-BCL9. Therefore, we performed in vitro assays
using these cells to test sensitivity to several anticancer drugs.
Although dexamethasone had no inhibitory effect on cell growth,
two HDAC inhibitors, vorinostat and quisinostat, showed in-
hibitory activities to cultured leukemic cells at therapeutic con-
centration (Figs 6A–6C).23,24 Bortezomib, a proteasome inhibitor
expected to be potent against refractory B-ALL, also showed in-
hibitory activity in vitro (Fig 6D).25
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DISCUSSION

A current focus in ALL research is the discovery of genetic lesions
that provide prognostic implications and novel therapeutic ap-
proaches. One of the most important discoveries in recent years has
been the identification of Ph1-like ALL and druggable kinase le-
sions,26 including NUP214-ABL1 fusion detected in one of our
patients. In this study, we also identified a novel gene fusion of
MEF2D and BCL9 recurrently in four patients with B-ALL, which
indicated dismal prognosis. Patients with MEF2D-BCL9 formed
a subset in our B-ALL cohort on the basis of unique characteristics,
which included older age, a leukemic blast morphology mimicking
mature B-cell leukemia, and distinct expression profiles.

Neither MEF2D nor BCL9 is well documented in the context
of ALL. MEF2D encodes a ubiquitously expressed transcription
factor originally identified as a major transcriptional activator for
muscle differentiation.27 However, the regulatory role of MEF2
proteins has also been associated with other types of cells, in-
cluding hematopoietic differentiation.28 A homo- or heterodimer
form of MEF2 binds to specific DNA-binding sequence through
the MADS and MEF2 domains and, with the activation signals,

facilitates target gene transcription. Retroviral insertional analysis in
a murine model identified MEF2D as a candidate gene involved in
leukemogenesis.29 BCL9 is also a transcription factor and a nuclear
component of the Wnt signaling cascade, first identified through
cloning the (1;14)(q21;q32) translocation from a patient with
B-ALL.30 This genewas associated withWnt/b-catenin signaling and
has an HD2 domain required for interaction with b-catenin in its
N terminus. However, this domainwas truncated in theMEF2D-BCL9
fusion we identified. BCL9 is overexpressed in several types of human
cancer and can promote tumor progression,31,32 although its signifi-
cance in ALL is not studied well.

We hypothesize that MEF2D-BCL9 is a primary genetic event
that establishes a leukemic cell, because this fusion product was
detectable at the time of diagnosis, whereas other founder mu-
tations or recurrent genetic events were absent. The small number
of somatic mutations in whole-exome sequencing also supports
this. As previously reported inMEF2D-DAZAP1 fusion in the TS-2
B-ALL cell line, retained MADS and MEF2 domains might play
a key role in leukemogenesis by enhancing transcriptional activity
of MEF2D.33-35 However, to confirm this hypothesis, further ac-
cumulation and genetic study of patient samples are required.
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sitivity to dexamethasone. Cells were cul-
tured with the indicated concentrations of
dexamethasone and viability was measured
48 hours later. Data are presented as per-
centages of dimethylsulfoxide (DMSO)
control and depict the mean 6 standard
deviation. (C) HDAC9 expression in NALM-6
cells with or without MEF2D-BCL9.
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Although four patients with MEF2D-BCL9 were categorized
as high risk by the National Cancer Institute–Rome risk classifi-
cation, they were not indicative of HSCT during their first
complete remission. Our study identified MEF2D-BCL9 as
a marker of dismal prognosis, possibly calling for more intensified
and earlier treatment. In vitro assays suggest that the leukemic cells
with MEF2D-BCL9 showed sensitivity to several molecular tar-
geted drugs, such as vorinostat and bortezomib, possibly providing
a treatment option in these patients.23,25 Clinical trials for the
detection of this fusion gene along with subsequent intensified
therapy or incorporation of targeted therapies are required to
confirm our findings. Mature B-cell leukemia-like morphology

would help the detection of this fusion gene and facilitate sub-
sequent clinical trials.

In conclusion, to our knowledge, we have identified a pre-
viously unknown genetic fusion event, which characterizes
a novel subset of pediatric B-ALL. MEF2D-BCL9 explained
a considerable proportion of patients with relapse and conferred
dismal prognosis. Identification of this gene fusion at diagnosis
might provide a diagnostic marker indicating a high risk of
treatment failure. Prospective clinical trials investigating com-
binatorial approaches of molecular targeted therapies with
current chemotherapies are warranted for the treatment of this
intractable disease.

20

40

60

80

100

0 0.5 1 2.5 5 10

Vorinostat (μM)

B

20

40

60

80

100

0 0.5 2.5 10

Dexamethasone (μM)

A
Ce

ll 
Vi

ab
ili

ty
 (%

 o
f D

M
SO

 c
on

tro
l)

20

40

60

80

100

0 10 25 50 100

C

Quisinostat (nM)

20

40

60

80

100

0 5 10 25 50

Bortezomib (nM)

D

Ce
ll 

Vi
ab

ili
ty

 (%
 o

f D
M

SO
 c

on
tro

l)

Ce
ll 

Vi
ab

ili
ty

 (%
 o

f D
M

SO
 c

on
tro

l)
Ce

ll 
Vi

ab
ili

ty
 (%

 o
f D

M
SO

 c
on

tro
l)

NALM-6

MEF2D-BCL9−positive
primary culture cell

KOPN-30bi

NALM-6

MEF2D-BCL9−positive
primary culture cell

KOPN-30bi

NALM-6

MEF2D-BCL9−positive
primary culture cell

KOPN-30bi

NALM-6

MEF2D-BCL9−positive
primary culture cell

KOPN-30bi

Fig 6. In vitro drug sensitivity. (A) Dexa-
methasone, (B) vorinostat, (C) quisinostat,
(D) bortezomib. Acute lymphoblastic leuke-
mia cell lines (NALM-6, KOPN-30bi) and pri-
mary cultured cells established from patient
21 were cultured with the indicated concen-
trations of anticancer drugs, and viability was
measured at 48 hours. Data are presented as
percentages of dimethylsulfoxide (DMSO)
control and depict the mean 6 standard
deviation.
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