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1 Introduction

The aim of the representation theory of algebras is to study the structure of the module
categories of algebras, or the structure of triangulated categories arising from algebras. For
instance, the derived category D”(mod A) of an algebra A, or the stable category mod A
of a finite dimensional self-injective algebra A are very basic triangulated categories in
the representation theory and studied by many mathematicians. It is known that such
triangulated categories are algebraic, that is, equivalent to stable categories of Frobenius
categories (see Subsection 3.3 for details). To study these triangulated categories, tilting
theory has been developed in recent decades.

Tilting theory is one of the main tools in the study of algebraic triangulated categories.
One of the most basic triangulated categories is the homotopy category KP(proj A) of an
algebra A. Tilting theory gives an equivalence between an algebraic triangulated category
and the homotopy category of an algebra. In fact, it was shown by Keller [Ke94] (see
also Theorem 3.9) that an algebraic triangulated category 7 is triangle equivalent to the
homotopy category KP(proj A) of an algebra A if and only if 7 has a tilting object whose
endomorphism algebra is isomorphic to A. Hence it is important to construct a tilting
object of an algebraic triangulated category and to study its endomorphism algebra.

Let A be a finite dimensional algebra. A typical example of a tilting object is an
algebra A itself in the homotopy category KP(proj A). Let T be a tilting A-module. Then
a minimal projective resolution of 7T is a tilting object of KP(proj A). Moreover, there are
many studies which construct tilting objects, for example [BGG, 10, Lu, MY, MU, Y].
Our results in this thesis are contained in this flow.

In this thesis we report on recent results shown by the author which construct and study
tilting objects of certain triangulated categories. This thesis consists of three parts. Part I
is based on [Kil4]. In this part, we deal with a triangulated category which is constructed
from a preprojective algebra and an element of a Coxeter group. We construct a tilting
object in the triangulated category and calculate its endomorphism algebra, when the
element of the Coxeter group is c-sortable. Part IT is based on [Kil6]. In this part, we deal
with the same triangulated category as Part I. Here the element of the Coxeter group is
more general than c-sortable, that is, c-starting or c-ending. We show that the category
always has a silting object, which is a generalization of a tilting object, and show that
if the element of the Coxeter group is c-starting or c-ending, then the silting object is a
tilting object. Moreover, we compare the equivalence obtained by the tilting object and
the equivalence of Amiot-Reiten-Todorov [ART]. Part III is based on [Kil7]. In this part,
we deal with the derived category of modules over the stable category of a hereditary
algebra, motivated by the result of Iyama and Oppermann [10].

Tilting objects associated to c-sortable elements

The preprojective algebra for a quiver ) was introduced by Gelfand-Ponomarev [GP] to
study the representation theory of all path algebras of quivers whose underlying graphs
coincide with (). Since the preprojective algebra of ) has all information of such path alge-
bras, its representation theory is very rich and appears in many branches of mathematics.
In particular, preprojective algebras play an important role in the additive categorification
of Fomin-Zelevinsky’s cluster algebras [FZ].



In the context of the categorification of cluster algebras, preprojective algebras were
firstly studied by Geiss-Leclerc-Schréer [GLS06, GLS07]. Let @ be a Dynkin quiver, that
is, the underlying graph of @) is a simply laced Dynkin graph, and II be the preprojective
algebra of (). In these papers, they showed that the stable category modII is a 2-Calabi-
Yau triangulated category, and has cluster tilting objects which are crucial concept of the
categorification.

More generally, by using the preprojective algebra II of a finite acyclic quiver (), Buan-
Iyama-Reiten-Scott [BIRSc] construct a 2-Calabi-Yau triangulated category with cluster
tilting objects as follows. For each vertex u € Qq, let I,, := II(1 — e,)II be a two-sided
ideal of II, where e, is an idempotent of II associated to u. The Coxeter group Wg of
Q is a group generated by the set {s, | u € Qp} with appropriate Coxeter relations. For
each element w of Wy with a reduced expression s, Sy, - - - 5y,, consider the assignment
I(w) = Iy, Iy, -+ Iy,. Let (I, | v € Qo) be a semigroup generated ideals I,,, where the
multiplication is given by that of two-sided ideals. Then in [BIRSc|, the authors first
showed the following.

Theorem 1.1. [BIRSc, Theorem Ill. 1.9] The assignment w to I(w) gives an isomorphism
Wo ~ (I, | v € Qo) of semigroups.

They defined an algebra II(w) := II/I(w) for each w € Wy, which plays a central role in
their studies and also in Part I and IT of this thesis. They showed that the algebra II(w) is
Iwanaga-Gorenstein of dimension at most one. This fact gives that the category SubII(w)
of II(w)-submodules of free II(w)-modules is a Frobenius category, and the stable category
SubII(w) is a triangulated category. Let D = Homg (—, K) be the standard K-dual, where
K is a field. One result of [BIRSc] is the following.

Theorem 1.2. [BIRSc] For any w € W, we have the followings.

(a) The stable category SubII(w) is a 2-Calabi- Yau triangulated category, that is, for any
objects X, Y € Subll(w), there exists a bifunctorial isomorphism Homyy,,)(X,Y) ~
D HomH(w) (Y, X[Q]) .

(b) For any reduced expression W = Sy, Sy, -+ - Sy, 0f w, the object

1

l
T(w) = @H/I(SUISUQ " Sy )€y
=1

is a cluster tilting object of SubIl(w), that is,
add T(w) = { X € SubTl(w) | Extyy,,(X,T(w)) =0}
holds.

We can see that if @ is a Dynkin quiver and if w is the longest element of the Coxeter
group Wq, then II(w) = II and SubII(w) = modII holds. Namely, the above theorem
covers the Dynkin cases.

Roughly speaking, our results in Part I and Part II are tilting analog of results of
[BIRSc|. The preprojective algebra II and the factor algebra II(w) have natural structures
of (Z)-graded algebras, which are determined by the orientation of a quiver ). Then



we can take the category SubZII(w) of graded II(w)-submodules of graded free II(w)-
modules. This category is also a Frobenius category and the stable category Sub” II(w) is
a triangulated category. We show that the category Sub? II(w) has a tilting object. This
study has two motivations: one comes from a relationship between Sub II(w) and cluster
categories, and the other comes from the existence of tilting objects in the stable category
of an Iwanaga-Gorenstein algebra.

Cluster tilting objects in 2-Calabi-Yau triangulated categories were introduced by
Buan-Marsh-Reineke-Reiten-Todorov in [BMRRT]. Let H be a finite dimensional hered-
itary algebra, that is, the algebra of global dimension at most one. They construct a
cluster category of H, which is a 2-Calabi-Yau triangulated category, as the orbit cat-
egory D(mod H)/F of the bounded derived category DP(mod H) modulo appropriate
auto-functor F. They showed that any tilting H-module is a cluster tilting object in
DP(mod H)/F, and the converse is also true in some sense. In particular, the algebra H
itself is cluster tilting in DP(mod H)/F.

The construction of cluster categories was generalized by Amiot [A] for a finite dimen-
sional algebra A of global dimension at most two. A cluster category C(A) of A is the
triangulated hull of the orbit category D®(mod A)/F in the sense of Keller [Ke05] for an
appropriate auto-functor F' on D”(mod A). By construction, we have a natural triangle
functor 7 : DP(mod A) — C(A). It was shown that the cluster category C(A) is a 2-Calabi-
Yau triangulated category and that the image of the tilting object A of DP(mod A) via 7
is a cluster tilting object of C(A).

A relationship between 2-Calabi-Yau triangulated categories C(A) and Sub II(w) was
studied by Amiot-Reiten-Todorov [ART]. For any element w € Wy and a reduced expres-
sion w of w, they constructed a finite dimensional algebra A(w) (see Section 11) and they
showed that there exists a triangle equivalence

C(A(w)) ~ SubTI(w), (L1)

where m(A(w)) goes to T'(w).

By forgetting the degree, we have a triangle functor f : SubZ?II(w) — SubII(w).
Therefore, it is nature to expect that there exists a tilting object M of Sub” II(w) such
that f(M) = T'(w) holds. In fact, in a cluster category side, A(w) is a tilting object of
DP(mod A(w)) and 7(A(w)) is a cluster tilting object of C(A(w)). Moreover, it is also
expected that the endomorphism algebra of M is isomorphic to A(w).

The other motivation of this study comes from one natural question of Iwanaga-
Gorenstein algebras. A finite dimensional algebra A is said to be Iwanaga-Gorenstein
of dimension at most n if injdim 44 < n and injdimA4 < n hold. We call an A-
module M Cohen-Macaulay if Exth(M, A) = 0, and denote by CM A the category of
Cohen-Macaulay modules. If A is an Iwanaga-Gorenstein algebra of dimension at most
n, then CMA is a Frobenius category. It is easy to see that CMA = mod A if n = 0 and
CMA = Sub A if n = 1. If moreover A is a Z-graded algebra, then we can define graded
Cohen-Macaulay modules. We denote by CMZ%A the category of graded Cohen-Macaulay
modules, which is also Frobenius. We can also see that CMZA = mod? A if n = 0 and
CMZA =Sub” A if n = 1.

Let A be a finite dimensional Z-graded Iwanaga-Gorenstein algebra of dimension at
most n. We consider the following question. When does the stable category CM%A have
tilting objects ? In the case where n = 0, then a complete answer to this question was



given by Yamaura [Y]. In this thesis, we study this question in the case where A = II(w),
which is Iwanaga-Gorenstein of dimension at most one. In Part I and II, we give a sufficient
condition such that the stable category CMZTI(w) = SubZ II(w) has tilting objects.

In Part I, we show that Sub” II(w) has a tilting object when w is a c-sortable element,
and calculate its endomorphism algebra. c-sortable elements were introduced by Reading
[Re] to study noncrossing partitions associated to a Coxeter group. For a Coxeter group
of a quiver @, it is known by [AIRT] that there exists a closed connection between c-
sortable elements of Wg and tilting modules over the path algebra K@, see Theorem
4.9. This connection enables us to show the existence of a tilting object and to study its
endomorphism algebra in detail. For the definition and notation of c-sortable elements,
see Definitions 3.2 and 6.1. Our first result is the following.

Theorem 1.3 (Theorem 5.6). Let w € Wg be a c-sortable element with a c-sortable

eTPTESSION W = Sy, Sy, = * * Suy- 1 hen

!
N(w) = @ H/I(sul T Sui)eui (ml)
=1

is a tilting object of Sub”? II(w).

Next we study the endomorphism algebra B(w) := Lm%(w)(N (w)) of the tilting
object. Let Ny be the degree zero part of N := N(w). By [AIRT], it is known that there
exists a tilting K@-module T such that SubT has an additive generator Ny. Using this
notation, we have the following theorem.

Theorem 1.4 (see Theorems 6.2, 6.3, and 7.1). We have the followings:
(a) There exists an isomorphism of algebras B(w) ~ Endgq(No)/[T].
(b) The global dimension of B(w) is at most two.

(c) We have a triangle equivalence

Sub” II(w) ~ D (mod B(w)).

Where the algebra End g (No)/[T] is called a relative stable Auslander algebra. By con-
struction, clearly we have f(N) = T'(w). Although we found a tilting object in Sub? II(w)
when w is a c-sortable expression, the algebra B(w) is not isomorphic to A(w), in general.

Tilting objects associated to c-starting and c-ending elements

In Part II, we give a sufficient condition such that the category Sub” II(w) has a tilting
object such that its endomorphism algebra is isomorphic to A(w). Firstly, we show that
for each reduced expression w of any element w € Wy, Sub? II(w) has a silting object.
Where silting objects, which are important objects in the representation theory, are a
generalization of tilting objects from the point of mutations of tilting objects [AI].



Theorem 1.5 (Theorem 9.18). Letw € Wq. For any reduced expression w = Sy, Sy, - - * Sy
of w, an object

l
M (w) := @ T/I(su, - - 5u,)eu,
=1

of Sub? Il(w) is a silting object.

We mention that as the above definitions show, two objects N(w) and M (w) of The-
orems 1.3 and 1.5 are quite different even if w is a c-sortable expression. In fact they have
different gradings, and such a difference is crucial when we study Z-graded modules.

Note that our M(w) is not a tilting object of Sub®II(w) in general (see Example
9.19). The second result in Part II gives a sufficient condition on w such that M (w) is a
tilting object of Sub? II(w). We introduce c-starting and c-ending elements in Definition
10.2, which are generalization of c-sortable elements. In particular, we have a triangle
equivalence between Sub” II(w) and the derived category of the endomorphism algebra of
M (w).

Theorem 1.6 (Theorem 10.5). Let w € W and w be a reduced expression of w. If w is
c-ending on Qq or c-starting on Qg, then we have

(a) the object M = M (w) € Sub®TI(w) is a tilting object,

(b) the global dimension of the endomorphism algebra End%(w)(M) of M in Sub? II(w)
is at most two, and

(c¢) there exists a triangle equivalence DP(mod End%(w)(M)) ~ SubZ II(w).

The third result of Part II is to compare the equivalence obtained by the tilting
object M(w) and the equivalence (1.1). We show that if the endomorphism algebra
End%(w) (M(w)) of M(w) coincides with the algebra A(w), then two equivalences com-
mute with canonical functors.

Theorem 1.7 (Theorem 11.4). Let w € Wy and w be a reduced expression of w. If w
is c-ending on Supp(w), then End%(w)(M(’w)) = A(w) holds and we have the following
commutative diagram up to isomorphism of functors

DP(mod A(w)) = SubZTI(w)
w).

I if;

C(A(w)) ——==SubII

Note that both tilting objects N(w) and M (w) have their own advantages. For ex-
ample:

e If w is c-sortable, then we can show that the endomorphism algebra of the tilting
object N(w) is isomorphic to a relative stable Auslander algebra, that is, we can
show Theorem 1.4 (a).

e If w is c-ending, then we can compare the equivalence obtained by the tilting object
M (w) and the equivalence of preceding study [ART], that is, we can show Theorem
1.7.



Stable categories of hereditary algebras and derived categories

We first recall the definition of modules over additive categories. Let C be an additive
category. A C-module is a contravariant functor from C to Ab, where Ab is the category of
abelian groups. This is an analog of modules over rings when we regard C as a ring with
several objects. A finitely presented C-module is also defined in the same way as defining
a finitely presented module over a ring. We denote by modC the category of finitely
presented C-modules. If C is triangulated, then it is known that mod C is Frobenius and
abelian, and its stable category modC is triangulated.

In Part III, we focus on the triangulated category mod D”(modA), where A is a finite
dimensional hereditary algebra. We construct a triangle equivalence between this category
and the bounded derived category of some abelian category.

Let k be a field and A be a finite dimensional k-algebra. Recall that an algebra A is
representation finite if there exist only finitely many isomorphism classes of indecompos-
able A-modules. This is equivalent to the existence of an additive generator X of mod A,
that is, each A-module is isomorphic to a direct summand of the direct sum of a finitely
many copies of X. In [IO], it was shown that if A is a representation finite hereditary
algebra, then there exists a triangle equivalence

mod DP(mod A) ~ D®(mod T'y4), (1.2)

where I' 4 := End4(X)/[A4] is the stable Auslander algebra of A.

The aim of this part is to extend a triangle equivalence (1.2) to the case when A is a
representation infinite hereditary algebra. If A is representation finite, then mod(mod A) ~
mod I" 4 holds. Therefore the role of the stable Auslander algebra I' 4 is played by the stable
category of A. Our main result of this part is the following.

Theorem 1.8 (Theorem 14.5). Let A be a hereditary algebra. We have a triangle equiv-
alence

mod DP(mod A) ~ DP(mod(mod A)). (1.3)

To prove Theorem 1.8, we need to give general preliminary results on functor categories
and repetitive categories. The functor category mod(mod A) is an abelian category with
enough projectives and enough injectives, since the category mod A forms a dualizing
k-variety, which is a distinguished class of k-linear categories introduced by Auslander
and Reiten [AR74], see Definition 12.12. A key role is played by the repetitive category
R(mod A) of mod A. The following our first result implies that R(mod A) is a dualizing
k-variety.

Theorem 1.9 (Theorem 13.7). Let A be a dualizing k-variety. Then RA is a dualizing
k-variety.

In particular, we can see that mod RA is a Frobenius abelian category for any dualizing
k-variety A. We denote by mod RA the stable category of mod RA, which is triangulated.
In the case where A is a representation finite hereditary algebra, the following Happel’s
theorem [Ha88] played an important role in the proof of a triangle equivalence (1.2). Let



A be a finite dimensional k-algebra of finite global dimension. The repetitive algebra A of
A is an infinite matrix algebra, without identity

ey
i

DA A
DA A
0

in which matrices have only finitely many non-zero entries and the multiplication is induced
from the action of A to the A-bimodule D A := Homy (A4, k). We can see that the category
of finitely generated A-modules mod A is a Frobenius category. Then Happel showed
that the bounded derived category DP(mod A) is triangle equivalent to the stable category
mod A.

In Section 13, we extend Happel’s triangle equivalence to dualizing k-varieties and
its module categories. In fact, we deal with the following class of categories including
dualizing k-varieties. For a k-linear additive category A, we denote by proj.A the category
of finitely generated projective A-modules and by mod A the category of A-modules having
resolutions by proj A. We consider the following conditions:

(IFP) D A(X, —) is in mod A for each X € A, where D = Homy(—, k).
(G) DA(X, —) has finite projective dimension over A for each X € A.

For example, if A is a dualizing k-variety, then A satisfies the condition (IFP). On the other
hand, the condition (G) is a categorical version of Gorensteinness. Gorenstein-projective
modules (also known as Cohen-Macaulay modules, totally reflexive modules) are important
class of modules. We denote by GP(RA, A) the category of Gorenstein-projective RA-
modules of finite projective dimension as .A-modules. We prove the following.

Theorem 1.10 (Corollaries 13.17, 13.18). Let A be a k-linear, Hom-finite additive cate-
gory.

(a) Assume that A and A°P satisfy (IFP) and (G). Then we have a triangle equivalence

KP(proj A) ~ GP(RA, A).

(b) Assume that A is a dualizing k-variety. If each object of mod A and mod A°? has
finite projective dimension, then we have a triangle equivalence

DP(mod A) ~ mod RA.

Let A be a finite dimensional k-algebra. Then the category of finitely generated pro-
jective modules projA is a typical example of a dualizing k-variety. If A = projA and A is
of finite global dimension, then Theorem 1.10 gives a Happel’s triangle equivalence.

In Section 14, we show the following theorem, which together with Theorem 1.10
implies Theorem 1.8.



Theorem 1.11 (Theorem 14.3). Let A be a finite dimensional hereditary k-algebra. Then
we have an equivalence of additive categories

R(mod A) ~ D"(mod A).

We mention that Theorem 1.10 holds if a category A satisfies assumptions of the
theorem. Typical examples are A = proj A or A = mod A for a finite dimensional algebra
A of finite global dimension. On the other hand, Theorem 1.11 holds only in the case
when A is hereditary. Otherwise, we can easily find a counter example to Theorem 1.11.
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Part 1
Tilting objects associated to c-sortable
elements

This part is based on the paper [Kil4].

Notation

In Part I and Part II, we use the following notation.

We denote by K an algebraically closed field. All categories are K-categories. All
subcategories are full and closed under isomorphisms. All algebras are K-algebras, and
all graded algebras are Z-graded K-algebras. We always deal with left modules.

For an algebra A, we denote by Mod A (resp, mod A, fd A, proj A) the category of
(resp, finitely generated, finite dimensional, finitely generated projective) A-modules. For
a graded algebra A, we denote by ModZ A (resp, mod? A, fdZA, proj“A) the category
of (resp, finitely generated, finite dimensional, finitely generated projective) Z-graded
A-modules with degree zero morphisms. For graded A-modules M, N, we denote by
Hom% (M, N) the set of morphisms from M to N in Mod” A.

For an additive category C and M € C, we denote by add(M) the additive closure of
M in C, that is, the full subcategory of C consisting of direct summands of the direct sum
of finitely many copies of M. The composition of morphisms f: X - Y andg:Y — Z
is denoted by fg =go f: X — Z. For two algebras A and B, we denote by A ® B the
tensor algebra of A and B over K. For two arrows «, 8 of a quiver such that the target
of « is the source of 3, we denote by af the composition of o and 5. We denote by
D = Homg (—, K) the standard K-dual. We always denote by [1] the suspension functor
on triangulated categories.

3 Preliminary

In this section, we define some notation which we use throughout this thesis and recall
some preliminary results. The notation defined in this section will also be used in Part II.

We fix a finite acyclic quiver @ = (Qo, Q1,s,t), where Qo = {1,...,n} is the set of
vertices, ()1 is the set of arrows, and an arrow « goes from s(a) to t(a). Let KQ be the
path algebra of @) over K, and for a vertex u of (), we denote by e, the corresponding
idempotent of KQ.

3.1 Coxeter groups and preprojective algebras

The Cozeter group W = W of Q is the group generated by the set {s, | u € Qo} with
relations 83 =1, S8y = SypSy if there exist no arrows between u and v, and 5,848y = Sy Sy Sy
if there exists exactly one arrow between u and v.

We call an element of the free group generated by {s, | u € Qo} a word. If a word w
represents an element w € Wg, then we say that w is an expression of w.

12



Definition 3.1. Let w € Wg and w = sy, Sy, - - - Sy, be an expression of w.
(1) A word Sug, Suiy " Sug,, 18 @ subword of w if 1 < iy <dig <+ <y <1 holds.
(2) An expression w of w is reduced if [ is smallest possible.

(3) Let w be a reduced expression of w, put Supp(w) := {u1,us,...,u} C Qp. Note
that, Supp(w) is independent of the choice of a reduced expression of w (see [BjBr,
Corollary 1.4.8 (ii)]).

(4) Anelement ¢ € Wy is called a Cozeter element if there exists an expression Sy, sy, - - - 8y
of ¢ such that {vi,ve,...,v,} is a permutation of Q9. In this paper, we only con-
sider a Coxeter element c satisfying e, (KQ)e,, = 0 for i < j which is uniquely
determined by the orientation of Q).

n

We recall the definition of c-sortable elements, which were introduced and studied in
[Re].

Definition 3.2. [Re] Let ¢ be a Coxeter element of W and ¢ a reduced expression of c.
An element w € Wy is called a c-sortable element if w has a reduced expression w of the
form w = ¢@c@ ... M where each ¢ is a subword of ¢ and

Supp(e™) € Supp(c™ V) C -+ € Supp(c®) € Qo.
In this case, we say that w = ¢@e® ... (™) is a c-sortable expression of w.

Note that the definition of c-sortable elements independent of the choice of a re-
duced expression of c¢. If there is no danger of confusion, for a c-sortable expression
c®c® ... M we denote by ¢ the element of Wq represented by c¢® fori=0,...,m.

Next we recall the preprojective algebra of () and introduce factor algebras of the
preprojective algebra. The double quiver Q = (Qq, Qq,5,t) of a quiver Q is defined by
Qo = Qo, Q; = QU {a* : t(a) = s(a) | @ € Q1}. Then we define the preprojective
algebra IT of Q by

II:=KQ/{ Z ac® — a*a).

a€Q

Let u be a vertex of Q. We define the two-sided ideal I, of II by
I, :=TI(1 — e,)IL.

Let w = sy, Sy, - - - 8y, be a reduced expression of w € Wg. We define a two-sided ideal
I(w) = I(Sy, Suy - - - Su;) of II by
I(w) =Ty Iy, - I

1

Note that I(w) is independent of the choice of a reduced expression of w by [BIRSc,
Theorem III. 1.9]. We define the algebra II(w) = II(sy, Sy, - - - Su;) by

I(w) :=11/I(w).

13



For an algebra A, we denote by Sub A the full subcategory of mod A of submodules of
finitely generated free A-modules. A finite dimensional algebra A is said to be Iwanaga-
Gorenstein of dimension at most one if injdim 44 < 1 and injdim A4 < 1 hold. Tt is
well-known that if A is Iwanaga-Gorenstein of dimension at most one, then Sub A is a
Frobenius category and therefore, the stable category Sub A is a triangulated category.
For Frobenius categories, see Subsection 3.3.

We call a category C Hom-finite if the K-vector space Home (X, Y') is finite dimensional
for any X,Y € C. For a Hom-finite category C, a Serre functor S is an auto-equivalence of
C such that there exists a bifunctorial isomorphism Home(X,Y) ~ D Home(Y,S(X)) for
any X,Y € C. Our definition of a Serre functor depends on [RV, Section I]. A triangulated
category C is called 2-Calabi- Yau if C has a Serre functor S = [2] = [1] o [1]. Let C be a
2-Calabi-Yau triangulated category and C € C. We say that C is a cluster tilting object
of Cif addC = {X € C | Hom¢(X, C[1]) = 0} holds.

We say that @ is a Dynkin quiver if the underlying graph of @ is a simply laced Dynkin
diagram of type A,D or E. We recall results on the ideal I(w) the algebra II(w).

Proposition 3.3. [BIRSc] For any w € W, we have the followings.

(a) If Q is non-Dynkin, then a map x — (-x) gives an isomorphism of algebras IT =
Endp(I(w)).

(b) The algebra 1I(w) is finite dimensional and Iwanaga-Gorenstein of dimension at
most one.

(c) The stable category SublIl(w) is a 2-Calabi- Yau triangulated category.
(e) For any reduced expression W = Sy, Sy, - - - Sy, Of w, the object

l

T(w) = @ T (SuySuy =+ Su;)

i=1

is a cluster tilting object of SubII(w).

3.2 The grading of the preprojective algebra of ()

We introduce the grading of a preprojective algebra. We regard the path algebra KQ as
a graded algebra by the following grading:

_f1 B=a"acqQ
degﬁ—{o b8=a,a€ Q.

Since the element Y. (aa* —a*a) in KQ is homogeneous of degree 1, the grading of KQ
a€Qq
naturally gives a grading on the preprojective algebra II = @ II;. A Z-algebra A is said
i>0
to be positively graded if A; = 0 for any ¢ < 0. Preprojective algebras are positively graded
with respect to the above grading.

Remark 3.4. (a) We have Il = KQ, since Ij is spanned by all paths of degree 0.
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(b) For any w € W, the ideal I(w) of II is a homogeneous ideal of II since so is each I,,.

(c) In particular, the factor algebra II(w) is a graded algebra.

Let X = €P,.;, Xi be a graded module over a positively graded algebra. For any integer
J, we define the shifted graded module X (j) by (X (j)); = Xi4+;. Moreover, for any integer
Jj, we define a graded submodule X>; of X by

X 12>
X>i); =
( Zj) {0 else

and define a graded factor module X<; of X by X<; = X/(X>;41). For i,j € Z, let
KXiig) = (X<j)>i-

Let A be a finite dimensional graded algebra which is Iwanaga-Gorensteion of dimen-
sion at most one. We denote by Sub” A the full subcategory of mod” A of submodules of
graded free A-modules, that is,

SubZ A = {X € modZ A | X is a submodule of @A(ji), m, j; € Z,m > 0}.

=1

We have the degree forgetful functor p : mod? A — mod A, and have the following equali-
ties.

SubZ A = {X € mod? A | p(X) € Sub A}, (3.1)
= {X € mod? A | Ext30(p(X), A) = 0,V¥i > 0},

= {X € modZ A | Ext;gdZA(X,A(i)) =0,Vi € Z}. (3.2)
Clearly Sub” A has enough projectives and is closed under direct summands. By (3.2),
SubZ A is closed under extensions. For any X € Sub” A, there exists a left (proj” A)-
approximations of X which is monomorphism. Thus Sub” A has enough injectives by
(3.2). It is easy to see that the projective objects and the injective objects of SubZ A
coincide and equals to proj” A. Therefore Sub” A is a Frobenius category. We have a
triangulated category Sub”A. In this paper, we get a tilting object in this category.

We give one example which illustrates grading on the algebra II(w) when w is ¢
sortable.

Example 3.5. Let Q be a quiver /1\. Then we have a graded algebra II =
2—3

Ile; & Iles @ Iles, and these are represented by their radical filtrations, which correspond
to the horizontal layers of simples, as follows:

1 2 3
N /N
2 3 3 1 1 2
3 1 2 % 3 2 3 1
Ile; = /N N 5 ITeg = NZRN 5 Iles = NZAN
1 2 3 1 3 1 2 1 2 3
NN NN N /N NN
2 3 1 2 3 3 1 2 3 1 1 2 3 1 2
NN NN /N N4 NUZAN
3 1 2 3 1 2 1 2 3 1 2 3 2 3 1 2 3
/N NUZAN N NUZAN NUZEN NUZAN NUZAN



where numbers connected by solid lines are in the same degree, the tops of the Ile; are
concentrated in degree 0, and the degree zero parts are denoted by bold numbers.

Let w be an element of Wg with a reduced expression w = s1s253515251. This w is a
c-sortable element by this reduced expression, where ¢ = c® = g15983, ¢V = 5159, and
c® = 5. Then we have a graded algebra, II(w) = II(w)e; @ II(w)es @ I(w)es, where

1 2\
2\/3\ /3\ 1 /3\
I(w)e; = /3 1 2\, M(w)ea =1 2\/3\ , I(w)es = 1 2\
1 1 - 1
AN
1

3.3 Silting and tilting objects of triangulated categories

In this subsection, we recall the definitions of Frobenius categories, silting and tilting
objects and recall tilting theorem for algebraic triangulated categories which was shown
by Keller.

Let A be an abelian category. A full subcategory B of A is called extension closed
if for any exact sequence 0 - X - Y — Z — 0in A with X, Z € B, we have Y € B.
Assume that B is extension closed subcategory of A. X € B is called a relative-projective
object if Ext}4(X, B) =0 for any B € B. Dually, we define relative-injective objects.

Definition 3.6. [Ha88, He| Let A be an abelian category and B a full subcategory of A
which is extension closed.

(1) We say that B has enough projectives (resp. enough injectives) if for each X € B,
there exists an exact sequences 0 =Y - P —- X — 0 (resp. 0 > X -1 —-Y —0)
in A such that P € B is relative-projective (resp. I € B is relative-injective).

(2) B is said to be Frobenius if the following conditions are satisfied:

(i) An object in B is relative-projective if and only if it is relative-injective.

(ii) B has enough projectives and enough injectives.

(2) For a Frobenius category B, we define the stable category B as follows: The objects
of B are the same as B, and the morphism space is given by

Homyz(X,Y) := Homp(X,Y)/P(X,Y)

for any X,Y € B, where P(X,Y) is the submodule of Homp(X,Y) consisting of
morphisms which factor through relative-projective objects in B.

Frobenius categories gives triangulated categories, which is shown by Happel.

Definition-Theorem 3.7. [Ha88] Let B be a Frobenius category. Then the stable cate-
gory B has a structure of a triangulated category. Such a triangulated category is called
algebraic.

Next we recall the definition of silting and tilting objects. Let 7 be a triangulated
category. For an object X of 7, we denote by thicks X the smallest triangulated full
subcategory of 7 containing X and closed under direct summands.
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Definition 3.8. Let 7 be a triangulated category.

(1) An object X of T is called a silting object if Homy (X, X[i]) = 0 for any ¢ > 0 and
thick X = T.

(2) Anobject X of T is called a tilting objectif X is a silting object of 7 and Hom (X, X[i]) =
0 for any 7 < 0.

For example, let A be a finite dimensional algebra. Then A is a tilting object of
KP(proj A).

Let C,C’ be additive categories and X € C. A morphism e : X — X in C is called an
idempotent if e*> = e. We call C idempotent complete if each idempotent of C has a kernel.
An additive functor F': C — C’ is called an equivalence up to direct summands if it is fully
faithful and any object X € C’ is isomorphic to a direct summand of F'Y for some Y € C.
It is easy to see that if C is idempotent complete, then F' is an equivalence.

For an algebra A, we denote by KP(proj A) the homotopy category of bounded com-
plexes of finitely generated projective A-modules. We have the following theorem for
algebraic triangulated categories [Ke94, (4.3)] (see also [IT, Theorem 2.2]).

Theorem 3.9. Let T be an algebraic triangulated category with a tilting object X. Then
the following statements hold.

(a) There exists a triangle equivalence F : T — KP(projEndr(X)) up to direct sum-
mands.

(b) If T is idempotent complete, then F' is a triangle equivalence.
In Section 11, we use the following basic lemma of a triangle functor.

Lemma 3.10. Let T,U be triangulated categories and F : T — U be a triangle functor.
Moreover, let X be a tilting object of T. Assume that T is idempotent complete, F(X) is a
tilting object of U and Fx x induces an isomorphism Homy (X, X) ~ Homy, (F(X), F(X)).
Then the functor F is an equivalence.

Finally, we recall the definition of Krull-Schmidt categories. An additive category
C is called Krull-Schmidt if each object of C is a finite direct sum of objects such that
their endomorphism algebras are local. Note that a Krull-Schmidt category is idempotent
complete. For instance, our triangulated categories SubII(w) and Sub®II(w) are Krull-
Schimdt.

4 Graded structure of /(w) and II(w)

In this section, we prove some basic properties of gradings of I(w) and II(w). The main
result in this section is Proposition 4.5. We also recall some results from [AIRT]| which
will be used later. Throughout this section, let ¢ € Wg be a Coxeter element and c an
expression satisfying the statement in Definition 3.1 (4).

Lemma 4.1. [AIRT, Lemma 2.1] Let Q' be a full subquiver of @ and w an element
in Wogr € Wg. Then we have II/I(w) = I'/I'(w) as graded algebras, where II' is a
preprojective algebra of Q' and I'(w) is the ideal of I associated with w.
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We first calculate the ideal I (w) and the algebra II(w) when w has a reduced expression
which is a subword of c.

Lemma 4.2. Let w € Wg and assume that w has a reduced expression which is a subword
of c. Let Q' the full subquiver of @ whose set of vertices is Supp(w). We denote by I’ the
preprojective algebra of Q' and I'(w) the ideal of IU' associated with w. Then the following
holds.

(a) We have II(w) =1T'(w) = KQ'.
(b) I(w)>1 = M.
(c) I(w)o is the ideal of KQ generated by idempotents {e, | u € Qo \ Supp(w)}.

Proof. (a) By Lemma 4.1, we have II(w) = II'(w). By assumption, w is a Coxeter element
of W¢y. Then, by [BIRSc, Proposition II. 3.2], we have II'(w) = KQ'.

(b) By (a), we have II(w)p = II'(w)g = KQ'. This means that I(w)>1 = II>;.

(c) Since KQ' = II(w)p = p/(w)o = KQ/I(w)o holds, I(w)p the ideal generated by
the vertices in Qo \ Supp(w). O

Then we describe the grading of I(w) for a c-sortable element w.

Lemma 4.3. Let w € Wy be a c-sortable element and w = D ... (M ¢ c-sortable
expression of w. Then we have I(cDc*D))g = I(c®)g for all 0 <i < m — 1.

Proof. Since II(w) is positively graded, we have I(cWc( D)y = I(c®)oI(cD)y. By
Lemma 4.2, I(c®)g and I(c(+1)g are generated by idempotents {e, | v € Qo \ Supp(c'?)}
and {e, | v € Qo \ Supp(c*t1)}, respectively. Since w is a c-sortable element, we have
Supp(ct) < Supp(c?). Therefore we have I(c®)oI(c*1))g = I(c®),. O

Lemma 4.4. Let w € Wg be a c-sortable element and w = cOe® ... em) ¢ csortable
expression of w. Then we have

In particular, we have II(w)>pm+1 = 0.

Proof. We first show that I(w)s>m+1 = II>my1. Since II is generated by II; as a Ilp-
algebra, we have IT>p41 = [[}2y(II>1). By Lemma 4.2 (b), the equation IT>; = I(c9))sy
holds for any 0 < j < m. Thus we have

I(w)>ms1 C Hspmyr = H II>; = H I(cY)>1 C I(w)>m41-

Therefore we have I(w)>m+1 = >m1.

Assume that 0 < i < m — 1. We show that I(w); = I(c®cM)...cm=1),  Since
I(w) C I(cDeM . clm= D), we have I(w); C I(c®c)...cm=1),  Conversely, we show
that

IO o=y, I(w);.
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In general, we have

R > 1), I(cM)y, - T(™1Y,, . (4.1)
bo+b1++bm_1=i

Since I(w); = 0 for any ¢ < 0 and (4.1), it is enough to show that

I(C(O))aoI(C(l))m e I(c(mil))ama - I(w)i’

for any non-negative integers ag, a1, . . ., a,,—1 satisfying Z 0 aj =1 . Since ag, ..., Am-1
are non-negative and i < m — 1, at least one of them must be zero. Let j be the largest
integer satisfying a; = 0. Then we have

~
—~
o
=
=
=
N—
e
S

.[(C(j))ajj(c(j+l))a]_+1 .. .](C(m—l))
C(0))110 e 'I(C(j))ag (Ha_y+l) (M, )

I(

I(C(O))ao .. .I(C(j))a]_[(c Dy (IT aji1) Moy y)
I( (

I(

am—1

Mgy - 1) o, 1(c Y01 (cUH2), ajir CI(c™)

w)ia

am—1

N

where the first and the third equations come form Lemma 4.2 (b), and the second equation
comes from Lemma 4.3. Therefore we have I(c(®¢® ... c(m=D), ¢ I(w); for 0 <i < m—1.
By using this equation repeatedly, we have the assertion. O

Now we describe the grading of II(w) for a c-sortable element w. For an element w in
Wq, let QW be the full subquiver of Q whose set of vertices is Supp(w).

Proposition 4.5. Let w € Wq be a c-sortable element and w = cOc)...cm ¢ c-
sortable expression of w. For each i < m, we have T(w)<; = T(c@c® ... ) =
(DM .. @) In particular, we have I(w)y = I(c(?) = KQW

Proof. By Lemma 4.4, we have the following commutative diagram.

0——— <, H(w)<;

0— I(C(O ))SZ Hgi H(c(o)c(l) ... C(i))ﬁi ~0.

Therefore we have an equality IT(w)<; = (I (0).)....» )<i- The equality I(c©@cM) ... ), =

(@M ... ¢) comes from Lemma 4.4. If i = 0, then we have II(w) = II(c(?)) = KQW,
where the second equality comes from Lemma 4.2 (a). O

The following proposition is important to show Theorem 5.6.

Proposition 4.6. Let w € Wq be a c-sortable element and w = sy, - -+ Sy, = e ... em)

a c-sortable expression of w. For any integeri and X € Sub” I(w), we have X>i, X<i, X; €
Sub? II(w).
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Proof. Since X>; is a submodule of X, we have X>; € Sub” II(w).

By Proposition 3.3 (e), we have I(uy - - - u;) € Sub?TI(w) for any 1 < j < I. Therefore,
by Proposition 4.5, we have II(w)<; € SubZII(w) for any integer i. Clearly, the functor
X — X<; preserves injective morphisms. Therefore we have X<; € Sub” II(w). Since
X>; € SubZTI(w), X; = (X>;)<i € SubZTI(w) holds. O

Next we recall the result of [AIRT]. For a reduced expression w = sy, - - - sy, of w € Wy
and 1 < i <[, we define a II(w)-module L}, by L, := II/I,, and
. I(Su ...su__)
LZ = 1 i—1 ,
v I(Sul"'sui)
for ¢ > 2.
Proposition 4.7. [AIRT, Proposition 1.3] We have equalities

; ; I(Su; -+ Su;)
Ly, = Lyye,, = ———2Cey,
w weuz I(Sul "'Sui)€UZ’

where j is the largest integer satisfying j < i and u; = u;. If such an integer j does not
appear in 1,...,i— 1, then Liy, = (I1/I(sy, - Su;))€u; -

We use the following notation. Let w = sy, - - - sy, be a reduced expression of w € W
For any u € Supp(w), let
pu =max{l <j <Il|u; =u}.
For 1 <i <1, let

Note that, if w = sy, ---5,, = cOcM ... M ig a c-sortable expression, then we have
mp, = max{j | u € Supp(c¥)} for any u € Supp(w). Using Ljy,, we have the following
information on II(w)e,.

Lemma 4.8. Let w = sy, -8y, = c e ..M pe ¢ c-sortable expression of w € Wg.
Then, for any u € Supp(w) and any integer i > m,,, , we have

Ly i =my,,
0 mp, +1 <.

(H(w)%)i = {

Proof. Since I(w)e, = I(cQcM) ... cmpu)ye,  we have Tl(w)e, = I(cQcD) ... cmau)e,.
Thus, by Lemma 4.4, we have (II(w)e,); = 0 for mp, +1 <.
If ¢ = my,, we have

(I (w )eu)l—Ker H eu)<z (H(w)GU)Si—l)

(II(
= Ker ( w — 11 . e >
I(c© 0(1) c(%)) I(c@c) ... cli=1)) v
O)C( . (1—1))
](C(O)c(l) ~c(®)

Cu,

where the second equality comes from Proposition 4.5. Since I(c@ e ... c@)e, = I(sy, -+ 54, eu,
we have the desired equality. O
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The next theorem is one of the main results in [AIRT], and important in this paper.
We use Theorem 4.9 to prove Proposition 5.5. For an element w in W, let Q) be the full
subquiver of @) whose set of vertices is Supp(w).

Theorem 4.9. Let w € W be a c-sortable element and w = sy, -+ Sy, = ) ... em)
a c-sortable expression of w. Then

T= @ = @ Wweuimy,)

uGQé1> uGQél)

is a tilting KQW -module.

Proof. T = & QW LE is a tilting KQW-module by [AIRT, Theorem 3.11]. Moreover
uSlo
T=6 eQ(l)(H(w)eu(mpu))o holds by Lemma 4.8. O
uelo

We give one example which illustrates the tilting module of Theorem 4.9.

Example 4.10. Let Q be a quiver ,_~ 1\ and w be an element of Wg with a reduced

2
expression w = $15253515281. This is a c-sortable expression. Then we have a graded

algebra II(w) = II(w)e; @ II(w)eg @ (w)es,

1 2\
2\ /3\ /3\ 1 /3\
3 7 % Y 3 L2
s N NN 1
1 1 1 2
AN
1
We have 5
2 1/ \2
2 3
Ly =1, Li, = N Ly, = <,

2\ /3\ /3\ 3
74— 5 _ 6 _ .
w 1 2\ , Ly =1 2\ /3\ , Ly 1/
1 2
N
1

By Theorem 4.9, L3, ® Ly, ® LY, is a tilting K Q-module.

5 A tilting object in SubZII(w) for a c-sortable element w

In this section, we construct a tilting object in SubZII(w) when w is a c-sortable element.
A triangle equivalence induced from tilting objects is given in Section 6.

Definition 5.1. Let w € Wy be a c-sortable element and w = sy, - -+ 5y, = e ... elm)
a c-sortable expression of w. Put

M = M(w) := @ (H(C(O) . "c(i))) (7).

m
=0
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Throughout this section, let w € Wy be a c-sortable element and w = sy, -+ -5y, =
c@c ... elm) g c-sortable expression of w. and M be a module as in Definition 5.1. This
M belongs to SubZTI(w) by Proposition 3.3 (e) and (3.1).

Example 5.2. Let ) be a quiver ,_~ 1\ . Let w be an element of Wy with a reduced
expression w = s15253515281. This is a c-sortable element. Then we have a graded algebra

I(w) = (w)ey @ (w)eg & I(w)es,

1 2\
2\/3\ /3\ 1 /3\
3 7 % % 3 L2
- N NN 1
1 1 1 2
AN
1
and
1
2
M=1d"\ & 2\/3\
1 1 2
N
1

in SubZII(w), where the graded projective II(w)-modules are removed, and the degree zero
parts are denoted by bold numbers.

The following proposition follows from Proposition 4.5.
Proposition 5.3. M = M.
Proof. We have M = @7, (¢ - .- @) (i) = @, (e - - D) (i) <o = M<o. O

By the following two propositions, we show that this M satisfies the axioms of tilting
objects. Note that, by Lemma 4.4, II(w)<; = II(w) holds for i > m, and therefore, we
have

M =@ c)i(i) = P T(w)<i(i) = P TM(w)(i)<o
=0 >0 >0

in Sub”II(w) by Proposition 4.5.
Proposition 5.4. We have Hom%(w)(M,M[j]) =0 for any j # 0.

Proof. For any 0 < ¢, we have a short exact sequence,
0 — I(w)(i)>1 = II(w) (i) = II(w)(i)<o — 0.

Since (II(w)(i)>1)<o = 0, we have

(QM)<0 = P (2 (1(w)(i)<0)) o = P ([L(w)(0)21) o = 0.

i>0 i>0
Since II(w) is positively graded, we have (Q7(M)) <o = 0 for j > 1. Therefore

Homnfy(,, (M, (M) = 0 and Homiy,, (2 (M), M) =0
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hold for any j > 1 by Proposition 5.3. The first equality implies Hom%(w)(M, M[—j])=0
for j > 1, and the second equality implies Homﬁ(w)(M, M]Jj]) =0 for j > 1. O

Next we prove that M satisfies the second axiom of tilting objects. Since II(w)y =
KQW by Proposition 4.5, we regard a KQW-module X as a graded II(w)-module concen-
trated in degree 0. For an integer i, let mod=?II(w) be the full subcategory of mod? IT(w)
of modules X satisfying X = X<;.

Proposition 5.5. We have Sub”II(w) = thick M.

Proof. LetX € Sub®II(w). We show that X € thick M. By Proposition 4.6, we have
X; € Sub”TI(w) for any i € Z. Since X has a finite filtration {X>; | j € Z}, it is enough
to show that X; € thick M for any i € Z. Since each X; is a KQ-module and the global
dimension of KQ( is at most one, it is enough to show that KQ (i) € thick M for any
1€ 2.

Firstly, we show KQW) (i) € thick M for any i > 0 by induction on i. Since M has a
direct summand II(w)y = KQW, we have KQW € thick M. Assume KQW(j) € thick M

for 0 < j <i—1. Consider a short exact sequence
0— H(’U))[Li](i) — H(’w)gi(i) — H(w)()(i) — 0. (5.1)

By taking a finite filtration of II(w); (i) and the inductive hypothesis, we conclude that
H(w)p,5(7) € thick M. Since II(w)<;(i) is a direct summand of M or a graded projective
II(w)-module, we have KQW (i) = II(w)(i) € thick M by (5.1). Consequently, we have
that X € thick M for any X € mod=CII(w) N Sub® IT(w).

Secondly, we show that KQ)(—i) € thick M for any 7 > 0 by induction on 7. Assume
KQW(—j) € thick M for 0 < j < i — 1. Thus we have X € thick M for any X €

mod=*"'TI(w) N SubZI(w). By Theorem 4.9, T = @ EQ(l)(H(w)eu(mpu))o is a tilting
uelklo

KQW-module. There exists a short exact sequence
0— KQW — Ty — Ty — 0,

where Ty, 77 € addT. Therefore it is enough to show that 7'(—i) € thick M. For each
U € Q(()l), take a short exact sequence

0 —= Tey(—i) = I(w)ey(myp, ) (—i) = (w)e,(myp, )<—1(—i) = 0. (5.2)

The second term is a graded projective II(w)-module. The third term belongs to thick M
since TI(w)e,(my,)<—1(—i) is in mod=*"! TI(w). Consequently, we have T'(—i) € thick M
by (5.2). O

Then we have the main theorem of this section.

Theorem 5.6. Let w € W be a c-sortable element and w = sy, - -+ Sy, = c@c) ... elm)
a c-sortable expression of w. Put

M= (H(Cm) . -c<i>)> (i).

m
1=0
Then M is a tilting object in SubZII(w).
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Proof. By Propositions 5.4, and 5.5, M is a tilting object in SubZII(w). O

Remark 5.7. It was shown by Yamaura [Y] that, for a finite dimensional self-injective
positively graded algebra A, the stable category mod”A has a tilting object D0 Ali)<o

if Ay has finite global dimension. Our tilting object M in SubZII(w) is an analog of this
since M = @, Il(w)<i(i) = ;>0 L(w)(i)<o holds.
6 The endomorphism algebra of the tilting object

In this section, we calculate the endomorphism algebra of the tilting object which was
constructed in Definition 5.1. The aim of this section is to prove Theorems 6.2 and 6.3.
Throughout this section, let () be a finite acyclic quiver.

6.1 A morphism from End%(w)(M) to Endgoa (M)

Firstly, we give another description of the tilting object which was constructed in Definition
5.1. Throughout this section, we use the following notation.

Definition 6.1. Let w = s,,5y, - - sy, be a reduced expression of w € Wg. We use the
same notation as after Proposition 4.7, that is,

py =max{l <j <I[l|u; =u}, forue Supp(w),
mi=8{1<j<i—1|uj=u}, forl<i<lI.

Moreover, for 1 <i <[, put

l
M= (/1 (su, -+~ 5u;))ew; (ma), M = @Mi>
i=1

Pp= & wmr T = B,

Note that P € projZII(w) holds since TI(w) = Ducsuppw) MP*(=mp, ). If w =

Sup Sy = e ... elm ig a c-sortable expression of w, then we have an isomorphism

l m
Py ~Pu? - D)) (6.1)
=1 =0

in SubTl(w). In fact, for any 1 < i < I, M* = (II/I(c9 ... c(m)))e,, (m;) holds by
Proposition 4.7, and for any 0 < j < m, if u € Qo \ Supp(c\¥)), then (II/1(c(?) ... c)e, =
II(w)e, holds, which is projective. Therefore we have an isomorphism (6.1). As we have
shown in Theorem 5.6, M = @izl M is a tilting object in Sub”II(w).

Before starting the calculating of the endomorphism algebra Lm%(w)(M ), we state a
triangle equivalence induced from a tilting object. We show that the global dimension of
Lm%(w) (M) is finite and we have the following theorem.
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Theorem 6.2. Let w € W be a c-sortable element and w = sy, - -+ Sy, = e ... elm)
a c-sortable expression of w. Let M = @é:l M be a tilting object in SubZII(w). Then
the global dimension of End%(w)(M) 1s finite and we have a triangle equivalence

Sub”II(w) ~ D (Endfj,\ (M)).

Proof. By Proposition 6.14, the global dimension of End%(w)(M ) is finite. By Theorems
5.6 and 3.9, we have the assertion. O

We state another theorem of this section. Looking at the degree zero part of graded
modules, we have the following functor

F := (=)o : modZII — mod KQ.
The functor F induces the following morphism of algebras
F :=Far : Endfj,y (M) = Endgo(Mo)
given by F(f) = f|am,- Then we claim the following.

Theorem 6.3. Let w be a c-sortable element. The morphism F induces an isomorphism
of algebras F : End%(w)(M) = Endgg(Mo)/[T), which makes the following diagram
commutative

Endfj ) (M) —— Endq(Mo)

End% ) (M) —— Endeq(Mo) /[T],

where [T'] is an ideal of Endgg(Mo) consisting of morphisms factoring through objects in
add T, and vertical morphisms are canonical surjections.

Proof. In Proposition 6.15, we show that F' actually induces a morphism F. F is surjective
by Proposition 6.29. In Proposition 6.31, we show that F is injective. O

In Subsection 6.2, we show one theorem which we will use to prove Proposition 6.29.

Example 6.4. Let () be a quiver /1\. Let w = s15253515251 be a reduced expres-
. . 2—>3
sion of w € Wg. This is a c-sortable element. In Example 5.2, we have

M=M'aoM>*oM>*p M*p M®> @ M

2\
2 /3\ ' /3\ 1 '
—1o o1 2 o233 |e|i2 3 | 2 A
1 N 1 2 NN 3 1 2
1 ~ 1 2 / N
1 N 1 1
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in Sub? II(w), where the degree zero parts are denoted by bold numbers. Therefore, we
have P = M3 ® M° @ M% and

3 /3\
TP =MoMaoM =12 o 23 o/
\1 1 2\ 1
1
2 3
Mong@Mg@Mé@T:1@2\1@ T2 e
1

It is easy to see that the algebra Endgq(My)/[T] is given by the following quiver with
relations

A=leoe—20e—t .4 , ab=0.
By Theorem 6.3 or a direct calculation, we can see that the algebra Mﬁ(
given by the same quiver with relations.
We can describe the Auslander-Reiten quiver of SubZII(w). Let X be the kernel of the
canonical epimorphism II(w)ey — So, where Sy is a simple module associated with the
vertex 2, and let Y be the cokernel of an inclusion (II(w)ey); — I(w)ea:

(M) is also

w)

3 1 2
/N N
X=1 2 3 |, Y= 31
NN s
1 2 1
N
1

(I(w)ez)s (Mw)er)o|  (M(wen)p (1) | [w)er)o(1)]

7
Y (I(w)er)(1)
~

N
N 7
(Mw)en)py  ((w)er)s(1) Yo (I(w)ez)1 (1)

where M = (Il(w)e1)o @ Yo @ (I(w)er)o,1)(1). We see that the shape of the Auslander-
Reiten quiver of SubZII(w) is actually the same as that of Db(End%(w)(M)).

We first describe the quiver of Endpy(,)(M). We recall the following definition of a
quiver Q(w) associated with a reduced expression w = sy, Sy, -+ Sy, of w € Wg. This
Q(w) was denoted by Q(u1,...,u;) in [BIRSc, Subsection III. 4].

l

Definition 6.5. [BIRSc] We define a quiver Q(w) associated with a reduced expression

W = Sy, Sy, ** - Sy, as follows:
e vertices: Q(w)o ={1,2,...,1}.
A vertex 1 < i <1[in Q(w) is said to be type u € Qy if u; = u.

® aIrrTows:
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(al) For each u € Supp(w), draw an arrow from j to i, where 7, j are vertices of type
u, i < j, and there is no vertex of type u between i and j (we call these arrows
going to the left ).

(a2) For each arrow o : u — v € @1, draw an arrow «; from i to j, where i < j, i is
a vertex of type u, j is a vertex of type v, there is no vertex of type u between
1 and 7, and j is the biggest vertex of type v before the next vertex of type u
(we call these arrows Q-arrows).

(a3) For each arrow o : u — v € @, draw an arrow « from 7 to j, where i < j, 7 is
a vertex of type v, j is a vertex of type u, there is no vertex of type v between
7 and j, and j is the biggest vertex of type u before the next vertex of type v
(we call these arrows Q*-arrows).

We denote by Q(w) the full subquiver of Q(w) whose the set of vertices is Q(w)o \ {pu |
u € Supp(w)}.

Note that the quiver @Q(w) depends on the choice of a reduced expression of w.

a Y
Example 6.6. (a) Let @ be the quiver 2/ \43, and w € Wy with a reduced expression
B

W = Sy, Suy Sus Sug Sus Sug = S15253515251. Then we have the quiver Q(w) as follows:

/%
/\/\\

f
1

(b) Let @ be the same quiver in (a), and W' = Sy, SuySus Suy SusSug = 515283525152 be
an another reduced expression of w. Then we have the quiver Q(w’) as follows:

/

—

It is shown that Q(w) gives a quiver of Endpy(,)(M) as we see in Theorem 6.8. We
define a morphism of algebras ¢ : KQ(w) — Endyy(,,)(M).

i'
1

Definition 6.7. Let w = sy,5y, - -5, be a reduced expression of w € Wg. Then we
define a morphism of algebras ¢ : KQ(w) — Endyy(,, (M) as

(a0) For a vertex i of Q(w), ¢(e;) is an idempotent of Endyy(,) (M) associated with M®.
(al) For an arrow f3: j — i going to the left, ¢(3) is the canonical surjection M7 — M?.

(a2) For a Q-arrow «; : i — j of the arrow o € @1, ¢(«;) is a morphism of II(w)-modules
from M? to M7 given by multiplying o from the right.
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(a3) For a Q*-arrow o : i — j of the arrow o € Q1 ¢(a) is a morphism of II(w)-modules
from M* to M7 given by multiplying o* from the right.

In the following theorem 6.8, we do not consider gradings of II(w) and M?.

Theorem 6.8. [BIRSc, Theorem IIl. 4.1] Let w = 5y, Sy, - - - Sy, be a reduced expression
of w € Wq. Then the morphism of algebras ¢ : KQ(w) — Endy,)(M) induces an
isomorphism of algebras

¢ KQ(w)/I ~ Endn(w)(M)
for an ideal I of KQ(w).

Since Endyy(,) (M) = @D,z Hom%(w) (M, M(n)), we regard Endyy,,)(M) as a graded
algebra by Endyy(,) (M), = Hom%(w) (M, M(n)). In particular, we have End%(w) (M) =
Endyy()(M)o. We introduce a grading on Q(w), that is, we introduce a map Q(w); — Z.

Definition 6.9. Assume that w = s,, 5y, - - - Sy, is a reduced expression of w € Wg. Let
Q(w) be the quiver of Endyy(,,y (M) and Q(w)o = {1,...,1}. We define a grading on Q(w)

as follows:
(1) All arrows going to the left are of degree one.
(2) Let f:i— j be a Q-arrow in Q(w). Then the degree of 5 is m; — m;.
(3) Let f:i— j be a Q*-arrow in Q(w). Then the degree of § is m; —m; + 1.

Example 6.10. (a) In the quiver of Example 6.6 (a), we have the grading of Q(w) as

follows:
VgV

/\\

;’
|
1

where non numbered arrows have degree Z€ro.
(b) In the quiver of Example 6.6 (b), we have the grading of Q(w) as follows:

/

\\/

i'
1

where non numbered arrows have degree zero.

We regard KQ(w) as a graded algebra by the grading of Definition 6.9. Then the
isomorphism in Theorem 6.8 holds as graded algebras.

Proposition 6.11. The morphism of algebras
¢ : KQ('w) — Endn(w)(M)

s a surjective morphism of graded algebras.
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Proof. Tt is enough to show that the morphism ¢ : KQ(w) — Endpy,,) (M) preserves
gradings. Since KQ(w) is generated by arrows, it is enough to show that ¢ preserves
gradings of arrows.

(al) Let 8 :j — i be an arrow going to the left. Then ¢(/3) is given by a surjection

(H/I(Sul8u2 T suj))euj (m]) - (H/I(SMSUQ e Sui))eui (ml)

Since there exists no vertex of type u; = u; between i and j, we have m; +1 = m,. Since
top (M J ) is concentrated in —m; and top (M ’) is concentrated in —m,;, this surjection is
degree one.

(a2) Let 8 = «; : i — j be a Q-arrow in Q(w), where o € 1. Then ¢(f) is a morphism
multiplying « from the right:

¢(B) = (@) + (IL/1(Suy Suy =« * Su;))€u; (M) = (IL/1(Suy Sy« * * Su;) ) eu,; (M)

This means ¢(f) is degree m; —m.
(a3) Let 8 = af : i — j be a Q*-arrow in Q(w), where a € Q1. Then ¢(f) is a
morphism multiplying o* from the right:

¢(B) = () + (I/I(SuySuy - - Su;))€u; (mi) = (/T (Suy Sus - - - 5u;))eu; (M)
This means ¢(3) is degree m; — m; + 1. O
The following lemma is important to show Propositions 6.14 and 6.15.

Lemma 6.12. Assume that w = Sy, Sy, - - - Sy, S a c-sortable element. Let 3 :i — j be an
arrow in Q(w) which is a Q-arrow or a Q*-arrow. Then the following holds.

(a) If B has a negative degree, then we have i = py, and j = py;.

(b) If B satisfies i # pu, or j # pu,, then B has degree zero.

Proof. Assume that 8 is a Q-arrow and i is a vertex of type u and j is a vertex of type
v. Then, by the definition of Q(w), there exists an arrow « : u — v in @ which satisfies
a; = (. Pick up vertices of type u and v from Q(w)o = {1,2,...,1}, then we have the
following two cases:

1<ar <by <ag<by<---<ag<bsg<bgyy <---<b <, (6.2)
1<ar <by<ag<by<- - <b <app1 <appo<---<as <l (6.3)

where a, are vertices of type u and b, are vertices of type v. By the definition of m;,
we have m,, = k —1 and my, = k — 1. Moreover, by the definition of p, and p,,
we have p, = as and p, = b. Let Q(w)(4,j,a) be a subquiver of Q(w) such that
Q(w)(i,j,a) = {a1, -+ ,as,b1,--- , b} and Q(w)(4,7, )1 is the set of all arrows of the
form oy or aj, for some 1 < k <1 or arrows going to the left.

In the case (6.2), the quiver Q(w)(i, j, @) is the following:

VAYANRY
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Since f is a @-arrow, [ is one of the arrows of a — by for 1 <k <s—1or as — b;. For
1 <k <s—1, we have mq, —my, = 0. Therefore, in the case (6.2), (a) and (b) hold.
In the case (6.3), the quiver Q(w)(i, j, @) is the following:

NN N

Since B is a Q-arrow, (3 is one of the arrows of ap — by for 1 < k <t. For 1 <k <t, we
have mg, — my, = 0. Therefore, in the case (6.3), (a) and (b) hold.
By the same argument, we can show in the case when [ is a Q*-arrow. O

A4l <— o0 <— G5

Lemma 6.13. Assume that w = sy, Sy, - - - 5y, be a c-sortable expression of w € Wg, then

any f € Hom%(w) (M, M(a)) with a < 0 factors through add P = add(@uesupp(w) MPv).

Proof. We identify Endyy(,y(M) with KQ(w)/I as graded algebras by Theorem 6.8 and
Proposition 9.15. Since f is written as a liner combination of paths in Q(w), we can
assume that f = p for some path p in Q(w). Since f has a negative degree, the de-
gree of p is negative. Thus p contains an arrow of negative degree. By Lemma 6.12,
p factors through a vertex p, for some uw € Supp(w). Therefore, f factors through

add P = add (D, csupp(uw) M"™)- O

Now we are ready to show the finiteness of the global dimension of End%(w)(M ).

Proposition 6.14. Let w = 8,5y, - Sy, = V) .- ™) be a c-sortable expression of
we Wg and M = @211 M* be a tilting object in SubZII(w). Then the global dimension
ofm%[(w)(M) is finite.

Proof. By [BIRSm, Theorem 6.6], ¢ induces a surjective morphism of graded algebras
¢ KQ(w) — Endyy(,,(M). By Lemma 6.12 (a), KQ(w) is positively graded and therefore
Mn(w)(M ) is also positively graded. By taking degree zero part of these algebras, we
have the following commutative diagram

KQ(w) — Endyy(,,) (M)

A

¢

where we denote by @ (w) a subquiver of @(w) such that vertices are same as Q(w) and

arrows are all degree zero arrows of Q(w). We have a surjection ¢, since gz~5 and vertical
morphisms are surjections. Because Qo(w) does not contains arrows going to the left,

Q,(w) is acyclic. Therefore the global dimension of End%[(w) (M) is finite. O

In Section 7, we show that the global dimension of End%(w)(M ) is at most two.
We show that the morphism F' actually induces a morphism F.

Proposition 6.15. The morphism F' induces a morphism of algebras:

F : End%, (M) - Endgq(Mo)/[T).
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Proof. We show that if a morphism f : M — M in mod” II(w) factors through graded
projective II(w)-modules, then f factors through add P = add(&D,,cupp(w) M) Without
loss of generality, we may assume that f = hog for g : M — MPu(a) and h : MP(a) — M,
where u € Supp(w) and a € Z. We divide into three cases:

e If a > 0, then MPu(a)g = ME* = 0, since MPu = Mg“(‘] by Proposition 4.5. Thus we
have flop = 0.

e If a =0, then f actually factors through MP* € add P.

e If a < 0, then g factors through add P by Lemma 6.13. Thus f also factors through

add P.
O

In the rest of this subsection, we give some examples of tilting objects M and its
endomorphism algebras.

Example 6.16. If Q is not Dynkin, then w = ¢ = sy, 84, * - * Su,, Suy Suy - * * Su,, i a reduced
expression by [BIRSc, Proposition IIl. 3.1]. Thus we have II(w) = II<; by Proposition 4.5.
Since M = TI(c) ® I(c?)(1) ~ KQ in SubZII(w) and KQ is concentrated in degree 0, we
have

Endf (M) = Endyy(,) (KQ).
By [BIRSc, Proposition IIl. 3.2], we have an isomorphism Endyy () (KQ) ~ KQ. Therefore,
we have End%(w)(M ) ~ K@, and a triangulated equivalence

SubZTI(w) ~ KP(proj KQ) ~ DP(K Q).

Example 6.17. Let Q be a quiver | ——= 9. Then we have a graded algebra II =
Ile; @ Iles, and these are represented by their radical filtrations as follows:

1 2

/\1/\
NSNS N
1 1
SN NS NS N )
1 1 1 1 1
SN NS NS NS N
2 2 2 2 2 2 1 1 1 1 1

N/ N/ N/ N/ N/ N

where the degree zero parts are denoted by bold numbers. Let ¢ = s;so. This is a
Coxeter element. Let w = ¢"! = s15981 - - - s152. This is a c-sortable element. We have
(I1/I(c"))e; = (I1/J? Yey, and (II/1(c))ea = (I1/J%)ey, where J is the Jacobson radical
of TI. By Theorem 5.6, M = @7, (II/I(c¢"))(i — 1) is a tilting object in Sub%II(w), where
graded projective II(w)-modules are removed. The endomorphism algebra Lm%(w)(M )~
Endgq(Mo)/[T] is given by the following quiver with relations

A=|1 ‘; 2 ’Z 3’2 32271—1%271 . aa = bb.

The algebra K A/(aa — bb) has global dimension two.
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6.2 Relationship between endomorphism algebras associated with w and

wl

In this subsection, we prove Theorem 6.25 which is used to prove Proposition 6.29.
Throughout this subsection, we use the notation in Definition 6.1.

Assume that v is a source in Q. Let Q' = 1, (Q) be the quiver obtained by reversing
all arrows starting at v. Although the preprojective algebras II and II' of Q and @',
respectively, are the same as ungraded algebras, they have different gradings.

We first construct a functor from mod? II to mod? II'. Let 31, B, ..., B» be the arrows
in @ starting at v, and

Q1= (@ \{B1, B2, B }) U{v1s 3}y

where t(y;) = v, t(8;) = s(v;). We have an isomorphism of algebras p : KQ — KQ’
given by p(8;) = v/, p(B]) = —vi, and p(a) = « for other arrows. Then p induces an

K]
isomorphism of the preprojective algebras, we also denote it by p:

p: 11 1T (6.4)

By calculating the grading of paths of K@Q and KQ’, we have the following lemma, where
dup = 1 if u = v and 0 otherwise for u,v € Q.

Lemma 6.18. For u,u’ € Qq and i € Z, by identifying KQ with KQ' by p, we have
eu(KQ)ieu/ = eu(K@)i-l—éuyv—éu/’v Eul-
Moreover, the equation also holds for I1 and I, that is,

/
eulliew = eudli 5, 5, ew.

u! v

For a finitely generated graded IT'-module N, we regard Endp (V) as a graded algebra
by Endp(N); = Hom4(N, N(i)). The graded preprojective algebras IT and IT' are related
as follows.

Lemma 6.19. We have an isomorphism of graded algebras
I = Endp(Ie, (1) @ (1 —e,)), 2z~ (-p 1(z)).

Proof. Tt is enough to show that the morphism preserves gradings. This follows from
Lemma 6.18. U

Then we construct a functor G from mod”II to mod”II'. We need the following
Lemma.

Lemma 6.20. We have a surjective morphism of algebras 11 — Endp (1), z — (-z).

Proof. If @ is a non-Dynkin quiver, then the assertion follows from Proposition 3.3 (a). If
@ is a Dynkin quiver, then the assertion follows from [M, Lemma 2.7]. O

More precisely, we have the following surjective morphism of graded algebras.
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Lemma 6.21. Let v € Qg be a source and U := Ie,(1) @ TI(1 — e,) € mod?II. Then we
have a surjective morphism of graded algebras

II' —» Endp(U), z~ (-p~Yx)).
Moreover, we have the following surjective morphism of graded algebras
' —» Endp(I1/1,), z— (-7m(p~(z))),
where m : 11 — I1/1, is the canonical surjection.

Proof. The morphism is surjective since p is an isomorphism and by Lemma 6.20. We
have to show that the composite is a morphism of graded algebras.
By Lemma 6.18, for u, v’ € QQy, we have

eu(]._.[é)eu’ == eu(HZ-F(S ’ —511,,11)€ul'

Moreover, for u,u € Qp and j € Z, we have

(Ip)j1eu - eulliey  u=u' =v

Ujey - eu(Mliys,,  —5,.)ew = (Io)jv1€u - eulliew  u=v,u' #v
J-u u ? ! v Ou,v u T

uhv ey - eullip1e, u#v,u =v
/
ILie, - ey Iliey u# v,u # v
C U(i)jeu/.

Thus, the morphism IT" — Endy(U) is a morphism of graded algebras. The other follows
from a similar calculation. O

By Lemma 6.21, we have a functor
G := Homy (U, —) : modZ II — modZ 1T’

where the grading on the II-module G(X) is given by G(X); := Hom%(U, X (i)). This
functor satisfies G o (i) ~ (i) o G for any i € Z.

To show Proposition 6.23, we recall the following proposition. For a reduced expression
W = Sy, Suy ** Suys 166 T = (S, -+ Su,,) if B <m and Iy, =T if m < k.

Proposition 6.22. [BIRSc, Lemma III. 1.14] Assume that sy, Sy, - Sy, is a reduced
expression. Then we have Ijyiim/lim ~ Homp(II/I(sy, ... 8Su,),1I/I(sy, ... Su,)) by
x ().

Proof. If Q is a non-Dynkin quiver, then the assertion holds by [BIRSc, Lemma III. 1.14].
The assertion also holds when @ is a Dynkin quiver by Lemma 4.1. 0

We apply the same construction as Definition 6.1 to the reduced expression w' :=
SugpSug ** * Sy,- Put

p,=max{2<j<l|uj=u}—1, foru e Supp(w’),
mi=8{2<j<i—1|uj=uw}, for2<i<lL
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Moreover, for 2 < i <[, put

M/’L 1 (H//I/(Sug e Sui))eui (m;), P/ — @ M/p{“‘.
u€Supp(w’)

We have IT'(w') = EBuESupp(w/) M/p;(—m;&)‘ Put M’ = @2:2 ML

Proposition 6.23. Assume that w = sy, Sy, - Sy, 15 a reduced expression of w € Wg
and uy = v is a source of Q, 1 > 2. Let w' = sy, Sy,. Then

(a) G(M') =0,

(b) For2 < j <1, we have an isomorphism t; : G(M7) = M"7=1 in mod” ', that is,
b5+ G (/T g)ew) (m5) > (V)13 )ea,) (m)).

(c) We have ¢ = @'_; 1 : G(M) = G(M/M') = M’ in mod”II'.

Proof. (a) Since a simple module associated with u; = v does not appear in top(U), we
have Homy (U, M) = 0.
(b) Since m/; = mj — d,,,, holds, we show that

G (/11 j)ey;) ~ (V)15 1) eu;) (—Oou,)-

By a similar calculation of the proof of Lemma 6.21, we have the following morphism of
graded IT'-modules

(I3,3/11 j)(=0vy;) — Homp((I/1,)(1), I/ 15),
(I’ /13 J)( Ou,u;) — Hompp (e, (1) @ II(1 — e,), 11/ 11 5),
where both of them are defined by z + (-p~!(z)). These morphisms are isomorphisms

)
by Proposition 6.22. By Proposition 3.3 (e), Ext};(Il/I,,11/I; ;) = 0 holds. Applying the
functor Homy(—,II/1; ;) to the exact sequence

0—U —Iley(1) & II(1 — e,) — (II/1,)(1) — O,

we have the following commutative diagram of exact sequence in mod? IT';
OH(Ié,j/Ii,j)(_évvuj) (H//Ilj)( vuj) (H,/I2g)( vuy)*)o
0 —— (/L)1) 11/ j) — n(Iley (1) S 1L(1 — ey), I1/11 ;) n(U, /1 j) —0.

Therefore we have the assertion.
(c¢) This comes from (a) and (b). O

The following lemma is used later.

Lemma 6.24. Under the setting in Proposition 6.23, for the functor G : mod”II —
mod? I, we have

(a) G restricts to a dense functor proj” TI(w) to proj“II’,,
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(b) Fori € Z, the map Gy aiy is surjective.

Proof. (a) This comes from II(w) = @uesupp(w) MP«(—my, ), I, = @uesupp(w,) M’p;(—m;&),
and Proposition 6.23.

(b) It is enough to show that the map Gy p(;) is surjective for 2 < j k < 1. By
Lemma 6.22 (b), we have

, I.
Hom (M7, M*(3)) = ( *’“) ,
[Lk mp—m;+1

A I
Hom%/(M/]_l,M/k_l(i>) — <€ ]+1,k€u}c> ]
m —m}—l—i

’le /
I2,k

For 2 < j,k < I, an equation mj, — m; + i = mp — my + du; 0 — Ouyw + 4 holds. Thus

p: T — I maps (e, (Ij'*‘lak/llvk)e“k)mkfmjﬂ to (euj('[j,'+l,k/'[é,k‘)euk>m, _y by Lemma
KT

6.18. We have the following commutative diagram

GMJ',Mk(i)
_—

Homij (M7, M* (i) Homgy (G(M7), G(M*)(i)) —Z— Homiy, (M7, M™*1(i))

!
Ij+1,k e Ij+1,k€
euj I % 6uk . u; "7 U , ,
) mp—m;—+i 2,k mk—mj—H

(6.5)

where the lower map is induced by p : II — IT', and « is defined by a(f) = ¢, (i)o f o 1/)]71.
Since the lower map is surjective and « is an isomorphism by Proposition 6.23 (b), we
have that Gy pe(;) is surjective. O

The following theorem is a graded version of [IR, Theorem 3.1, (ii)] and the main
theorem of this subsection.

Theorem 6.25. Under the setting in Proposition 6.23, we have an isomorphism of alge-
bras

G : Endiy,) (M)/[MY(i) | 0 < i < pu] = End%[;ﬂ(M’),

where G(—) = ¢ o Gy (=) o™ and [M1(i) | 0 < i < py,] is an ideal of End%(w)(M)
consisting of morphisms factoring through objects in add{M*(i) | 0 < i < py, }.

Proof. We show that G is surjective and Ker(G) = [M1(i) | 0 < i < py,].

(i) By Lemma 6.24 (b), G is surjective.

(ii) Since 1) is an isomorphism, we have Ker(G) = Ker(Gs,ar). We show that Ker(Gasar) =
[M(i) | 0 < i < pyu,]. By Proposition 6.23 (a), we have [M1(i) | 0 < i < py,] C
Ker (Gyys px). Conversely, we show that Ker (G pn) C [MY(i) | 0 < i < py,] for
2 < j,k <. By the commutative diagram (6.5), we have

Ir g
Ker (GMj,Mk) = <€ujll7k6uk> .
’ mkfm]

35



If uj # wuq, then e 11 = eu; Ik and we have Ker (GMj’Mk) = 0. If u; = uq, then we
have

Iy i
Ker (GMj7Mk) = <euj ]?euk>
M —m;

1I Iy
= | Cuy 7 Cuy €uy 7 €u
JIul Ilk k
) mkfmj

= Hom% (M*(m;), M*) o Hom¥% (M7, M* (m;)).
In particular, we have Ker (G pn) C [M1(i) | 0 <@ < py,]. O

We end this subsection by showing the following lemma which is used later to show
Lemma 6.28. For a source v € Qp and Q' = p,(Q), we have the reflection functor

Ry /
mod K@) — mod KQ'.

Note that U is generated by Uy as a left II-module. In fact, I,e, = Ile, is generated by
ey for u # v and I,e, is generated by all arrows in @ starting at v.We denote by F’ the
degree zero functor on mod” IT':

F' = (=)o : modZII' — mod KQ'.
Lemma 6.26. Let v be a source of Q and Q' = 1y (Q).
(a) We have a morphism of functors ¢ : F' oG — R} oF.

(b) For any X € mod="Tl, ¢x : G(X)o — R} (Xo) is an isomorphism of KQ'-modules,
that is, the following diagram of functors is commutative on mod=<CII:

modZ I —& ~ mod? I’

S

mod KQ —*> mod K(Q'.

Proof. By the definition of the functor G, we have G(X)o = Hom%(U, X). Since II; ~
7Y KQ) as KQ-modules, Uy = 7~ (KQe,) ® KQ(1 — e,) holds and this is an APR-tilting

K Q-module associated with v. Therefore we have a morphism of KQ'-modules
ox : G(X)o = Hom%(U, X) — Hompg(Un, Xo) = R (Xo),

given by ¢x (f) = flu,. Clearly this gives a morphism ¢ : F'oG — R} oF of functors. Since
U is generated by Uy as a graded II-module, a morphism f € Hom%(U, X) is determined
by ¢x(f). This implies that ¢x is injective.

We show that ¢x is surjective when X is in mod=<CII. Let g € Hompgg(Uy, Xo). We
define a morphism f : U — X of KQ@Q-modules by f|y, = ¢ and f|y., = 0. Then f gives

a morphism in mod? 11, since X € mod=II and II is positively graded. O
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6.3 Fis surjective

We use the notation in Subsections 6.1 and 6.2. For a quiver (), we denote by W the Cox-
eter group of (). Assume that w = cOc) ... elm) — Suy Sug ** * Sy, 1 a c-sortable expression
of w € Wg. Without loss of generality by Lemma 4.1, we assume that Qo = Supp(w).
Let Q" = p,(Q). We show that the morphism F : Mﬁ(w)(M) — Endgg(Mo)/[T] is
surjective. We first prove the following lemma.

Lemma 6.27. An element w' with a reduced expression w' = Sy, -+ Sy, 18 a4 (Sy,CSyy)-

sortable element in Wy .

1

Proof. 1t is clear that sy, cs,, is a Coxeter element of W admissible with respect to the
orientation of Q’. Let a = max{k | u; € Supp(c*)}. Put

su,¢Ms, 0<k<a-—1
Sy ) k=a
c) a+1<k<m.

S _

Then we have a reduced expression w’ = &0/ ... /™) where m’ = m—1 if Supp(c™) =
{u1}, and m’ = m if otherwise. Since each ¢'*) is a subword of s, €sy,, W' is a (54, €Sy, )-
sortable element. O

Let w' = sy, -+ - sy,. By Proposition 6.23 (c), there exists the isomorphism of graded
IT"-modules
v GM/MY) = M.

By using v, we have an isomorphism of algebras
o : End%, (G(M/M*')) — End%, (M)
defined by a(f) =1 o f o4y~ Moreover we have an isomorphism of algebras
ao : Endgo (G(M/M')o) — Endgg (M)
defined by ag(f) =0 o fo vy ", where 1o = ¥|g(ar/ar),- Let
Foy == Fyan v : Endf(M/M') = Endgq (M/M"')) .
Lemma 6.28. The following diagram is commutative:

End%(M/M") — 2+ End% (G(M/M"Y)) —&— > End%, (M) (6.6)

@Q

Endgq((M/M')g) —2= Bnd o (G(M/M*)o) 2 End . (M),

where G>1 = Gy vy F = F&}(M/Ml),G(M/Ml)f and R is defined by R(f) = (qu/Ml)_lo
RE(f) o dnrynnn -

Proof. The commutativity of the left square comes from the functoriality of ¢ of Lemma
6.26. The commutativity of the right square is clear. O
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Proposition 6.29. Assume that w = sy, 5y, - Sy, = cOcM)...cm 45 g c-sortable ex-
pression of w € Wg. Then we have

(a) The morphism F' : End%(w) (M) — Endgg(Mo), f— flm, is surjective.

(b) The morphism E : End%(w) (M) — Endgg(Mo)/[T) is surjective.
Proof. (a) We show the assertion by induction on I. Assume that [ = 1. Then we have

M = M' = M} and I(w) = KQ. Thus we have Endfj, (M) = Endgxq(Mo). The
assertion holds. Assume that [ > 2. We show that two maps

Fy = Fyppy s Homfy (M1, M) — Homgq (Mg, Mo),
Fpgarnar : Homiy e,y (M/M*, M) — Hompq ((M/M")o, Mo)

are surjective. Since M = Mol, M is in mod=’ II(w), and II,, is positively graded, we can
regard any g € Hompq (Mg, My) as a morphism in mod? II,,. Therefore, F} is surjective.
By [AIRT, Corollary 3.10], we have HomKQ(Mg,Mé) = 0 for i < j. Thus we have
Hompgq ((M/M1Y)o, My) = Endgg ((M/M*')o). Therefore it is enough to show that the
map
Foy o= Fagpnp pyan - Endfy,, (M/M') — Endgq ((M/M*)o)

is surjective. We show that F.; is surjective by using the diagram (6.6). Let w' =
Sug * - Sy, By Lemma 6.27 (c), w’ is a (sy,€sy, )-sortable element in Wy. Thus, by the
inductive hypothesis, F’ in the diagram (6.6) is surjective. By Theorem 6.25, G~ is
surjective. Since «, ag, and R are isomorphism, F\1 is surjective.

(b) We have the following commutative diagram

Endf,, (M) —"— Endf,, (M) (6.7)
lF iF
End g (Mo) —— End o (Mo)/[T).

Since the bottom and the left morphisms are surjective, the right morphism is surjective.
O

6.4 Fis injective

We show that the morphism F'is injective. Let w = sy, Sy, - - - 84, be a c-sortable expression
and w' = sy, - Sy,. Without loss of generality by Lemma 4.1, we assume that )y =
Supp(w). Since G(M') = 0 and by Lemma 6.28, we have the following commutative
diagram:

G
Endfj(,,y (M) —=> Endfj ) (M) (6.8)

lp iF,

EndKQ(Mo) i> EndKQ/ (M[/)),

where R = ag o R.
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Lemma 6.30. Let f € Endlz[w (M). Assume that G(f) factors through add P’'. Then we
have

(a) f factors through add(P @ M?').
(b) If F(f) =0, then f factors through add(P).

Proof. (a) By Proposition 6.23 (d), we have G(P) = P’. Since G(f) factors through add P’
and by Theorem 6.25 and Lemma 6.24, there exist morphisms f1,g € End%(w) (M) such

that f = f1+g, f1 factors through add P, and g factors through add{M!(i) | i > 0}. Thus
g is the sum of morphisms g1, g € End%[(w)(M ) such that g; factors through add M! and

go factors through add{M*(i) | i > 1}. By Lemma 6.13, g factors through add P.
(b) By (a), there exists g € End%(w)(M) such that g factors through add M* and f —g¢

factors through add P. We show that g factors through add P. Since Hom%(w) (M/M*, M) =

0, we have g[y7/p1 = 0. Therefore we may regard g as a morphism from M L'to M. Since
F(f)=0, F(g— f) = F(g) : M} — My factors through add Py. By Proposition 6.29 (a),
there exists h € Hom%(w)(Ml,M) such that h factors through add P and F(g) = F(h).
Because M! = M&, we have g = h. O

Proposition 6.31. The morphism F : End%(w) (M) — Endgq(Mo)/[T] is injective.

Proof. We show the assertion by induction on [. If [ = 1, then we have Mﬁ(w)(M ) =
Endgg(My)/[T] = 0. Thus the claim is clear.

Assume that | > 2. Let f be a morphism in End%(w)(M) satisfying F(w(f)) = 0.
We show 7(f) = 0. By the commutative diagram (6.7), we have #/(F(f)) = 0. Since
Kern' = [T, F(f) factors through add 7. By Proposition 6.29 (a) and F(P) = T, there
exists g € End%(w) (M) such that g factors through add P and F(f) = F(g). Put h :=

f—g€End%, (M). We have n(f) = m(h). Therefore it is enough to show 7(h) = 0.
TI(w)
Consider the following commutative diagram

Endf,, (M) _G, Endfy (M) —— Endf,, ,, (M')
lF iF’ lF/
End (M) —F > Endggy (M}) - Endgeo (M3)/[T],
where 1 and 1/ are canonical surjections. We have
Fl(n(G(h)) =7 (F/(G(h))) = n'(R(F(h))) = 0,

since F'(h) = F(f) — F(g) = 0. By the inductive hypothesis, F’ is injective. Thus
n(G(h)) = 0 and G(h) factors through a graded projective II'(w’)-module. By the proof
of Proposition 6.15, G(h) factors through add P’. Thus, by Lemma 6.30 (b), h factors
through add P. Therefore, we have 7(f) = 7(h) = 0. O
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7 The global dimension of the endomorphism algebra

Throughout this section, let A be a finite dimensional algebra and T a cotilting A-module
of finite injective dimension, that is, T satisfies injdim T" < oo, Ext%(T,T) = 0 for any
1 > 0, and there exists an exact sequence 0 — T,, — --- = T7 — Ty — DA — 0 where
T; € addT. We denote by +>°T the full subcategory consisting of mod A of modules X
satisfying Ext% (X, T) = 0 for any i > 0. The aim of this section is to show the following
theorem.

Theorem 7.1. Assume that the global dimension of A is at most n and that ~>°T has an
additive generator M. Then the global dimension of Ends(M)/[T] is at most 3n — 1.

Note that End4(M) and End4(M)/[T] are relative version of Auslander algebras and
stable Auslander algebras. It is known that Auslander algebras have global dimension
at most two [ARS], and that stable Auslander algebras have global dimension at most
3(gldim A) — 1 [AR74, Proposition 10.2]. We apply Theorem 7.1 to our endomorphism
algebra in Theorem 6.3. We denote by Sub T the full subcategory of mod A consisting of
submodules of finite direct sums of 7.

Corollary 7.2. Under the setting in Theorem 6.3, the global dimension of End kg (Mo)/[T]
18 at most two.

Proof. Let QM be the full subquiver of @ whose the set of vertices is Supp(w). We
have Endgq(Mo)/[T] = Endgoa) (Mo)/[T]. Moreover, by Theorem 4.9, T' is a tilting

KQW-module. By [AIRT, Theorem 3.11], we have SubT = add{M{, MZ,..., M}}. By
Bongartz’s lemma [ASS, Chapter VI, 2.4. Lemma, tilting modules over a hereditary
algebra coincide with cotilting modules. Since KQM is hereditary, SubT = +>0T holds.
Therefore, by applying Theorem 7.1, the global dimension of End o) (Mo)/[T7] is at most
two. O

To show Theorem 7.1, we use cotilting theory. We recall some properties of cotilting
modules.

Proposition 7.3. [AR91, Theorem 5.4, Proposition 5.11] Let T be a cotilting A-module.
Then

(a) For any X € +>0T, there exists an injective left (add T)-approzimation of X.
(b) Let X € ->°T. Then X € add T if and only if Exty (Y, X) =0 for any Y € +>°T.

In the following lemma and proposition, we construct an important long exact se-
quence. For XY € mod A, we denote by HomZ(X, Y) the quotient of Homu4(X,Y') by

the subspace consisting of morphisms factoring through add 7', that is, Homg(X YY) =
Hom4(X,Y)/[T].

Lemma 7.4. For an exact sequence 0 — X i> Y4 Z50int>T and any A-module
N, we have the following exact sequence

Hom 4 (Z, N) —% Hom (Y, N) =L Hom s (X, N).
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Proof. Tt is enough to show that Ker(— o f) C Im(— o g). Assume that a« € Homyu (Y, N)
satisfies fa = 0 € Homa(X, N)/[T]. There exists a module 7" € add T and morphisms
hi: X — T, hy : T" — N such that fa = hihy. Since ExtY(Z,T) = 0, there exists a
morphism 8 : Y — T’ such that f3 = hy. Since f(a—fhs) = fa— fBhe = fa—hihy =0,
there exists a morphism ~ : Z — N such that gy = a — Sho.

X*f>y$z

/ 7/
hli 6/ (64 s
%/ k/,-y
/H

ho
O

Let X € +>0T. By Proposition 7.3 (b), there exists an injective left (add T')-approximation
f:X = T'. We have Cok f € +>0T. We denote by Q,(X) a cokernel of f. Note that
Q7(X) is uniquely determined by X up to direct summands in add7". Let Q."(X) =

07 (2" V(X)) for n > 1.

Proposition 7.5. Let 0 - X i> Y % Z =0 be an ezact sequence in ~>°T. Then

(a) We have an exact sequence 0 =Y — Z & T" — Qn(X) = 0, where T' € add T'.
(b) For any A-module N, we have the following long exact sequence
.o+ = Homy (Q57(Z), N) — Homy (Q;(Y), N) — Hom 4 (Q7"(X), N) — - --
-+ = Homy (5 (X), N) — Hom 4 (2, N) — Hom 4 (Y, N) — Hom 4 (X, N).
Proof. (a) Let h : X — T’ be an injective left (addT')-approximation of X. Since

ExtY(Z,T) = 0, h factors through f, and therefore we have the following commutative
diagram

0 X Y Z 0
0 X T’ 07(X) —0.

Thus we have an exact sequence 0 =Y — Z & T — Q.(X) — 0.
(b) By applying (a) and Lemma 7.4 inductively, we have the assertion. O

In the following two propositions, we assume that the global dimension of A is at most
n.

Proposition 7.6. Let X € 1>0T. If the global dimension of A is at most n, then we have
Q"(X) €addT.

Proof. By Proposition 7.3 (b), it is enough to show that Ext}(Y,Q7:"(X)) = 0 for any
Y € 1>0T. Let Y € 1>0T. By using Proposition 7.3 (a), we have the following exact

sequence

0oXx->nn Do om o x) o,
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where T; € addT and Im f; = Q;(iJrl)(X). By applying Hom4 (Y, —) to this exact se-
quence, we have the following isomorphisms
Ext) (Y, Q;"(X)) ~ Bxt? (v, ;" (X))
~ Ext’y (v, 0" (X))

~ Ext}™ (Y, X) =0,
where the last equation follows from gldim A < n. O

Proposition 7.7. Assume that the global dimension of A is at most n. For an exact
sequence 0 - X — Y — Z — 0 in *>°T and any A-module N, we have the following
exact sequence

0 — Hom 4 ("7 (2), N) = Hom 4 (27" (V), N) — Homy (2" V(X),N) = - -
o+ = Homy ((X), N) — Hom 4 (2, N) — Hom (Y, N) — Hom 4 (X, N).

Proof. By Proposition 7.6, we have Homﬁ(Q}”(X ), N) = 0. Therefore, we have a desired
exact sequence by Proposition 7.5 (b). O

Then we prove Theorem 7.1.

Proof of Theorem 7.1. We show that projective dimensions of all right Ends(M)/[T]-
modules are at most 3n — 1. Let N be a right Ends(M)/[T]-module. There exist
X,Y € 1507 and a homomorphism of A-modules f : X — Y which induce a minimal
projective presentation of IV,

Hom 4 (Y, M) =% Hom (X, M) — N — 0.

Let g : X — T’ be an injective left (add T')-approximation of X. We have an injective
morphism h = f @ ¢g: X - Y & T’. Since g is a left (add T')-approximation of X, we have

Cokh € +>0T. Let Z = Cokh. We have an exact sequence 0 — X hy T — Z —0.
By Proposition 7.7, we have the following exact sequence

0 — Hom 4 ("7 (2), N) = Homy (27" (V), N) — Homy (" V(X),N) — - -

- — Hom 4y (Q7(X), N) — Homy(Z, N) — Homi (Y, N) —L Hom (X, N).

Therefore the projective dimension of N is at most 3n — 1. O
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Part 11
Tilting objects associated to c-starting
and c-ending elements

This part is based on the paper [Kil6]. Throughout this part, we use the notation intro-
duced in Section 3.

8 Preliminary

In this section, we recall basic facts and show basic lemmas on graded algebras which we
will use.

8.1 Graded algebras

In this subsection, we observe some properties of graded algebras. Recall that a graded
algebra A = @,., A; is said to be positively graded if A; = 0 for any i < 0. The following
lemma is well-known and we omit the proof.

Lemma 8.1. Let A be a finite dimensional graded algebra and let M, N be finitely gen-
erated indecomposable graded A-modules. If M is isomorphic to N in mod A, then there
exists an integer i such that M (i) is isomorphic to N in modZ A.

We need the following lemma later.

Lemma 8.2. Let A be a finite dimensional positively graded algebra such that the global
dimension of Ag is at most m. Let M € mod=" A and

2 1 0
P2 pt I po Do (8.1)
be a minimal projective resolution of M in mod” A. Then we have Ker(f™)p = 0.

Proof. We show that, by taking the degree zero part of (8.1), we have a minimal projective
resolution of My in mod Ag. Since A is positively graded and M € mod=° 4, P € mod=? A
holds for each i > 0. Thus (P?%)g is either a projective Ag-module or a zero module for
any i > 0. Therefore the degree zero part of (8.1) gives a projective resolution of My in
mod Ag. Next we show a minimality, that is, for each i > 0, Ker(f?)g is a superfluous Ag-
submodule of (P?%)g. Let L be an Ag-submodule of (P?)q satisfying L + Ker(f%)o = (P%)o.
There exists an exact sequence 0 — (P%)>; — P' — (P%)y — 0. By taking a pull-back
diagram of P* — (P%)y +> L, we have an A-module N which is a submodule of P’ and
satisfies Ng = L and N>; = (P")>;. This implies N + Ker(f?) = P'. Therefore we have
N = P' and L = (P),.

Since the global dimension of Ay is at most m and the degree zero part of (8.1) is a
minimal projective resolution of My in mod Ay, we have Ker(f™)y = 0. d

We use the following definition in Section 11.

Definition 8.3. Let A, B, C be graded algebras.
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(1) We define a grading on the tensor algebra A ® B as follows:
(A® B), = {Za®b|a€Aj,beBk,j+k:i},

for any ¢ € Z.

(2) Let X be a graded A ® B°P-module and Y a graded B ® C°P-module. We define a
grading on the A ® C°P-module X ®p Y as follows:

(X®BY)i:{Zx®y\x€Xj,yEYk,j+k::i},

for any i € Z.

8.2 Some results on II(w) and SubZII(w)

Let w € Wg. In this subsection, we show some results on II(w) and the category
SubZTI(w). In particular, we show that SubZII(w) has a Serre functor. The following
lemma is an easy observation of the grading on IT(w).

Lemma 8.4. The following holds.
(a) Let c € Wq be the Coxeter element. We have I(c)o = 0.

(b) Let w be an element of Wq. If there exists a reduced expression w of w containing
an expression of the Coxeter element ¢ as a subword, then we have I(w)y = 0. In
particular, we have I(w)y = KQ.

(¢) Let w = Sy, Sy, -+~ Sy, be a reduced expression of w € Wg which is a subword of an
expression of the Cozeter element ¢ of Wg. Then we have ey, I(w)pey, = 0.

Proof. (a) This comes from [BIRSc, Proposition II. 3.2].
(b) By (a), we have I(w)y C I(c)g = 0.
(c) We have ey, I(w)oey, C ey, I(c)oey, = 0. O

We need the following two observations.
Lemma 8.5. The category Sub” II(w) is an extension closed subcategory of fd”1I.

Proof. By [BIRSc, Proposition III. 2.3] (a), SubII(w) is an extension closed subcategory
of fdTI. Let 0 -+ X — Y — Z — 0 be an exact sequence in fd“II and X, Z € Sub? II(w).
Since Y € SubII(w) and Y € fd’II, we have Y € SubZII(w). O

Proposition 8.6. Let Q be a non-Dynkin quiver and I1 be the preprojective algebra of Q.
Put 1I¢ = I ® II°°. Let D = D(ModZII) be the derived category of ModZII and X,Y in
D. Then the following holds.

(a) RHomye (I1, 11¢) ~ II[—2](1) holds in D(ModZII¢).

(b) If the homology of X is of finite total dimension, then we have a bifunctorial iso-
morphism

Homp(X,Y) ~ D Homp(Y, X[2](—1)).
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Proof. (a) By [GLS07, Section 8], we have a graded II°-module resolution of II:

0= P @eu® e dI) (~1) = ) (Teyp) @ eyp)IT) (— deg B)
u€Qo BeQ,

— EB (ITey ® e, I1) — II — 0.
u€Qo

This resolution induces the desired isomorphism.
(b) This follows from (a) and [Ke08, Lemma 4.1]. O

Then we have a Serre functor of SubZ IT(w).

Proposition 8.7. For any w € Wy, the triangulated category Sub? II(w) has a Serre
functor [2](—1).

Proof. By Lemma 4.1, we assume that @ is a non-Dynkin quiver. By Lemma 8.5,

SubZ TI(w) is an extension closed full subcategory in fdZII. Thus we have Extéubz () (X,Y)
Ethl\/IodZH(X’Y) for X,V € SubZII(w). Therefore we have
Homg 7 () (X, Y [1]) = Exty, = (X,Y)
~ DExt, (Y, X(-1))

~ D Homgyz 11, (Y, X [1](~1)),

for X,Y in Sub” II(w), where the second isomorphism comes from Proposition 8.6. This
means that SubTI(w) has a Serre functor [2](—1). O

We need one result of Iwanaga-Gorenstein algebras. The next theorem is the famous
shown in [Bu, Ha91, Ri] and its graded version in the case of injective dimension at most
one [IYa]. For a finite dimensional (resp, graded) algebra A, we denote by KP(projA)
(resp, KP(projZ A)) the homotopy category of bounded complexes of finitely generated
(resp, graded) projective A-modules.

Theorem 8.8. Let A be an Iwanaga-Gorenstein algebra of dimension at most one. Then
the following holds.

(a) There exists a triangle equivalence
DP(mod A)/KP(proj A) =5 Sub A,

where a quasi-inverse of this equivalence is induced from the composite of the canon-

ical functors Sub A — DP(mod A) — DP(mod A)/KP(proj A).

(b) If A is a graded algebra. Then we have the following triangle equivalence
DP(mod? A) /K (proj% A) = SubZ A.

where a quasi-inverse of this equivalence is induced from the composite of the canon-
ical functors Sub? A — DP(mod? A) — DP(mod? A)/KP(projZ A).
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Note that categories Sub A and Sub? A for an Iwanaga-Gorenstein algebra A of dimen-
sion at most one are often called singularity categories. We denote by pa the composite
of triangle functors

pa : DP(mod A) — DP(mod A)/KP(proj A) =5 SubA,

and denote by p% the graded version of p4 if A is a graded algebra.

9 A silting object in SubZII(w)

In this section, we show that the category Sub” II(w) has a silting object for any w € Wg.
For the definition of silting objects, see Subsection 3.3. In Subsection 9.1, we study a more
general triangulated category than Sub? IT(w).

9.1 Cluster tilting subcategories and thick subcategories

In this subsection, let 7 be a Hom-finite, Krull-Schmidt triangulated category with a
Serre functor S. Put Sy = So [—2]. We denote by T /Ss the orbit category of T associated
with So. For any object M of T, we regard the endomorphism algebra EndT/SQ(M ) as
a graded algebra by Endy /s, (M); = Homy(M,S; {(M)). For a subcategory C of T, put
Ct ={X €T |Homy(C,X) =0} and *C = {X € T | Hom7(X,C) = 0}.

A subcategory C of T is called a contravariantly finite subcategory of T if for any
X € T, there exists a morphism f : Y — X with Y € C such that the map Hom(Z, f) :
Hom7(Z,Y) — Homy(Z, X) is surjective for any Z € C. Dually, we define a covari-
antly finite subcategory of T. We call C a functorially finite subcategory of T if C is a
contravariantly and covariantly finite subcategory of 7.

We recall the definition of cluster tilting subcategories.

Definition 9.1. [IYo] Let C be a subcategory of T. We call C a cluster tilting subcategory
of 7 if C is a functorially finite subcategory of 7 and

C=c[-1*+=*cp).
We recall the following property of cluster tilting subcategories.

Proposition 9.2. [IYo, Theorem 3.1] If C is a cluster tilting subcategory of T, then for
any object X of T, there exists a triangle Co — X — C1[1] — Cy[1] with Cy,Cy € C.

We recall some definitions. We denote by Jy the Jacobson radical of T. We call a
morphism f: X — Y in T right minimal if f does not have a direct summand of the form
X’ — 0 for some X’ € T. Let C be a full subcategory of 7. A morphism f: X — Y in C
is called a right minimal almost split morphism of Y in C if the following three conditions
are satisfied:

(i) f is not a retraction.
(ii) f induces a surjective map Homy(Z, X) — Jr(Z,Y) for any Z € C.

(iii) f is right minimal.
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Dually, a left minimal almost split morphism is defined.
Note that if there exists a left (resp, right) minimal almost split morphism of Y in C,
then it is unique up to isomorphism. We use the following theorem.

Theorem 9.3. [IYo, Theorem 3.10] Let C be a cluster tilting subcategory of T and X be
an indecomposable object of C. Then there exist triangles

SHX) S 015 Y 5 S(X)[1, Y = CoLx =y, (9.1)

where f is a right minimal almost split morphism in C and g is a left minimal almost split
morphism in C. Dually, there exist triangles

X405z X0, z-ct Dsyix) - 2, (9.2)
where g’ is a left minimal almost split in C and f' is a right minimal almost split in C.

Note that the triangles (9.2) are obtained by applying the functor S5 1 to the triangles
(9.1). In [IYo], the triangles (9.1), regarded as a complex of T, is called an Auslander-
Reiten 4-angle ending at X (AR 4-angle, for short).

Let X be an object of 7 and X ~ @221 X; be an indecomposable decomposition of
X. We call X a basic object if X; % X, holds for any i # j. We assume the following
condition.

Assumption 9.4. Let M be a basic object of a triangulated category T .
(i) We have a cluster tilting subcategory U of T given by
U = add{Sy(M) | i € Z}.
(i) The graded algebra Endy s, (M) is generated by homogeneous elements of degree zero
and one.
The condition (ii) is equivalent to the following condition:

(ii) There exists a finite quiver Q with a map deg : Q1 — {0,1} such that there exist a
surjective morphism ¢ : KQ — Endys,(M) of graded algebras and the kernel of ¢
is contained in the ideal of KQ generated by paths of length at least two.

The following lemma is a fundamental observation on the quiver @ of Endy /s, (M)
and on right or left minimal almost split morphisms of M in U.

Lemma 9.5. Under the Assumption 9.4. For each j € Qq, let M7 be an indecomposable
direct summand of M associated with an idempotent ¢(e;). For j € Qo, let

f=(¢(a)) : @ Sgeg(a)(Ms(a)) — M
a€Q1, t(o)=j

be a morphism in T. Then f is a right minimal almost split morphism of M7 inU. Dually,
let

g:=0(@): M~ P s s

a€Q1, s(a)=j

be a morphism in T. Then g is a left minimal almost split morphism of M7 in U.

47



Proof. We show that f is a right minimal almost split morphism of M7 in /. Dually, it is
shown that g is a left minimal almost split morphism of M7 in I.

By definition, f is right minimal and not a retraction. We denote by X the do-
main of f and E := Endy/s,(M). Since @ is the quiver of E, f induces a surjec-
tive morphism Homy /s, (M, X) — rad Ee;. Since rad Ee; = rad (Homy g, (M, M7)) =
DB,z JT(S5(M), M7) holds, we have a surjective map f* : Homy(Z, X) — Jr(Z, M’) for
any Z € U. O

Before stating the main theorem of this subsection, we need the following definition.
Let @ be a finite quiver with a map deg : Q1 — {0,1}. We define a quiver Q* by Qf = Qo
and Qf ={a €@ |deg(a) =0}U{a" : t(a) = s(a) | @ € Q1, deg(a) =1}.

Definition-Proposition 9.6. Let Q be a finite quiver with a map deg : Q1 — {0,1}. We
call a quiver Q) deg-acyclic if one of the following equivalent conditions hold.

(a) The quiver Q* is acyclic.

(b) There exists an order {1,2,...,1} on Qo which satisfies the following conditions: for
any arrow o 1 i — j in Q, if deg(a) = 0, then j < i, and if deg(a) = 1, then i < j.

The following is the main theorem of this subsection.

Theorem 9.7. Under the Assumption 9.4. If the quiver Q) is deg-acyclic, then we have
thickr M =T.

Proof. Let {1,2,...,l} be an order on @)y which satisfies the condition of Definition-
Proposition 9.6 (b). Let M = @5’:1 M/ be an indecomposable direct decomposition of
M such that each M/ corresponds with a vertex j € {1,2,...,1} = Qo. We show that
S (M7) € thicky M by an induction on i and j.

Let i > 1. Assume that S5(M) € thicky M for 0 < k < i — 1 and Si(M*) € thickr M
for 0 < k < j — 1, where MY := 0. We show that Si(M7) € thicky M. By Theorem 9.3,
we have an AR 4-angle ending at M7

So(MI) % Oy — Xy — So(MD[1], X1 — Co L M7 = x4[1], (9.3)

where f is a right minimal almost split of M7 in U/ and g is a left minimal almost split of
S2(M7) in Y. By Lemma 9.5 and a uniqueness of a right (resp, left) minimal almost split
morphism, we have

G~ @ sH0r®), o~ @ s o).

a€Q1, t(a)=j a€Qq, s(a)=j

By applying Sg_l to (9.3), we have an AR 4-angle ending at Sé_l(Mj). Since {1,2,...,l} =
Qo satisfies the condition of Definition-Proposition 9.6 (b) and by the inductive hypoth-
esis, we have S5 1(Cp),S5H(C1) € thickr M. Thus we have Si(M7) € thicky M and
add{S4(M) | i > 0} C thicky M holds. An inclusion add{Sy(M) | i < 0} C thickyr M
follows from the dual property of Theorem 9.3 and a similar argument. Therefore we have
U C thickr M. By Proposition 9.2, we have the assertion. O
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We end this subsection with the following proposition which calculates the global
dimension of the endomorphism algebra End(M).

Proposition 9.8. Under the Assumption 9.4, suppose that Homy (M, M[—1]) = 0. Then
the global dimension of Endy (M) is at most two.

Proof. Let X be an indecomposable direct summand of M. Take an AR 4-angle ending
at X

SQ(X)-)Cl%Y—)SQ(X)[l], Y—>Co—>X—>Y[1].
By applying the functor Homy (M, —) to the first triangle, we have
Homy (M, Cy) ~ Homy(M,Y),

since U is a cluster tilting subcategory and Endy (M) is positively graded. By applying
the functor Homy (M, —) to the second triangle, since Homy (M, M[—1]) = 0, we have an
exact sequence of Endy (M )-modules

0 — Hom7(M, Cy) — Homy(M, Cy) — Homy (M, M?).

By Lemma 9.5, we have Co,C; € add{Sy(M) | i = 0,1}. Since Endy (M) is positively
graded, the Endy (M )-modules Hom7 (M, Cy) and Homy (M, C1) are projective Endy (M )-
modules. Therefore the projective dimension of the simple Ends(M)-module associated
with X is at most two, and we have the assertion. O

9.2 A cluster tilting subcategory of SubZII(w)

Let w = 8y, 8y, - - 54, be a reduced expression of w € Wy, and put

l
M(w)' = M" = (T1/1(Su, Suy -+ 5u;))eu;,  M(w) = M = P M(w)".
=1

Remark 9.9. As easily seen, the tilting object of Part I (see Subsection 6.1) and M in
this part are quite different even if w is c-sortable. In fact they have different gradings,
and such a difference is crucial when we study Z-graded modules.

Whenever there is no danger of confusion, we denote M (w)® and M (w) by M? and
M, respectively. In this subsection, we show that the object M of Sub” II(w) is a silting
object. Note that by Proposition 8.7, Sub”II(w) has a Serre functor S = [2] o (—1), and
hence we have Sy = (—1). Let

U:=add{M©)|icZ}
be the full subcategory of Sub” IT(w).

Lemma 9.10. U is a cluster tilting subcategory of Sub” II(w).
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Proof. Let X € SubZTI(w). Since M and X are finite dimensional, there exists an integer
N > 0 such that Homg,, (M, X (i)) = Homfy,, (X, M(i)) = 0 for any i > [N|. This
means that U/ is functorially finite in Sub? II(w). Since S = [2](—1) is a Serre functor on
SubZTI(w), we have
U1+t =+un).

By Proposition 3.3 (d), Homyy,,)(M, M[1]) = 0 holds. Therefore we have an equality
Homﬁ(w)(M,M[l](i)) = 0 for any integer i. This means & C “U[1]. Let X € SubZII(w)
be an indecomposable object such that X € +U[1] in Sub?II(w). By forgetting gradings,
we have Homyy(,,) (M, X[1]) = 0. Since M is a cluster tilting object in SubIl(w), X is
isomorphic to some indecomposable direct summand of M in mod II(w). By Lemma 8.1,
we have X € U. O]

For the convenience of the reader, we recall the definition of the quiver Q(w) of
Endpy(,) (M (w)), which is already defined in Definition 6.5.

Definition 9.11. [BIRSc| Let w be an element of W. We define a quiver Q(w) associated
with a reduced expression w = sy, Sy, - - - Sy, of w as follows:
e vertices: Q(w)o ={1,2,...,1}.
A vertex 1 < i <[in Q(w) is said to be type u € Q if u; = u.

® arrows:

(al) For each u € Supp(w), draw an arrow from j to i, where 7, j are vertices of type
u, i < j, and there is no vertex of type u between i and j (we call these arrows
going to the left ).

(a2) For each arrow «: u — v € @)1, draw an arrow «; from i to j, where i < j, i is
a vertex of type u, j is a vertex of type v, there is no vertex of type u between
1 and 7, and j is the biggest vertex of type v before the next vertex of type u
(we call these arrows Q-arrows).

(a3) For each arrow o : u — v € @, draw an arrow « from 7 to j, where i < j, 7 is
a vertex of type v, j is a vertex of type u, there is no vertex of type v between
1 and 7, and j is the biggest vertex of type u before the next vertex of type v
(we call these arrows Q*-arrows).

We denote by Q(w) the full subquiver of Q(w) whose the set of vertices is Q(w)o \ {pu |
u € Supp(w)}, where p, = max{1 < j < 1| u; = u}, for u € Supp(w).

Note that the quiver Q(w) depends on the choice of a reduced expression of w. We
introduce a map deg : Q(w); — {0, 1}.

Definition 9.12. We define a map deg : Q(w); — {0, 1} as follows:
e deg(f) =1if §is a Q*-arrow.
e deg(B) =0 if § is a Q-arrow or an arrow going to the left.

We define a map deg on Q(w) as the restriction of deg : Q(w); — {0,1} to Q(w);.
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Remark 9.13. The map deg : Q(w)1 — {0,1} in Definition 9.12 is not equal to that of
Definition 6.9, so that our object M in Part II is different from that in Part I.

We give an example of a quiver Q(w).

« 1 Y
Example 9.14. Let ) be the quiver 2/ \*3 Let w be an element of Wg with its
—_—
B

expression w = $1528351535281. Then we have the quiver Q(w) with a map deg : Q(w)1 —
{0,1} as follows:

where non numbered arrows have degree zero.

We define a morphism of algebras ¢ : KQ(w) — Endyy(,,)(M) by
(a0) For a vertex i of Q(w), ¢(e;) is an idempotent of Endry(,) (M) associated with M".
(al) For an arrow f3: j — i going to the left, ¢(/3) is the canonical surjection M7 — M°.

(a2) For a Q-arrow «; : i — j of the arrow o € Q1, ¢(;) is a morphism of II(w)-modules
from M to M7 given by multiplying a from the right.

(a3) Fora Q*-arrow o : i — j of the arrow a € Q1, ¢(c)) is a morphism of IT(w)-modules
from M to M7 given by multiplying o* from the right.

We regard the path algebra KQ(w) as a graded algebra by the map deg of Definition 9.12.
The following proposition gives the quiver of the endomorphism algebra

End sy 11wy /1) (M) = @D Homiy ) (M, M(n)) = Endpy(,, (M).
nel

Lemma 9.15. The morphism ¢ : KQ(w) — Endn(w)(M) induces a surjective morphism
¢+ KQ(w) — Endyy(,,) (M) of graded algebras such that the kernel of ¢ is contained in the
ideal of KQ(w) generated by paths of length at least two.

Proof. The morphism ¢ is a morphism of graded algebras, since ¢ preserves gradings by
the definitions of ¢ and the map deg. The morphism ¢ induces a surjective morphism ¢
of graded algebras by [BIRSc, Theorem III. 4.1]. The kernel of ¢ is contained in the ideal
of KQ(w) generated by paths of length at least two by [BIRSm, Theorem 6.6]. O

Then we have the following proposition.
Proposition 9.16. Let w be a reduced expression of w € Wg. Then the following holds.

(a) The object M of Sub” II(w) satisfies Assumption 9.4, where the quiver of Endyy ) (M)
is Q(w) and a map deg is given by Definition 9.12.

51



(b) The quiver Q(w) is deg-acyclic. In particular, Q(w) is deg-acyclic.

Proof. (a) This comes from Lemma 9.10 and Lemma 9.15.
(b) By definition, (Q(w)*); is a disjoint union of arrows going to the left, Q-arrows
and reversed arrows of Q*-arrows. We define a map

¥ (Qw)")1 = QoL Q1

by ¥(8) = w if § is an arrow going to the left associated with a vertex u € Qo and () = «
if B is a Q-arrow or a reversed arrow of QQ*-arrow associated with an arrow « € Q1. Then
1 extends to a map from the set of all paths in Q(w)* to the set of all paths in Q. We
also denote it by .

If there exists a cycle p in Q(w)*, then ¥ (p) is a cycle in . This is a contradiction. [

1

« Y

Example 9.17. (a) Let @ be the quiver O\ Put ¢ = s18983. Let w = cts; =
2 7> 3

51828351525351528351525351. Then we have the quiver Q(w) as follows:

// \‘7\/7 "/ \\1{/
QNN

where non numbered arrows have degree zero. Then we have the quiver Q(w)* of Q(w)

ﬁ7v<7$<7m<7
N \\/ \\/ N

As a result, we have the following theorem.

Theorem 9.18. Let w € Wq. For any reduced expression w of w, the object M = M (w)
is a silting object of Sub® II(w).

Proof. By Theorem 9.7 and Proposition 9.16, we have thick M = Sub? II(w).

We show that M satisfies Hom%[(w) (M, M[j]) = 0 for any j > 0. By Proposition 3.3

(c), Homyy(,y (M, M[1]) = 0 holds. Therefore we have Hom%(w)(M,M[l]) = 0. Assume
that 5 > 1. By Proposition 8.7, we have

Homgy,, (M, M(j]) = D Homfy,,, (M, M[2 — j](=1)).

Since 2 — j < 0 and II(w) is positively graded, we have Q== (M) € mod=°II(w).
Therefore Q= =7 (M)(—1) € mod=! IT(w) holds. Since M is generated by (M) as a IT(w)-
module, we have Hom%(w)(M, Q=9 (M)(~1)) = 0. This means m%(w)(M,M[2 -
jl(=1)) =0 for 7 > 1. O
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Note that M (w) is not a tilting object of SubZ II(w) in general.

Example 9.19. Let Q be a quiver /1\. Then we have a graded algebra I =
2 —

Ile; & Iles @ Iles, and these are represented by their radical filtrations as follows:

1 2 3
N /N
2 3 3 1 1 2
3 01 2 % 3 2 3 1
ITe; = /N AN , ITeg = NN 5 Iles = NZAN ,
1 2 3 1 2 3 1 2 3 1 2 3
NN NPZAN N /N NN
2 3 1 2 3 3 1 2 3 1 1 2 3 1 2
NPZAN NN /N NN NN N
3 1 2 3 1 2 1 2 3 1 2 3 2 3 1 2 3 1
/N NUZAN N NUZAN NUZAN NUZAN NUZAN

where numbers connected by solid lines are concentrated in the same degree, the tops
of the Ile; are concentrated in degree 0, and the degree zero parts are denoted by bold
numbers.

Let w be an element of W which has a reduced expression w = s3s251525352. Then
we have a graded algebra, II(w) = II(w)e; & II(w)ez & II(w)es, where

2
1 3 \1 3
/ N\ / N\
Mw)e; = 2 3, T(w)ea= 1 2 3, IMw)eg= 1 2
3 2 3 2 3 1
3 3 3

We have a silting object M = M (w) of Sub” II(w) as follows:

2
AJ:AF@NF@Nﬂ:3@32@3\l.
3
This M (w) is not a tilting object of Sub? II(w), since we see that Hom%(w)(M‘l, Q(M?Y)) #
0. Note that another reduced expression of w gives a tilting object of Sub”II(w) (see
Example 10.9 (a)).

10 A tilting object in SubZIl(w)

Let w € Wg and w be a reduced expression of w. In this section, we give a sufficient
condition on w such that M = M(w) is a tilting object of Sub?II(w). Throughout this
section, by Lemma 4.1, without loss of generality assume that Supp(w) = Q. We first
show the following lemma.

Lemma 10.1. If one of the following holds, then we have Hom%(w) (M, Mj]) =0 for any
j< 1.

(i) There exists a reduced expression of w containing an expression of the Coxeter ele-
ment of Wq as a subword.

(i) The global dimension of II(w)g is at most one.
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Proof. By Lemma 8.4 (b), we assume that (ii) holds. By the definition of M, M is in
mod=II(w). Therefore by Lemma 8.2, we have Q7(M)y = 0 for any j > 1. Since M is
generated by (M) as a II(w)-module, we have Hom%(w)(M, Q(M)) =0 for any j > 1.

This means Homﬁ(w) (M, M[j]) = 0 for any j < —1. O

Next we observe when m%(w) (M, M[—1]) = 0 holds. We define some notation. A full
subquiver Q' of @ is said to be conver in @ if any path in ) such that its start and target
are in )’ is a path in Q’. For any u,v € Qq, we denote by Q(u,v) the minimal convex full
subquiver of () containing u and v. Let w = sy, 5y, - - - 5, be a reduced expression of w.
For any u € Qq, put

pu =max{l <j<l|uj=u}, my=min{l <j<Il|uj=u}.

Definition 10.2. Let w = sy,5y, - - 5y, be a reduced expression of w € Wg and S be a
subset of Q.

(1) An expression w is c-ending on S if for any u,v € S, p, < p, holds whenever there
exists an arrow from u to v in Q.

(2) An expression w is c-starting on S if for any u,v € S, m, < m, holds whenever
there exists an arrow from « to v in Q.

The following lemma is an easy observation.

Lemma 10.3. Let w € Wy and w be a reduced expression of w. If w is c-ending or c-
starting on Qo, then w contains an expression of the Coxeter element of W as a subword,
in particular the global dimension of II(w)q is at most one.

Recall the following notation. For a reduced expression Sy, Sy, - - Sy, let Iy, =
I(su - Suy,) if £ < m and I, = II if m < k. The following proposition is impor-
tant to show the main theorem of this section.

Proposition 10.4. Let w = 5y, Sy, - - - Sy, be a reduced expression of w € Wg and i,j €
{L,...,0 \{pu | v € Qo}. If an expression w is c-ending on Q(u;,u;)o or c-starting on
Q(us,uj)o, then we have Hom%(w)(Mi,Q(Mj)) =0.

Proof. By Proposition 6.22 and applying the functor Hom%[(w) (M?, —) to an exact sequence
0 — QM) — I(w)e,, — M7 — 0, we have

| . LN
Z 1 ~ 17.7 Z""lvl
Homyy(,) (M*, Q(M7)) = ey, <I(w) >Oeuj.

Therefore it is enough to show that ey, (/1,7 N I;y1,1)o0€u; = 0.

Since (I1; N Iix11)o C KQ, if ey, KQey; = 0, then we have e,, (11, N li117)oeu; = 0.
Assume that euiKQeu]. # 0. Let ¢; ; be the Coxeter element of WQ(ui,u]-)' Since Q(u;,u;)
is a full subquiver of @), an expression of ¢; ; is a subword of an expression of the Coxeter
element of Wyg. Since Q(u;,u;) is a minimal convex subquiver of @, u; is a unique source
of Q(u;,uj) and u; is a unique sink of Q(u;,u;). Therefore by Lemma 8.4 (c), we have
eu; I(cij)oeu; = 0.
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If w is c-ending on Q(u;,u;)o, then an expression s, , ---s,, contains an expression

of ¢; ; as a subword, and therefore ey, (li11,)oeu; C €u;1(cij)oey; = 0 holds.
If w is c-starting on Q(u;,u;)o, then an expression s,,, - - - s, contains an expression of
ci; as a subword, and therefore ey, (1 j)oeu; C ey;I(cij)oeu; = 0. We have the assertion.
[

Then we show the main theorem of this section.

Theorem 10.5. Let w € Wg and w = sy, 5y, - - Sy, be a reduced expression of w. Put

l
Mi:(H/I(Su13u2"'5ui))€ui’ M:@MZ
i=1

If the expression w is c-ending on Qo or c-starting on Qg, then we have the following.
(a) M is a tilting object of Sub” II(w).

(b) The global dimension of A = End%[( (M) is at most two.

w)
(¢c) We have a triangle equivalence Sub” II(w) ~ DP(mod A).

Proof. (a) By Theorem 9.18, Lemmas 10.1 and 10.3, we only have to show @%(w)(M, M[-1)]) =
0. We show that Hom%(w)(Mi,Q(Mj)) =0 for any 4,5 € {1,2,...,1} \ {pu | v € Qo}.
Since w is c-ending on Q) or c-starting on @, w is c-ending on Q(u;, uj)o or c-starting
on Q(uj, uj)o. Therefore, we have Hom%[(w) (M, Q(M7)) = 0 by Proposition 10.4.
(b) This comes from (a) and Proposition 9.8.
(c) This follows from (a), (b) and Theorem 3.9. O

Remark 10.6. The property (b) of Theorem 10.5 was already shown by [ART] in the
case when w is c-ending on Supp(w) (see Theorem 11.2).

Next we give a more general condition on w such that M (w) satisfies Hom%(w) (M, M]-1]) =
0. For a reduced expression w, let S(w) := {u € Qo | py = my}.

Definition 10.7. A reduced expression w satisfies () if for any u,v € Qo \ S(w), w is
c-ending on Q(u,v)q or c-starting on Q(u,v)o.

Put J ={1,2,...,1} \ {pu | v € Qo}. Note that {u; |i € J} = Qo \ S(w) holds. We
have the following theorem.

Theorem 10.8. Let w € Wg. Assume that the global dimension of II(w)g is at most one.
Let w = 5y, 54, - - sy, be a reduced expression of w and M be the same object as that in
Theorem 10.5. If w satisfies (<), then the assertions (a), (b) and (c) of Theorem 10.5
hold.

Proof. These are shown by the same argument as that in Theorem 10.5 since {u; | ¢ €
J} = Qo )\ S(w) holds. O

An example of a reduced expression which satisfies ({») but is neither c-ending nor c-
starting on Q) is given in Example 10.9 (c). We end this section by giving some examples.
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Example 10.9. (a) Let Q be a quiver ,_~ 1\. Let w be an element of Wg which

2 3
has a reduced expression w = s35951535253. Note that this w is the same element as that

in Example 9.19. The expression w is c-ending on (9. Then we have a graded algebra,
I(w) = I(w)e; ® II(w)eg ® II(w)es, where

2\
1 /3\ 1 /3\
M(w)e; = 2 3, M(w)ea= 1 2 3, Mw)es= 1 2
3 2 3 2 3 1
3 3 3

(b) Let @ be the same quiver as that in (a) and w be an element of W¢ with its
expression w = $1525351535281. This expression w is a reduced expression and c-starting
on (Jg. Then we have

1 2\
2\ /3\ /3\ 1 3

M(w)er = 3 2,  IM(w)ea= 1 2 3 , Hwez= 1 2.

VAN N NN

2 1 2 T2 2 1

2 1
A tilting object M = M (w) of Sub® II(w) is described as follows:
S g ' 3
M:1@2\1@1 2\1@ \1/ \2\

1

The endomorphism algebra End%(w)(M ) is given by the following quiver with relations

4

It is easy to see that the algebra End%(w)(M ) is derived equivalent to the path algebra of
Dynkin quiver of type Dj.
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(c) Let @ be a quiver ,
1=—= 2/
Sy
and w be an element of Wg with its reduced expression w = 545152535253515254. An
expression s1s253s4 is an expression of the Coxeter element of Wg. The expression w
contains s1s25354 as a subword, and hence the global dimension of II(w)g is at most one.
We can see that w satisfies (). Thus M = M (w) is a tilting object of SubZII(w). The
endomorphism algebra Mﬁ(w) (M) is given by the following quiver with relations:

b
A= |e .:?.%a .?. s ab=ac=0.

Note that w is neither c-ending on Qg nor c-starting on ).

There exist examples such that a reduced expression w does not satisfies (<)), but
M = M(w) is a tilting object. In fact, in the following example, Hom%(w)(M, Q(M)) # 0,
but Homfj (M, M[~1]) = 0 holds.

w)

Example 10.10. Let @ be the same quiver as in Example 10.9 (a) and w be an element
of W with its reduced expression w = s3s152535153. Note that w does not satisfies ().
We have

2
M =3, M2=13» M* =Tl(w)ey =3 1,
3
1
3 2\/3\ 3\
M=1 2 | M =Twe =3 1T 2 , M=T(w)e= 1 2
31 31 2 31
5 5 3 3

It is easy to see that Hom%(w) (M?%,Q(M*')) # 0 and Hom%(w)(MQ, Q(M%)) = 0. Moreover,
we see that Hom%(w)(M ,M[—1]) = 0. The expression w contains an expression of the
Coxeter element of We. Therefore, M = M (w) is a tilting object of Sub” TI(w).

11 The relationship with the result of Amiot-Reiten-Todorov

Before describing the result of [ART], we recall the definition of cluster categories which
are introduced by Amiot [A]. Let A be a finite dimensional algebra of global dimension at
most two. We denote by S = D A®% (—) a Serre functor on D”(mod A). Put Sy = So[-2].
A cluster category C(A) of A is the triangulated hull of the orbit category DP(mod A)/S,
in the sense of Keller [Ke05]. We have the composition of functors

74 : DP(mod A) — DP(mod A)/S; — C(A).
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Note that m4 is a triangle functor. Let w € Wg. For a reduced expression w =
SuySug ** Sy, of w, let

l
M(w)l =M= (H/I(3u18u2 T SU'L)) Cu;s M(w) =M= @M(wy’
=1
Alw)=A= End%(w)(M('w)).

We denote by e; the idempotent of A associated with M i for each 1 < i < I. Let
ep =) _jcr €, where F' = {p, | u € Supp(w)}. Put

A= A/AerA.
By definition, we have an exact sequence
0—AepA—-A—A—0. (11.1)

Note that, by the definition, M is a right A-module and we have Mer = II(w) as left
II(w)-modules.
We see that the algebra A coincides with the our endomorphism algebra End%[(w) (M).

Lemma 11.1. We have Aep A = P(M,M). In particular, we have A = Endlz-;l(w) (M).

Proof. Clearly Aep A C P(M, M) holds. Let f € P(M, M). We can assume that f factors
through (II(w))(j) = Mep(j) for some j € Z. Then we have a morphism g : M — Mep
of degree j and h : Mep — M of degree —j such that f = gh. Since Endyy, (M) is
positively graded by Lemma 9.15, we have j = 0. This means f € AepA. O

Next we recall the result of [ART]. We denote by pry(,,) the composite of triangle
functors

Pri(w) : DP(mod TI(w)) — D"(mod TI(w)) /K" (proj TI(w)) = SubII(w).

Amiot-Reiten-Todorov showed the following theorem.

Theorem 11.2. [ART, Theorem 3.1, Theorem 4.4] Let w € Wg and w be a reduced
expression of w. Put N := M ®% A € DP(mod(Il(w) ® A°)). If w is c-ending on
Supp(w), then we have the following.

(a) The global dimension of A is at most two.

(b) There ezists a triangle equivalence G : C(A) — SubII(w) which makes the following
diagram commutative up to isomorphism of functors

Nek—

D"(mod A) ————— DP(mod II(w))

\LWA \LPH(UJ)
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Remark 11.3. For any reduced expression w of w € Wy, since @) is acyclic, there exists
a quiver @’ such that whose underlying graph coincides with that of @ and w is c-ending
on Supp(w) as an element of W¢. Since SubII(w) is independent of an orientation of @,
we have an equivalence (1.1) by Theorem 11.2.

We construct a functor ® : D”(mod A) — SubZII(w) as follows. By Definition 8.3, the
algebra IT(w) ® A°P is a graded algebra and M is a graded II(w) ® A°P-module. Therefore
N = M ®% A is an object of D?(mod”(TI(w) ® A°P)) and we have a derived functor

N ®g — : DP(mod A) — DP(mod? II(w)).

We denote by p%[(w) the graded version of pry(,), that is,

p%[(w) : DP(mod? II(w)) — DP(mod? I(w))/KP (proj” TI(w)) = Sub” II(w).

By composing N ®£4‘ — and p%[( we have a triangle functor

w)?
® = pfi(,) © N @4 — : D’(mod A) — Sub”TI(w).

In this section, we show the following theorem which is a graded version of Theorem
11.2.

Theorem 11.4. Let w € Wy and w be a reduced expression of w. If w is c-ending on
Supp(w), then we have the following.

(a) The triangle functor ® = p%[(w)oN(X)Z— : DP(mod A) — SubZII(w) is an equivalence.

(b) We have the following commutative diagram up to isomorphism of functors

DP(mod A) —2 Sub”II(w)

We begin with the following lemma.

Lemma 11.5. [ART, Lemma 3.2] If a reduced expression w = Sy, Sy, - Sy, Of w is c-
ending on Supp(w), then we have a projective resolution 0 — P — PY — Ae; — Ae; — 0
of A-module Ae;, wherei € {1 <j <I}\ F and P°, P! € add(Aer).

Proof. Since w is c-ending on Supp(w) and by [ART, Lemma 4.3], the conditions (H1) ~
(H4) in [ART] are satisfied. Then the assertion follows immediately from [ART, Lemma
3.2]. O

We need the following lemma.

Lemma 11.6. If a reduced expression w = Sy, Sy, - Sy, 0f w is c-ending on Supp(w),
then we have the following.

(a) AepAe; = Ae; for any i € F.



(b) We have a projective resolution of AepA as an A-module
0— P! — P" = AepA — 0, (11.2)
where P°, P! € add(Aep).
(c) We have M ®@% (AerA) € KP(projZ TI(w)).

Proof. (a) Since e; is an idempotent, this is clear.
(b) We have an exact sequence (11.1). Thus the assertion follows from (a) and Lemma
11.5.
(c) By (b), AepA € thick Aep holds. Thus we have M ®@L (AepA) € thick(M @Y% Aer)
KP (projZ TI(w)), where the last equality follows from M @L Aep = Mep = I(w).

Ol

Then we are ready to show the main theorem.

Proof of Theorem 11.4. (a) We will apply Lemma 3.10 for the triangle functor ®. We first
show that ®(4) = pfy,,, (N ©§ A) ~ M in Sub®II(w). Recall that N := M @} A. By

applying M ®% — to the sequence (11.1), we have the following triangle in D®(mod? IT(w))
M @Y (AepA) - M @Y A — M e% A — Mok (4epA)[1].

By Lemma 11.6 (c) and this triangle, M is isomorphic to p%[(w) (N ®2 A) in @Zﬂ(w).
By Theorem 10.5, M is a tilting object in SubZII(w). Since the global dimension of A
is at most two, A is a tilting object of D”(mod A).
We next show that ®4 4 induces an isomorphism Hom 4 (A4, A) ~ Hom%(w) (M,M). We
use the following notations:

p%(w) : DP(modZ II(w)) & D" (mod? I1(w)) /K (projZ I1(w)) 25 Sub”? II(w),

where 7 is a canonical triangle functor and p is an triangle equivalence of Theorem 8.8 (b).
Foranya € A = End%[(w)(M), we denote by a € A = Lm%(w)(M) the element represented
by a. We denote by -a the image of a by the usual isomorphism A ~ End4(A4, A), and we
use the same notation for -a. We have the following commutative diagram:

0 AepA A A 0.

By applying M ®% — to this diagram, we have the following commutative diagram:

M @Y% (AepA) —= M ——= M @% A —— M ®% (AepA)[1]

\L la lidM(X)k('a) l

M @} (AepA) —= M —— M @4 A—— M & (AepA)[1].

This means that the morphism (7 o N ®g —)a,a : Homy (A, A) — Homy/(n(M),n(M))
sends -a to Tz as(a), where U := DP(mod” II(w))/KP(projZ TI(w)). By Theorem 8.8 (b),
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the composition pasar o Tarm - Hom%(w) (M, M) — Hom%(w)(M, M) corresponds to a
canonical morphism. Therefore, ®4 4 = (pomo N ®i —)a,.A sends -a to a. This means
that ®4 4 induces an isomorphism Homy (A4, A) ~ Hom%(w)(M, M).

By Lemma 3.10, the functor & = p%( o(N ®E —) is an equivalence.

w)
(b) We have the following commutative diagram up to isomorphism of functors

Ne§ -
DP(mod A) = DP(mod? II(w))
A mb(mod H(w))/ Plicw)
C(4) PrI(w) SubZTI(w)

\Sub H(w/

where DP(modZ II(w)) — DP(modII(w)) and Sub?II(w) — SubII(w) are degree forgetful
functors. In particular, we obtain the desired diagram. ]
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Part 111
Stable categories of hereditary algebras
and derived categories

This part is based on the paper [Kil7].

Notation

In this part, we denote by k a field. All subcategories are full and closed under isomor-
phisms. Let C be an additive category and S be a subclass of objects of C or a subcategory
of C. We denote by add S the subcategory of C whose objects are direct summands of finite
direct sums of objects in S. For subcategories C; (i € I) of C, we denote by \/,.;C; the
smallest additive subcategory of C containing all C; and closed under direct summands.
For objects X,Y € C, we denote by C(X,Y) the set of morphisms from X to Y in C. We
call a category skeletally small if the class of isomorphism class of objects is a set. We
assume that all categories in this paper are skeletally small.

12 Preliminaries

12.1 Functor categories

In this subsection, we recall the definition of modules over categories. Let A be an additive
category. An A-module is a contravariant additive functor from A to Ab, where Ab is
the category of abelian groups. We denote by Mod A the category of A-modules, where
morphisms of Mod A are morphisms of functors. Since A is skeletally small, Mod A is a
category. It is well known that Mod A is abelian.

For two morphisms f: L — M and g: M — N of Mod A, the sequence L - M — N
is exact in Mod A if and only if the induced sequence L(X) — M(X) — N(X) is exact in
Ab for any X € A.

Example 12.1. For each X € A, we have an A-module A(—, X). By Yoneda’s lemma,
A(—, X) is projective in Mod A.

The following notation is basic and used throughout this paper. We call an A-module
M finitely generated if there exists an epimorphism A(—, X) — M in Mod A for some
X € A. We denote by proj A the subcategory of Mod A consisting of all finitely generated
projective A-modules. Note that finitely generated projective modules are precisely direct
summands of representable functors. We need the following notation which is called F' P,
in some literatures (e.g. [BGI, Br]).

Definition 12.2. Let A be an additive category and n > 0 be an integer.

(1) We denote by mod,, A the subcategory of Mod A consisting of all A-modules M such
that there exists an exact sequence

Pob—--—>P —-Fh—>M-—=0

in Mod A, where P, is in proj A for each 0 <1i < mn.
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(2) We denote by mod A the subcategory of Mod A consisting of all A-modules M such
that there exists an exact sequence

o> PP P —>M—=0
in Mod A, where P; is in proj A for each ¢ > 0.
The following lemma is a basic observation on mod,, A.
Lemma 12.3. The following statements hold for an additive category A.

(a) Let M € mod,, A. Assume that there exists an exact sequence P, — Py — -+ —
Py — M — 0 with P; € projA and l < n. Then there exist Py1,...,P, € projA
and an exact sequence P, — P, 1 — -+ — Py — M — 0.

(b) Let M € Mod A. Assume that there exist the following two exact sequences
0O—-K—=P, =P, 1—-—Fh—M-=Q0,
0=-L—>Qn—=>Qn1—-—>Qo—>M—0,

where P;,Q; € proj A for each i > 0. Then there exist P,Q € proj A such that
KeoP~LoQ.

Proof. (a) This follows from (b).
(b) The case where n = 0 is well known as Schanuel’s Lemma. The case where n > 0
is shown by an induction on n and by using the case where n = 0. O

The following lemma gives a sufficient condition when an .A-module is in mod,, A. For
simplicity, we use the notation mod_; A := Mod A, mods, A := mod A and oo — 1 := oo.

Lemma 12.4. Let A be an additive category and M be an A-module. Then we have the
following properties.

(a) Let n > 0 be an integer. If there exists an exact sequence X, — X, 1 — -+ —
Xo > M — 0 in Mod A with X; € mod,_; A for any 0 < i < n, then we have
M € mod,, A.

(b) If there exists an exact sequence --- — Xo — X1 — X9 — M — 0 in Mod A with
X; € mod A for any i > 0, then we have M € mod A.

(c) Let n € Z>oU{oo}. For an exact sequence 0 — L — M — N — 0 in Mod A with
L € mod,,_1 A and M € mod, A, we have N € mod,, A.

Proof. (a) We have the following commutative diagram

X,— Xy 1— " —=Xg—M-—=0

! t f

Poo—Py_10—-—=FPyo

! f

P, 11— —=F;
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in Mod A, where each P; g — X; is epimorphism for 0 < i < n, each vertical sequence is
exact and each P; ; is in proj A. Thus we have an exact sequence

P,— =P —-Py—M-—=0

in Mod A, where P; = @;:0 Pj;_; for 0 < i < n. Since P; isin proj A for 0 <i < n, M
is an object of mod,, A.

(b) This comes from the same argument as (a).

(c) This follows from (a) for n € Z>¢ and (b) for n = co. O

Let A be an abelian category and B be a subcategory of A. We say that B is a
thick subcategory of A if B is closed under direct summands and for any exact sequence
0—-X—=Y —>Z7Z—0in A, if two of X,Y, Z are in A, then so is the third. We have the
following observation of the categories mod,, A.

Lemma 12.5. Let A be an additive category. Then we have the following statements.
(a) mod,, A is closed under extensions and direct summands in Mod A for each n > 0.
(b) mod A =[),5,mod, A holds.

(¢) (e.g. [E, Proposition 2.6]) mod A is a thick subcategory of Mod A.

Proof. (a) By Horseshoe Lemma, mod,, A is closed under extensions in Mod A. Let X®Y €
mod, A. We show that X,Y € mod, A by an induction on n. If n = 0, then the claim
is clear. Assume n > 0. Since X &Y € mod, A C mod,,_1 A holds, by the inductive
hypothesis, we have X, Y € mod,,_1 .A. Then by Lemma 12.4 (c), we have X,Y € mod,, A.

(b) In general mod A C mod, A holds for each n > 0. The converse follows from
Lemma 12.3 (a).

(c) By (a) and (b), mod A is closed under extensions and direct summands. Let 0 —
L —- M — N — 0 be an exact sequence in Mod A. By Lemma 12.4 (c), if L, M € mod A,
then N € mod A holds. Assume that M, N € mod. A. There exists an exact sequence
0= QN — P — N — 0 such that P € proj.A and QN € mod.A. By taking a pull-back
diagram of M — N <+ P, we have an exact sequence 0 - QN - P® L — M — 0. Since
mod A is closed under extensions and direct summands, we have L € mod A. ]

12.2 Gorenstein-projective modules

We define Gorenstein-projective modules. Let A be an additive category. We first define
a contravariant functor

(—=)* : Mod A — Mod A°P

as follows: for M € Mod A and X € A, let (M)*(X) := (Mod A)(M, A(—,X)). By the
same way, we define a contravariant functor (—)* : Mod A°® — Mod A. Let P, := (P;,d; :
P; — Pit1)iez be a complex of finitely generated projective A-modules. We say that P,
is totally acyclic if complexes Py and --- — (Pit1)* — (P;)* — (Pi—1)* — - -+ are acyclic.
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Definition 12.6. Let A be an additive category. An A-module M is said to be Gorenstein-
projective if there exists a totally acyclic complex P, such that Im dgy is isomorphic to M.
We denote by GPA the full subcategory of Mod A consisting of all Gorenstein-projective
A-modules.

For instance, a finitely generated projective A-module is Gorenstein-projective. In
general, GPA C mod A holds. We see a fundamental properties of Gorenstein-projective
modules.

Let W be a subcategory of Mod.A. We denote by “W the subcategory of Mod.A
consisting of A-modules M satisfying EXt%\/Iod A(M, W) =0 for any W € W and any i > 0.
We denote by Xy the subcategory of “W consisting of A-modules M such that there

exists an exact sequence 0 — M — W, f—0> Wi ﬁ) - with W; € W and Im f; € LW for
any 7 > 0. By [AR91, Proposition 5.1], Xproj 4 is closed under extensions, direct summands
and kernels of epimorphisms in Mod A.

Lemma 12.7. Let A be an additive category. Then the following holds.
(a) The functor (—)* : Mod A — Mod A induces a duality (—)* : GRA — GPA.

(b) Xproj.a Nmod A = GPA holds. In particular, GPA is closed under extensions, direct
summands and kernels of epimorphisms in Mod A.

Proof. (a) This follows from the definition of GP.A and the fact that (—)* induces a duality
between proj.A and proj . A°P.

(b) In general Xp; 4 Mmod. A D GPA holds. If M € Xpro5 4 M mod A, then there exists
an exact sequence Py = (P;,d; : P, — Pii1)iez, where M ~ Imdy, P; € proj. A for any
i € Z and Imd; € *(projA) for any i > 1. Then this sequence is totally acyclic, since
Imd; € +(proj.A) holds for any i > 1. O

Let B be an extension closed subcategory of an abelian category A. An exact sequence
in A is called an exact sequence in B if each term of it is an object of B. We say that
an object Z in B is relative-projective if any exact sequence 0 - X - Y — Z - 0in B
splits. Dually, we define relative-injective objects. We say that B has enough projectives if
for any X € B, there exists an exact sequence 0 - Z — P — X — 0 in B such that P is
relative-projective. Dually, we define a subcategory of A which has enough injectives. An
extension closed subcategory B of A is said to be Frobenius if B has enough projectives,
enough injectives and the relative-projective objects coincide with the relative-injective
objects.

The following observation is immediate (cf. [C]).

Proposition 12.8. Let A be an additive category. Then GPA is a Frobenius category,
where the relative-projective objects are precisely finitely generated A-modules.

Proof. GPA is extension closed in Mod A by Lemma 12.7 (b). By the definition of GP.A
and the duality (—)* : GPA — GP.A°P, GP.A has enough projectives and enough injectives.
Again by the definition of GPA, the relative-projective objects coincide with the relative-
injective objects, which coincide with finitely generated projective A-modules. O
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12.3 Dualizing k-varieties and Serre dualities

In this subsection, we recall the definition of dualizing k-varieties. Let A be an additive
category. We call an object of mod; A a finitely presented A-module.

A morphism X — Y in A is a weak kernel of a morphism Y — Z if the induced
sequence A(—, X) — A(—,Y) — A(—,Z) is exact in Mod A. We say that A has weak
kernels if each morphism in A has a weak kernel. The following lemma says when an
additive category has weak kernels.

Lemma 12.9. Let A be an additive category. The following statements are equivalent.
(i) A has weak kernels.
(ii) mod; A is abelian.

(iii) mod; A = mod A holds.

Proof. 1t is well known that the statements (i) and (ii) are equivalent. The statements (i)
and (iii) are equivalent by [E, Proposition 2.7]. O

Let A be an additive category and X € A. A morphism e : X — X in A is called an
idempotent if €2 = e. We call A idempotent complete if each idempotent of A has a kernel.

Let k be a field. A k-linear category A is a category such that A(X,Y) admits a struc-
ture of k-modules and the composition of morphisms of A is k-bilinear. A contravariant
functor F' : A — B between k-linear categories are called k-functor if Fxy : A(X,Y) —
B(FY,FX) is k-linear for any X,Y € A. If A is an additive k-linear category, then any
A-module can be regarded as a contravariant additive k-functor from A to Mod k, where
Mod k is the category of k-modules.

Let A be a k-linear additive category. We call A Hom-finite if A(X,Y) is finitely
generated over k for any X,Y € A. We recall one proposition about the Krull-Schmidt
property of k-linear additive categories.

Proposition 12.10. Let A be a k-linear, Hom-finite additive category. Then the following
properties are equivalent.

(i) A is idempotent complete.
(ii) The endomorphism algebra of each indecomposable object in A is local.

(iii) A is Krull-Schmidt, that is, each object of A is a finite direct sum of objects whose
endomorphism algebras are local.

Moreover the decomposition of (iii) is unique up to isomorphism.

Proposition 12.11. Let A be a k-linear, Hom-finite additive category. Then mod A is
Krull-Schmidt. In particular, each object of mod A has a minimal projective resolution.

Proof. Since mod A is closed under direct summands in Mod.A, mod A is idempotent
complete. mod A is Hom-finite, since 4 is Hom-finite. O

We recall the definition of dualizing k-varieties. Let A be a k-linear additive category.
We have contravariant functors D : Mod A — Mod A°P? and D : Mod A°® — Mod A given
by (D M)(X) := D(M(X)).
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Definition 12.12. Let A be a k-linear, Hom-finite, idempotent complete additive cat-
egory. We call A a dualizing k-variety if the functor D : Mod A — Mod A°P induces a
duality between mod; A and mod; A°P.

The following is typical examples of dualizing k-varieties.
Example 12.13. [ART74]
(a) If A is a dualizing k-variety, then A°P is a dualizing k-variety.

(b) Let A be a finite dimensional k-algebra and mod A be the category of finitely gener-
ated A-modules. Let proj A be the full subcategory of mod A consisting of all finitely
generated projective A-modules. Then mod A and proj A are dualizing k-varieties.

We state some properties of dualizing k-varieties.

Lemma 12.14. [AR7}] Let A be a dualizing k-variety, then we have the following prop-
erties.

(a) A and A°P have weak kernels.
(b) mod A is a dualizing k-variety.
(¢) Each object in mod A has a projective cover and an injective hull.

Let A be a k-linear, Hom-finite additive category. A Serre functor on A is an auto-
equivalence S : A — A such that there exists a bifunctorial isomorphism

Homy(X,Y) ~ DHomy(Y,S(X))

for any X,Y € A. We denote by S™! a quasi-inverse of S. It is easy to see that if A has a
Serre functor S, then A°P has a Serre functor S™1.

If A has a Serre functor S, then (—)* is described as in the following lemma. Since S is
an auto-equivalence, we have an equivalence Mod A — Mod A given by M +— M oS!, By
composing the functor D : Mod A — Mod A°P, we have a contravariant functor Mod A —
Mod A°P given by M + D(M oS™!). We denote by Modg, A the subcategory of Mod A
consisting of A-modules M such that M (X) is finitely generated over k for any X € A.
Note that D induces a duality Modg, A — Modg, A°P and the categories mody A and GP.A
are contained in Modg, A.

Lemma 12.15. Let A be a k-linear, Hom-finite additive category with a Serre functor S.
Then the following statements hold.

(a) We have an isomorphism of functors (—)* ~ D(— o S™!) : Modg A — Modg, AP,
and this functor is a duality.

(b) Let M € Mod A. The following statements are equivalent.

(i) M € GPA.
(i) M € mod A and M* € mod A°P.
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Proof. (a) Let M € Modg A and X € A. We have the following equalities.

(M)*(X) = (Mod A)(M, A(—, X))

~ (Mod A°P)(D A(—, X),D M)

~ (Mod A°P)(A(S™}(X),—),D M)
~D(M(S™!(X))),

which functorial on X. Thus we have an isomorphism of functors (—)* ~ D(—oS~1!). This
functor is a duality, since D is a duality and S is an equivalence.

(b) Assume that M € GPA. By Lemma 12.7 (a), we have M* € GPA°P. In general
GPA C mod A holds, thus (i) implies (ii). Assume that (ii) holds. There exists an exact
sequence -+ — Q2 — Q1 — M* — 0, where Q; € proj A°?. By (a), (—)* is an exact
functor. Therefore we have an exact sequence

d
o> Ph P> P — Q] > Q5 — -,

where P;, Q7 € proj A and Imd ~ M. This exact sequence is totally acyclic, since (—)* is
exact. We have M € GPA. O

Later we use the following characterization of dualizing k-varieties with Serre functors.

Proposition 12.16. Let A be a k-linear, Hom-finite, idempotent complete additive cate-
gory. Then the following statements are equivalent.

(i) A is a dualizing k-variety and has a Serre functor.
(ii) A and A°P have weak kernels and A has a Serre functor.

(iii) GPA = mod; A, GPA°P? = mod; A°P hold and D A(X,—) € mod; A, D A(—, X) €
mody A°P hold for any X € A.

Proof. By Lemma 12.14, (i) implies (ii). We show that (ii) implies (i). Let M € mod; A.
We show that D M is in mod; A°P. There exists an exact sequence P, — Py = M — 0
for some Py, Py € proj A. By the functor D : Mod A — Mod A°P, we have an exact
sequence 0 - DM — DPy — DP; in Mod A. Since A has a Serre functor, we have
DP,DPy € proj A°P. Since A°P has weak kernels, D M is in mod; A°P. By the dual
argument, for any N € mod; A°P, we have D N € mod; A. Thus D : mod; A — mod; AP
is a duality.

We show that (i) implies (iii). Since A is a dualizing k-variety, D A(X, —) € mod; A,
D A(—, X) € mod; A°° hold for any X € A. By Lemma 12.9, we have mod A = mod; A
and mod A°? = mod; A°?. In general GPA C mod A holds. Let M € mod A. We show
that M € GPA. Since A is a dualizing k-variety, D M € mod A°P holds. By Lemma 12.15
(a), M* € mod A° holds. Thus by Lemma 12.15 (b), M € GP.A holds.

We show that (iii) implies (ii). In general, GP.A C mod A C mod; A holds. Therefore
by Lemma 12.9, A and A°P have weak kernels. Consider the functor D o(—)* : Mod A —
Mod A. This functor induces an equivalence proj A — proj A. In fact, if M € proj A,
then M* € proj A°?. By the assumption, we have D(M*) € mod; A = GPA. Since
D : Mod A°? — Modg, A is a duality, D(M™) is an injective object of Modg A. In
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particular, D(M™*) is a relative-injective object of GP.A. Since GPA is Frobenius, D(M*)
is an object of proj.A. Thus we have a functor Do(—)* : proj.A — proj.A. This is an
equivalence, since its quasi-inverse is given by (—)* o D. Since A is idempotent complete,
the Yoneda embedding A — proj A, X — A(—, X) is equivalence. Thus there exists an
equivalence S : A — A such that the following diagram is commutative:

Do(—)*

proj A proj A
A > A.

For X,Y € A, we have the following isomorphisms which are functorial at X,Y":

A(Y,SX) ~ D(A(—, X)*)(Y)
~ D(Mod A(A(—, X), A(—,Y)))
~DA(X,Y).

This means that S is a Serre functor on A. O

12.4 Some observations on triangulated categories

In this subsection, we state some propositions which we use later. We state one theorem
for Frobenius categories. Let A be an additive category and B be a subcategory of A. For
two objects X,Y € A, we denote by Ag(X,Y) the subspace of A(X,Y") consisting of all
morphisms which factor through an object of B. We denote by A/[B] the category defined
as follows: the objects of A/[B] are the same as A and the morphism space is defined by

(A/[B)(X,Y) = A(X,Y)/Ap(X,Y),

for X,Y € A.

Let F be a Frobenius category, P the full subcategory of F consisting of the projective
objects in F and F := F/[P]. By Happel [Ha88], it is known that F is a triangulated
category. Assume that P is idempotent complete. Let KP(P) be the homotopy category
of complexes of P. We denote by K—P(P) the full subcategory of K(P) consisting of
complexes X = (X*,d': X* — X*1) satisfying the following conditions.

(1) There exists nx € Z such that X¢ = 0 for any i > nx.

. i—1 . @ .
(2) There exist mx € Z and exact sequences 0 — Y*~1 £ — X7 Yo ¥i 5 0in F for
any ¢ < mx such that dt = a'bt for any © < mx.

We identify the category F with the full subcategory of K= (P) consisting of X satisfying
ny <0 <mx. Then we have the following analogy of the well known equivalence due to
[Bu, KV, Ri].

Theorem 12.17. [IYa] Let F be a Frobenius category and P the full subcategory of F con-
sisting of the projective objects. Assume that P is idempotent complete. Then the compos-
ite F — K=P(P) — K=P(P)/KP(P) induces a triangle equivalence F — K—P(P)/KP(P).
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Let U be a triangulated category and X be a full subcategory of 4. We call X a
thick subcategory of U if X is a triangulated subcategory of U/ and closed under direct
summands. We denote by thicky; X the smallest thick subcategory of U which contains X.
Whenever if there is no danger of confusion, let thicky X = thick X.

Lemma 12.18. Let T,U be triangulated categories and F' : U — T a triangle functor.
Let X be a full subcategory of U. Then the following holds.

e Assume that a map

is an isomorphism for any M, N € X and anyn € Z. Then F : thick X — T is fully
faithful.

e [f moreover U is idempotent complete, thick X = U and thick(Im(F')) = T, then F
s an equivalence.

13 Repetitive categories

13.1 Repetitive categories

We recall the definition of repetitive categories of additive categories. The aim of this
subsection is to show Theorem 13.7.

Definition 13.1. Let A be a k-linear additive category. The repetitive category RA is
the k-linear additive category generated by the following category: the class of objects is
{(X,i) | X € A,i € Z} and the morphism space is given by

AX)Y) i=1y,
RA((XJ)’(K])): DA(Y’X) J=1+1,

0 else.
For f € RA((X, i), (Y,j)) and g € RA((Y,j), (Z, k)), the composition is given by

i=j=k,

~

gO

gof—d DAZNG) i=j=k-1
(DA(g, X))(f) i+1l=j=k,
0 else.

We describe fundamental properties of repetitive categories of Hom-finite categories.

Lemma 13.2. Let A be a k-linear, Hom-finite additive category. The following statements
hold.

(a) RA is Hom-finite.
(b) RA has a Serre functor S which is defined by S(X,i) := (X,i+ 1).
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(¢) If A is idempotent complete, then so is RA.

Proof. (a) (b) These are clear by the definition.

(c) By the definition, an object of RA is indecomposable if and only if it is isomorphic
to an object (X, i), where X is an indecomposable object of A and i is some integer. Let
X be an indecomposable object of A and ¢ be an integer. Since A is idempotent complete
and Proposition 12.10, Endr4(X,7) = End4(X) is local. Therefore again by Proposition
12.10, RA is idempotent complete. ]

We see a relation between the categories mod A and mod RA and consequently, we
show Theorem 13.7. Let A be a k-linear additive category and i € Z. Put the following
full subcategory of RA:

A;:=add{ (X,i)) e RA| X € A}.
An inclusion functor A; — RA induces an exact functor
pi : Mod RA — Mod A;.

Since a functor A — A; defined by X — (X,i) is an equivalence, we denote an object
(X,i) of A; by X for simplicity.

Since we have a full dense functor RA — A; given by (X,j) — X if j = i and
(X,J) — 0 if else, we have a fully faithful functor from Mod A; to Mod RA. Therefore we
identify Mod A; with the full subcategory of Mod RA consisting of RA-modules M such
that M (X,j) =0 for any j # i and any X € A.

Lemma 13.3. Let A be an additive category and i,j € 7.
(a) We have pjlmod 4; = idMod 4, if j =@ and pj|mod 4, = 0 if else.

(b) For any X € A, we have an exact sequence
0= DUA1(X,—) D RA(-, (X,1) S Ai(—, X) =0 (13.1)
in Mod RA. In particular, we have pj(P) € add{A;(—, X),DA;(X,—-) | X € A} for
any P € projRA and j € Z.
(¢) Each finitely generated A;-module is a finitely generated RA-module.

Proof. (a) The assertions follow from the definition of p;.
(b) We construct morphisms «, § in Mod RA. For an object (Y, j) of RA, define

o dayx)y J7=1 Bryoy = idpaxy) J+1=4
(¥:g) - 0 else, (¥:3) - 0 else,

and extend « and 8 on RA additively. We can show that o and /3 are actually morphisms
in Mod RA. By definitions of o and S, for an object (Y, j) of RA, we have the following
exact sequence

(Y,5)

0= D A1 (X, (Y.5)) 2220 RA((Y, 7). (X, 1)) 22 A((Y, ), X) = 0

in Mod k. Thus we have an exact sequence (13.1). Since p; is exact, by applying p; to the
exact sequence (13.1) and by using (a), we have the assertion.
(c) This follows from (b). O
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By the following lemma, we construct a filtration of a module over repetitive categories.
For M € ModRA, put Supp M :={i € Z | p;(M)#0}.

Lemma 13.4. Let M € ModRA and i € Z.
(a) If pi—1(M) = 0, then there exists a short exact sequence
0= pi(M) S M—N—0
in Mod RA such that p;(N) =0 and p;(N) = p;(M) for any j > i.

(b) Assume that Supp M is a finite set and put m := max Supp M and n := min Supp M.
Then there exists a sequence of subobjects of M :

o=M, M, C---CMy,_-1CM,, =M
such that M;/M;_y ~ p;(M) for anyi=n,n+1,...,m.

Proof. (a) We construct a monomorphism « : p;(M) — M in ModRA. For an object
(X,7) of RA, define

e o Py I =4
(X:3) 0 else,

and extend this on RA additively. Since p;—1(M) = 0, « is a morphism of Mod RA. By
the definition, « is mono. Then we have an exact sequence 0 — p;(M) - M — N — 0
in Mod RA, where N := Cok(a). By Lemma 13.3, we have p;(p;(M)) = pi(M) if j =1
and p;(p;(M)) = 0 if else. Therefore by applying the functor p; to this exact sequence,
we have the assertion.

(b) This follows from (a). O

By the following two lemmas, we see that the functors Mod A — ModRA and p; :
Mod RA — Mod A restrict to functors between mod A and mod RA under certain assump-
tions. For simplicity, we use the notation mod_1 A := Mod A, mody A := mod. A and
o0 —1:=o00.

Lemma 13.5. Let A be a k-linear, Hom-finite additive category and n € Z>o U {oo}.
Assume that D A(X,—) € mod,_1.A holds for any X € A. Then an inclusion functor
Mod A; — Mod RA restricts to a functor mod,, A; — mod,, RA for any i € Z.

Proof. Let n € Z>¢. It is sufficient to show that A;(—, X) € mod,, RA for any i € Z. In
fact, any M € mod,, A; has an exact sequence P, — --- — Py — M — 0 with P; € proj A;
and hence M belongs to mod,, RA by Lemma 12.4 (a).

We show proj.4; C mod,, RA for any i € Z by an induction on n. If n = 0, then by
Lemma 13.3 (c), we have the assertion. Let n > 0, X € A and i € Z. By Lemma 13.3 (b),
there exists an exact sequence

0—-DA_1(X,—) = RA(—,(X,7)) = Ai(—, X) = 0.

By the inductive hypothesis, D 4;_1(X,—) € mod,—1 RA holds. Therefore we have
A;i(—,X) € mod, RA by Lemma 12.4 (c).
By an argument similar to the above, the assertion holds when n = oo. O

72



Lemma 13.6. Let A be a k-linear, Hom-finite additive category, n € Z>oU{oo}. Assume
that D A(X, —) € mod,, A holds for any X € A. Then the functor p; : Mod RA — Mod A;
restricts to a functor mod, RA — mod,, A; for any i € Z.

Proof. Let n € Z>o and M € mod, RA. We have an exact sequence P, — --- — P, —
Py - M — 0 in ModRA, where P; € projRA for each j > 0. Since p; is exact, we
have an exact sequence p;(P,) — -+ = pi(P1) — pi(Po) — pi(M) — 0 in Mod A;. By
the assumption and Lemma 13.3 (b), p;(P;) € mod,, A; holds for any j > 0. Therefore
pi(M) € mod,, A; holds by Lemma 12.4 (a).

By an argument similar to the above, the assertion holds when n = co. O

Note that in general mod RA = mod; RA does not hold for a k-linear additive category
A. This is the case where A is a dualizing k-variety by Theorem 13.7 below. Note that
there exists an equivalence (RA) ~ R(A°P) given by (X,i) — (X, —1).

Theorem 13.7. Let A be a dualizing k-variety. Then the following statements hold.
(a) RA and (RA)°P have weak kernels.

(b) RA is a dualizing k-variety.

Proof. Note that since A is a dualizing k-variety, D A(—, X) € mod; A holds for any
X € A and mod; A = mod A holds.

(a) Let X,Y € RA and f : RA(—,X) — RA(—,Y) be a morphism of modRA. We
show that K := Ker(f) is a finitely generated RA-module. For any ¢ € Z, we have an
exact sequence 0 — p;(K) — p;i(RA(—, X)) = pi(RA(—,Y)) in Mod A;. By Lemma 13.6,
we have p;(RA(—, X)), pi(RA(—,Y)) € mod A;. Therefore p;(K) € mod A; for any i € Z,
since A; ~ A is a dualizing k-variety. By Lemma 13.5, p;(K) € modRA for any i € Z.
Since K is a submodule of RA(—,X), Supp K is a finite set. Thus by Lemma 13.4 (b),
K has a finite filtration by finitely presented RA-modules {p;(K) | i € Z} and we have
K € modRA. In particular, K is finitely generated and RA has weak kernels. Since
(RA)°P ~ R(A°P) holds and A°P is a dualizing k-variety, (RA)°P has weak kernels.

(b) By the definition of dualizing k-varieties, A is Hom-finite and idempotent com-
plete. By Lemma 13.2, RA is Hom-finite and idempotent complete with a Serre functor.
Therefore by Proposition 12.16, RA is a dualizing k-variety. O

13.2 Tilting subcategories

The aim of this subsection is to show Theorem 13.10. Before stating the main theorem,
we need the following definition.
Let A be a k-linear, Hom-finite additive category. We denote by

p: ModRA — Mod A

the forgetful functor, that is, p(M) := @, pi(M) for any M € Mod RA, where we regard
an A;-module p;(M) as an A-module by the equivalence Mod A; ~ Mod A. Note that p is
an exact functor. We denote by GP(RA, A) the full subcategory of GP(RA) consisting of
all objects M such that the projective dimension of p(M) over A is finite, that is,

GP(RA, A) := { M € GP(RA) | projdim 4 p(M) < o0 }.

We consider the following condition on A:

73



(G) : the projective dimension of D A(X, —) over A is finite for any X € A.

Proposition 13.8. Let A be a k-linear, Hom-finite additive category. Then A satisfies
(G) if and only if projRA C GP(RA, A) holds. In this case, the following statements fold.

(a) GP(RA, A) is a Frobenius category such that the projective objects is the objects of
proj RA.

(b) The inclusion functor GP(RA, A) — GP(RA) induces a fully faithful triangle functor
GP(RA, A) — GP(RA).

Proof. The first assertion follows from Lemma 13.3 (b). Assume that A satisfies (G).

(a) By the definition and since p is exact, GP(RA, A) is extension closed subcategory
of Mod RA and has enough projectives and enough injectives. Clearly, an object of projR.A
is relative projective of GP(RA,.A). Let @ be a relative projective object of GP(RA, A).
There exists an exact sequence 0 - M — P — @ — 0 in GP(RA) with P € projRA.
We have M € GP(RA, A) and therefore this sequence splits. Consequently, the relative
projective objects of GP(RA, A) is the objects of proj RA.

(b) This follows from (a). O

We regard GP(RA, A) as a thick subcategory of GP(RA) by Proposition 13.8 (b) if A
satisfies (G). Let A be a k-linear, Hom-finite additive category. We consider the following
condition on A:

(IFP) : D A(X,—) € mod A holds for any X € A.

Note that if A is a dualizing k-variety, then A satisfies (IFP). We denote by M the full
subcategory of Mod RA given by

M :=add{ Ay(—, X) | X € A}.
We recall the definition of tilting subcategories of a triangulated category.

Definition 13.9. Let 7 be a triangulated category. A full subcategory M of T is called
a tilting subcategory of T if T (M, M][i]) = 0 for any 7 # 0 and thick M = T.

We establish the following result.

Theorem 13.10. Let A be a k-linear, Hom-finite additive category and assume that A
and A°P satisfy (IFP). Then the following holds.

(a) If A and A°P satisfy (G), then M C GP(RA, A) holds and M gives a tilting subcat-
egory of GP(RA, A).

(b) If each object of mod A and mod A° has finite projective dimension, then M C
GP(RA) holds and M gives a tilting subcategory of GP(RA).

In the case where A is a dualizing k-variety, we have the following corollary.

Corollary 13.11. Let A be a dualizing k-variety. If each object of mod A and mod A°P
has finite projective dimension, then M is a tilting subcategory of mod RA.
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Before starting the proof of Theorem 13.10, we prepare two lemmas. Let A be a
k-linear additive category and ¢ € Z. Put the following full subcategories of RA:

Acii=\[Aj, Asi=\[ A

J<i j2i
For M € ModRA and i € Z, let p<;(M) := B;; pj(M) and p>i(M) := B>, pj(M).

Lemma 13.12. Let A be a k-linear, Hom-finite additive category. Let M and N be finitely
generated RA-modules and i € Z. Assume that p>;(M) =0 and p<;(N) = 0.

(a) There exist epimorphisms
RA(—,X) - M, RA(-,Y)— N,
for some X € A< andY € A>;.
(b) We have (ModRA)(M,N) =0 and (Mod RA)(N, M) = 0.
(c) Assume M € modRA. Let

S NNy LN NN YN (13.2)

be a minimal projective resolution of M in mod RA. Then we have p>;(Ker f;) =0
for 1 > 0. Moreover by applying a functor p;—1, we have a minimal projective
resolution of p;—1(M) in mod A;_;.

Proof. (a) Since M and N are finitely generated, there exist epimorphisms RA(—, X) — M
and RA(—,Y) — N, where X and Y are in RA. Let W be an object of A>;. By Yoneda’s
lemma and the assumption, we have (Mod RA)(RA(—,W), M) ~ M (W) = 0. Therefore
we can replace X with an object of A.;. Similarly, we can replace Y with an object of
A

(b) By (a), there exists an epimorphism RA(—,X) — M, where X € A-;. We have a
monomorphism (Mod RA)(M, N) — (Mod RA)(RA(—,X), N). Since (Mod RA)(RA(—, X),
N) ~ N(X) =0, (ModRA)(M,N) = 0 holds. Similarly, by applying (Mod RA)(—, M) to
an epimorphism RA(—,Y) — N, we have (Mod RA)(N, M) = 0.

(c) By (a), there exists Xo € A«; such that P is a direct summands of RA(—, Xp).
We have p>;(RA(—,Xp)) = 0. Therefore the submodule Ker fy of RA(—,Xp) satisfies
p>i(Ker fo) = 0. By using this argument inductively, we have that there exist X; €
A< such that P, is a direct summands of RA(—,X;) for any [ > 0. Therefore we have
p>i(Ker f;) =0 for | > 0.

For any [ > 0, by Lemma 13.3, p;—1(P,) is a direct sum of A4;_1(—, X) for some X € A
and zero objects. Therefore each p;—1(P) is a projective A;_j-module. Minimality comes
from the minimality of the resolution (13.2). O

We see when GP(R.A) contains the representable functors on .A. Note that there exists
an equivalence (RA)° ~ R(AP) given by (X,i) — (X, —i). Thus we have a duality

Modg, RA 2 Modg (RA) =5 Modg, R(AP).

By this duality, a full subcategory mod A4; of mod RA goes to a full subcategory mod(A°P)_;
of mod R(.A°P).
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Lemma 13.13. Let A be a k-linear, Hom-finite additive category.

(a) The following statements are equivalent.

(i) A and A°P satisfy (IFP).
(ii)) Ai(—,X) € GP(RA) and A;(X,—) € GP(RA)°P hold for any X € A and i € Z.

(iii) DA;(X,—) € GP(RA) and D A;(—,X) € GP(RA)°P hold for any X € A and
1€ Z.

(b) If A and A°P satisfy (IFP), then p;(M) € GP(RA) holds for any M € GP(RA) and
1€ Z.

Proof. Note that by Lemma 13.2, RA has a Serre functor S. Thus by Lemma 12.15, we
have an isomorphism of functors (—)* ~ D(— o S™!) : Modg RA — Modg, R(AP). We
have

(Ai(—, X))" = D(AP)_;1(X, =) =DA_;1(—, X) (13.3)

for any X € A and i € Z. Therefore (ii) and (iii) of (a) are equivalent.

(a) We show that (i) implies (ii). Let X € A. By Lemma 13.5, A;(—, X) € mod RA
holds. We have (A;(—,X))* € mod(RA)°P, by the equality (13.3) and Lemma 13.5.
Therefore by Lemma 12.15 (b), we have A;(—, X) € GP(RA). Dually, we have A;(X,—) €
GP(RA)°P.

We show that (ii) implies (i). Let X € A. Take a minimal projective resolution of
Ai(—, X) in mod RA:

Q= Q1 RA(—, (X,4)) — Ai(—, X) = 0.

By Lemma 13.3 (b), we have Imd; = D A;_1(X,—). By Lemma 13.12 (c), applying p;_1,
we have D A;_1(X,—) € modA;—;. This means D A(X,—) € mod.A. Dually, we have
D A(—,X) € mod A°P.

(b) By Lemma 13.3 (b), we have p;(P) € add{A;(—, X),DA;(X,—) | X € A} for
any P € projRA. Therefore (p;(P))* € mod(A°?)_;_; holds by the equality (13.3) and
the assumption. Let M € GP(RA) and P, = (Pj,d; : P; — Pj;1) be a totally acyclic
complex such that Imdy = M, where P; € projRA. By applying p;, we have an exact
sequence p;(Po) = (pi(P)), pi(dj) : pi(Pj) — pi(Pj+1)) such that Imp;(dy) = pi(M).
We have an exact sequence --- — p;(P_1) — pi(Py) — pi(M) — 0. By Lemmas 12.4
(b) and 13.5, p;(M) € modRA holds. By applying a functor (—=)* to 0 — p;(M) —

pi(P1) — pi(P2) — ---, and using Lemma 12.4 (b) to the resulting exact sequence, we
have (p;(M))* € mod(RA)°P. Therefore we have p;(M) € GP(RA) by Lemma 12.15
(b). O

By Lemma 13.13, if A and A°P satisfy (IFP), then M C GP(R.A) holds. We also denote
by M the subcategory of GP(RA) consisting of objects Ap(—, X) for any X € A. Then
we show Theorem 13.10. We divide the proof into two propositions. Put 7 := GP(RA).

Proposition 13.14. Let A be a k-linear, Hom-finite additive category and assume that
A and A satisfy (IFP). Then we have T (M, M[i]) =0 for any i # 0.
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Proof. Let X € A and
I2 J1 fo
s PP Py Ag(—,X) =0

be a minimal projective resolution in mod RA. Put K' := Ker(f*"!) for i > 1. By
Lemmas 13.3 (b) and 13.12 (c), we have p>o(K?) = 0 for i > 1. Let Y € A. Since
p<0(Ao(—,Y)) =0 and Lemma 13.12 (b), we have

(Mod RA) (K", Ag(—,Y)) =0, (ModRA)(Ay(—,Y),K") =0,

for any ¢ > 1. Therefore we have

T (Ao(—,Y), Ao(—, X)[—i]) = T (Ao(—,Y), K") =0,
T(AO(_7X)7AO(_7Y)[i]) = T(K17~AO(_7Y)) = 0,

for any ¢ > 1. O

Proposition 13.15. Let A be a k-linear, Hom-finite additive category and assume that
A and A°® satisfy (IFP). If A and AP satisfy (G), then we have thickyr M = GP(RA, A).

Proof. Since A and A satisfy (IFP), we have M C GP(RA, A). Therefore we have
thick M := thickr M C GP(RA, A).

Let ¢ € Z and N € mod A;. Assume that N has finite projective dimension over A;.
Since the inclusion mod A; — mod RA is exact, we have a resolution of N by objects of
the form A;(—, X), (X € A) in mod RA. Therefore if N is an object of GP(RA, .A), then
N is in thick M if A;(—, X) is in thick M for any X € A.

Let M € GP(RA,.A). Since M is a factor module of a finitely generated projective
RA-module, Supp M is a finite set. Thus by Lemma 13.4 (b), M has a finite filtration by
pi(M) for i =n,n+1,...,m, where n = min Supp M and m = max Supp M. By Lemma
13.13 (b) and since p(M) has finite projective dimension over A, p;(M) € GP(RA,.A)
for any @ € Z. Therefore M is in thick M if A;(—, X)) is in thick M for any X € A and
t=nn+1,...,m.

We show that A;(—, X) is in thick M for any X € A and i € Z by an induction
on i. We first show A;(—,X) € thick M for ¢ > 0. Since Ap(—,X) € M, we have
Ao(—, X) € thick M. Assume that A;(—, X) € thick M for 0 < j < i—1. By Lemma
13.3, we have an exact sequence in GP(RA)

0—-DA,_1(X,—) = RA(—, (X,i)) —» Ai(—, X) — 0.

Since D A;_1(X, —) has finite projective dimension over .4 and by the inductive hypothesis,
we have D A;_1(X, —) € thick M. Therefore A;(—, X) is in thick M.

Next we show that A_;(—, X) € thick M for i > 0. Assume that A_;(—, X) € thick M
for 0 < j <i—1. Let n be the projective dimension of D A_;(—, X) ~ D(A°P);(X, —) in
mod(A°P); and

QHL---—>Q1—>Q0—>DA_Z<(—,X)—>O

be a minimal projective resolution in mod(RA)°? ~ mod R(A°P). Put K := Ker f. We have
K € GP(R(.A°P)) by Lemmas 12.7 (b) and 13.13 (a). By applying p to this resolution, we
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have K € GP(R(A®P), A°P). Since the projective dimension of D A_;(—, X) in mod(A°P);
is n and by Lemma 13.12 (c¢), we have p;(K) = 0. Moreover by Lemma 13.12 (c), we
have p>;4+1(K) = 0. Therefore a RA-module D K satisfies p<_;11(D K) = 0. Since D K
is a finitely generated R.A-module, Supp D K is finite. Thus by Lemma 13.4 (b), D K has
a finite filtration by p;(D K) for —i +1 < j < m, where m = maxSuppD K. By the
inductive hypothesis, D K € thick M holds. We have an exact sequence in GP(RA)

0—-A_i(—,X)—>DQ—-D@Q —---—-DQ, —-DK — 0,

where each D ); is a projective RA-module. This means A_;(—, X) ~ (D K)[-n — 1] in
GP(RA, A). Therefore we have A_;(—, X) € thick M. O

Proof of Theorem 153.10. (a) This follows from Propositions 13.14 and 13.15.
(b) Sine each object of mod A has finite projective dimension, GP(RA,.A) = GP(RA)
holds. Thus the assertion follows from (a). O]

Proof of Corollary 13.11. 1If A is a dualizing k-variety, then GP(RA) = mod RA holds.
The assertion directly follows from Theorem 13.10. O
13.3 Happel’s theorem for functor categories

As an application of Theorem 13.10, we show Happel’s theorem for functor categories. We
need the following lemma.

Lemma 13.16. Let A be a k-linear, Hom-finite additive category and assume that A and
A°P satisfy (IFP). Let X, Y € A, T := GP(RA). We have the following equality:

T(Ao(= X), Ao(— Y )n]) = {“‘“X’ Y) n=0,

0 else.
Proof. By Proposition 13.14, T (A(—, X), Ao(—, Y )[n # 0]) = 0 holds. Moreover we have

(Mod RA)(Ap(—, X),RA(—, (Y,0))) ~ (Mod(RA)?)(DRA(—, (Y,0)),D Ay(—, X))
~ (Mod(RA)°P)(RA((Y, —1), =), D Ay(—, X))
~D A((Y,-1),X) =0, (13.4)
where we use Lemma 13.2 (b) and Yoneda’s lemma. By Lemma 13.3 (b), if a morphism

f:Ao(—,X) = Ap(—,Y) in Mod RA factors though an object of projRA, then f factors
though RA(—, (Y,0)). Thus by the equality (13.4), we have

T(Ao(—, X), Ao(—,Y)) = (Mod RA)(Ag(—, X), Ao(—, Y)).

By applying the functor (Mod RA)(—, Ap(—,Y)) to the exact sequence of Lemma 13.3 (b),
since (ModRA)(D A_1(X,—), Ao(—,Y)) = 0 holds, we have

(Mod RA) (Ap(—, X), Ag(—, ¥)) ~ (Mod RA)(RA(—, (X, 0)), Ao(—, )
~ Ao((X,0),Y)
~ A(X,Y).
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We have the following result, which is a functor category version of Happel’s theorem.

Corollary 13.17. Let A be a k-linear, Hom-finite additive category and assume that A
and AP satisfy (IFP).

(a) If A and A°® satisfy (G), then we have a triangle equivalence

KP(proj A) ~ GP(RA, A).

(b) If each object of mod A and mod A°P has finite projective dimension, then we have
a triangle equivalence
K" (proj A) ~ GP(RA).

Proof. (a) Let F := GP(RA, A) and P := projRA. An inclusion functor proj.A ~ proj. Ay —
F induces a triangle functor KP(proj.A) — K=P(P). Then we have the following triangle
functors

F : KP(proj A) — K=" (P) — K=®(P)/KP(P) = F,

where the third is a quasi-inverse of Theorem 12.17. We denote by F' the composite of
these functors. We show that F' is an equivalence by using Lemma 12.18.

Put U := K"(proj.A) and T := GP(RA, A) = F. Note that proj.A is a subcategory of
U. We show that a map

FapNp : UM, N) — T(FM,FN[n])

is an isomorphism for any M, N € proj A and n € Z. By Theorem 12.17, a quasi-inverse
of K=P(P)/KP(P) — F is induced from the composite of the canonical functors F —
K=P(P) = K=P(P)/KP(P). Therefore we have F(A(—, X)) = Ao(—, X) for any X € A.
For any X,Y € A, we have

UA(—, X), A(—, Y)) = AX,Y), UA(—, X), A(— Y)[n #0]) = 0.

Consequently, by Lemma 13.16, Fi; [, is an isomorphism for any M, N € proj. A and
n € Z.

Since proj A is Hom-finite and idempotent complete, so is K(proj . A). Clearly we have
thicky(proj A) = U. Since Im(F|proj 4) = M holds, we have thick(Im(F')) = T by Theorem
13.10 (a). Therefore F' is an equivalence by Lemma 12.18.

(b) Since each object of mod.A has finite projective dimension, we have GP(RA, A) ~
GP(RA). Therefore we have the assertion by (a). O

Corollary 13.18. Let A be a dualizing k-variety. If each object of mod A and mod A°P
has finite projective dimension, then we have the following triangle equivalence

DP(mod A) ~ mod RA.

Proof. If A is a dualizing k-variety, then GP(RA) = mod RA holds. The assertion directly
follows from Corollary 13.17. O
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14 Proof of Theorem 1.8

Throughout this section, let k be an algebraically closed field. Let A be a finite dimensional
hereditary k-algebra, that is, gldim(A) < 1. In this section, we apply Corollary 13.18 to
mod A and show Theorem 14.5.

We denote by mod A the category of the finitely generated A-modules and denote by
7 and 77! the Auslander-Reiten translations on mod A. We call an indecomposable A-
module M preprojective (resp. preinjective) if there exists an indecomposable projective
A-module P (resp. injective A-module I) and an integer i such that M ~ 7¢(P) (resp.
M ~ 7%(I)). We call an indecomposable A-module M regular if 7¢(M) # 0 for any i € Z.
Put the following subcategories of mod A:

P :=add{M € mod A | M is a preprojective module},
7 :=add{M € mod A | M is a preinjective module},
R :=add{M € mod A | M is a regular module}.

We denote by DP(mod A) the bounded derived category of mod A and denote by S a
Serre functor of DP(mod A). We regard mod A as a full subcategory of DP(mod A) by the
canonical inclusion. Thus for any X € DP(mod A), X € mod A if and only if H/(X) =0
for any i # 0.

The following proposition is well known (see [ASS, Chapter VII. 2.1. Proposition]
[Ha88, Chapter I, 5.2, Lemmal).

Proposition 14.1. Let A be a representation infinite hereditary algebra. Then we have
the following equalities.

D"(mod A) = \/(mod A)]i],
1€EZ
modA=PVRVI.

We denote by mod, A the full subcategory of mod A consisting of modules without
non-zero projective direct summands. We define an additive functor

® : R(mod, A) — D"(mod A)

as follows. For X € mod, A and i € Z, let ®(X,i) := S/(X). For X,Y € mod, A and
i,j € Z, since S is a Serre functor of DP(mod A), we have

‘ ‘ Home(mod A) (X, Y) 1= j,
Home(mod A) (Sz(X)v S (Y)) ~ 4D Home(mod A) (K X) J=1+1,

0 else,

where the last isomorphism follows from Lemma 14.2. By using these isomorphisms, we
define a map

(I)(X,i),(Y,j) : HOInR(modp A) ((X7 i)v (Y7 ])) - Home(mod A) (SZ (X)a SJ(Y))a

and we extend ® on R(mod, A) additively. ® is actually a functor, since a Serre duality
is bifunctorial.
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Lemma 14.2. Let A be a representation infinite hereditary algebra. For any i < 0 and
7> 1, we have

S'(mod,, A) C add(A) v \/ mod A[l], S/(mod;, A) C add(D A) v \/ mod A l].
<0 >1

Proof. The assertions come from Proposition 14.1. O

The first theorem of this section is the following. Put S; := S o [—1]. Note that
HO(S1(M)) ~ (M) and H°(S;*(M)) ~ =1 (M) hold for any M € mod A.
Theorem 14.3. The functor ® : R(mod,, A) — DP(mod A) is an equivalence of additive

categories.

Proof. By the definition, & is fully faithful. We show that ® is dense. Let X be an
indecomposable object of DP(mod A). By Proposition 14.1, there exist an indecomposable
A-module M and an integer [ such that X ~ M][].

Assume that M is a preprojective module. There exist an indecomposable projective A-
module P and i > 0 such that M ~ S;*(P). If i+1 > 0, then we have SI(ZH)(P) € mod, A
and

(s, (P), 1) = 8'(s. T (P))
= ST (P)lI].

If i +1 <0, then we have S;(Hl) (S(P)) € mod,, A and

(s (S(P)) ~1 4+ 1) = 87N s T (s(PY)
=ST(P)[].

Next assume that M is a preinjective module. There exist an indecomposable injective
A-module I and i > 0 such that M ~ Si(I). If i — [ > 0, then we have S\/(I) € mod, A
and

®(S! (1), 1) = S'(871(1))
= S1(D)[1).

If i — [ < 0, then we have S™/(S~1(I)) € mod,, A and
O(S7HSTH(I)), —1 - 1) = STHSTISTHD)))
= S{(D)[1).

Assume that M is a regular module. Then we have S;'(M) € R C mod, A and
d(STHM), —1) = SH(STY(M)) = M[]] holds. Therefore the functor ® : R(mod, A) — D is
dense. O

Theorem 14.3 is an analog of the well known equivalence DP(H) ~ Rep H for a hered-
itary abelian category H [Le, Theorem 3.1]. But they are quite different, since the defini-
tions of Rep’H and R(mod A) are quite different.

We recall the following proposition.
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Proposition 14.4. [AR7/, Propositions 6.2, 10.2] Let A be a dualizing k-variety and
B :=mod A. Let P be the full subcategory of B consisting of the projective modules. Then
the following statements hold.

(a) B/[P] is a dualizing k-variety.

(b) Assume that the global dimension of mod A is at most n, then the global dimension
of mod(B/[P]) is at most 3n — 1.

Then we apply Corollary 13.18 to mod A.

Theorem 14.5. Let A be a representation infinite hereditary algebra. Then we have the
following triangle equivalences

mod DP(mod A) ~ mod R(mod A) ~ DP(mod(mod A)).

Proof. Since A is hereditary, a canonical functor mod, A — mod A induces an equivalence
mod, A ~ mod A. Therefore the first equivalence comes from Theorem 14.3. By Propo-
sition 14.4, mod A is a dualizing k-variety such that the global dimension of mod(mod A)
is at most two. Therefore we can apply Corollary 13.18 to the dualizing k-variety mod A.
We have the second equivalence. ]

We say that two dualizing k-varieties A and A’ are derived equivalent if the derived
categories of mod A and mod A’ are triangle equivalent.

Corollary 14.6. Let A, A’ be representation infinite hereditary algebras. If A and A’ are
derived equivalent, then mod A and mod A’ are derived equivalent.

Remark 14.7. If A is a representation finite hereditary algebra, then Theorems 14.3,
14.5 and Corollary 14.6 were shown by [1O].
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