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1 Introduction

As its name suggests, the sphere spectrum S stems from geometry. It was

originally defined as a certain sequence of spheres and homeomorphisms,

and the theory of spectra began with it. In the eighties, Waldhausen realized

that S should be considered as a ring deeper than Z, that spectra should be

viewed as generalized abelian groups, and that ring spectra should be viewed

as generalized rings. It is fair to say that that was the starting point for the

theory of so-called brave new rings. Over the last couples of decades, many

topologists have been studying these (for instance, [GoHo], [HHR], [Lurie],

[Goodwillie2], [Waldhausen]). This thesis joins the sequence of such quests.

In the nineties, nice symmetric monoidal products of spectra were found

([EKMM], [HSS], [Lydakis]). With respect to the symmetric monoidal prod-

ucts, the Eilenberg-MacLane functor sends rings to monoid objects in spec-

tra, which are called ring spectra. Therefore ring spectra literally turned to

be viewed as generalized rings. The focus of this thesis will be on various

homology theories of those generalized rings such as topological Hochschild

homology THH, topological cyclic homology TC, and periodic topological

cyclic homology TP. They can be studied for instance in relation to alge-

braic K-theory with trace methods via the following diagram ([NS], [DGM]),

K // TC //

$$H
HH

HH
HH

HH
TP

THH .

It is safe to say that mathematicians have thought that algebraic K-theory

deserves to be considered as a significant object in many branches of math-

ematics. However, usually it is very difficult to compute, and in some cases
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calculations of the homology theories mentioned above are comparatively

easier. Moreover, in some cases, relative and birelative K and TC coincide.

In this sense, such theories have contributed to our understanding of alge-

braic K-theory. One of our main results needs this coincidence of K and

TC.

On the other hand, they are important in their own right especially from

the view point of p-adic Hodge theory. By Connes’ theory of cyclic objects,

THH has a canonical action by the circle group T, which is necessary for

the theory of cyclotomic spectra. Hesselholt and Madsen have proven that,

using the theory of cyclotomic spectra (which has been reinterpreted in [NS]

recently via (∞, 1)-category theory), the 0-th stable homotopy group (which

is actually a ring in this case) of fixed points of the subgroup Cpn ⊂ T of order

pn of a commutative ring A is isomorphic to the ring of p-typical n-length

Witt vectors of the commutative ring,

π0(THH(A)
Cpn ) ∼= Wp,n(A).

Furthermore, this ring isomorphism is compatible with structure maps, Ver-

schiebung, Frobenius and restriction, which we will review in section 4. It is

fair to say that this theorem triggered the growing theory of the connection

between p-adic Hodge theory and stable homotopy theory ([BMS2], [NS],

[Hesselholt2], [HM4]).

In the spirit of this connection, we show the following two results as our

main theorems in section 5. The first result shows that periodic topological

cyclic homology TP is not nil-invariant. That is, there is a ring R and a

nilpotent ideal I such that the canonical map R → R/I does not induce an
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equivalence on TP. We actually show that the map

TP(Fp[x]/(x
k)) → TP(Fp)

induced by the canonical projection is not an isomorphism for any prime

number p and any natural number k greater than 1, even after inverting p.

We remark that [BlMa] and [AMN] have shown that TP behaves very well on

dg categories smooth and proper over a perfect field of positive characteristic.

More precisely, it satisfies the Künneth formula on those objects. We also

note that Hesselholt gives an interpretation of certain zeta functions by TP

in [Hesselholt2]. In this way TP originating from stable homotopy theory

contributes to arithmetic geometry and number theory. Our result shows

one of its fundamental properties, which says TP can distinguish points and

fat points. The second result evaluates, in terms of Verschiebung maps in

THH, the maps of relative algebraic K-groups

K∗(A[x]/(x
m), (x)) → K∗(A[x]/(x

nm), (x))

induced by the substitution of xn for x. For A a regular Fp-algebra, the maps

can be further expressed in terms of Verschiebung maps of big de Rham-Witt

groups using the translation between THH and de Rham-Witt complexes due

to Hesselholt. Taking the colimit along maps defined above for A a perfect

field of characteristic p > 0, we give a calculation of the relative algebraic K-

groups of OK/pOK for various perfectoid fields K, including K = Qp(p
1/p∞)∧

and K = Qp(ζp∞)∧. There is no stable homotopy theory in their statements

of these results, although it is needed in their proofs. In this way, number

theory has been helped by the theory of ring spectra.

This fruitful chemistry that might integrate homotopy theory and arith-
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metic geometry should be interpreted from a combinatorial or discrete frame-

work. This idea is due to [CC] and [Connes]. As we will see in section 2,

S can be defined as the inclusion functor from (a skeleton of) the category

of pointed finite sets and pointed maps to that of pointed sets and pointed

maps. In order to define S in this fashion, we do not use any homotopy

theory. We will also see that, using Segal’s Γ-sets ([CC], [Segal]) and the

Eilenberg-MacLane functor, S is indeed a deeper base than N. In this way,

we shall have the following diagram of numbers in the category of Γ-sets;

... Zp
... Fp ...

... Q≥0 Z

?????????

��������
B ...

N

BBBBBBBB

��������

S .

Moreover, Borger recently established the theory of Witt vectors for com-

mutative semirings using plethystic algebra ([Borger2], [BW]). It may be

reasonably expected that there should be the theory of semiring spectra ac-

cording to Hesselholt-Madsen’s theorem and Connes-Consani’s philosophy,

which has not yet been well studied. If we could extend the theorem to com-

mutative semirings, it would be the trigger for a new geometry. That is to

say, S has been playing an important role for a certain geometry of gener-

alized Z-algebras and is probably ready for a new geometry of generalized

N-algebras, which the final section of this thesis is about. This is the reason

why our observations, which are hopefully not laden by the usual homotopy
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theory pretty much, are made.

This thesis is organized as follows. Sections 2, 3 and 4 are preliminary

parts. In those sections, we review some basic facts to explain how our con-

tributions appear in the sequence of studies mentioned above. We do not give

their proofs. In section 2, we will review Γ-sets following Connes-Consani’s

paper ([CC]). We fix a skeleton Γop of the category of pointed finite sets and

pointed maps and define a Γ-set to be a pointed functor from Γop to the cate-

gory Set∗ of pointed sets and pointed maps. The category ModS of Γ-sets has

a symmetric monoidal structure defined by a Day convolution whose unit is

S and admits a fully faithful functor H, called the Eilenberg-MacLane func-

tor, from the category ModN of commutative monoids. We will especially

focus on how the symmetric monoidal structures and H are related to get

the diagram of numbers above.

In section 3, we will review the theory of Γ-spaces (i.e. simplicial objects in

Γ-sets) and the theory of spectra. The category Γ-Sp of Γ-spaces still has a

symmetric monoidal structure defined as a Day convolution again. Further-

more it admits a model structure which is compatible with said symmetric

monoidal structure ([Lydakis]). In effect, Γ-Sp gives a model of connective

spectra which are equivalent to localized symmetric monoidal categories in

the sense of Thomason [Thomason]. After reviewing connective spectra, we

will also review (non-connective) spectra by symmetric spectra. Some facts

on stable homotopy theory are mentioned as well in order to define the ho-

mology theories used for our main results.

In section 4, we will review topological Hochschild homology THH and

some variants thereof. In order to show the meanings of our main theorems,

some famous results will be explained, such as the relation proved by Hessel-
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holt between THH and the de Rham Witt complexes. Although the theory

of cyclotomic spectra is essential, we do not step into the deep theory for

simplicity.

In section 5, our main two results explained above will be shown. We

remark that we focus on Γ-sets because that category is where S lives. We

do need non-connective spectra to study TP for instance.

In the final section, there will be some observations on commutative semir-

ings and homotopy theory as suggestions for future work. We do not have

theorems, but pose some questions.
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2 Modules and algebras over S

We start with the combinatorial framework for modules and algebras over

the sphere spectrum given by [CC]. In this section, we collect basic notions

about it. Throughout this thesis the set of natural numbers contains 0.

2.1 The sphere spectrum and smash product

In this section, we recall Connes-Consani’s study ([CC]) of the sphere spec-

trum, which is the central object for this thesis. They pointed out that the

category of Γ-sets, which are discrete spectra in a certain sense, is an appro-

priate category to study algebras. Although they also study hyper algebras,

we focus on N-algebras via the Eilenberg-MacLane functor, which originates

in algebraic topology.

Definition 2.1 ([Segal], [CC]). Γop is the category whose objects are the

finite pointed sets n+ := {0, 1, ..., n} with the base point 0 for every n ∈ N

and whose morphisms are pointed maps.

The category has been considered by many topologists when studying

infinite loop spaces, topological abelian groups, and operations on homology

theories. However, as mentioned above, we are concerned only with the

discrete ones in this section.

Definition 2.2 ([Segal], [CC]). A Γ-set is a functor X from Γop to the

category Set∗ of pointed sets and pointed maps such that X(0+) is one-point

set. The category of Γ-sets and natural transformations is denoted by ModS.

This is our main object in this section and we reach the following example.

Example 2.3. The inclusion functor from Γop to Set∗ is called the sphere

spectrum and denoted by S.
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The category ModS has a symmetric monoidal product ⊗S called smash

product with S as unit. To define it, we write ∧ for the smash product of

pointed sets. Note that n+ ∧m+ = nm+.

Definition 2.4 ([Day], [Lydakis]). Let X, Y be Γ-sets. The smash product

X ⊗S Y of X and Y is the left Kan extension of the following diagram

Γop

X⊗SY

((R
RRRRRRR

Γop × Γop

∧

OO

X(−)∧Y (−)
// Set∗,

where X(−) ∧ Y (−) denotes the piecewise smash product in Set∗.

Let X, Y be Γ-sets. The internal Hom in Γ-sets, Γ(X,Y ), is defined by:

Γ(X,Y )(n+) := HomModS(X, Y (− ∧ n+)),

where Y (− ∧ n+) the Γ-set given by

Y (− ∧ n+)(m+) = Y (mn+)

and HomModS(X, Y (− ∧ n+)) is the set of morphisms of Γ-sets.

Lemma 2.5 ([CC], [Lydakis]). The above constructions (−) ⊗S (−) and

Γ(−,−) induce an adjunction on ModS.

For every n+, we let Γn denote the Γ-set represented by n+, namely,

Γn(m+) = HomΓop(n+,m+). So S = Γ1. We get the following.

Lemma 2.6 ([Lydakis], Proposition 2.15). Γn ⊗S Γ
m is canonically isomor-

phic to Γnm. In particular, S ⊗S Γ
n is canonically isomorphic to Γn for any

n+.

12



Using these lemmas, we can define a closed symmetric monoidal structure.

Omitting some of the structures, we have the folowing.

Theorem 2.7 ([Lydakis]). The triple (ModS,⊗S,S) is a closed symmetric

monoidal category.

Therefore, we can talk about monoid objects in (ModS,⊗S,S), which

we call S-algebras, and study them in the next section. The category of

S-algebras and S-algebra morphisms is denoted by AlgS.

From now on, we recall a relation between ModS and symmetric monoidal

categories. In order for that, we recall special and very special Γ-sets. We

need the following maps of Γ-sets to define them: s : 2+ → 1+ with s−1(1) =

{1, 2} and, for any n+ and i ∈ n+, pi : n+ → 1+ with p−1
i (1) = {i}.

Definition 2.8 ([CC], [Segal]). Let X be a Γ-set. We say that X is special

if the map ∏
i

pi : X(n+) →
∏
i

X(1+)

is a bijection.

If a Γ-set X is special, then the composite

X(1+)×X(1+)
(p1,p2)−1

−−−−−→ X(2+)
s−→ X(1+)

defines a commutative monoid structure on X(1+).

Definition 2.9. A special Γ-set X is very special if the commutative monoid

structure on X(1+) is a commutative group structure.

This condition, called the Segal condition, plays a role in stable homotopy

theory. As we will see in the next chapter, it is known that objects in the
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stable homotopy category of Γ-spaces have to be very special in a certain

sense ([DGM, Corollary 2.2.1.7]).

Segal constructed a functor called Segal’s K-theory or direct sum K-

theory. The explicit construction of that is written in for example [DGM,

2.3]. Let (C,⊗, u) be a symmetric monoidal category. For k+ ∈ Γop, we

define a category K̃(C)(k+). An object (a, α) ∈ K̃(C)(k+) consists of the

following data:

A function a : P({1, ..., k}) → C from the power set of {1, ..., k} to C and a

collection α of maps αS,T : aS⊗aT → aS⊔T in C for pairs S, T ∈ P({1, ..., k})
such that a∅ = u and αS,∅ and α∅,S are the structure maps subject to the

evident associativity and commutativity conditions.

A morphism f : (a, α) → (b, β) ∈ K̃(C)(k+) is a family of morphisms

fS : aS → bS such that f∅ = idu and fS⊔T ◦ αS,T = βS,T ◦ (fS ⊗ fT ). For

a map θ : k+ → l+ ∈ Γop, the induced map θ∗ : K̃(C)(k+) → K̃(C)(l+) is

θ−1 : P({1, ..., l}) → P({1, ..., k}).
The construction defines a functor

K̃ : SymMonCat → SpecialΓ-Cat,

where SpecialΓ-Cat is the category of Γ-objects in the category Cat of cate-

gories which is special in the obvious sense. This functor K̃ is used for the

famous theorem of Thomason [Thomason] which says the homotopy theories

of symmetric monoidal categories and connective spectra are equivalent. We

will review it later.

Remark 2.10. Quillen proved that K̃ of the symmetric monoidal category

of finite rank projective modules over a commutative ring R gives a model

for the algebraic K-theory of R. See [Mandell].
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One of the motivations of introducing Γ-objects is to manipulate symmet-

ric monoidal objects systematically ([Segal]). In this section we learn that the

sphere spectrum S inhabits Γ-objects in sets and furthermore that it is the

unit object of the closed symmetric monoidal category. The author thinks

that sets is a fundamental object and it is reasonable to view S as a fun-

damental symmetric monoidal object as well. In the next section, we focus

on commutative monoids that are discrete symmetric monoidal categories in

the usual sense.

2.2 Eilenberg-MacLane spectra

Let us write ModN for the category of abelian monoids and additive mor-

phisms. This category admits the symmetric monoidal structure which we

denote by (ModN,⊗N,N) ([Borger2]). We now consider the two symmet-

ric monoidal categories (ModN,⊗N,N) and (ModS,⊗S,S) via the following

functor.

Definition 2.11 ([CC], [DGM]). Eilenberg-MacLane functor H : ModN →
ModS is given by

M ∈ ModN, HM(k+) := M×k,

f : n+ → m+ ∈ Γop, HM(f) : HM(m+) → HM(n+),

HM(f)(ϕ)i =
∑

j∈f−1(i)

ϕj,

where ϕj is the j-th factor of ϕ ∈ M×n.

If a commutative monoid M is viewed as a discrete symmetric monoidal

category, then its Eilenberg-MacLane spectrum HM and K̃(M) coincide, up

to canonical isomorphism.
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By construction, we have the following.

Proposition 2.12. For a commutative monoid M , the Eilenberg-MacLane

object HM is a special Γ-set. For a commutative group G, the Eilenberg-

MacLane object HG is a very special Γ-set.

As we will see later, the objects that stable homotopy theory can study

are very special. Therefore we are unable to study monoids with stable

homotopy theory via Eilenberg-MacLane functor. Also, by definition, we

have the following.

Proposition 2.13. For A and B ∈ ModN, H(ModN(A,B)) ∼= Γ(HA,HB),

where ModN(A,B) denotes the hom-monoid.

By construction, H is fully faithful and, by the universality of the left

Kan extension, it is lax monoidal with respect to above symmetric monidal

structures ⊗S and ⊗N. Moreover, by abstract nonsense, it has a left adjoint,

which we denote by (−)⊗SN. Connes and Consani have proved the following

theorem.

Theorem 2.14 ([CC]). The Eilenberg-MacLane functor induces a fully faith-

ful functor H : AlgN → AlgS.

This theorem suggests that it may be reasonable to study N-algebras and

commutative monoids via H in ModS, since H embeds N-algebras into S-

algebras. In other words, the following diagram of Γ-sets will be thought as

a diagram of numbers.
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... Qp R ...

... Zp Q

AAAAAAAA

��������
Fp ...

... Q≥0 Z

BBBBBBBB

��������
B ...

N

CCCCCCCC

~~~~~~~~

S

where we omit H, since it is a fully faithful embedding. In the next section,

we will see how this diagram appears in the stable homotopy theory. Roughly

speaking, this diagram is contorted, since stable homotopy theory does not

distinguish between N and Z.

Since every Γ-set can be written by a colimit of representable functors

Γn, using the lemma 2.6, we can justify to consider the left adjoint (−)⊗S N

as a base change.

Proposition 2.15. For Γ-sets X and Y , there is a canonical isomorphism

(X ⊗S N)⊗N (Y ⊗S N) ∼= (X ⊗S Y )⊗S N.

Again, since every Γ-set can be written by a colimit of representable

functors, we have the following:

Proposition 2.16. The base change functor (−)⊗SN is symmetric monoidal.

Using this, we have

Proposition 2.17 ([CC], [Day], [Lydakis]). The adjuction ((−) ⊗S N, H)
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induces an adjunction of the categories of monoid objects,

(−)⊗S N : AlgS ⇄ AlgN : H.

In view of [CC] and [Borger1], it should be considered how H and λ-

structures are related each other. However, we will not consider that here.

We end this chapter with some calculations of Γ-sets by Connes-Consani.

Let B be the Boolean semifield. As a set, it is {0, 1} and the commutative

multiplication and the addition are given as follows:

0 = 0 + 0 = 0 · 1 = 0 · 0, 1 = 1 + 1 = 1 + 0 = 1 · 1.

It is not a ring, but its Eilenberg-MacLane is an S-algebra. We note that

HB is not very special, so that it can not survive in stable homotopy theory.

Definition 2.18 ([CC]). Let k be a natural number.

(i) A k-relation is a triple C = (F,G, v) where F and G are non-empty finite

sets and v : F ×G → k+ is a map of sets such that no line or column of the

corresponding matrix is identically 0.

(ii) A k-relation is reduced if no line and no column is repeated.

Using these notions, Connes and Consani characterized HB ⊗S HB as

follows.

Proposition 2.19 ([CC], Theorem 4.9). Let B be the Boolean semifield.

Then HB⊗SHB is isomorphic to the Γ-set R+, where R+(k+) is the pointed

set of isomorphism classes of reduced k-relations. In particular it is not

isomorphic to HB.

We note that B ⊗N B ∼= B and (HB ⊗S HB)(1+) is an infinite set, while

HB(1+) is B. In other words, the product ⊗S is rather more involved than
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⊗N. The cyclic bar construction of HB with respect to ⊗S may have some

interesting information, but we do not know this object well so far.

Proposition 2.20 ([CC], Proposition 7.4). HZ⊗S HZ is not isomorphic to

HZ.

Using some homotopical replacement in a way, similar statement can be

proved ([Kochman, Theorem 3.5]). More precisely, it has been known for a

long time that HZ ⊗S HZ and HZ are not weak equivalent. However the

proof in [CC] does not need any homotopical method or rather, there is no

notion of homotopy for Γ-sets. This proposition which is one of what S and

⊗S are expected to satisfy (compare to Durov’s F1 [Durov]) is proved by a

non-homotopical method. It would be possible to speculate that S is a new

class of numbers that is deeper than N.

In order to summarize this section, we emphasize the following again;

There is a symmetric monoidal category called ModS which contains any

commutative monoids and semirings and whose unit is deeper than the initial

commutative semiring N of natural numbers.
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3 Spectra and its homotopy theory

To give some background for our results, in this section, we review some

basics of stable homotopy theory which seems to be the most effective theory

so far to study the sphere spectrum.

3.1 Γ-spaces

Simplicial objects in Γ-sets are called Γ-spaces. The category of Γ-spaces

admits a model structure for connective spectra ([BF]). We recall some basic

stable homotopy theory and how the last chapter relates to it. We let sSet∗

denote the category of pointed simplicial sets and pointed morphisms.

Definition 3.1 ([BF], [Segal]). A functor X : Γop → sSet∗ is a Γ-space if

X(0+) is a contractible space.

We let Γ-Sp denote the category of Γ-spaces and natural transformations.

For any Γ-set X, we also let X denote the Γ-space ι ◦ X composed with

constant inclusion ι : Set∗ → sSet∗. This category Γ-Sp has properties

similar to ModS. We first give it a symmetric monoidal structure as follows,

abusing notation.

Definition 3.2 ([Day], [Lydakis]). Let X, Y be Γ-spaces. Then the smash

product X⊗SY of X and Y is the left Kan extension of the following diagram

Γop

X⊗SY

))R
RRRRRRR

Γop × Γop

∧

OO

X(−)∧Y (−)
// sSet∗,

where X(−) ∧ Y (−) denotes the degreewise smash product in sSet∗.
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This product is also closed. For Γ-spaces X and Y , we define the mapping

Γ-space Γ(X,Y ) by

Γ(X,Y )(k+, [n]) := HomΓ-Sp(X ⊗S (∆[n])+, Y (k+ ∧ −)),

where X ⊗S (∆[n])+ is the Γ-space given by

(X ⊗S (∆[n])+)(k+) := X(k+) ∧∆[n]+,

and Y (k+ ∧−) is the Γ-space given by Y (k+ ∧−)(l+) = Y (kl+) for l+ ∈ Γop

and HomΓ-Sp(−,−) denotes the hom-set.

Theorem 3.3 ([Lydakis]). Above constructions give rise to a closed sym-

metric monoidal structure on Γ-Sp.

For short, we let (Γ-Sp, ⊗S, S) denote the symmetric monoidal category.

By this theorem, we can talk about monoid objects.

Definition 3.4. An S-algebra is a monoid object in (Γ-Sp, ⊗S, S).

We use the name S-algebra again. Monoid objects in ModS are also

monoid objects in Γ-Sp via the inclusion ι : Set∗ → sSet∗. There are some

examples.

Example 3.5. (i) The sphere spectrum S with its unique monoid structure

is an S-algebra,

(ii) The Eilenberg-MacLane spectra H(A) for any ring A with the canonical

monoid structure induced by the universality of the left Kan extension and

the monoid structure on A is an S-algebra

(iii) For a simplicial monoid M , the spherical monoid algebra S[M ] given by

S[M ](k+) = M+ ⊗S k+ with the monoid structure given in [DGM, 2.1.4.1]
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Theorem 3.6 ([Lydakis], [DGM]). The construction above gets the category

Γ-Sp a category enriched over the symmetric monoidal category (Γ-Sp, ⊗S,

S).

Note that Γ(X, Y )(1+) is a pointed simplicial set for Γ-spaces X, Y . We

get the following corollary.

Corollary 3.7 ([Lydakis]). Γ-Sp is an sSet∗-enriched category via the above

constructioin.

We now recall how Γ-spaces relate to symmetric spectra ([BF], [DGM]).

For a Γ-space X, we have an endofunctor on pointed simplicial sets given by

the left Kan extension

sSet∗
LSX

((P
PPPPP

Γop

S

OO

X
// sSet∗.

Then we define a symmetric spectrum X(S) associated to X, whose n-th

term is LSX(Sn), where Sn is the smash product of n copies of the circle

S1. We will abuse notation and write X for LSX. This construction (−)(S)

defines a functor from Γ-Sp to the category of symmetric spectra ([DGM]).

By construction, S(S) is the sphere spectrum of the standard form, namely,

S(Sn) = Sn. In [MMSS], the authors give the category of symmetric spectra

a closed symmetric monoidal structure.

Theorem 3.8 ([MMSS]). The functor (−)(S) is symmetric monoidal.

By this theorem, monoid objects in Γ-Sp stay monoid objects in symmet-

ric spectra after sent by (−)(S). In other words, this functor does not break

algebra structures.
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We now recall a theorem by [Mandell] on Γ-spaces, before stabilization.

Definition 3.9 ([Segal]). Let X be a Γ-space. We say X is special if the

map ∏
i

pi : X(n+) →
∏
i

X(1+)

is a weak homotopy equivalence. A special Γ-space X is very special if the

induced commutative monoid structure on π0(X(1+)) is a commutative group

structure.

We let SymMonCat/∼ denote the localization of symmetric monoidal

categories with respect to weak homotopy equivalences. More precisely, a

morphism f of SymMonCat is a weak homotopy equivalence if N ◦ U(f) is

weak homotopy equivalence of simplicial sets, where U is the forgetful func-

tor SymMonCat → Cat and N is the nerve functor Cat → sSet. We also

let SpecialΓ-Sp/∼ denote the localization of special Γ-spaces with respect to

objectwise weak homotopy equivalnces.

Theorem 3.10 ([Mandell]). The functor N ◦ K̃ induces an equivalence of

categories between SymMonCat/∼ and SpecialΓ-Sp/∼, where N is the degree-

wise nerve functor.

The category of simplicial sets admits another model structure that mod-

els (∞, 1)-categories [Joyal].

Definition 3.11. Let X be a Γ-space. We say X is quasi-special if the map∏
i pi : X(n+) →

∏
iX(1+) is a weak equivalence in the sense of Joyal.

Example 3.12. N◦K̃(C) is a quasi-special Γ-space for a symmetric monoidal

category C.
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We let q.s.Γ-Sp/∼ denote the localization with respect to objectwise Joyal

equivalnces of quasi-special Γ-spaces which are piecewise quasi-cateories.

Proposition 3.13. The adjunction (−)(1+) ⊣ H is an adjoint equivalence

q.s.Γ-Sp/∼≃ SymMon(QCat).

Remark 3.14. There is the (∞, n)-categorical analogue of the Segal condi-

tion for n ≥ 0 and symmetric monoidal (∞, n)-categories are defined to be

such special Γ-objects in (∞, n)-categories. See [Barwick, 3.1].

Next, we will review some basic facts about stable homotopy theory.

3.2 Stable homotopy theory

Stable homotopy theory is the most successful way to analyze S so far, al-

though there might be a more refined way to approach it. In this section,

we recall some basics of stable homotopy theory, mainly using Γ-spaces for

simplicity.

Definition 3.15 ([BF], [DGM]). For a Γ-space X and n ∈ Z, the n-th stable

homotopy group πn(X) is the abelian group colimk→∞ πk+n(X(Sk)). A map

of Γ-spaces is a stable weak equivalence if it induces an isomorphism on stable

homotopy groups in each degree.

This defines the weak equivalences of the following model structure called

the stable model structure.

Theorem 3.16 ([BF], [BeMo], [Lydakis]). The symmetric monoidal sim-

plicial category (Γ-Sp,⊗S, S) admits the following symmetric monoidal sim-

plicial model structure; weak equivalences are stable weak equivalences and

cofibrations are generalized Reedy cofibrations.
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The following is a remarkable property of Γ-spaces. We stress again that

spectra have negative stable homotopy groups in general.

Proposition 3.17 ([DGM], Lemma 2.2.13). Let X be a Γ-space. For every

negative integer n, πn(X) is 0.

The Eilenberg-MacLane functor also extends to H : sModN → Γ-Sp de-

greewise ([DGM, Example 2.1.2.1]), where sModN is the category of simpli-

cial abelian monoids. Moreover, this functor is lax monoidal [DGM, 2.1.4.1],

fully faithful, fully faithful for monoid objects, and has a left adjoint. There-

fore, we are able to study simplicial abelian monoids and semirings in Γ-Sp

via Eilenberg-MacLane functor H. However, as Lydakis shows and we will

see it later, H(A) is not cofibrant in the stable model structure for any non-

trivial simplicial monoid A and is not necessarily fibrant. More precisely, the

homotopy category can only study very special Γ-spaces and H(N) is not

very special.

By the theorem above, cofibrant objects are compartible with ⊗S, since

the model structure is monoidal, and by the basic theorem about model

categories, every object in the homotopy category can be represented by a

fibrant and cofibrant object. Lydakis gave a criterion of cofibracy. Note that

AutΓop(n+) is the n-th symmetric group Σn.

Lemma 3.18 ([Lydakis], §3). Let n be a natural number, let X be a Γ-space,

and let X(n) denote the n-skeleton. A Γ-space X is cofibrant if and only if

the Σn-action on X/X(n−1)(n+) is free for all n.

Example 3.19 ([Lydakis], Proposition 3.2.). For every n, Γn is cofibrant.

In particular, S is cofibrant.

The Eilenberg-MacLane spectra, however, are not cofibrant.
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Proposition 3.20 ([Lydakis], 3.4). For any non-trivial simplicial commuta-

tive monoid A, H(A) is not cofibrant.

The bar-construction and the cyclic bar-construction are heavily used in

algebraic topology. Our main example of a symmetric monoidal product

is the smash product ⊗S. For example, it would be convenient to define

topological Hochschild homology, THH, to be the geometric realization of

the cyclic bar-construction with respect to ⊗S ([NS, III 2.3], [PS], [Shipley]).

However by the above proposition by Lydakis, to define THH of an Eilenberg-

MacLane spectrum in this way, we need to take cofibrant replacement of it.

We note that cofibrant replacements cannot be Eilenberg-MacLane spectra.

We also note that, in (∞, 1)-categorical language, it does not matter whether

we use cofibrant objects or not. Since the cofibrant replacement for our

model structure is given by abstract nonsense, it is very difficult to track

what happens. In this sense, the proposition is critical.

Fibrant objects are characterized by cofibrations and weak equivalences

abstractly. Here is an explicit criterion for fibrancy.

Proposition 3.21 ([Lydakis], 5.7). Fibrant objects with respect to the model

structure are very special.

Eilenberg-MacLane objects do not behave well in homotopy theory. Es-

pecially, Eilenberg-MacLane objects that are not grouplike are not fibrant.

Example 3.22. The Γ-space H(N) is special but not very special. The Γ-

space H(Z) is very special.

Therefore the homotopy category can not detect H(N). As we saw in the

last section, the theory of modules over S potentially covers the theory of

modules over N. This fact may suggest that this stable homotopy theory is
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too coarse to be a theory of numbers. The author does not presently know

how to remedy this flaw. We discuss this in the final section.

We have considered Γ-spaces as a model of connective spectra. Finally,

we mention the role of connective spectra in stable homotopy theory.

Definition 3.23. A symmetric spectrum is connective if its homotopy groups

in negative degrees are trivial.

Example 3.24. (i) For any Γ-space X, the associated symmetric spectrum

X(S) is a connective spectrum.

(ii) The K-theory spectrum of a symmetric monoidal category is a con-

nective spectrum.

(iii) Eilenberg-Mac Lane spectra are connective spectra.

(iv) Topological cyclic homology is in general not a connective spectrum.

In [MMSS], the authors give the category of symmetric spectra a model

structure.

Theorem 3.25 ([BF], [MMSS]). With respect to above model structures, the

adjunction induced by (−)(S)is a Quillen adjunction. Moreover, the homo-

topy category of Γ-spaces is equivalent to the full subcategory of connective

spectra of the stable homotopy category of symmetric spectra via the functor.

We again note that, for higher algebra, it is not reasonable to consider

only Γ-spaces, since not all spectra are connective. To stress the viewpoint

of [CC] and to make the proposal in the final section as simple as possible,

we focus on connective spectra in this thesis. Similarly, commutative monoid

objects in Γ-Sp do not model all commutative monoid objects in symmetric

spectra. For instance, TP(Fp), which we introduce in the next section and use

27



for our first main theorem, is a non-connective monoid object in symmetric

spectra.

In this section we reviewed some basic results on stable homotopy theory

to prepare to define homology theories which our theorems use. In the next

section, we will define such homology theories.
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4 THH and Witt vectors

We study some homology theories in stable homotopy theory with topologi-

cal Hochschild homology (THH) as the central one. As we see in this section,

THH has important relations to p-adic Hodge theory via Witt vectors and

de Rham-Witt complexes, which were discovered by Hesselholt and Mad-

sen mainly. Thereby, THH and its relatives recently have been studied in

arithmetic geometry as well mainly by Bhatt-Morrow-Scholze (see [BMS1],

[BMS2]). Our results concerns this sequence of studies. We state several fun-

damental theorems in this section after introducing Witt vectors. Although

the theory of Witt vectors has numerous applications, especially to number

theory, we will just define it.

For a commutative ring A, the (p-adic) ghost map w : AN → AN is defined

by (an)n∈N 7→ (wn)n∈N with wn = Σip
iap

n−i

i for a prime number p. Here is a

classical theorem.

Definition and Theorem 4.1. Let A be a commutative ring. The ring

Wp(A) of p-typical Witt vectors in A is a commutative ring with the underly-

ing set AN and the ring structure given by the unique ring structure such that

the ω is a natural ring homomorphism, where the target AN is the product

ring.

Wp(A) possesses three kinds of maps F , V and R which we now define.

First, the Frobenius map F : Wp(A) → Wp(A) is the ring homomorphism

that is characterized by making the following diagram
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Wp(A)
ω //

F
��

AN

F ′

��

Wp(A) ω
// AN,

where F ′(w0, w1, w2, ...) = (w1, w2, ...), commutative.

The Verschiebung V is the additive map defined by

V : Wp(A) → Wp(A), (a0, a1, a2, ...) 7→ (0, a0, a1, a2, ...).

The maps similar to these are the main objects for our second results. We

write Wp,n(A) for Wp(A)/V
n Wp(A).

Finally, the restriction map R : Wp,n+1(A) → Wp,n(A) is defined by

(a0, a1, ..., an) 7→ (a0, a1, ..., an−1).

There is also a map called the Teichmüller map [−] : A → Wp(A), which is

defined by [a] = (a, 0, 0, ...). It is multiplicative and makes the diagram

A id //

[−]
��

A

[−]′

��

Wp(A) ω
// AN,

where [a]′ = (a, a2, a3, ...), commutative.

We are next going to define topological Hochschild homology, following

mainly [HM2], and see it has three kinds of maps as well. Although there

are several constructions for THH, we follow the construction in [Shipley],

which is due to Bökstedt [Bokstedt2].
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Let I be the category of finite sets and inclusions. For j ∈ N and a

commutative ring spectrum R, we have a symmetric spectrum THHj(R) =

hocolimIj+1(DjR̃(n0, ..., nj)), where DjR̃(n0, ..., nj) = Ωn0+...+nj LF0(Rn0 ∧
...∧Rnj

). This construction defines a functor THH·(R) : Λop → SymmSpctr,

i.e. a cyclic object in symmetric spectra.

Definition 4.2 ([Shipley]). Let R be a commutative ring spectrum. Its topo-

logical Hochschild homology THH(R) is the spectrum defined as the geometric

realization of the cyclic object THH·(R) in symmetric spectra.

We recall from [HM2, 2.2, 3.3] the maps F , V and R maps on THH which

correspond to those on Wp. By Connes’ theory of cyclic objects THH(R) has

a T-action, so that the fixed points THH(R)Cn makes sense for any natural

number n, where Cn denotes the nth cyclic group. The inclusion of fixed

points Fn : THH(R)Cmn → THH(R)Cm is called nth Frobenius map. The

projection T/Cm → T/Cmn also induces Vn : THH(R)Cm → THH(R)Cnm ,

which is called nth Verschiebung ([HM2, 3.3]). The cyclotomic structure

on THH(R) gives the nth restriction map Rn : THH(R)Cmn → THH(R)Cm

([HM2, 2.2]). Here is a pivotal theorem of higher-algebraic arithmetic geom-

etry.

Theorem 4.3 ([HM2], Theorem 3.3). Let A be a commutative ring. Then

there is a natural ring isomorphism

π0(THH(A)
Cpn ) ∼= Wp,n(A),

which is compatible with R, F and V for arbitrary prime number p and

natural number n.

It would be reasonable to say that this theorem is a hub of the rising
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theory studying the new relation between stable homotopy theory and p-adic

Hodge theory ([BMS2], [NS], [AMN]). The left hand side in the theorem

comes from stable homotopy theory and the right hand side from p-adic

Hodge theory.

We now recall the basic periodicity theorem on THH proved by Bökstedt

[Bokstedt1]. This periodicity induces the periodicity on periodic topological

cyclic homology TP which we will review later.

Theorem 4.4 ([HM3], Bökstedt Periodicity). For any prime number p,

π∗(THH(Fp)) = Fp[x],

where deg(x)=2.

Below we recall several results which relate to our results. A subset S ⊂ N

is a truncation set if, for any element n ∈ S, every divisor of n is also in S.

For a truncation set S and a natural number n, we define S/n := {e ∈
N|ne ∈ S}. The big Witt vectors functor W(−) are defined for truncation

sets [Hesselholt3]. For the truncated set {1, p, p2, p3, ...}, W{1,p,p2,p3,...} and

Wp coincide.

Definition 4.5 ([Hesselholt3], Definition 4.1). Let A be a commutative ring.

A Witt complex over A is a contravariant functor from the category of trun-

cation sets to anti-commutative graded rings, S 7→ E•
S, with natural ring

maps

ηS : WS(A) → E0
S,

and the following maps of graded abelian groups

d : Eq
S → Eq+1

S ,Fn : Eq
S → Eq

S/n,Vn : Eq
S/n → Eq

S,
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subject to the following axioms (i)-(v);

(i) For x ∈ Eq
S and y ∈ Er

S, d(xy) = d(x)y + (−1)qx d(y) and d d(x) =

d log ηS([−1]S) d(x), where d log ηS([−1]S) = ηS([−1])−1 d ηS([−1]S).

(ii) For positive natural numbers m and n, F1 = V1, Fm Fn = Fmn,

Vm Vn = Vmn, Fn Vn = n · id, Fm ηS = ηS/m Fm, and ηS Vm = Vn ηS/m. If

(m,n) = 1, Fm Vn = Vn Fm.

(iii) For positive natural numbers n, Fn is a ring map. For x ∈ Eq
S and

y ∈ Er
S/n, xVn(y) = Vn(Fn(x)y).

(iv) For all positive natural numbers n and x ∈ Eq
S/n, Fn dVn(y) = d(y)+

(n− 1) d log ηS/n([−1]S/n)y.

(v) For all positive natural number n and elements a ∈ A, Fn d ηS([a]S) =

ηS/n([a]
n−1
S/n ) d ηS/n([a]S/n).

After introducing Witt complexes, we can talk about de Rham-Witt com-

plex which gives another relation between stable homotopy theory and arith-

metic geometry. Our second contribution is related to it.

Definition and Theorem 4.6 ([Hesselholt3], Definition 4.7). Let A be a

commutative ring. Then, the category of Witt complexes over A has the

initial object which is called the de Rham-Witt complex W.Ω
.
A.

Remark 4.7 ([Hesselholt3]). For A an Fp-algebra and S = {1, p, ..., pn−1},
WSΩ

.
A := W.Ω

.
A(S) is the classical p-typical de Rham-Witt complex Wp,nΩ

.
A

in the sense of Bloch-Deligne-Illusie ([Illusie]).

Hesselholt and Madsen have proven that THH gives the higher-algebraic

de Rham-Witt complex in the following sense.

Theorem 4.8 ([HM3], Theorem 2.2.2). Let k be a perfect field of positive
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characteristic and A a smooth k-algebra. Then there is a natural isomorphism

⊕
m≥0

W(m+1)nΩ
∗−2m
A → π∗ holimR THH(A)Cs

2⌊(s−1)/n⌋,

where ⌊x⌋ denotes the integer part of x.

Using this translation between THH and de Rham-Witt complex, Hessel-

holt constructs the following diagram.

Theorem 4.9 ([Hesselholt1], Theorem A). Let A be a regular noetherian ring

and an Fp-algebra. Then the canonical prjection f : A[x]/(xm) → A[x]/(xn)

induces a map of long exact sequences

...

��

...

��⊕
l≥0 Wl+1Ω

q−2l
A

Vm

��

//
⊕

l≥0 Wl+1Ω
q−2l
A

Vn

��⊕
l≥0 Wm(l+1)Ω

q−2l
A

//

��

⊕
l≥0 Wn(l+1)Ω

q−2l
A

��

Kq+1(A[x]/(x
m), (x)) //

��

Kq+1(A[x]/(x
n), (x))

��

...
... ,

where the lowest horizontal map is the map of relative K-groups induced

by the canonical projection, where the middle horizontal map takes the lth

summand of the domain to the lth summand of the target by the composition

of the restriction map and the multiplication by a certain element, where the

top horizontal map is zero and where V denotes Verschiebung.
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Stable homotopy theory does not show up explicitly in this theorem.

However, as is mentioned, it lies behind. Our second contribution is akin to

this theorem. In stead of the projection, we evaluate the map of K-groups

K(A[x]/(xk), (x)) → K(A[x]/(xnk), (x)),

induced by x 7→ xn with big de Rham-Witt forms. Moreover, for A a perfect

field of characteristic p > 0, we give a calculation of the relative algebraic

K-groups of OK/pOK for various perfectoid fields K at the end of section

5.2.

We next recall another new homology theory TP called topological peri-

odic cyclic homology from [Hesselholt2]. Our first result studies the question

of nil-invariance. Since it is defined by the Tate construction, we first recall

the construction.

Let E be a contractible T-CW-complex with free T action. This is well-

defined, up to unique equivariant homotopy equivalence. Then we consider

the following cofibration sequence

E+ → S0 → Ẽ,

here E+ is E with the base point ∞, and where the lefthand map sends ∞
to the base point ∞ ∈ S0 and other points to 0 ∈ S0.

Let M be a T-spectrum. Smashing the internal hom [E+,M ] with the

above diagram and taking fixed points of a subgroup C ⊂ T, we have the

following sequence called the Tate cofibration sequence

(E+ ⊗S [E+,M ])C → ([E+,M ])C → (Ẽ ⊗S [E+,M ])C .
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We write Ĥ·(C,M) := (Ẽ ⊗S [E+,M ])C .

In [GeHe], the authors define THH for schemes that also has a certain

T-action. Using this, Hesselholt defines the following.

Definition 4.10 ([Hesselholt2]). Let X be a scheme. The periodic topological

cyclic homology of X is the spectrum given by

TP·(X) = Ĥ·(T,THH(X)).

Hesselholt has proved that TP gives an interpretation of Hasse-Weil zeta

function.

Theorem 4.11 ([Hesselholt2], Theorem A). Let k be a finite field with order

q = pr and W be its ring of p-typical Witt vectors, and σ : W → C be a

choice of embedding. If X is a scheme smooth and proper over Spec(k), then

as meromorphic functions on C,

ζ(X, s) =
det∞(s · id−Θ|TPod(X)⊗W,σ C)
det∞(s · id−Θ|TPev(X)⊗W,σ C)

,

where Θ is a C-linear graded derivation such that qΘ = Fr∗q, where Fr is the

geometric Frobenius, and Θ(v) = 2πi
log q

· v with v ∈ TP−2(k) is the generator

given in [Hesselholt2, §4].

Unfortunately, the author does not have well enough understanding on

this topic to give an explanation of this theorem. It should still be worth

understanding the properties of TP. Our first result in the next section

shows that TP does not have nil-invariance in general. To motivate our

result further, we mention [AMN] and [BlMa] show that TP satisfies the

Künneth formula in the following sense.
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Theorem 4.12 ([AMN], Theorem 1.1). Let k be a perfect field of character-

istic p > 0. If C and D are smooth and proper k-linear dg categories, then

the natural map

TP(C)⊗TP(k) TP(D) → TP(C ⊗k D)

is an equivalence.

According to them, TP can be defined for dg categories. However, unfor-

tunately again, the author does not understand that yet well. We use this

theorem as a motivation of our result. That is to say, since it is expected that

TP is useful to analyze smooth and proper schemes of positive characteristic,

our theorem 5.2 shall give some geometric understanding on such objects.

As the conclusion of this section, we have recalled some homology theories

which originate in stable homotopy theory, and seen some relations between

them and arithmetics. Based on these celebrated results, we are showing our

contributions in the next section.
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5 Contributions

In this section, we show our main contributions, taking the previous sections

to be preparations for them. The first one studies a property so-called nil-

invaliancy of TP, and the other one is about certain maps of algebraic K-

theory of truncated polynomial algebras. We will calculate the K-groups of

a certain ring as a consequence.

5.1 The non-nil-invariance of TP

5.1.1 The nil-invariance of HP

As we saw in the last section, Hesselholt defined a spectrum TP(X) for a

scheme X using THH and Tate construction, which is the higher-algebraic

analogue of Connes’s periodic cyclic homology HP defined by Hochschild

homology and Tate construction. Goodwillie has proven the following which

says, for algebras of characteristic 0, HP has the nil-invariancy.

Theorem 5.1 ([Goodwillie1], Theorem II.5.1). Let R be an algebra over a

field of characteristic 0 and I a nilpotent ideal of R, then the quotient map

R → R/I induces an isomorphim on HP.

By the nature of higher-algebra, the analogous statement for positive

characteristic algebras will be asked. We show that such analogous result for

TP does not hold, that is, there are an algebra of positive characteristic and a

nilpotent ideal such that the quotient map does not induce an isomorphism

on TP. Recently in [BlMa] and [AMN], It is shown that TP satisfies the

Künneth formula for smooth and proper dg categories over a field of positive

characteristic. Our main theorem should contribute to such study.
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5.1.2 Main theorem

Our main result is the following

Theorem 5.2. Let p be a prime number and k ≥ 2 a natural number. Then

the canonical map TP∗(Fp[x]/(x
k)) → TP∗(Fp) is not an isomorphism up to

p-inverted.

Before proving our main result, we recall from [HM2] and [Hesselholt2]

some calculations concerning THH(Fp[x]/(x
k)) .

We give the pointed finite set Πk={0, 1, x, . . . , xk−1} with the base point

0 the pointed commutative monoid structure, where 1 is the unit, 0 · 1 =

0 · xi = 0, xi · xj = xi+j, xk = 0. We denote the cyclic bar construction of Πk

by Ncy
• (Πk). More precisely, the set of l-simplicies is

Ncy
l (Πk) = Πk ∧ · · · ∧ Πk,

where there are l + 1 smash factors and the structure maps are given by

di(x0 ∧ · · · ∧ xl) = x0 ∧ · · · ∧ xixi+1 ∧ · · · ∧ xl, 0 ≤ i < l,

dl(x0 ∧ · · · ∧ xl) = xlx0 ∧ x1 ∧ · · · ∧ xk−1,

si(x0 ∧ · · · ∧ xl) = x0 ∧ · · · ∧ xi ∧ 1 ∧ xi+1 ∧ · · · ∧ xl, 0 ≤ i ≤ l,

tl(x0 ∧ · · · ∧ xl) = xl ∧ x0 ∧ x1 ∧ · · · ∧ xl−1.

We let Ncy(Πk) denote the geometric realization of Ncy
• (Πk).

In [HM1, Theorem 7.1], it is proved that there is a natural equivalence of

cyclotomic spectra

THH(Fp[x]/(x
k))) ≃ THH(Fp)⊗ Ncy(Πk). (a)
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For each positive integer i, we also have the cyclic subset

Ncy
• (Πk, i) ⊂ Ncy

• (Πk)

generated by the (i−1)-simplex x∧· · ·∧x (i factors), and denote the geometric

realization by Ncy(Πk, i). We also have the cyclic subset Ncy
• (Πk, 0) generated

by the 0-simplex 1 with the geometric realization Ncy(Πk, 0). Thus we obtain

the following wedge decomposition

∨
i≥0

Ncy(Πk, i) = Ncy(Πk).

We consider the complex T-representation, where d = ⌊(i − 1)/k⌋ is the

integer part of (i− 1)/k for i ≥ 1,

λd = C(1)⊕ C(2)⊕ · · · ⊕ C(d),

where C(i) = C with the T action;

T× C(i) → C(i)

defined by (z, w) 7→ ziw. Then we have the following by [HM2, theorem B],

for i ≥ 1 such that i /∈ kN, there is an equivalence

Ncy(Πk, i) ≃ Sλd ∧ (T/Ci)+,

where Ci is the i-th cyclic group.

Let THH(Fp[x]/(x
k), (x)) denote the fiber of the canonical map

THH(Fp[x]/(x
k)) → THH(Fp),
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and we write

TP(Fp[x]/(x
k), (x)) = Ĥ·(T,THH(Fp[x]/(x

k), (x)))

The triviality of TP(Fp[x]/(x
k), (x))[1/p] shall imply that TP is not nil-

invariant up to p-inverted. In order to obtain the triviality, we use the

following decomposition.

Lemma 5.3. There is a canonical equivalence

TP(Fp[x]/(x
k), (x)) ≃

∏
i≥1

Ĥ·(T,THH(Fp)⊗ Ncy(Πk, i)).

Proof. By (a) and the wedge decomposition, we have

ΣH·(T,THH(Fp[x]/(x
k), (x))) ≃

∨
i≥1

ΣH·(T,THH(Fp)⊗ Ncy(Πk, i)),

since H·(T,−) preserves all homotopy colimits.

Since the connectivity of ΣH·(T,THH(Fp)⊗ Ncy(Πk, i)) goes to ∞ as i goes

to ∞, we have

∨
i≥1

ΣH·(T,THH(Fp)⊗ Ncy(Πk, i)) ≃
∏
i≥1

ΣH·(T,THH(Fp)⊗ Ncy(Πk, i)).

Similarly, since H·(T,−) preserves all homotopy limits, we have

H·(T,THH(Fp[x]/(x
k), (x))) ≃

∏
i≥1

H·(T,THH(Fp)⊗ Ncy(Πk, i)).
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Since TP(Fp[x]/(x
k), (x)) is the cofiber of

ΣH·(T,THH(Fp[x]/(x
k), (x))) → H·(T,THH(Fp[x]/(x

k), (x))),

we get the desired equivalence.

It is known that, for a T-spectrum X, there is a T-equivalence

X ⊗ (T/Ci)+ ≃ Σ[(T/Ci)+, X],

see for example [HM1, 8.1]. Hence, we have

Ĥ·(T,THH(Fp)⊗ (T/Ci)+) = (Ẽ ⊗ [E+,THH(Fp)⊗ (T/Ci)+])
T

≃ Σ(Ẽ ⊗ [E+, [(T/Ci)+,THH(Fp)]])
T

≃ Σ(Ẽ ⊗ [(T/Ci)+, [E+,THH(Fp)]])
T

≃ (Ẽ ⊗ (T/Ci)+ ⊗ [E+,THH(Fp)]])
T

≃ Σ([(T/Ci)+, Ẽ ⊗ [E+,THH(Fp)]])
T

≃ Σ(Ẽ ⊗S [E+,THH(Fp)])
Ci

= ΣĤ·(Ci,THH(Fp)).

Furthermore, by [HM1, 3.2], we have an equivalence of spectra

Ĥ·(Ci,THH(Fp)⊗ Sλd) ≃ Ĥ·(Cpvp(i) ,THH(Fp)⊗ Sλd),

where vp is the p-adic valuation.

Hesselholt and Madsen have calculated the homotopy groups of the above
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spectra [HM1, §9],

π∗Ĥ
·(Cpn ,THH(Fp)⊗ Sλd) ∼= SZ/pnZ{t, t−1},

where α is the divided Bott element. More precisely, π∗Ĥ
·(Cpn ,THH(Fp) ⊗

Sλd) is a free module of rank 1 over Z/pnZ[t, t−1] on a generator of degree

2d. Combining these, we obtain for i /∈ kN

πjĤ
·(T,THH(Fp)⊗ Ncy(Πk, i)) ∼=

Z/pvp(i)Z, j − λd + 1 : even

0, j − λd + 1 : odd,

and by definition −λd+1 is always odd. They have also calculated for i ∈ kN,

πjĤ
·(T,THH(Fp)⊗ Ncy(Πk, i)) ∼=

Z/pvp(k)Z, j : odd

0, j : even.

Due to this, we have

Theorem 5.4. If j is an odd integer, then there is a canonical isomorphism

TPj(Fp[x]/(x
k), (x)) ∼=

∏
i≥1,i∈kN

Z/pvp(k)Z×
∏

i≥1,i/∈kN

Z/pvp(i)Z.

If j is an even integer, then

TPj(Fp[x]/(x
k), (x)) = 0.

Therefore, we get our main result by this theorem. In addition, by [NS,

Corollary 1.5] and [HM1], we get the following as well.

Corollary 5.5. Topological negative cyclic homology is not nil-invariant up
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to p-inverted.
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5.2 Verschiebung maps among K-groups of truncated

polynomial algebras

In [Hesselholt1], Hesselholt constructs the tower of long exact sequences,

for a certain class of algebras, calculates the maps of algebraic K-theory

of the canonical projections A[x]/(xm) → A[x]/(xn) for m ≥ n. We apply

those methods to the power maps A[x]/(xk) → A[x]/(xkn), x 7→ xn. As a

consequence, we give a calculation of the relative K-groups of OK/pOK for

certain perfectoid fields K.

5.2.1 Pointed commutative monoids and truncated polynomial al-

gebras

In [HM1], the homotopy classes of the following maps of pointed Ci-spaces

are defined; θd : ∆i−1/Ci · ∆i−k → Sλd for kd < i < k(d + 1), and θd :

∆i−1/Ci · ∆i−k → (S0 ∗ Ck) ∧ Sλd for i = k(d + 1), where Cm is the m-th

cyclic group and Sλd is the one point compactification of λd. They play a

key role in this section. In op. cit., for any positive integer i, the following

cofibration sequence are constructed using θ;

T+ ∧Ci/k
Sλdi

pr
// T+ ∧Ci

Sλdi // Ncy(Πk, i) // ΣT+ ∧Ci/k
Sλdi ,

where T+∧Ci/k
Sλdi is trivial when k does not divide i and di = ⌊(i−1)/k⌋ is

the largest natural number less than or equal to (i− 1)/k. We briefly recall

the construction.

For the i-th cyclic group Ci, R[Ci] denotes the regular representation and

∆i−1 ⊂ R[Ci] the convex hull of the generators of Ci. By permutation Ci

acts on R[Ci] and the action restricts on ∆i−1. Let ξi denote the generator of
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Ci and ∆i−m the convex hull of 1, ξi, ..., ξ
i−m
i . The canonical decomposition

of R[Ci] induces the projection map ([Hesselholt1, p.11])

πd : R[Ci] → λd,

if 2d < i. We first consider the case md < i < m(d + 1). In [HM1], it

is proved that 0 ̸∈ πd(Ci · ∆i−m) ⊂ λd. Composing πd|∆i−1 and the radial

projection, we get a Ci-equivariant map

θd : ∆
i−1/Ci ·∆i−m → Sλd .

We next consider the case i = m(d + 1). It is also proved that in [HM1]

0 ̸∈ πd+1(Ci ·∆i−m) ⊂ λd+1. Furthermore, that proves

πd+1(Ci ·∆i−m) ∩ λ⊥
d = C ′

m,

where λ⊥
d is the orthogonal completion of the image of the canonical inclusion

λd
ι−→ λd+1 and C ′

m is the preimage of Cm by the isomorphism λ⊥
d → C(d+1)

induced by ι. Picking a small ball B ⊂ λd+1\C ′
m around a point in the sphere

S(λ⊥
d ), we define U := (Ci ·B)∩S(λd+1). If B is small enough, the projection

πd+1 and radial projection define a Ci-equivariant map θ′d : ∆
i−1/Ci ·∆i−m →

D(λd+1)/(S(λd+1)\U), where D(λd+1) denotes the disk in λd+1. [Hesselholt1]

shows that there is a strong deformation retract of Ci-spaces

(S0 ∗ Cm) ∧ Sλd → D(λd+1)/(S
λd+1\U).
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Therefore we get a homotopy class of Ci-equivariant maps

θd : ∆
i−1/Ci ·∆i−m → (S0 ∗ Cm) ∧ Sλd .

We also recall some well-known theorems. For A a commutative ring,

Hesselholt-Madsen shows that, in [HM2], there is an equivalence

THH(A[x]/(xk)) ≃ THH(A)⊗ Ncy(Πk). (a)

This equivalence gives rise to

THH(A[x]/(xk), (x)) ≃
∨
i>0

THH(A)⊗ Ncy(Πk, i).

Here is a corollary of the famous theorem by Dundas-Goodwillie-McCarthy.

For A a commutative ring, after p-completion for any prime number p, we

have an equivalence

K(A[x]/(xk), (x)) ≃ TC(A[x]/(xk), (x)). (b)

In the present section, using above theorems, we study the map

K(A[x]/(xk), (x)) → K(A[x]/(xnk), (x)),

induced by x 7→ xn.

5.2.2 The geometric Verschiebung map

In order to study the map K(A[x]/(xk), (x)) → K(A[x]/(xnk), (x)), we use

the two pointed commutative monoids Πk and Πnk and their realizations of
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cyclic bar constructions, and construct a map between corresponding cofi-

bration sequences.

In [HM2, 7.2], Hesselholt and Madsen defined an isomorphism between

the geometric realization |Λ[n]| of standard cyclic set and the product topo-

logical space T×∆n of the circle and the standard n-simplex as follows;

In [Jones, Theorem 3.4], Jones constructed a homeomorphism between |Λ[n]|
and T×∆n and defined an action of Cn+1 on T×∆n by

τn · (x;u0, ..., un) := (x− u0;u1, ..., un, u0).

However, Hesselholt and Madsen consider a different action of Cn+1 on T×∆n

given by

τn ∗ (x;u0, ..., un) := (x− 1/(n+ 1);u1, ..., un, u0),

and defined an T×Cn+1-equivariant homeomorphism Fn : T×∆n → T×∆n

by

Fn(x;u0, ..., un) := (x− fn(u0, ..., un);u0, ..., un)

with an affine map fn : ∆n → R

fn(u1, ..., un, u0)− fn(u0, ..., un) = 1/(n+ 1)− u0,

and

fn(1, 0, ..., 0) = 0.

By construction, the restriction Fn|∆n is the identity map. We identify |Λ[n]|
with T × ∆n via this isomorphism. We define a map ei,n : ∆i−1 → ∆in−1,

which sends the vertex (0, ..., 0, 1, 0, ..., 0), where the (m+1)th coordinates is

1, to the vertex (0, ..., 0, 1, 0, ..., 0), where the (mn+1)th coordinate is 1, for
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every m ∈ {0, ..., i − 1}. In other words, ei,n(ξ
j
i ) = ξnjin for 0 ≤ j ≤ i − 1,

where ξi, respectively ξin, is the generator of Ci, respectively Cin.

Lemma 5.6. The map ei,n induces the map gi,n : Ncy(Πk, i) → Ncy(Πnk, in),

a 7→ bn, via the isomorphism, where Πk, respectively Πnk, is generated by a,

respectively b.

Proof. By [HM1, Lemma 2.2.6], the map Λ[i− 1]
α−→ Ncy(Πk, i)[−] represent-

ing the i−1-simplex a∧ ...∧a (i factors) induces a T-equivariant homeomor-

phism after the geometric realization. We write Λ[in− 1]
β−→ Ncy(Πkn, in)[−]

for the map representing the in− 1-simplex b ∧ ... ∧ b (in factors). Then we

have the following commutative diagram

Ncy(Πk, i)[−]
g′i,n

// Ncy(Πkn, in)[−]

Λ[i− 1] Ψ //

α

OO

Λ[in− 1],

β

OO

where the map Ψ of cyclic sets is the one induced by the composition map

din−1din−2...d2d1 except dnj for all j ∈ {1, ..., i − 1} and g′i,n is the map

of cyclic sets that is given by a 7→ bn and induces gi,n via the geometric

realization by definition. The geometric realization of Ψ with Hesselholt-

Madsen’s isomorphism mentioned above is given by

T×∆i−1 → T×∆in−1,

(t, (u0, u1, ..., ui−1)) 7→ (t, (u0, 0, 0, ..., 0, u1, 0, ..., 0, ui−1, 0, 0, ..., 0)),

where there are n−1 zeros between us−1 and us. By definition, it is the map
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idT× ei,n. In other words, we have the commutative diagram

T×∆i−1
idT × ei,n

// T×∆in−1

|Λ[i− 1]| |Ψ|
//

∼=

OO

|Λ[in− 1]|.

∼=

OO

By the definition of the cyclic bar construction and the commutativity of our

monoids,

βi−1(d
1d2...din−2din−1) = βi−1 ◦D(id[in−1])

= D∗ ◦ βin−1(id[in−1])

= D∗(b ∧ ... ∧ b) = bn ∧ ... ∧ bn,

Λ[in− 1][in− 1]
βin−1

//

D
��

Ncy(Πkn, in)[in− 1]

D∗
��

Λ[in− 1][i− 1]
βi−1

// Ncy(Πkn, in)[i− 1],

where D is the image of the map din−1din−2...d2d1 except dnj for all j ∈
{1, ..., i − 1} by the contravariant functor Λ[in − 1][−] and D∗ is the im-

age of the map din−1din−2...d2d1 except dnj for all j ∈ {1, ..., i − 1} by the

contravariant functor Ncy(Πkn, in).

We now study the relation between the map gi,n and the cofibration

sequences above. More precisely, we have two cofibration sequences for every

i > 0

T+ ∧Ci/k
Sλdi

pr
// T+ ∧Ci

Sλdi // Ncy(Πk, i),

T+ ∧Cin/kn
Sλdi

pr
// T+ ∧Cin

Sλdi // Ncy(Πkn, in),
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and are comparing them using gi,n.

Proposition 5.7. (i)For kd < i < k(d+1), the following diagram commutes

up to homotopy

∆i−1/Ci ·∆i−k
θi,k

//

ei,n∗
��

Sλd

id

��

∆in−1/Cin ·∆n(i−k)
θin,kn

// Sλd .

(ii)For i = k(d+ 1), the following diagram commutes up to homotopy

∆i−1/Ci ·∆i−k
θi,k

//

ei,n∗
��

(S0 ∗ Ck) ∧ Sλd

��

∆in−1/Cin ·∆n(i−k)
θin,kn

// (S0 ∗ Cnk) ∧ Sλd ,

where the right hand side vertical map is induced by the inclusion Ck → Ckn,

ξk 7→ ξknk and the identity map on Sλd.

Proof. We prove (i). The same argument holds for (ii). By the construction

of θ ([Hesselholt1, §3]), θi,k(ξji ) = [ξji , ξ
2j
i , ..., ξdi ], where ξi is the generator of

Ci. Likewise, θin,kn(ξ
j
in) = [ξjin, ξ

2j
in , ..., ξ

d
in], where ξin is the generator of Cin.

By the definition of e, we have e(ξi) = ξnin. In the complex numbers plane C,

ξji = ξnjin .

By this proposition, we get the following map of cofiber sequences.

Corollary 5.8. There is a homotopy commutative diagram of cofibration

51



sequences

T+ ∧Ci/k
Sλd

pr
//

id
��

T+ ∧Ci
Sλd //

pr

��

Ncy(Πk, i)

gi,n

��

T+ ∧Cin/nk
Sλd

pr
// T+ ∧Cin

Sλd // Ncy(Πnk, ni),

where T+ ∧Ci/k
Sλd and T+ ∧Cin/kn

Sλd are trivial when k does not divide i

and d = ⌊(i− 1)/k⌋.

Proof. Again by [HM1, (3.1.1)], the map Λ[j − 1] → Ncy(Πm, j)[−] repre-

senting y ∧ y ∧ ... ∧ y (j factors) with the generator y of Πm induces,

Ncy(Πm, j) ∼= T+ ∧Cj
(∆j−1/Cj ·∆j−m).

We can get two cofibration sequences

T+ ∧Ci/k
Sλd

pr
// T+ ∧Ci

Sλd // Ncy(Πk, i),

T+ ∧Cin/kn
Sλd

pr
// T+ ∧Cin

Sλd // Ncy(Πkn, in),

applying T+ ∧Ci
(−) and T+ ∧Cin

(−) respectively to diagrams in 5.7. The

inclusion map Ci → Cni, ξ
j
i 7→ ξnjin , induces the maps id, pr and gi,n which

make the diagram commutative.

5.2.3 Proof of theorems

Using the above diagram, we get a map of long exact sequences to study

commutative rings.

Theorem 5.9. Let A be a commutative ring and k a positive integer. There
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is a map of long exact sequences

...

��

...

��∏
i≥1 TR

i/k
q−λ⌊(i−1)/k⌋

(A)

Vk∗
��

id //
∏

i≥1TR
i/kn
q−λ⌊(i−1)/kn⌋

(A)

Vkn∗
��∏

i≥1 TR
i
q−λ⌊(i−1)/k⌋

(A)
Vn∗ //

��

∏
i≥1TR

i
q−λ⌊(i−1)/kn⌋

(A)

��

TFq+1(A[x]/(x
k), (x)) //

��

TFq+1(A[x]/(x
nk), (x))

��

...
...

where the lower left vertical map is induced by A[x]/(xk) → A[x]/(xnk), x 7→
xn, V maps are given by Verschiebung maps, ei = ⌊(i−1)/kn⌋, and TRi/l

s (A)

is trivial when i/l ̸∈ N.

Proof. Taking the infinite coproduct of the diagram in the corollary, we get

the following map of cofibration sequences

∨
i≥0 T+ ∧Ci/k

Sλdi
pr

//

id
��

∨
i≥0 T+ ∧Ci

Sλdi //

pr

��

Ncy(Πk)

gn

��∨
i≥0 T+ ∧Ci/kn

Sλei
pr

//
∨

i≥0 T+ ∧Ci
Sλei // Ncy(Πnk),

where gn denotes the map induced by Πk → Πnk, a 7→ bn. Applying the

functor THH(A) ⊗S (−) to the diagram above and taking fixed points and

the homotopy limits along with Frobenius maps and homotopy groups of

spectra, we get the desired diagram by (a).
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We can deduce another map of another long exact sequences by the cofi-

bration sequence.

Theorem 5.10. Let A be a ring in which p is nilpotent. There is a map of

long exact sequences

...

��

...

��

limR TR
i/k
q−λdi,k

(A)

Vk∗
��

id // limR TR
i/kn
q−λdi,kn

(A)

Vkn∗
��

limR TRi
q−λdi,k

(A)

��

Vn∗ // limR TRi
q−λdi,kn

(A)

��

Kq+1(A[x]/(x
k), (x))

vn //

��

Kq+1(A[x]/(x
nk), (x))

��

...
... ,

where di,k = ⌊(i− 1)/k⌋, di,kn = ⌊(i− 1)/kn⌋, V denotes the map induced by

Verschiebung maps and the maps in the limits are restriction maps and the

maps Km(A[x]/(x
k), (x)) → Km(A[x]/(x

nk), (x)) are induced by x 7→ xn.

Proof. The same argument in the proof of [Hesselholt1, 2.1] holds. More

precisely, we first smash THH(A) with the cofibration sequences in the proof

of the above theorem and use (a). Next we take homotopy limits along with

Frobenius maps and homotopy fixed points of restriction maps. Then by (b),

we get the desired diagram.

In [Hesselholt1, §5] Hesselholt gave an explicit translation of topological

Hochschild homology and big de Rham-Witt complex W(−)Ω
∗
A for regular
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Fp-algebras. By the translation, we immediately get the following

Corollary 5.11. Let A be an regular Fp-algebra. There is a map of long

exact sequences

...

��

...

��⊕
l≥0 Wl+1Ω

q−2l
A

Vk∗
��

id //
⊕

l≥0Wl+1Ω
q−2l
A

Vkn∗
��⊕

l≥0Wk(l+1)Ω
q−2l
A

Vn∗ //

��

⊕
l≥0Wkn(l+1)Ω

q−2l
A

��

Kq+1(A[x]/(x
k), (x))

vn //

��

Kq+1(A[x]/(x
nk), (x))

��

...
... ,

where Ip denotes the set of positive integers which are not divisible by p, the

subscript m(l + 1) denotes the truncation set {1, 2, ...,m(l + 1)}.

Taking the colimit of the diagram in the above theorem, we get the fol-

lowing.

Corollary 5.12. Let A be an Fp-algebra. Then there is a long exact sequence

... // limR TR
i/k
q−λ

di
k

(A) // colimn limR TRi
q−λ

di
kn

(A) //

Kq+1(Ã) // ...,

where Ã := colimn(A[x]/(x
nk), (x)).
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Proof. The colimit is filtered. Therefore, we get the long exact sequence by

taking the colimit of the long exact sequences obtained in the above theorem

and colimn K∗(A[x]/(x
nk), (x)) is canonically isomorphic to K∗(Ã).

For any Z(p)-algebra A, there is a decomposition by [Hesselholt1, §2]

TRi
q−λd

(A) ∼=
∏
j∈i′N

TRu
q−λ⌊(pu−1j−1)/k⌋

(A; p),

where i = pu−1i′ with i′/p /∈ N and d = ⌊(i− 1/k)⌋. The above isomorphism

is induced by the following maps

TRi
q−λd

(A) → TR
i/j
q−λd

→ TRpu−1
q−λ(pu−1j−1)/k

(A),

where the the first map is Frobenius and the other one is the restriction map.

We define TRu
q (A; p) := TRpu−1

q (A).

Let A be a Z(p)-algebra for a prime number p, and i, n and q natural

numbers. Write i = pu−1i′ with i′/p /∈ N and n = pv−1n′ with n′/p /∈ N.

Then there is a commutative diagram, see [Hesselholt1],

TRi
q−λ(A)

��

//
∏

j∈i′N TR
u
q−λ′(A; p)

��

TRin
q−λ(A) //

∏
j∈i′n′N TR

u+v−1
q−λ′ (A; p),

where the left vertical map is n-th Verschiebung map V n and the right ver-

tical map acts on the j-factor as n′V v−1 which lands on jn′-factor and the

horizontal maps are isomorphisms defined above. We use the stability lemma

[Hesselholt1, Lemma 2.6].

Lemma 5.13. Let p be a prime number and A a Z(p)-algebra and i = pu−1i′,
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n = pvn′ and q natural numbers and j ∈ Ip. Then there is a natural number

u′ such that the following diagram is commutative

limR TRu
q−λ⌊(pu−1j−1)/k⌋

(A; p)

pr

��

V pv

∗ // limR TRu
q−λ⌊(pu−1j−1)/k⌋

(A; p)

pr

��

TRu′

q−λ⌊(pu′−1j−1)/k⌋
(A; p)

V pv

∗ // TRu′+v
q−λ⌊(pu′−1j−1)/k⌋

(A; p),

and vertical maps are isomorphisms and q < 2⌊(pu′
j − 1)/k⌋.

Proof. We first note that ⌊(pu′+v−1jn′−1)/kn⌋ = ⌊(pu′−1j−1)/k⌋. Therefore,
the diagram is commutative. Moreover, by Lemma 2.6 in [Hesselholt1], the

vertical maps are isomorphisms for q < 2⌊(pu′
j − 1)/k⌋.

Taking the limit on the decomposition, we get the isomorphism

limR TRi
q−λd

∼=
∏
j∈Ip

lim
R

TRu
q−λ(pu−1j−1)/k

(A; p),

where Ip is the set of natural numbers which are not divided by p.

Corollary 5.14. Let A be a Z(p)-algebra. Then we can chose ũ such that the

following is a long exact sequence

... //
⊕

j∈Ip limR TRũ
q−λ

d
k,p
u,j

(A; p)

//
⊕

j∈Ip colimv limR TRũ+v+s
q−λ

d
k,p
u,j

(A; p) //

Kq+1(Ã) // ...,
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where Ã := colimn(A[x]/(x
nk), (x)) and k = psk′ and n = pvn′ and dk,pu,j =

⌊(pu−1j − 1)/k⌋.

Proof. By 5.13, for any j ∈ Ip, it is able to chose large enough ũ such that

the following commutes and vertical maps are isomorphisms

limR TRu
q−λ⌊(pu−1j−1)/k⌋

(A; p)

pr

��

V ps

∗ // limR TRu+s
q−λ⌊(pu−1j−1)/k⌋

(A; p)

pr

��

TRũ
q−λ⌊(pu′−1j−1)/k⌋

(A; p)
V ps

∗ // TRũ+s
q−λ⌊(pu′−1j−1)/k⌋

(A; p),

where k = psk′. We also have the decomposition for Z(p)-algebra. Therefore,

we get the desired long exact sequence from Cor 5.12.

By [HM1, Theorem A] and our result Corollary 5.11, we have the following

commutative diagram of short exact sequences for any j,m, n and any perfect

field k of positive characteristic

0 // Wj(k)

id
��

Vm // Wjm(k) //

Vn

��

K2j−1(k[x]/(x
m), (x))

��

// 0

0 // Wj(k)
Vmn // Wjmn(k) // K2j−1(k[x]/(x

nm), (x)) // 0,

where W denotes big Witt vectors, and the right vertical map is induced by

the power map x 7→ xn. In the rest of this section, we consider applications

of this diagram.

Let k be a perfect field with characteristic p > 0 and let

W (k)[p1/p
∞
] := colimn W (k)[p1/p

n

],

where the structure maps are given by p1/p
n 7→ (p1/p

n+1
)p. We consider
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the completion OK := W (k)[p1/p
∞
]∧ with quotient field K := OK [1/p] and

residue field k. For example, if k = Fp then OK = Zp[p
1/p∞ ]∧ with quotient

field OK [1/p] = Qp(p
1/p∞)∧. Using W (k)/p = k and W (k)[x]/(xpn − p) =

W (k)[p1/p
n
], we have

OK/pOK = colimn k[x]/(x
pn)

with structure maps given by x 7→ xp. We let m ⊂ OK denote the maximal

ideal. Taking the colimit of the diagram above, we obtain a corollary.

Corollary 5.15. With the notation above, we have

K2j−1(OK/pOK ,m/pOK) = colimn(Wjpn(k)/VpnWj(k)),

where the colimit is indexed by the category of natural numbers under addi-

tion. Moreover, the relative K-groups in even degrees are zero.

Let k again be a perfect field with characteristic p > 0 and let

W (k)[ζp∞ ] := colimn W (k)[ζpn ],

where ζpn denotes a primitive pn-th root of unity and we choose these to

satisfy ζppn = ζpn−1 . We consider the completion OK := W (k)[ζp∞ ]∧ with

quotient field K = OK [1/p] and residue field k. For example, if k = Fp

then OK = Zp[ζp∞ ]∧ with quotient field OK [1/p] = Qp(ζp∞)∧. Let us write

K0 = W (k)[1/p] and Kn = K0(ζpn). Since |Kn : K0| = pn−1(p − 1) and

ζpn − 1 is a uniformizer, the map

k[x]/(xpn−1(p−1)) → W (k)(ζpn)/p
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given by x 7→ ζpn −1 is an isomorphism. Moreover, with these isomorphisms,

the following diagram

W (k)(ζpn)/p k[x]/(xpn−1(p−1))
∼=oo

W (k)(ζpn−1)/p

OO

k[x]/(xpn−2(p−1))
∼=oo

OO

commutes, where the left vertical map is given by ζpn−1 − 1 7→ ζppn − 1 and

the right vertical map is given by x 7→ xp. By this construction, we have

OK/pOK = colimn k[x]/(x
pn−1(p−1)).

We let m ⊂ OK denote the maximal ideal. Taking the colimit of the diagram

above, we obtain a corollary again.

Corollary 5.16. With the notation above, we have

K2j−1(OK/pOK ,m/pOK) = colimn(Wjpn−1(p−1)(k)/Vpn−1(p−1)Wj(k)),

where the colimit is indexed by the category of natural numbers under addi-

tion. Moreover, the relative K-groups in even degrees are zero.

The p-typical decomposition of the right-hand sides in Corollary 5.15 and

Corollary 5.16 is explained in [Hesselholt1, p.4-5].
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6 Semirings and spectra

This section is about future work. The Witt vector functor has been extended

to commutative semirings by Borger ([Borger2]) using the theory of plethystic

algebra ([BW]). We recall here Witt vectors for commutative semirings,

give some discussion on an obstruction for extending THH to commutative

semirings using the usual stable homotopy theory, and discuss a possible way

to deal with the problem. In the following, the definition of N-algebra and

that of semiring are the same.

As we have seen, the stable homotopy theory of S-algebras can be under-

stood as a theory of numbers and moreover S is literally deeper than N in the

setting of [CC]. However, as we have seen, N is an anomaly in the theory of

numbers in a sense. The author believes that N should not be an anomaly in

any theory of numbers. Apparently this kind of negligence, which might be

ascribed to the structural irreversibility (e.g. the non-existence of inverse in

a monoid), is not only for stable homotopy theory but also for other branches

of geometry. For instance, the introduction of [Borger2] says,“There is also

a larger purpose to this chapter, which is to show that the formalism of (com-

mutative) semirings—and more broadly, scheme theory over N—is a natural

and well-behaved formalism, both in general and in its applications to Witt

vectors and positivity. It has gotten almost no attention from people working

with scheme theory over Z, but it deserves to be developed seriously—and in-

dependently of any applications, which are inevitable in my view.”. Grandis

also studies irreversible worlds in [Grandis].

We naively assume that to study N-algebras as algebras over S is also

inevitable. So, without prudent preparations, we are going to try to observe

what can happen.
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Let ΛN be the semiring of infinite variable symmetric functions with co-

efficients in the commutative semiring N. More precisely, let ΛZ be the ring

of symmetric functions in infinitely many variables. As an abelian group, it

has a basis consisting of the completed elementary functions

ek(x1, x2, x3, ...) = Σj1≥...≥jkxj1xj2 · · · xjk .

The semiring ΛN is the sub-N-module

ΛN ⊂ ΛZ

spanned by this basis. In [Borger2], Borger constructs a plethory structure

on ΛN which is actually the restriction of the usual plethory structure on ΛZ

(called plethism or composition structure in [Macdonald, p. 135]), so that the

set AlgN(ΛN, A) of algebra homomorphisms has a natural λ-semiring struc-

ture for any commutative semiring A ([Borger2, §4]). To be more precise,

there is a monoidal product ⊙ on the category of bi-N-algebras characterized

by

AlgN(P ⊙R,S) = AlgN(R,AlgN(P, S)).

Defining a plethory to be a monoid object in the monoidal structure, he gives

an explicit monoidal structure for ΛN ([Borger2, p. 19]). Using it, he reached

the following definition in [Borger2, §6.1]

Definition 6.1 ([Borger2]). For any commutative semiring A, the commu-

tative semiring of big Witt vectors in A is

W(A) := AlgN(ΛN, A),

62



where the semiring structure is induced by the bisemiring structure on ΛN.

We abused the notation W in the above definition. However, by con-

struction, he proved that this definition was a generalization of the usual

one.

Theorem 6.2 ([Borger2]). For any commutative ring A, W(A) is the ring

of classical big Witt vectors in A.

He calculated the Witt vectors of the initial semiring N.

Theorem 6.3 ([Borger2], 7.9). Let Otp

Q be the multiplicative monoid of al-

gebraic numbers which are integral at all finite places and which are real and

positive at all infinite places. The Witt vectors W(N) is N[Otp

Q ]
Gal(Q/Q).

We note that, by this theorem, W(N) is a countably infinite set, while

W(Z) is known to be uncountably infinite. In particular, there is no bijection

between W(N) and W(Z). As we saw in section 4, for commutative rings,

THH and Witt vectors are related in the sense of Hesselholt-Madsen. In this

way, the above theorem may suggest the existence of THH for semirings.

Remark 6.4. Choosing an embedding OQ ↪→ C, W(N) may admit a conju-

gation induced by that on C. According to Kottwitz [Scholze, Construction

9.3 (iv)], the cohomology theory conjectured at [Scholze, Conjecture 9.5] will

have to have a graded antiholomorphic isomorphism when restricted to KtR.

One might hope that it relates to W(N). This is not what we are discussing

here mainly, but it seems to be worth mentioning.

Borger also established p-typical, finite length Witt vectors for commuta-

tive semirings in [Borger2, §8] and proved that they were the usual ones for

commutative rings. We write Wp,n for the p-typical n-length Witt vectors.
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Thanks to these results, we may perhaps be able to expect the existence of

THH for commutative semirings which may require a new homotopy theory.

In addition, from the viewpoint of Connes-Consani which we reviewed in

previous sections, it will be fair to say that N-algebras also can be studied as

S-algebras. In the rest of this section, reconsidering the notion of space, we

will give some observations on (commutative) monoids and higher categories.

They are not proved yet, at least by the author.

Our aim is to extend Hesselholt-Madsen’s theorem (Therorem 4.3) to

commutative semirings in accordance with Borger’s theory and we hope that

it will give an evidence for the existence of geometry of irreversible objects.

In order for our aim, we need to define “π0(THH(A)
Cpn )” that should not be

a commutative ring in general, for a commutative semiring A, but has to be

a commutative semiring, since Wp,n(A) is a commutative semiring in general.

So, at first, we will try to observe what “stable homotopy monoids” should

be. We use the letter τ instead of π tentatively.

As we saw in section 3.2, the stable homotopy group of a (nice) spectrum

is defined as a certain colimit of homotopy groups of spaces. Therefore, to

define “stable homotopy monoids”, we may need to define “higher homotopy

monoids of spaces”. Basically, our idea is to use (∞,∞)-categories instead

of (∞, 0)-categories. We note that, by the homotopy hypothesis, (∞, 0)-

categories are the same as spaces. The author personally thinks that objects

named spaces should not necessarily have such full reversibility that any

groupoid has. Spaces focusing on groups are spaces in the usual sense, namely

every path in such a space is invertible. Spaces focusing on monoids may

be highly directed things as mentioned below. Perhaps, spaces focusing on

general S-modules might be some kind of disconnected or granular one. In
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other words, every (commutative) group is a one-object groupoid and every

(commutative) monoid is a one-object strict (∞,∞)-category. Thus, every

S-module should be a one-object something as well. We could try to see what

that should be, but it is too far from the author’s understanding by now.

Special Γ-spaces might be another candidate for a model of such homo-

topy theory. However, commutative monoids in ∞-groupoids might not be

very natural and we may not be able to get higher stable homotopy monoids

by special Γ-spaces. Grandis’ directed spaces ([Grandis]) should be also re-

lated to this topic. However, we may need higher irreversible simplices to

study Eilenberg-Maclane spectra of commutative monoids.

It is known that the loop space of an (∞, n + 1)-category is an (∞, n)-

category ([GeHa, §6.3]) in the sense of Gepner-Haugseng. For example, the

loop space ΩX of a quasicategory X is a Kan complex. Thus the homotopy

category h(ΩX) is a groupoid and the fundamental monoid Endh(ΩX)(∗) at
a point ∗ is a group.

More generally, for an (∞,∞)-category X, we might be able to define the

m-th homotopy monoid τm(X, ∗) of X at a point ∗ to be Endh(Ωm−1X)(∗) so
that τm(X, ∗) would be isomorphic to τm−1(ΩX, ∗) for any m ≥ 1. We may

define τ0(X) to be ob(h(X))/ isom which should be the same as Joyal’s τ0

when X is a quasicategory [Joyal, §2].
Let next X be an (∞, n)-category for some natural number n. If m

is sufficiently larger than n, then τm(X) would be a group. For example, if

m = n+1, Ωm−1X would be an (∞, 0)-category. So τm(X) would be a group.

In other words, we may need full irreversibility for our spaces. Considering

this, spaces for our homotopy theory should mean (∞,∞)-categories, since

stable homotopy monoid τ st∗ would be defined as a certain colimit. Studying
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Γ-objects in (∞,∞)-categories and their smash products might perhaps give

us a homotopy theory of (connective) semiring spectra. We pose some naive

questions.

Question 6.5. (i) Do we need topological alternatives of (∞,∞)-categories?

(ii) Is the loop space of an (∞,∞)-category an (∞,∞)-category as well?

(iii) Does an (∞,∞)-categorical analogue of the Freudenthal suspension

theorem hold?

For the first question, we note that the topological 1-dimensional sphere

has finite cyclic groups as its subgroups, however, the simplicial 1-dimensional

sphere does not, since it does not have many objects. We might be able to

deal with this problem using subdivision techniques. Note that subdivisions

may change the homotopy types of simplicial sets in the sense of Joyal. For

instance, the edgewise subdivision ([BHM]) of ∆[2] is not weakly equivalent

to ∆[2] in the sense of Joyal.

For the questions above, Verity’s theory of weak complicial sets ([Verity])

will be worth considering. He has defined a model structure on the category

of stratified simplicial sets, which models (∞,∞)-categories. So we may

define the generalized Reedy model structure on the category of Γ-objects

in stratified simplicial sets ([BeMo]). As we have done for Γ-spaces in sec-

tion 3, we also get an endofunctor LSX ∈ End(StrsSet∗) for X a Γ-object

in stratified simplicial sets, where StrsSet∗ denotes the category of pointed

stratified simplicial sets. Then we may define the stable homotopy monoid

τ st∗ (X) of X to be colimk→∞ τk+∗(LSX(Sk)) and also localize the general-

ized Reedy model structure with respect to τ st∗ -isomorphisms. Therefore we

obtain natural questions.

Question 6.6. (i) Does the localized model structure exist?
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(ii) Are fibrant objects of the localized model category special and piecewise

weak complicial sets?

(iii) Is it possible to construct an adjunction using suspension and loop

space for stratified simplicial sets in a reasonable sense?

We now try to give an observation on geometrical differences between

(commutative) monoids and (commutative) groups. As is well known, any

commutative monoid is homotopic to its groupification. Let M be a (com-

mutative) monoid. Then we may get a strict (∞,∞)-category as follows; the

set of objects is a one point set, 1-morphisms are elements of the underlying

set of M , for two 1-morphisms f and g, the set of 2-morphisms from f to

g is {h ∈ M |f + h = g}, and so on. If the monoid M is a group, then the

resulting strict (∞,∞)-category will be just a strict (∞, 0)-category. More

precisely, for 1-morphisms f and g, there exists the unique 2-isomorphism

g−f from f to g. If the monoid M is a cancellative monoid, then the result-

ing strict (∞,∞)-category will be a strict (∞, 1)-category. More precisely,

for 1-morphisms f and g, there is at most one 2-morphism from f to g. The

same argument for (strict) symmetric monoidal categories may work. We can

also view a commutative monoid M as the strict (∞,∞)-category such that

the object set is the underlying set M . In addition, it might be crucial that,

for a (commutative) monoid M , the action on EM by the multiplication of

M is not free in general.

Therefore, the Eilenberg-MacLane spectrum of a commutative monoid

perhaps should be viewed as a special Γ-object in weak complicial sets. Also

we can define smash product as the Day-convolution and consider monoid

objects similarly to what we reviewed in section 2 and section 3. Such monoid

objects would be called semiring spectra.
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Question 6.7. (i) Is the Eilenberg-MacLane spectrum of a semiring a semir-

ing spectrum?

(ii) Is the smash product compatible with both of the generalized Reedy

model structure and the localized model structure?

(iii) Does τ st∗ (X) have a graded semiring structure for any bi-fibrant

monoid object X in Γ-stratified simplicial sets?

For a commutative semiring A, it perhaps might be possible to define

the topological Hochschild homology THH(A) as the geometric realization of

the derived cyclic bar-construction of the Eilenberg-MacLane spectrum of A

with respect to the Day convolution mentioned above. Note that it is not the

entire analogy of Bökstedt’s construction for ring spectra in section 4, so that

it might be very difficult to analyze (non-homotopy) fixed points of THH(A).

By the construction of the geometric realization ([Drinfeld]), THH(A) will

have a T-action. Then its fixed points may make sense, although we do not

know their properties.

Question 6.8. For a commutative semiring A, are THH(A) and its fixed

points THH(A)Cpn commutative semiring spectra?

Let us think every question is cleared. Here is our expectation.

Expectation 6.9. There is a natural semiring isomorphism for any prime

p, any natural number n and any commutative semiring A,

τ st0 (THH(A)Cpn ) ∼= Wp,n(A).
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