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1 Introduction

The aim of the representation theory of algebras is to study the structure of the module
categories of algebras, or the structure of triangulated categories arising from algebras. For
instance, the derived category Db(modA) of an algebra A, or the stable category modA
of a finite dimensional self-injective algebra A are very basic triangulated categories in
the representation theory and studied by many mathematicians. It is known that such
triangulated categories are algebraic, that is, equivalent to stable categories of Frobenius
categories (see Subsection 3.3 for details). To study these triangulated categories, tilting
theory has been developed in recent decades.

Tilting theory is one of the main tools in the study of algebraic triangulated categories.
One of the most basic triangulated categories is the homotopy category Kb(projA) of an
algebra A. Tilting theory gives an equivalence between an algebraic triangulated category
and the homotopy category of an algebra. In fact, it was shown by Keller [Ke94] (see
also Theorem 3.9) that an algebraic triangulated category T is triangle equivalent to the
homotopy category Kb(projA) of an algebra A if and only if T has a tilting object whose
endomorphism algebra is isomorphic to A. Hence it is important to construct a tilting
object of an algebraic triangulated category and to study its endomorphism algebra.

Let A be a finite dimensional algebra. A typical example of a tilting object is an
algebra A itself in the homotopy category Kb(projA). Let T be a tilting A-module. Then
a minimal projective resolution of T is a tilting object of Kb(projA). Moreover, there are
many studies which construct tilting objects, for example [BGG, IO, Lu, MY, MU, Y].
Our results in this thesis are contained in this flow.

In this thesis we report on recent results shown by the author which construct and study
tilting objects of certain triangulated categories. This thesis consists of three parts. Part I
is based on [Ki14]. In this part, we deal with a triangulated category which is constructed
from a preprojective algebra and an element of a Coxeter group. We construct a tilting
object in the triangulated category and calculate its endomorphism algebra, when the
element of the Coxeter group is c-sortable. Part II is based on [Ki16]. In this part, we deal
with the same triangulated category as Part I. Here the element of the Coxeter group is
more general than c-sortable, that is, c-starting or c-ending. We show that the category
always has a silting object, which is a generalization of a tilting object, and show that
if the element of the Coxeter group is c-starting or c-ending, then the silting object is a
tilting object. Moreover, we compare the equivalence obtained by the tilting object and
the equivalence of Amiot-Reiten-Todorov [ART]. Part III is based on [Ki17]. In this part,
we deal with the derived category of modules over the stable category of a hereditary
algebra, motivated by the result of Iyama and Oppermann [IO].

Tilting objects associated to c-sortable elements

The preprojective algebra for a quiver Q was introduced by Gelfand-Ponomarev [GP] to
study the representation theory of all path algebras of quivers whose underlying graphs
coincide with Q. Since the preprojective algebra of Q has all information of such path alge-
bras, its representation theory is very rich and appears in many branches of mathematics.
In particular, preprojective algebras play an important role in the additive categorification
of Fomin-Zelevinsky’s cluster algebras [FZ].
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In the context of the categorification of cluster algebras, preprojective algebras were
firstly studied by Geiss-Leclerc-Schröer [GLS06, GLS07]. Let Q be a Dynkin quiver, that
is, the underlying graph of Q is a simply laced Dynkin graph, and Π be the preprojective
algebra of Q. In these papers, they showed that the stable category modΠ is a 2-Calabi-
Yau triangulated category, and has cluster tilting objects which are crucial concept of the
categorification.

More generally, by using the preprojective algebra Π of a finite acyclic quiver Q, Buan-
Iyama-Reiten-Scott [BIRSc] construct a 2-Calabi-Yau triangulated category with cluster
tilting objects as follows. For each vertex u ∈ Q0, let Iu := Π(1 − eu)Π be a two-sided
ideal of Π, where eu is an idempotent of Π associated to u. The Coxeter group WQ of
Q is a group generated by the set {su | u ∈ Q0} with appropriate Coxeter relations. For
each element w of WQ with a reduced expression su1su2 · · · sul

, consider the assignment
I(w) := Iu1Iu2 · · · Iul

. Let ⟨Iu | u ∈ Q0⟩ be a semigroup generated ideals Iu, where the
multiplication is given by that of two-sided ideals. Then in [BIRSc], the authors first
showed the following.

Theorem 1.1. [BIRSc, Theorem III. 1.9] The assignment w to I(w) gives an isomorphism
WQ ≃ ⟨Iu | u ∈ Q0⟩ of semigroups.

They defined an algebra Π(w) := Π/I(w) for each w ∈WQ, which plays a central role in
their studies and also in Part I and II of this thesis. They showed that the algebra Π(w) is
Iwanaga-Gorenstein of dimension at most one. This fact gives that the category SubΠ(w)
of Π(w)-submodules of free Π(w)-modules is a Frobenius category, and the stable category
SubΠ(w) is a triangulated category. Let D = HomK(−,K) be the standard K-dual, where
K is a field. One result of [BIRSc] is the following.

Theorem 1.2. [BIRSc] For any w ∈WQ, we have the followings.

(a) The stable category SubΠ(w) is a 2-Calabi-Yau triangulated category, that is, for any
objects X,Y ∈ SubΠ(w), there exists a bifunctorial isomorphism HomΠ(w)(X,Y ) ≃
DHomΠ(w)(Y,X[2]).

(b) For any reduced expression w = su1su2 · · · sul
of w, the object

T (w) =
l⊕

i=1

Π/I(su1su2 · · · sui)eui

is a cluster tilting object of SubΠ(w), that is,

addT (w) = {X ∈ SubΠ(w) | Ext1Π(w)(X,T (w)) = 0 }

holds.

We can see that if Q is a Dynkin quiver and if w is the longest element of the Coxeter
group WQ, then Π(w) = Π and SubΠ(w) = modΠ holds. Namely, the above theorem
covers the Dynkin cases.

Roughly speaking, our results in Part I and Part II are tilting analog of results of
[BIRSc]. The preprojective algebra Π and the factor algebra Π(w) have natural structures
of (Z)-graded algebras, which are determined by the orientation of a quiver Q. Then
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we can take the category SubZΠ(w) of graded Π(w)-submodules of graded free Π(w)-
modules. This category is also a Frobenius category and the stable category SubZΠ(w) is
a triangulated category. We show that the category SubZΠ(w) has a tilting object. This
study has two motivations: one comes from a relationship between Sub Π(w) and cluster
categories, and the other comes from the existence of tilting objects in the stable category
of an Iwanaga-Gorenstein algebra.

Cluster tilting objects in 2-Calabi-Yau triangulated categories were introduced by
Buan-Marsh-Reineke-Reiten-Todorov in [BMRRT]. Let H be a finite dimensional hered-
itary algebra, that is, the algebra of global dimension at most one. They construct a
cluster category of H, which is a 2-Calabi-Yau triangulated category, as the orbit cat-
egory Db(modH)/F of the bounded derived category Db(modH) modulo appropriate
auto-functor F . They showed that any tilting H-module is a cluster tilting object in
Db(modH)/F , and the converse is also true in some sense. In particular, the algebra H
itself is cluster tilting in Db(modH)/F .

The construction of cluster categories was generalized by Amiot [A] for a finite dimen-
sional algebra A of global dimension at most two. A cluster category C(A) of A is the
triangulated hull of the orbit category Db(modA)/F in the sense of Keller [Ke05] for an
appropriate auto-functor F on Db(modA). By construction, we have a natural triangle
functor π : Db(modA)→ C(A). It was shown that the cluster category C(A) is a 2-Calabi-
Yau triangulated category and that the image of the tilting object A of Db(modA) via π
is a cluster tilting object of C(A).

A relationship between 2-Calabi-Yau triangulated categories C(A) and SubΠ(w) was
studied by Amiot-Reiten-Todorov [ART]. For any element w ∈WQ and a reduced expres-
sion w of w, they constructed a finite dimensional algebra A(w) (see Section 11) and they
showed that there exists a triangle equivalence

C(A(w)) ≃ SubΠ(w), (1.1)

where π(A(w)) goes to T (w).
By forgetting the degree, we have a triangle functor f : SubZΠ(w) → SubΠ(w).

Therefore, it is nature to expect that there exists a tilting object M of SubZΠ(w) such
that f(M) = T (w) holds. In fact, in a cluster category side, A(w) is a tilting object of
Db(modA(w)) and π(A(w)) is a cluster tilting object of C(A(w)). Moreover, it is also
expected that the endomorphism algebra of M is isomorphic to A(w).

The other motivation of this study comes from one natural question of Iwanaga-
Gorenstein algebras. A finite dimensional algebra A is said to be Iwanaga-Gorenstein
of dimension at most n if injdimAA ≤ n and injdimAA ≤ n hold. We call an A-
module M Cohen-Macaulay if Ext>0

A (M,A) = 0, and denote by CMA the category of
Cohen-Macaulay modules. If A is an Iwanaga-Gorenstein algebra of dimension at most
n, then CMA is a Frobenius category. It is easy to see that CMA = modA if n = 0 and
CMA = SubA if n = 1. If moreover A is a Z-graded algebra, then we can define graded
Cohen-Macaulay modules. We denote by CMZA the category of graded Cohen-Macaulay
modules, which is also Frobenius. We can also see that CMZA = modZA if n = 0 and
CMZA = SubZA if n = 1.

Let A be a finite dimensional Z-graded Iwanaga-Gorenstein algebra of dimension at
most n. We consider the following question. When does the stable category CMZA have
tilting objects ? In the case where n = 0, then a complete answer to this question was
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given by Yamaura [Y]. In this thesis, we study this question in the case where A = Π(w),
which is Iwanaga-Gorenstein of dimension at most one. In Part I and II, we give a sufficient
condition such that the stable category CMZΠ(w) = SubZΠ(w) has tilting objects.

In Part I, we show that SubZΠ(w) has a tilting object when w is a c-sortable element,
and calculate its endomorphism algebra. c-sortable elements were introduced by Reading
[Re] to study noncrossing partitions associated to a Coxeter group. For a Coxeter group
of a quiver Q, it is known by [AIRT] that there exists a closed connection between c-
sortable elements of WQ and tilting modules over the path algebra KQ, see Theorem
4.9. This connection enables us to show the existence of a tilting object and to study its
endomorphism algebra in detail. For the definition and notation of c-sortable elements,
see Definitions 3.2 and 6.1. Our first result is the following.

Theorem 1.3 (Theorem 5.6). Let w ∈ WQ be a c-sortable element with a c-sortable
expression w = su1su2 · · · sul

. Then

N(w) :=

l⊕
i=1

Π/I(su1 · · · sui)eui(mi)

is a tilting object of SubZΠ(w).

Next we study the endomorphism algebra B(w) := EndZΠ(w)(N(w)) of the tilting
object. Let N0 be the degree zero part of N := N(w). By [AIRT], it is known that there
exists a tilting KQ-module T such that SubT has an additive generator N0. Using this
notation, we have the following theorem.

Theorem 1.4 (see Theorems 6.2, 6.3, and 7.1). We have the followings:

(a) There exists an isomorphism of algebras B(w) ≃ EndKQ(N0)/[T ].

(b) The global dimension of B(w) is at most two.

(c) We have a triangle equivalence

SubZΠ(w) ≃ Db(modB(w)).

Where the algebra EndKQ(N0)/[T ] is called a relative stable Auslander algebra. By con-
struction, clearly we have f(N) = T (w). Although we found a tilting object in SubZΠ(w)
when w is a c-sortable expression, the algebra B(w) is not isomorphic to A(w), in general.

Tilting objects associated to c-starting and c-ending elements

In Part II, we give a sufficient condition such that the category SubZΠ(w) has a tilting
object such that its endomorphism algebra is isomorphic to A(w). Firstly, we show that
for each reduced expression w of any element w ∈ WQ, Sub

ZΠ(w) has a silting object.
Where silting objects, which are important objects in the representation theory, are a
generalization of tilting objects from the point of mutations of tilting objects [AI].
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Theorem 1.5 (Theorem 9.18). Let w ∈WQ. For any reduced expression w = su1su2 · · · sul

of w, an object

M(w) :=
l⊕

i=1

Π/I(su1 · · · sui)eui

of SubZΠ(w) is a silting object.

We mention that as the above definitions show, two objects N(w) and M(w) of The-
orems 1.3 and 1.5 are quite different even if w is a c-sortable expression. In fact they have
different gradings, and such a difference is crucial when we study Z-graded modules.

Note that our M(w) is not a tilting object of SubZΠ(w) in general (see Example
9.19). The second result in Part II gives a sufficient condition on w such that M(w) is a
tilting object of SubZΠ(w). We introduce c-starting and c-ending elements in Definition
10.2, which are generalization of c-sortable elements. In particular, we have a triangle
equivalence between SubZΠ(w) and the derived category of the endomorphism algebra of
M(w).

Theorem 1.6 (Theorem 10.5). Let w ∈WQ and w be a reduced expression of w. If w is
c-ending on Q0 or c-starting on Q0, then we have

(a) the object M =M(w) ∈ SubZΠ(w) is a tilting object,

(b) the global dimension of the endomorphism algebra EndZΠ(w)(M) of M in SubZΠ(w)
is at most two, and

(c) there exists a triangle equivalence Db(modEndZΠ(w)(M)) ≃ SubZΠ(w).

The third result of Part II is to compare the equivalence obtained by the tilting
object M(w) and the equivalence (1.1). We show that if the endomorphism algebra
EndZΠ(w)(M(w)) of M(w) coincides with the algebra A(w), then two equivalences com-
mute with canonical functors.

Theorem 1.7 (Theorem 11.4). Let w ∈ WQ and w be a reduced expression of w. If w
is c-ending on Supp(w), then EndZΠ(w)(M(w)) = A(w) holds and we have the following
commutative diagram up to isomorphism of functors

Db(modA(w))
≃ //

π

��

SubZΠ(w)

f

��
C(A(w))

≃ // SubΠ(w).

Note that both tilting objects N(w) and M(w) have their own advantages. For ex-
ample:

• If w is c-sortable, then we can show that the endomorphism algebra of the tilting
object N(w) is isomorphic to a relative stable Auslander algebra, that is, we can
show Theorem 1.4 (a).

• If w is c-ending, then we can compare the equivalence obtained by the tilting object
M(w) and the equivalence of preceding study [ART], that is, we can show Theorem
1.7.
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Stable categories of hereditary algebras and derived categories

We first recall the definition of modules over additive categories. Let C be an additive
category. A C-module is a contravariant functor from C to Ab, where Ab is the category of
abelian groups. This is an analog of modules over rings when we regard C as a ring with
several objects. A finitely presented C-module is also defined in the same way as defining
a finitely presented module over a ring. We denote by mod C the category of finitely
presented C-modules. If C is triangulated, then it is known that mod C is Frobenius and
abelian, and its stable category mod C is triangulated.

In Part III, we focus on the triangulated category modDb(modA), where A is a finite
dimensional hereditary algebra. We construct a triangle equivalence between this category
and the bounded derived category of some abelian category.

Let k be a field and A be a finite dimensional k-algebra. Recall that an algebra A is
representation finite if there exist only finitely many isomorphism classes of indecompos-
able A-modules. This is equivalent to the existence of an additive generator X of modA,
that is, each A-module is isomorphic to a direct summand of the direct sum of a finitely
many copies of X. In [IO], it was shown that if A is a representation finite hereditary
algebra, then there exists a triangle equivalence

mod Db(modA) ≃ Db(mod ΓA), (1.2)

where ΓA := EndA(X)/[A] is the stable Auslander algebra of A.
The aim of this part is to extend a triangle equivalence (1.2) to the case when A is a

representation infinite hereditary algebra. If A is representation finite, then mod(modA) ≃
modΓA holds. Therefore the role of the stable Auslander algebra ΓA is played by the stable
category of A. Our main result of this part is the following.

Theorem 1.8 (Theorem 14.5). Let A be a hereditary algebra. We have a triangle equiv-
alence

modDb(modA) ≃ Db(mod(modA)). (1.3)

To prove Theorem 1.8, we need to give general preliminary results on functor categories
and repetitive categories. The functor category mod(modA) is an abelian category with
enough projectives and enough injectives, since the category modA forms a dualizing
k-variety, which is a distinguished class of k-linear categories introduced by Auslander
and Reiten [AR74], see Definition 12.12. A key role is played by the repetitive category
R(modA) of modA. The following our first result implies that R(modA) is a dualizing
k-variety.

Theorem 1.9 (Theorem 13.7). Let A be a dualizing k-variety. Then RA is a dualizing
k-variety.

In particular, we can see that modRA is a Frobenius abelian category for any dualizing
k-variety A. We denote by modRA the stable category of modRA, which is triangulated.

In the case where A is a representation finite hereditary algebra, the following Happel’s
theorem [Ha88] played an important role in the proof of a triangle equivalence (1.2). Let
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A be a finite dimensional k-algebra of finite global dimension. The repetitive algebra Â of
A is an infinite matrix algebra, without identity

Â :=



. . . 0

. . . A
DA A

DA A

0 . . .
. . .


in which matrices have only finitely many non-zero entries and the multiplication is induced
from the action of A to the A-bimodule DA := Homk(A, k). We can see that the category
of finitely generated Â-modules mod Â is a Frobenius category. Then Happel showed
that the bounded derived category Db(modA) is triangle equivalent to the stable category
mod Â.

In Section 13, we extend Happel’s triangle equivalence to dualizing k-varieties and
its module categories. In fact, we deal with the following class of categories including
dualizing k-varieties. For a k-linear additive category A, we denote by projA the category
of finitely generated projective A-modules and by modA the category of A-modules having
resolutions by projA. We consider the following conditions:

(IFP) DA(X,−) is in modA for each X ∈ A, where D = Homk(−, k).

(G) DA(X,−) has finite projective dimension over A for each X ∈ A.

For example, ifA is a dualizing k-variety, thenA satisfies the condition (IFP). On the other
hand, the condition (G) is a categorical version of Gorensteinness. Gorenstein-projective
modules (also known as Cohen-Macaulay modules, totally reflexive modules) are important
class of modules. We denote by GP(RA,A) the category of Gorenstein-projective RA-
modules of finite projective dimension as A-modules. We prove the following.

Theorem 1.10 (Corollaries 13.17, 13.18). Let A be a k-linear, Hom-finite additive cate-
gory.

(a) Assume that A and Aop satisfy (IFP) and (G). Then we have a triangle equivalence

Kb(projA) ≃ GP(RA,A).

(b) Assume that A is a dualizing k-variety. If each object of modA and modAop has
finite projective dimension, then we have a triangle equivalence

Db(modA) ≃ modRA.

Let A be a finite dimensional k-algebra. Then the category of finitely generated pro-
jective modules projA is a typical example of a dualizing k-variety. If A = projA and A is
of finite global dimension, then Theorem 1.10 gives a Happel’s triangle equivalence.

In Section 14, we show the following theorem, which together with Theorem 1.10
implies Theorem 1.8.
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Theorem 1.11 (Theorem 14.3). Let A be a finite dimensional hereditary k-algebra. Then
we have an equivalence of additive categories

R(modA) ≃ Db(modA).

We mention that Theorem 1.10 holds if a category A satisfies assumptions of the
theorem. Typical examples are A = projA or A = modA for a finite dimensional algebra
A of finite global dimension. On the other hand, Theorem 1.11 holds only in the case
when A is hereditary. Otherwise, we can easily find a counter example to Theorem 1.11.
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Part I

Tilting objects associated to c-sortable
elements

This part is based on the paper [Ki14].

Notation

In Part I and Part II, we use the following notation.
We denote by K an algebraically closed field. All categories are K-categories. All

subcategories are full and closed under isomorphisms. All algebras are K-algebras, and
all graded algebras are Z-graded K-algebras. We always deal with left modules.

For an algebra A, we denote by ModA (resp, mod A, fdA, proj A) the category of
(resp, finitely generated, finite dimensional, finitely generated projective) A-modules. For
a graded algebra A, we denote by ModZA (resp, modZA, fdZA, projZA) the category
of (resp, finitely generated, finite dimensional, finitely generated projective) Z-graded
A-modules with degree zero morphisms. For graded A-modules M,N , we denote by
HomZ

A(M,N) the set of morphisms from M to N in ModZA.
For an additive category C and M ∈ C, we denote by add(M) the additive closure of

M in C, that is, the full subcategory of C consisting of direct summands of the direct sum
of finitely many copies of M . The composition of morphisms f : X → Y and g : Y → Z
is denoted by fg = g ◦ f : X → Z. For two algebras A and B, we denote by A ⊗ B the
tensor algebra of A and B over K. For two arrows α, β of a quiver such that the target
of α is the source of β, we denote by αβ the composition of α and β. We denote by
D = HomK(−,K) the standard K-dual. We always denote by [1] the suspension functor
on triangulated categories.

3 Preliminary

In this section, we define some notation which we use throughout this thesis and recall
some preliminary results. The notation defined in this section will also be used in Part II.

We fix a finite acyclic quiver Q = (Q0, Q1, s, t), where Q0 = {1, . . . , n} is the set of
vertices, Q1 is the set of arrows, and an arrow α goes from s(α) to t(α). Let KQ be the
path algebra of Q over K, and for a vertex u of Q, we denote by eu the corresponding
idempotent of KQ.

3.1 Coxeter groups and preprojective algebras

The Coxeter group W = WQ of Q is the group generated by the set {su | u ∈ Q0} with
relations s2u = 1, susv = svsu if there exist no arrows between u and v, and susvsu = svsusv
if there exists exactly one arrow between u and v.

We call an element of the free group generated by {su | u ∈ Q0} a word. If a word w
represents an element w ∈WQ, then we say that w is an expression of w.
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Definition 3.1. Let w ∈WQ and w = su1su2 · · · sul
be an expression of w.

(1) A word sui1
sui2
· · · suim

is a subword of w if 1 ≤ i1 < i2 < · · · < im ≤ l holds.

(2) An expression w of w is reduced if l is smallest possible.

(3) Let w be a reduced expression of w, put Supp(w) := {u1, u2, . . . , ul} ⊂ Q0. Note
that, Supp(w) is independent of the choice of a reduced expression of w (see [BjBr,
Corollary 1.4.8 (ii)]).

(4) An element c ∈WQ is called a Coxeter element if there exists an expression sv1sv2 · · · svn
of c such that {v1, v2, . . . , vn} is a permutation of Q0. In this paper, we only con-
sider a Coxeter element c satisfying euj (KQ)eui = 0 for i < j which is uniquely
determined by the orientation of Q.

We recall the definition of c-sortable elements, which were introduced and studied in
[Re].

Definition 3.2. [Re] Let c be a Coxeter element of WQ and c a reduced expression of c.
An element w ∈WQ is called a c-sortable element if w has a reduced expression w of the
form w = c(0)c(1) · · · c(m), where each c(i) is a subword of c and

Supp(c(m)) ⊂ Supp(c(m−1)) ⊂ · · · ⊂ Supp(c(0)) ⊂ Q0.

In this case, we say that w = c(0)c(1) · · · c(m) is a c-sortable expression of w.

Note that the definition of c-sortable elements independent of the choice of a re-
duced expression of c. If there is no danger of confusion, for a c-sortable expression
c(0)c(1) · · · c(m), we denote by c(i) the element of WQ represented by c(i) for i = 0, . . . ,m.

Next we recall the preprojective algebra of Q and introduce factor algebras of the
preprojective algebra. The double quiver Q = (Q0, Q1, s, t) of a quiver Q is defined by
Q0 = Q0, Q1 = Q1 ⊔ {α∗ : t(α) → s(α) | α ∈ Q1}. Then we define the preprojective
algebra Π of Q by

Π := KQ/⟨
∑
α∈Q1

αα∗ − α∗α⟩.

Let u be a vertex of Q. We define the two-sided ideal Iu of Π by

Iu := Π(1− eu)Π.

Let w = su1su2 · · · sul
be a reduced expression of w ∈ WQ. We define a two-sided ideal

I(w) = I(su1su2 · · · sul
) of Π by

I(w) := Iu1Iu2 · · · Iul
.

Note that I(w) is independent of the choice of a reduced expression of w by [BIRSc,
Theorem III. 1.9]. We define the algebra Π(w) = Π(su1su2 · · · sul

) by

Π(w) := Π/I(w).
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For an algebra A, we denote by SubA the full subcategory of modA of submodules of
finitely generated free A-modules. A finite dimensional algebra A is said to be Iwanaga-
Gorenstein of dimension at most one if injdimAA ≤ 1 and injdimAA ≤ 1 hold. It is
well-known that if A is Iwanaga-Gorenstein of dimension at most one, then SubA is a
Frobenius category and therefore, the stable category SubA is a triangulated category.
For Frobenius categories, see Subsection 3.3.

We call a category C Hom-finite if the K-vector space HomC(X,Y ) is finite dimensional
for any X,Y ∈ C. For a Hom-finite category C, a Serre functor S is an auto-equivalence of
C such that there exists a bifunctorial isomorphism HomC(X,Y ) ≃ DHomC(Y, S(X)) for
any X,Y ∈ C. Our definition of a Serre functor depends on [RV, Section I]. A triangulated
category C is called 2-Calabi-Yau if C has a Serre functor S = [2] = [1] ◦ [1]. Let C be a
2-Calabi-Yau triangulated category and C ∈ C. We say that C is a cluster tilting object
of C if addC = {X ∈ C | HomC(X,C[1]) = 0} holds.

We say that Q is a Dynkin quiver if the underlying graph of Q is a simply laced Dynkin
diagram of type A,D or E. We recall results on the ideal I(w) the algebra Π(w).

Proposition 3.3. [BIRSc] For any w ∈WQ, we have the followings.

(a) If Q is non-Dynkin, then a map x 7→ (·x) gives an isomorphism of algebras Π
∼−→

EndΠ(I(w)).

(b) The algebra Π(w) is finite dimensional and Iwanaga-Gorenstein of dimension at
most one.

(c) The stable category SubΠ(w) is a 2-Calabi-Yau triangulated category.

(e) For any reduced expression w = su1su2 · · · sul
of w, the object

T (w) =

l⊕
i=1

Π(su1su2 · · · sui)

is a cluster tilting object of SubΠ(w).

3.2 The grading of the preprojective algebra of Q

We introduce the grading of a preprojective algebra. We regard the path algebra KQ as
a graded algebra by the following grading:

deg β =

{
1 β = α∗, α ∈ Q1

0 β = α, α ∈ Q1.

Since the element
∑

α∈Q1

(αα∗−α∗α) in KQ is homogeneous of degree 1, the grading of KQ

naturally gives a grading on the preprojective algebra Π =
⊕
i≥0

Πi. A Z-algebra A is said

to be positively graded if Ai = 0 for any i < 0. Preprojective algebras are positively graded
with respect to the above grading.

Remark 3.4. (a) We have Π0 = KQ, since Π0 is spanned by all paths of degree 0.
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(b) For any w ∈W , the ideal I(w) of Π is a homogeneous ideal of Π since so is each Iu.

(c) In particular, the factor algebra Π(w) is a graded algebra.

Let X =
⊕

i∈ZXi be a graded module over a positively graded algebra. For any integer
j, we define the shifted graded module X(j) by (X(j))i = Xi+j . Moreover, for any integer
j, we define a graded submodule X≥j of X by

(X≥j)i =

{
Xi i ≥ j
0 else

and define a graded factor module X≤j of X by X≤j = X/(X≥j+1). For i, j ∈ Z, let
X[i,j] = (X≤j)≥i.

Let A be a finite dimensional graded algebra which is Iwanaga-Gorensteion of dimen-
sion at most one. We denote by SubZA the full subcategory of modZA of submodules of
graded free A-modules, that is,

SubZA =

{
X ∈ modZA | X is a submodule of

m⊕
i=1

A(ji), m, ji ∈ Z,m ≥ 0

}
.

We have the degree forgetful functor ρ : modZA→ modA, and have the following equali-
ties.

SubZA =

{
X ∈ modZA | ρ(X) ∈ Sub A

}
, (3.1)

=

{
X ∈ modZA | Ext>0

A (ρ(X), A) = 0, ∀i > 0

}
,

=

{
X ∈ modZA | Ext>0

modZ A
(X,A(i)) = 0, ∀i ∈ Z

}
. (3.2)

Clearly SubZA has enough projectives and is closed under direct summands. By (3.2),
SubZA is closed under extensions. For any X ∈ SubZA, there exists a left (projZA)-
approximations of X which is monomorphism. Thus SubZA has enough injectives by
(3.2). It is easy to see that the projective objects and the injective objects of SubZA
coincide and equals to projZA. Therefore SubZA is a Frobenius category. We have a
triangulated category SubZA. In this paper, we get a tilting object in this category.

We give one example which illustrates grading on the algebra Π(w) when w is c-
sortable.

Example 3.5. Let Q be a quiver
1

2 3
wwppp

pp

//
''NN

NNN . Then we have a graded algebra Π =

Πe1 ⊕Πe2 ⊕Πe3, and these are represented by their radical filtrations, which correspond
to the horizontal layers of simples, as follows:

Πe1 =

1

2

3

1

2

3

3

1 2

2 3 1

3 1 2 3

1 2 3 1 2

AA }} AA

}} AA AA

AA }} AA

AA }} AA AA }} AA

}} AA AA }} AA AA

, Πe2 =

2

3

1

2

3

1

1

2 3

3 1 2

1 2 3 1

2 3 1 2 3

AA

}} AA

AA }} AA

AA }} AA AA

}} AA AA }} AA

AA }} AA AA }} AA

, Πe3 =

3

1

2

3

1

2

2

3 1

1 2 3

2 3 1 2

3 1 2 3 1

}} AA

AA

AA }} AA

}} AA AA }} AA

AA }} AA AA

AA }} AA AA }} AA

,

15



where numbers connected by solid lines are in the same degree, the tops of the Πei are
concentrated in degree 0, and the degree zero parts are denoted by bold numbers.

Let w be an element of WQ with a reduced expression w = s1s2s3s1s2s1. This w is a
c-sortable element by this reduced expression, where c = c(0) = s1s2s3, c

(1) = s1s2, and
c(3) = s1. Then we have a graded algebra, Π(w) = Π(w)e1 ⊕Π(w)e2 ⊕Π(w)e3, where

Π(w)e1 =

1

2

3

1

3

1 2

1

AA }} AA

}} AA , Π(w)e2 =

2

3

1

1

2 3

1 2

1

AA

}} AA

AA }} AA

AA

, Π(w)e3 =

3

1 2

1

}} AA

AA .

3.3 Silting and tilting objects of triangulated categories

In this subsection, we recall the definitions of Frobenius categories, silting and tilting
objects and recall tilting theorem for algebraic triangulated categories which was shown
by Keller.

Let A be an abelian category. A full subcategory B of A is called extension closed
if for any exact sequence 0 → X → Y → Z → 0 in A with X,Z ∈ B, we have Y ∈ B.
Assume that B is extension closed subcategory of A. X ∈ B is called a relative-projective
object if Ext1A(X,B) = 0 for any B ∈ B. Dually, we define relative-injective objects.

Definition 3.6. [Ha88, He] Let A be an abelian category and B a full subcategory of A
which is extension closed.

(1) We say that B has enough projectives (resp. enough injectives) if for each X ∈ B,
there exists an exact sequences 0→ Y → P → X → 0 (resp. 0→ X → I → Y → 0)
in A such that P ∈ B is relative-projective (resp. I ∈ B is relative-injective).

(2) B is said to be Frobenius if the following conditions are satisfied:

(i) An object in B is relative-projective if and only if it is relative-injective.

(ii) B has enough projectives and enough injectives.

(2) For a Frobenius category B, we define the stable category B as follows: The objects
of B are the same as B, and the morphism space is given by

HomB(X,Y ) := HomB(X,Y )/P (X,Y )

for any X,Y ∈ B, where P (X,Y ) is the submodule of HomB(X,Y ) consisting of
morphisms which factor through relative-projective objects in B.

Frobenius categories gives triangulated categories, which is shown by Happel.

Definition-Theorem 3.7. [Ha88] Let B be a Frobenius category. Then the stable cate-
gory B has a structure of a triangulated category. Such a triangulated category is called
algebraic.

Next we recall the definition of silting and tilting objects. Let T be a triangulated
category. For an object X of T , we denote by thickT X the smallest triangulated full
subcategory of T containing X and closed under direct summands.
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Definition 3.8. Let T be a triangulated category.

(1) An object X of T is called a silting object if HomT (X,X[i]) = 0 for any i > 0 and
thickX = T .

(2) An objectX of T is called a tilting object ifX is a silting object of T and HomT (X,X[i]) =
0 for any i < 0.

For example, let A be a finite dimensional algebra. Then A is a tilting object of
Kb(projA).

Let C, C′ be additive categories and X ∈ C. A morphism e : X → X in C is called an
idempotent if e2 = e. We call C idempotent complete if each idempotent of C has a kernel.
An additive functor F : C → C′ is called an equivalence up to direct summands if it is fully
faithful and any object X ∈ C′ is isomorphic to a direct summand of FY for some Y ∈ C.
It is easy to see that if C is idempotent complete, then F is an equivalence.

For an algebra A, we denote by Kb(projA) the homotopy category of bounded com-
plexes of finitely generated projective A-modules. We have the following theorem for
algebraic triangulated categories [Ke94, (4.3)] (see also [IT, Theorem 2.2]).

Theorem 3.9. Let T be an algebraic triangulated category with a tilting object X. Then
the following statements hold.

(a) There exists a triangle equivalence F : T → Kb(projEndT (X)) up to direct sum-
mands.

(b) If T is idempotent complete, then F is a triangle equivalence.

In Section 11, we use the following basic lemma of a triangle functor.

Lemma 3.10. Let T ,U be triangulated categories and F : T → U be a triangle functor.
Moreover, let X be a tilting object of T . Assume that T is idempotent complete, F (X) is a
tilting object of U and FX,X induces an isomorphism HomT (X,X) ≃ HomU (F (X), F (X)).
Then the functor F is an equivalence.

Finally, we recall the definition of Krull-Schmidt categories. An additive category
C is called Krull-Schmidt if each object of C is a finite direct sum of objects such that
their endomorphism algebras are local. Note that a Krull-Schmidt category is idempotent
complete. For instance, our triangulated categories SubΠ(w) and SubZΠ(w) are Krull-
Schimdt.

4 Graded structure of I(w) and Π(w)

In this section, we prove some basic properties of gradings of I(w) and Π(w). The main
result in this section is Proposition 4.5. We also recall some results from [AIRT] which
will be used later. Throughout this section, let c ∈ WQ be a Coxeter element and c an
expression satisfying the statement in Definition 3.1 (4).

Lemma 4.1. [AIRT, Lemma 2.1] Let Q′ be a full subquiver of Q and w an element
in WQ′ ⊂ WQ. Then we have Π/I(w) = Π′/I ′(w) as graded algebras, where Π′ is a
preprojective algebra of Q′ and I ′(w) is the ideal of Π′ associated with w.
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We first calculate the ideal I(w) and the algebra Π(w) when w has a reduced expression
which is a subword of c.

Lemma 4.2. Let w ∈WQ and assume that w has a reduced expression which is a subword
of c. Let Q′ the full subquiver of Q whose set of vertices is Supp(w). We denote by Π′ the
preprojective algebra of Q′ and I ′(w) the ideal of Π′ associated with w. Then the following
holds.

(a) We have Π(w) = Π′(w) = KQ′.

(b) I(w)≥1 = Π≥1.

(c) I(w)0 is the ideal of KQ generated by idempotents {eu | u ∈ Q0 \ Supp(w)}.

Proof. (a) By Lemma 4.1, we have Π(w) = Π′(w). By assumption, w is a Coxeter element
of WQ′ . Then, by [BIRSc, Proposition III. 3.2], we have Π′(w) = KQ′.

(b) By (a), we have Π(w)0 = Π′(w)0 = KQ′. This means that I(w)≥1 = Π≥1.
(c) Since KQ′ = Π(w)0 = Π0/(w)0 = KQ/I(w)0 holds, I(w)0 the ideal generated by

the vertices in Q0 \ Supp(w).

Then we describe the grading of I(w) for a c-sortable element w.

Lemma 4.3. Let w ∈ WQ be a c-sortable element and w = c(0)c(1) · · · c(m) a c-sortable
expression of w. Then we have I(c(i)c(i+1))0 = I(c(i))0 for all 0 ≤ i ≤ m− 1.

Proof. Since Π(w) is positively graded, we have I(c(i)c(i+1))0 = I(c(i))0I(c
(i+1))0. By

Lemma 4.2, I(c(i))0 and I(c(i+1))0 are generated by idempotents {ev | v ∈ Q0 \Supp(c(i))}
and {ev | v ∈ Q0 \ Supp(c(i+1))}, respectively. Since w is a c-sortable element, we have
Supp(c(i+1)) ⊂ Supp(c(i)). Therefore we have I(c(i))0I(c

(i+1))0 = I(c(i))0.

Lemma 4.4. Let w ∈ WQ be a c-sortable element and w = c(0)c(1) · · · c(m) a c-sortable
expression of w. Then we have

I(w)i =

{
I(c(0)c(1) · · · c(i))i 0 ≤ i ≤ m.
Πi m+ 1 ≤ i.

In particular, we have Π(w)≥m+1 = 0.

Proof. We first show that I(w)≥m+1 = Π≥m+1. Since Π is generated by Π1 as a Π0-
algebra, we have Π≥m+1 =

∏m
j=0(Π≥1). By Lemma 4.2 (b), the equation Π≥1 = I(c(j))≥1

holds for any 0 ≤ j ≤ m. Thus we have

I(w)≥m+1 ⊂ Π≥m+1 =
m∏
j=0

Π≥1 =
m∏
j=0

I(c(j))≥1 ⊂ I(w)≥m+1.

Therefore we have I(w)≥m+1 = Π≥m+1.
Assume that 0 ≤ i ≤ m − 1. We show that I(w)i = I(c(0)c(1) · · · c(m−1))i. Since

I(w) ⊂ I(c(0)c(1) · · · c(m−1)), we have I(w)i ⊂ I(c(0)c(1) · · · c(m−1))i. Conversely, we show
that

I(c(0)c(1) · · · c(m−1))i ⊂ I(w)i.
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In general, we have

I(c(0)c(1) · · · c(m−1))i =
∑

b0+b1+···+bm−1=i

I(c(0))b0I(c
(1))b1 · · · I(c(m−1))bm−1 . (4.1)

Since I(w)i = 0 for any i < 0 and (4.1), it is enough to show that

I(c(0))a0I(c
(1))a1 · · · I(c(m−1))am−1 ⊂ I(w)i,

for any non-negative integers a0, a1, . . . , am−1 satisfying
∑m−1

j=0 aj = i . Since a0, . . . , am−1

are non-negative and i ≤ m − 1, at least one of them must be zero. Let j be the largest
integer satisfying aj = 0. Then we have

I(c(0))a0 · · · I(c(j))ajI(c(j+1))aj+1 · · · I(c(m−1))am−1

= I(c(0))a0 · · · I(c(j))aj (Πaj+1) · · · (Πam−1)

= I(c(0))a0 · · · I(c(j))ajI(c(j+1))0(Πaj+1) · · · (Πam−1)

= I(c(0))a0 · · · I(c(j))ajI(c(j+1))0I(c
(j+2))aj+1 · · · I(c(m))am−1

⊂ I(w)i,

where the first and the third equations come form Lemma 4.2 (b), and the second equation
comes from Lemma 4.3. Therefore we have I(c(0)c(1) · · · c(m−1))i ⊂ I(w)i for 0 ≤ i ≤ m−1.
By using this equation repeatedly, we have the assertion.

Now we describe the grading of Π(w) for a c-sortable element w. For an element w in
WQ, let Q

(1) be the full subquiver of Q whose set of vertices is Supp(w).

Proposition 4.5. Let w ∈ WQ be a c-sortable element and w = c(0)c(1) · · · c(m) a c-
sortable expression of w. For each i ≤ m, we have Π(w)≤i = Π(c(0)c(1) · · · c(i))≤i =
Π(c(0)c(1) · · · c(i)). In particular, we have Π(w)0 = Π(c(0)) = KQ(1).

Proof. By Lemma 4.4, we have the following commutative diagram.

0 // I(w)≤i
// Π≤i

// Π(w)≤i
//

≃
��

0

0 // I(c(0)c(1) · · · c(i))≤i
// Π≤i

// Π(c(0)c(1) · · · c(i))≤i
// 0.

Therefore we have an equality Π(w)≤i = (Πc(0)c(1)···c(i))≤i. The equality Π(c(0)c(1) · · · c(i))≤i =
Π(c(0)c(1) · · · c(i)) comes from Lemma 4.4. If i = 0, then we have Π(w)0 = Π(c(0)) = KQ(1),
where the second equality comes from Lemma 4.2 (a).

The following proposition is important to show Theorem 5.6.

Proposition 4.6. Let w ∈WQ be a c-sortable element and w = su1 · · · sul
= c(0)c(1) · · · c(m)

a c-sortable expression of w. For any integer i and X ∈ SubZΠ(w), we have X≥i, X≤i, Xi ∈
SubZΠ(w).
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Proof. Since X≥i is a submodule of X, we have X≥i ∈ SubZΠ(w).
By Proposition 3.3 (e), we have Π(u1 · · ·uj) ∈ SubZΠ(w) for any 1 ≤ j ≤ l. Therefore,

by Proposition 4.5, we have Π(w)≤i ∈ SubZΠ(w) for any integer i. Clearly, the functor
X 7→ X≤i preserves injective morphisms. Therefore we have X≤i ∈ SubZΠ(w). Since
X≥i ∈ SubZΠ(w), Xi = (X≥i)≤i ∈ SubZΠ(w) holds.

Next we recall the result of [AIRT]. For a reduced expressionw = su1 · · · sul
of w ∈WQ

and 1 ≤ i ≤ l, we define a Π(w)-module Li
w by L1

w := Π/Iu1 and

Li
w :=

I(su1 · · · sui−1)

I(su1 · · · sui)
,

for i ≥ 2.

Proposition 4.7. [AIRT, Proposition 1.3] We have equalities

Li
w = Li

weui =
I(su1 · · · suj )

I(su1 · · · sui)
eui ,

where j is the largest integer satisfying j < i and uj = ui. If such an integer j does not
appear in 1, . . . , i− 1, then Li

w = (Π/I(su1 · · · sui))eui.

We use the following notation. Let w = su1 · · · sul
be a reduced expression of w ∈WQ

For any u ∈ Supp(w), let

pu = max{1 ≤ j ≤ l | uj = u}.

For 1 ≤ i ≤ l, let
mi = ♯{1 ≤ j ≤ i− 1 | uj = ui}.

Note that, if w = su1 · · · sul
= c(0)c(1) · · · c(m) is a c-sortable expression, then we have

mpu = max{j | u ∈ Supp(c(j))} for any u ∈ Supp(w). Using Li
w, we have the following

information on Π(w)eu.

Lemma 4.8. Let w = su1 · · · sul
= c(0)c(1) · · · c(m) be a c-sortable expression of w ∈WQ.

Then, for any u ∈ Supp(w) and any integer i ≥ mpu, we have

(Π(w)eu)i =

{
Lpu
w i = mpu ,

0 mpu + 1 ≤ i.

Proof. Since I(w)eu = I(c(0)c(1) · · · c(mpu ))eu, we have Π(w)eu = Π(c(0)c(1) · · · c(mpu ))eu.
Thus, by Lemma 4.4, we have (Π(w)eu)i = 0 for mpu + 1 ≤ i.

If i = mpu , we have

(Π(w)eu)i = Ker
(
(Π(w)eu)≤i → (Π(w)eu)≤i−1

)
= Ker

(
Π

I(c(0)c(1) · · · c(i))
eu →

Π

I(c(0)c(1) · · · c(i−1))
eu

)
=
I(c(0)c(1) · · · c(i−1))

I(c(0)c(1) · · · c(i))
eu,

where the second equality comes from Proposition 4.5. Since I(c(0)c(1) · · · c(i))eu = I(su1 · · · supu
)eu,

we have the desired equality.
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The next theorem is one of the main results in [AIRT], and important in this paper.
We use Theorem 4.9 to prove Proposition 5.5. For an element w in W , let Q(1) be the full
subquiver of Q whose set of vertices is Supp(w).

Theorem 4.9. Let w ∈WQ be a c-sortable element and w = su1 · · · sul
= c(0)c(1) · · · c(m)

a c-sortable expression of w. Then

T =
⊕

u∈Q(1)
0

Lpu
w =

⊕
u∈Q(1)

0

(Π(w)eu(mpu))0

is a tilting KQ(1)-module.

Proof. T =
⊕

u∈Q(1)
0

Lpu
w is a tilting KQ(1)-module by [AIRT, Theorem 3.11]. Moreover

T =
⊕

u∈Q(1)
0

(Π(w)eu(mpu))0 holds by Lemma 4.8.

We give one example which illustrates the tilting module of Theorem 4.9.

Example 4.10. Let Q be a quiver
1

2 3
wwppp

pp

//
''NN

NNN and w be an element of WQ with a reduced

expression w = s1s2s3s1s2s1. This is a c-sortable expression. Then we have a graded
algebra Π(w) = Π(w)e1 ⊕Π(w)e2 ⊕Π(w)e3,

1

2

3

1

3

1 2

1

AA }} AA

}} AA

2

3

1

1

2 3

1 2

1

AA

}} AA

AA }} AA

AA

3

1 2

1

}} AA

AA .

We have

L1
w = 1, L2

w =
2

1
AA , L3

w =

3

1 2

1

}} AA

AA ,

L4
w =

2 3

1 2

1

AA }} AA

AA , L5
w =

3

1 2 3

1 2

1

}} AA

AA }} AA

AA

, L6
w =

3

1
}} .

By Theorem 4.9, L3
w ⊕ L5

w ⊕ L6
w is a tilting KQ-module.

5 A tilting object in SubZΠ(w) for a c-sortable element w

In this section, we construct a tilting object in SubZΠ(w) when w is a c-sortable element.
A triangle equivalence induced from tilting objects is given in Section 6.

Definition 5.1. Let w ∈WQ be a c-sortable element andw = su1 · · · sul
= c(0)c(1) · · · c(m)

a c-sortable expression of w. Put

M =M(w) :=

m⊕
i=0

(
Π(c(0) · · · c(i))

)
(i).
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Throughout this section, let w ∈ WQ be a c-sortable element and w = su1 · · · sul
=

c(0)c(1) · · · c(m) a c-sortable expression of w. andM be a module as in Definition 5.1. This
M belongs to SubZΠ(w) by Proposition 3.3 (e) and (3.1).

Example 5.2. Let Q be a quiver
1

2 3
wwppp

pp

//
''NN

NNN . Let w be an element of WQ with a reduced

expression w = s1s2s3s1s2s1. This is a c-sortable element. Then we have a graded algebra
Π(w) = Π(w)e1 ⊕Π(w)e2 ⊕Π(w)e3,

1

2

3

1

3

1 2

1

AA }} AA

}} AA

2

3

1

1

2 3

1 2

1

AA

}} AA

AA }} AA

AA

3

1 2

1

}} AA

AA .

and

M = 1⊕ 2

1
AA ⊕


1

2 3

1 2

1

AA }} AA

AA


in SubZΠ(w), where the graded projective Π(w)-modules are removed, and the degree zero
parts are denoted by bold numbers.

The following proposition follows from Proposition 4.5.

Proposition 5.3. M =M≤0.

Proof. We have M =
⊕m

i=0Π(c
(0) · · · c(i))≤i(i) =

⊕m
i=0Π(c(0) · · · c(i))(i)≤0 =M≤0.

By the following two propositions, we show that this M satisfies the axioms of tilting
objects. Note that, by Lemma 4.4, Π(w)≤i = Π(w) holds for i ≥ m, and therefore, we
have

M =

m⊕
i=0

Π(c(0) · · · c(i))≤i(i) =
⊕
i≥0

Π(w)≤i(i) =
⊕
i≥0

Π(w)(i)≤0

in SubZΠ(w) by Proposition 4.5.

Proposition 5.4. We have HomZ
Π(w)(M,M [j]) = 0 for any j ̸= 0.

Proof. For any 0 ≤ i, we have a short exact sequence,

0→ Π(w)(i)≥1 → Π(w)(i)→ Π(w)(i)≤0 → 0.

Since (Π(w)(i)≥1)≤0 = 0, we have

(ΩM)≤0 =
⊕
i≥0

(
Ω(Π(w)(i)≤0)

)
≤0

=
⊕
i≥0

(
Π(w)(i)≥1

)
≤0

= 0.

Since Π(w) is positively graded, we have
(
Ωj(M)

)
≤0

= 0 for j ≥ 1. Therefore

HomZ
Π(w)(M,Ωj(M)) = 0 and HomZ

Π(w)(Ω
j(M),M) = 0
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hold for any j ≥ 1 by Proposition 5.3. The first equality implies HomZ
Π(w)(M,M [−j]) = 0

for j ≥ 1, and the second equality implies HomZ
Π(w)(M,M [j]) = 0 for j ≥ 1.

Next we prove that M satisfies the second axiom of tilting objects. Since Π(w)0 =
KQ(1) by Proposition 4.5, we regard a KQ(1)-module X as a graded Π(w)-module concen-
trated in degree 0. For an integer i, let mod≤iΠ(w) be the full subcategory of modZΠ(w)
of modules X satisfying X = X≤i.

Proposition 5.5. We have SubZΠ(w) = thickM .

Proof. LetX ∈ SubZΠ(w). We show that X ∈ thickM . By Proposition 4.6, we have
Xi ∈ SubZΠ(w) for any i ∈ Z. Since X has a finite filtration {X≥j | j ∈ Z}, it is enough
to show that Xi ∈ thickM for any i ∈ Z. Since each Xi is a KQ

(1)-module and the global
dimension of KQ(1) is at most one, it is enough to show that KQ(1)(i) ∈ thickM for any
i ∈ Z.

Firstly, we show KQ(1)(i) ∈ thickM for any i ≥ 0 by induction on i. Since M has a
direct summand Π(w)0 = KQ(1), we have KQ(1) ∈ thickM . Assume KQ(1)(j) ∈ thickM
for 0 ≤ j ≤ i− 1. Consider a short exact sequence

0→ Π(w)[1,i](i)→ Π(w)≤i(i)→ Π(w)0(i)→ 0. (5.1)

By taking a finite filtration of Π(w)[1,i](i) and the inductive hypothesis, we conclude that
Π(w)[1,i](i) ∈ thickM . Since Π(w)≤i(i) is a direct summand of M or a graded projective

Π(w)-module, we have KQ(1)(i) = Π(w)0(i) ∈ thickM by (5.1). Consequently, we have
that X ∈ thickM for any X ∈ mod≤0Π(w) ∩ SubZΠ(w).

Secondly, we show that KQ(1)(−i) ∈ thickM for any i ≥ 0 by induction on i. Assume
KQ(1)(−j) ∈ thickM for 0 ≤ j ≤ i − 1. Thus we have X ∈ thickM for any X ∈
mod≤i−1Π(w) ∩ SubZΠ(w). By Theorem 4.9, T =

⊕
u∈Q(1)

0

(Π(w)eu(mpu))0 is a tilting

KQ(1)-module. There exists a short exact sequence

0→ KQ(1) → T0 → T1 → 0,

where T0, T1 ∈ addT . Therefore it is enough to show that T (−i) ∈ thickM . For each

u ∈ Q(1)
0 , take a short exact sequence

0→ Teu(−i)→ Π(w)eu(mpu)(−i)→ Π(w)eu(mpu)≤−1(−i)→ 0. (5.2)

The second term is a graded projective Π(w)-module. The third term belongs to thickM
since Π(w)eu(mpu)≤−1(−i) is in mod≤i−1Π(w). Consequently, we have T (−i) ∈ thickM
by (5.2).

Then we have the main theorem of this section.

Theorem 5.6. Let w ∈WQ be a c-sortable element and w = su1 · · · sul
= c(0)c(1) · · · c(m)

a c-sortable expression of w. Put

M =

m⊕
i=0

(
Π(c(0) · · · c(i))

)
(i).

Then M is a tilting object in SubZΠ(w).
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Proof. By Propositions 5.4, and 5.5, M is a tilting object in SubZΠ(w).

Remark 5.7. It was shown by Yamaura [Y] that, for a finite dimensional self-injective
positively graded algebra A, the stable category modZA has a tilting object

⊕
i≥0A(i)≤0

if A0 has finite global dimension. Our tilting object M in SubZΠ(w) is an analog of this
since M =

⊕
i≥0Π(w)≤i(i) =

⊕
i≥0Π(w)(i)≤0 holds.

6 The endomorphism algebra of the tilting object

In this section, we calculate the endomorphism algebra of the tilting object which was
constructed in Definition 5.1. The aim of this section is to prove Theorems 6.2 and 6.3.
Throughout this section, let Q be a finite acyclic quiver.

6.1 A morphism from EndZ
Π(w)(M) to EndKQ(1)(M0)

Firstly, we give another description of the tilting object which was constructed in Definition
5.1. Throughout this section, we use the following notation.

Definition 6.1. Let w = su1su2 · · · sul
be a reduced expression of w ∈ WQ. We use the

same notation as after Proposition 4.7, that is,

pu = max{1 ≤ j ≤ l | uj = u}, for u ∈ Supp(w),
mi = ♯{1 ≤ j ≤ i− 1 | uj = ui}, for 1 ≤ i ≤ l.

Moreover, for 1 ≤ i ≤ l, put

M i := (Π/I(su1 · · · sui))eui(mi), M =

l⊕
i=1

M i,

P =
⊕

u∈Supp(w)

Mpu , T = P0.

Note that P ∈ projZΠ(w) holds since Π(w) =
⊕

u∈Supp(w)M
pu(−mpu). If w =

su1 · · · sul
= c(0)c(1) · · · c(m) is a c-sortable expression of w, then we have an isomorphism

l⊕
i=1

M i ≃
m⊕
i=0

Π(c(0) · · · c(i))(i) (6.1)

in SubZΠ(w). In fact, for any 1 ≤ i ≤ l, M i = (Π/I(c(0) · · · c(mi)))eui(mi) holds by
Proposition 4.7, and for any 0 ≤ j ≤ m, if u ∈ Q0 \Supp(c(j)), then (Π/I(c(0) · · · c(j)))eu =
Π(w)eu holds, which is projective. Therefore we have an isomorphism (6.1). As we have
shown in Theorem 5.6, M =

⊕l
i=1M

i is a tilting object in SubZΠ(w).
Before starting the calculating of the endomorphism algebra EndZΠ(w)(M), we state a

triangle equivalence induced from a tilting object. We show that the global dimension of
EndZΠ(w)(M) is finite and we have the following theorem.
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Theorem 6.2. Let w ∈WQ be a c-sortable element and w = su1 · · · sul
= c(0)c(1) · · · c(m)

a c-sortable expression of w. Let M =
⊕l

i=1M
i be a tilting object in SubZΠ(w). Then

the global dimension of EndZΠ(w)(M) is finite and we have a triangle equivalence

SubZΠ(w) ≃ Db(EndZΠ(w)(M)).

Proof. By Proposition 6.14, the global dimension of EndZΠ(w)(M) is finite. By Theorems
5.6 and 3.9, we have the assertion.

We state another theorem of this section. Looking at the degree zero part of graded
modules, we have the following functor

F := (−)0 : modZΠ→ modKQ.

The functor F induces the following morphism of algebras

F := FM,M : EndZΠ(w)(M)→ EndKQ(M0)

given by F (f) = f |M0 . Then we claim the following.

Theorem 6.3. Let w be a c-sortable element. The morphism F induces an isomorphism
of algebras F : EndZΠ(w)(M)

∼−→ EndKQ(M0)/[T ], which makes the following diagram
commutative

EndZΠ(w)(M)
F //

��

EndKQ(M0)

��
EndZΠ(w)(M)

F // EndKQ(M0)/[T ],

where [T ] is an ideal of EndKQ(M0) consisting of morphisms factoring through objects in
addT , and vertical morphisms are canonical surjections.

Proof. In Proposition 6.15, we show that F actually induces a morphism F . F is surjective
by Proposition 6.29. In Proposition 6.31, we show that F is injective.

In Subsection 6.2, we show one theorem which we will use to prove Proposition 6.29.

Example 6.4. Let Q be a quiver
1

2 3
wwppp

pp

//
''NN

NNN . Let w = s1s2s3s1s2s1 be a reduced expres-

sion of w ∈WQ. This is a c-sortable element. In Example 5.2, we have

M =M1 ⊕M2 ⊕M3 ⊕M4 ⊕M5 ⊕M6

= 1⊕ 2

1
AA ⊕

3

1 2

1

}} AA

AA ⊕


1

2 3

1 2

1

AA }} AA

AA

⊕


2

3

1

1

2 3

1 2

1

AA

}} AA

AA }} AA

AA

⊕


1

2

3

1

3

1 2

1

AA }} AA

}} AA


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in SubZΠ(w), where the degree zero parts are denoted by bold numbers. Therefore, we
have P =M3 ⊕M5 ⊕M6 and

T = P0 =M3
0 ⊕M5

0 ⊕M6
0 =

3

1 2

1

}} AA

AA ⊕

3

1 2 3

1 2

1

}} AA

AA }} AA

AA
⊕ 3

1
}} ,

M0 =M1
0 ⊕M2

0 ⊕M4
0 ⊕ T = 1⊕ 2

1
AA ⊕

2 3

1 2

1

AA }} AA

AA ⊕ T.

It is easy to see that the algebra EndKQ(M0)/[T ] is given by the following quiver with
relations

∆ =

[
• a // • b // •

]
, ab = 0.

By Theorem 6.3 or a direct calculation, we can see that the algebra EndZΠ(w)(M) is also
given by the same quiver with relations.

We can describe the Auslander-Reiten quiver of SubZΠ(w). Let X be the kernel of the
canonical epimorphism Π(w)e2 → S2, where S2 is a simple module associated with the
vertex 2, and let Y be the cokernel of an inclusion (Π(w)e1)1 → Π(w)e2:

X =
3

1

1

2 3

1 2

1

}} AA

AA }} AA

AA

, Y =
2

3

1

1
AA

}}
.

Then the Auslander-Reiten quiver of SubZΠ(w) is the following one:

(Π(w)e1)1 X Y

· · ·

· · ·

(Π(w)e2)1

(Π(w)e1)[0,1]

(Π(w)e1)0

(Π(w)e1)2(1)

(Π(w)e1)[1,2](1)

Y0

(Π(w)e1)(1)

(Π(w)e1)[0,1](1)

(Π(w)e2)1(1)

· · ·
$$JJ

JJJ

::ttttt

::ttttt

$$JJ
JJJ

((QQ
QQQ

Q

66mmmmmm

77oooooo

''OO
OOO

O

$$JJ
JJJ

::ttttt

77oooooo

''OO
OOO

O
%%JJ

JJJ
J

99tttttt

77oooooo

''OO
OOO

O
%%JJ

JJJ
J

99tttttt

,

where M = (Π(w)e1)0 ⊕ Y0 ⊕ (Π(w)e1)[0,1](1). We see that the shape of the Auslander-

Reiten quiver of SubZΠ(w) is actually the same as that of Db(EndZΠ(w)(M)).

We first describe the quiver of EndΠ(w)(M). We recall the following definition of a
quiver Q(w) associated with a reduced expression w = su1su2 · · · sul

of w ∈ WQ. This
Q(w) was denoted by Q(u1, . . . , ul) in [BIRSc, Subsection III. 4].

Definition 6.5. [BIRSc] We define a quiver Q(w) associated with a reduced expression
w = su1su2 · · · sul

as follows:

• vertices: Q(w)0 = {1, 2, . . . , l}.
A vertex 1 ≤ i ≤ l in Q(w) is said to be type u ∈ Q0 if ui = u.

• arrows:
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(a1) For each u ∈ Supp(w), draw an arrow from j to i, where i, j are vertices of type
u, i < j, and there is no vertex of type u between i and j (we call these arrows
going to the left ).

(a2) For each arrow α : u→ v ∈ Q1, draw an arrow αi from i to j, where i < j, i is
a vertex of type u, j is a vertex of type v, there is no vertex of type u between
i and j, and j is the biggest vertex of type v before the next vertex of type u
(we call these arrows Q-arrows).

(a3) For each arrow α : u→ v ∈ Q1, draw an arrow α∗
i from i to j, where i < j, i is

a vertex of type v, j is a vertex of type u, there is no vertex of type v between
i and j, and j is the biggest vertex of type u before the next vertex of type v
(we call these arrows Q∗-arrows).

We denote by Q(w) the full subquiver of Q(w) whose the set of vertices is Q(w)0 \ {pu |
u ∈ Supp(w)}.

Note that the quiver Q(w) depends on the choice of a reduced expression of w.

Example 6.6. (a) Let Q be the quiver
1

2 3

α
{{www
w

β
//

γ
##GG

GG
, and w ∈WQ with a reduced expression

w = su1su2su3su4su5su6 = s1s2s3s1s2s1. Then we have the quiver Q(w) as follows:

3

2

1 4

5

6

??������

??������

//

((RR
RRR

RRR
RRR

((RR
RRR

RRR
RRR

??������ ��?
??

??
?

��
oo

oo

oo

(b) Let Q be the same quiver in (a), and w′ = su1su2su3su4su5su6 = s1s2s3s2s1s2 be
an another reduced expression of w. Then we have the quiver Q(w′) as follows:

3

2

1

4

5

6

??������

//

33gggggggggggggggg ����?
??

??
? ??������

**VVVV
VVVV

VVVV
VVVV

V

oo oo

oo

It is shown that Q(w) gives a quiver of EndΠ(w)(M) as we see in Theorem 6.8. We
define a morphism of algebras ϕ : KQ(w)→ EndΠ(w)(M).

Definition 6.7. Let w = su1su2 · · · sul
be a reduced expression of w ∈ WQ. Then we

define a morphism of algebras ϕ : KQ(w)→ EndΠ(w)(M) as

(a0) For a vertex i of Q(w), ϕ(ei) is an idempotent of EndΠ(w)(M) associated with M i.

(a1) For an arrow β : j → i going to the left, ϕ(β) is the canonical surjection M j →M i.

(a2) For a Q-arrow αi : i→ j of the arrow α ∈ Q1, ϕ(αi) is a morphism of Π(w)-modules
from M i to M j given by multiplying α from the right.
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(a3) For a Q∗-arrow α∗
i : i→ j of the arrow α ∈ Q1, ϕ(α

∗
i ) is a morphism of Π(w)-modules

from M i to M j given by multiplying α∗ from the right.

In the following theorem 6.8, we do not consider gradings of Π(w) and M i.

Theorem 6.8. [BIRSc, Theorem III. 4.1] Let w = su1su2 · · · sul
be a reduced expression

of w ∈ WQ. Then the morphism of algebras ϕ : KQ(w) → EndΠ(w)(M) induces an
isomorphism of algebras

ϕ : KQ(w)/I ≃ EndΠ(w)(M)

for an ideal I of KQ(w).

Since EndΠ(w)(M) =
⊕

n∈ZHom
Z
Π(w)(M,M(n)), we regard EndΠ(w)(M) as a graded

algebra by EndΠ(w)(M)n = HomZ
Π(w)(M,M(n)). In particular, we have EndZΠ(w)(M) =

EndΠ(w)(M)0. We introduce a grading on Q(w), that is, we introduce a map Q(w)1 → Z.

Definition 6.9. Assume that w = su1su2 · · · sul
is a reduced expression of w ∈ WQ. Let

Q(w) be the quiver of EndΠ(w)(M) and Q(w)0 = {1, . . . , l}. We define a grading on Q(w)
as follows:

(1) All arrows going to the left are of degree one.

(2) Let β : i→ j be a Q-arrow in Q(w). Then the degree of β is mi −mj .

(3) Let β : i→ j be a Q∗-arrow in Q(w). Then the degree of β is mi −mj + 1.

Example 6.10. (a) In the quiver of Example 6.6 (a), we have the grading of Q(w) as
follows:

3

2

1 4

5

6

??������

??������

//

((RR
RRR

RRR
RRR

((RR
RRR

RRR
RRR

??������ ��?
??

??
?

−1

��

1
oo

1
oo

1
oo

where non numbered arrows have degree zero.
(b) In the quiver of Example 6.6 (b), we have the grading of Q(w) as follows:

3

2

1

4

5

6

??������

//

−1

33gggggggggggggggg ��1
��?

??
??

?

−1

??������

−1

**VVVV
VVVV

VVVV
VVVV

V

1oo 1oo

1
oo

where non numbered arrows have degree zero.

We regard KQ(w) as a graded algebra by the grading of Definition 6.9. Then the
isomorphism in Theorem 6.8 holds as graded algebras.

Proposition 6.11. The morphism of algebras

ϕ : KQ(w)→ EndΠ(w)(M)

is a surjective morphism of graded algebras.
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Proof. It is enough to show that the morphism ϕ : KQ(w) → EndΠ(w)(M) preserves
gradings. Since KQ(w) is generated by arrows, it is enough to show that ϕ preserves
gradings of arrows.

(a1) Let β : j → i be an arrow going to the left. Then ϕ(β) is given by a surjection

(Π/I(su1su2 · · · suj ))euj (mj)→ (Π/I(su1su2 · · · sui))eui(mi).

Since there exists no vertex of type ui = uj between i and j, we have mi + 1 = mj . Since
top

(
M j
)
is concentrated in −mj and top

(
M i
)
is concentrated in −mi, this surjection is

degree one.
(a2) Let β = αi : i→ j be a Q-arrow in Q(w), where α ∈ Q1. Then ϕ(β) is a morphism

multiplying α from the right:

ϕ(β) = (·α) : (Π/I(su1su2 · · · sui))eui(mi)→ (Π/I(su1su2 · · · suj ))euj (mj)).

This means ϕ(β) is degree mi −mj .
(a3) Let β = α∗

i : i → j be a Q∗-arrow in Q(w), where α ∈ Q1. Then ϕ(β) is a
morphism multiplying α∗ from the right:

ϕ(β) = (·α∗) : (Π/I(su1su2 · · · sui))eui(mi)→ (Π/I(su1su2 · · · suj ))euj (mj)).

This means ϕ(β) is degree mi −mj + 1.

The following lemma is important to show Propositions 6.14 and 6.15.

Lemma 6.12. Assume that w = su1su2 · · · sul
is a c-sortable element. Let β : i→ j be an

arrow in Q(w) which is a Q-arrow or a Q∗-arrow. Then the following holds.

(a) If β has a negative degree, then we have i = pui and j = puj .

(b) If β satisfies i ̸= pui or j ̸= puj , then β has degree zero.

Proof. Assume that β is a Q-arrow and i is a vertex of type u and j is a vertex of type
v. Then, by the definition of Q(w), there exists an arrow α : u → v in Q which satisfies
αi = β. Pick up vertices of type u and v from Q(w)0 = {1, 2, . . . , l}, then we have the
following two cases:

1 ≤ a1 < b1 < a2 < b2 < · · · < as < bs < bs+1 < · · · < bt ≤ l, (6.2)

1 ≤ a1 < b1 < a2 < b2 < · · · < bt < at+1 < at+2 < · · · < as ≤ l, (6.3)

where a• are vertices of type u and b• are vertices of type v. By the definition of mj ,
we have mak = k − 1 and mbk = k − 1. Moreover, by the definition of pu and pv,
we have pu = as and pv = bt. Let Q(w)(i, j, α) be a subquiver of Q(w) such that
Q(w)(i, j, α)0 = {a1, · · · , as, b1, · · · , bt} and Q(w)(i, j, α)1 is the set of all arrows of the
form αk or α∗

k for some 1 ≤ k ≤ l or arrows going to the left.
In the case (6.2), the quiver Q(w)(i, j, α) is the following:

a1

b1

a2

b2

as

bs bs+1 bt· · ·

· · ·

· · ·??������ ��?
??

??
? ??������

??

oo

oo

��?
??

??
?

��?
??

??
?

oooo

oo oo oooooo

.

29



Since β is a Q-arrow, β is one of the arrows of ak → bk for 1 ≤ k ≤ s− 1 or as → bt. For
1 ≤ k ≤ s− 1, we have mak −mbk = 0. Therefore, in the case (6.2), (a) and (b) hold.

In the case (6.3), the quiver Q(w)(i, j, α) is the following:

a1

b1

a2

b2

at

bt

at+1 as

· · ·

· · · · · ·

??������ ��?
??

??
? ??������

??������ ��
oo

oo

��?
??

??
?

��?
??

??
?

oooo

oo

oo

oo

oo oo
.

Since β is a Q-arrow, β is one of the arrows of ak → bk for 1 ≤ k ≤ t. For 1 ≤ k ≤ t, we
have mak −mbk = 0. Therefore, in the case (6.3), (a) and (b) hold.

By the same argument, we can show in the case when β is a Q∗-arrow.

Lemma 6.13. Assume that w = su1su2 · · · sul
be a c-sortable expression of w ∈WQ, then

any f ∈ HomZ
Π(w)(M,M(a)) with a < 0 factors through addP = add(

⊕
u∈Supp(w)M

pu).

Proof. We identify EndΠ(w)(M) with KQ(w)/I as graded algebras by Theorem 6.8 and
Proposition 9.15. Since f is written as a liner combination of paths in Q(w), we can
assume that f = p for some path p in Q(w). Since f has a negative degree, the de-
gree of p is negative. Thus p contains an arrow of negative degree. By Lemma 6.12,
p factors through a vertex pu for some u ∈ Supp(w). Therefore, f factors through
addP = add(

⊕
u∈Supp(w)M

pu).

Now we are ready to show the finiteness of the global dimension of EndZΠ(w)(M).

Proposition 6.14. Let w = su1su2 · · · sul
= c(0)c(1) · · · c(m) be a c-sortable expression of

w ∈ WQ and M =
⊕l

i=1M
i be a tilting object in SubZΠ(w). Then the global dimension

of EndZΠ(w)(M) is finite.

Proof. By [BIRSm, Theorem 6.6], ϕ induces a surjective morphism of graded algebras
ϕ̃ : KQ(w)→ EndΠ(w)(M). By Lemma 6.12 (a),KQ(w) is positively graded and therefore
EndΠ(w)(M) is also positively graded. By taking degree zero part of these algebras, we
have the following commutative diagram

KQ(w)
ϕ̃ //

��

EndΠ(w)(M)

��
KQ

0
(w)

ϕ // EndZΠ(w)(M),

where we denote by Q
0
(w) a subquiver of Q(w) such that vertices are same as Q(w) and

arrows are all degree zero arrows of Q(w). We have a surjection ϕ, since ϕ̃ and vertical
morphisms are surjections. Because Q

0
(w) does not contains arrows going to the left,

Q
0
(w) is acyclic. Therefore the global dimension of EndZΠ(w)(M) is finite.

In Section 7, we show that the global dimension of EndZΠ(w)(M) is at most two.
We show that the morphism F actually induces a morphism F .

Proposition 6.15. The morphism F induces a morphism of algebras:

F : EndZΠ(w)(M)→ EndKQ(M0)/[T ].
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Proof. We show that if a morphism f : M → M in modZΠ(w) factors through graded
projective Π(w)-modules, then f factors through addP = add(

⊕
u∈Supp(w)M

pu). Without
loss of generality, we may assume that f = h◦g for g :M →Mpu(a) and h :Mpu(a)→M ,
where u ∈ Supp(w) and a ∈ Z. We divide into three cases:

• If a > 0, then Mpu(a)0 = Mpu
a = 0, since Mpu = Mpu

≤0 by Proposition 4.5. Thus we
have f |0 = 0.

• If a = 0, then f actually factors through Mpu ∈ addP .

• If a < 0, then g factors through addP by Lemma 6.13. Thus f also factors through
addP .

In the rest of this subsection, we give some examples of tilting objects M and its
endomorphism algebras.

Example 6.16. If Q is not Dynkin, then w = c2 = su1su2 · · · sunsu1su2 · · · sun is a reduced
expression by [BIRSc, Proposition III. 3.1]. Thus we have Π(w) = Π≤1 by Proposition 4.5.
Since M = Π(c) ⊕ Π(c2)(1) ≃ KQ in SubZΠ(w) and KQ is concentrated in degree 0, we
have

EndZΠ(w)(M) = EndΠ(w)(KQ).

By [BIRSc, Proposition III. 3.2], we have an isomorphism EndΠ(w)(KQ) ≃ KQ. Therefore,

we have EndZΠ(w)(M) ≃ KQ, and a triangulated equivalence

SubZΠ(w) ≃ Kb(projKQ) ≃ Db(KQ).

Example 6.17. Let Q be a quiver 1 //// 2 . Then we have a graded algebra Π =
Πe1 ⊕Πe2, and these are represented by their radical filtrations as follows:

1

2

1

2

1

2

2

1 1

2 2 2

1 1 1 1

2 2 2 2 2

}} AA }} AA

}} AA }} AA }} AA }} AA

}} AA }} AA }} AA }} AA }} AA }} AA

2

1

2

1

2

1

1

2 2

1 1 1

2 2 2 2

1 1 1 1 1

}} AA

}} AA }} AA }} AA

}} AA }} AA }} AA }} AA }} AA

,

where the degree zero parts are denoted by bold numbers. Let c = s1s2. This is a
Coxeter element. Let w = cn+1 = s1s2s1 · · · s1s2. This is a c-sortable element. We have
(Π/I(ci))e1 = (Π/J2i−1)e1, and (Π/I(ci))e2 = (Π/J2i)e2, where J is the Jacobson radical
of Π. By Theorem 5.6, M =

⊕n
i=1(Π/I(c

i))(i− 1) is a tilting object in SubZΠ(w), where
graded projective Π(w)-modules are removed. The endomorphism algebra EndZΠ(w)(M) ≃
EndKQ(M0)/[T ] is given by the following quiver with relations

∆ =

[
1

a //
b

// 2
a //
b

// 3
a //
b

// · · · a //
b
// 2n− 1

a //
b

// 2n

]
, aa = bb.

The algebra K∆/⟨aa− bb⟩ has global dimension two.
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6.2 Relationship between endomorphism algebras associated with w and
w′

In this subsection, we prove Theorem 6.25 which is used to prove Proposition 6.29.
Throughout this subsection, we use the notation in Definition 6.1.

Assume that v is a source in Q. Let Q′ = µv(Q) be the quiver obtained by reversing
all arrows starting at v. Although the preprojective algebras Π and Π′ of Q and Q′,
respectively, are the same as ungraded algebras, they have different gradings.

We first construct a functor from modZΠ to modZΠ′. Let β1, β2, . . . , βr be the arrows
in Q starting at v, and

Q′
1 =

(
Q1 \ {β1, β2, . . . , βr}

)
⊔ {γ1, . . . , γr},

where t(γi) = v, t(βi) = s(γi). We have an isomorphism of algebras ρ : KQ → KQ′

given by ρ(βi) = γ∗i , ρ(β
∗
i ) = −γi, and ρ(α) = α for other arrows. Then ρ induces an

isomorphism of the preprojective algebras, we also denote it by ρ:

ρ : Π
∼−→ Π′. (6.4)

By calculating the grading of paths of KQ and KQ′, we have the following lemma, where
δu,v = 1 if u = v and 0 otherwise for u, v ∈ Q0.

Lemma 6.18. For u, u′ ∈ Q0 and i ∈ Z, by identifying KQ with KQ′ by ρ, we have

eu(KQ)ieu′ = eu(KQ′)i+δu,v−δu′,veu′ .

Moreover, the equation also holds for Π and Π′, that is,

euΠieu′ = euΠ
′
i+δu,v−δu′,v

eu′ .

For a finitely generated graded Π′-module N , we regard EndΠ(N) as a graded algebra
by EndΠ(N)i = HomZ

Π(N,N(i)). The graded preprojective algebras Π and Π′ are related
as follows.

Lemma 6.19. We have an isomorphism of graded algebras

Π′ → EndΠ(Πev(1)⊕Π(1− ev)), x 7→ (·ρ−1(x)).

Proof. It is enough to show that the morphism preserves gradings. This follows from
Lemma 6.18.

Then we construct a functor G from modZΠ to modZΠ′. We need the following
Lemma.

Lemma 6.20. We have a surjective morphism of algebras Π→ EndΠ(Iv), x 7→ (·x).

Proof. If Q is a non-Dynkin quiver, then the assertion follows from Proposition 3.3 (a). If
Q is a Dynkin quiver, then the assertion follows from [M, Lemma 2.7].

More precisely, we have the following surjective morphism of graded algebras.
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Lemma 6.21. Let v ∈ Q0 be a source and U := Ivev(1)⊕Π(1− ev) ∈ modZΠ. Then we
have a surjective morphism of graded algebras

Π′ → EndΠ(U), x 7→ (·ρ−1(x)).

Moreover, we have the following surjective morphism of graded algebras

Π′ → EndΠ(Π/Iv), x 7→ (·π(ρ−1(x))),

where π : Π→ Π/Iv is the canonical surjection.

Proof. The morphism is surjective since ρ is an isomorphism and by Lemma 6.20. We
have to show that the composite is a morphism of graded algebras.

By Lemma 6.18, for u, u′ ∈ Q0, we have

eu(Π
′
i)eu′ = eu(Πi+δu′,v−δu,v)eu′ .

Moreover, for u, u′ ∈ Q0 and j ∈ Z, we have

Ujeu · eu(Πi+δu′,v−δu,v)eu′ =


(Iv)j+1eu · euΠieu′ u = u′ = v

(Iv)j+1eu · euΠi−1eu′ u = v, u′ ̸= v

Πjeu · euΠi+1eu′ u ̸= v, u′ = v

Πjeu · euΠieu′ u ̸= v, u′ ̸= v

⊂ U(i)jeu′ .

Thus, the morphism Π′ → EndΠ(U) is a morphism of graded algebras. The other follows
from a similar calculation.

By Lemma 6.21, we have a functor

G := HomΠ(U,−) : modZΠ→ modZΠ′.

where the grading on the Π′-module G(X) is given by G(X)i := HomZ
Π(U,X(i)). This

functor satisfies G ◦ (i) ≃ (i) ◦G for any i ∈ Z.
To show Proposition 6.23, we recall the following proposition. For a reduced expression

w = su1su2 · · · sul
, let Ik,m = I(suk

· · · sum) if k ≤ m and Ik,m = Π if m < k.

Proposition 6.22. [BIRSc, Lemma III. 1.14] Assume that su1su2 · · · sul
is a reduced

expression. Then we have Ik+1,m/I1,m ≃ HomΠ(Π/I(su1 . . . suk
),Π/I(su1 . . . sum)) by

x 7→ (·x).

Proof. If Q is a non-Dynkin quiver, then the assertion holds by [BIRSc, Lemma III. 1.14].
The assertion also holds when Q is a Dynkin quiver by Lemma 4.1.

We apply the same construction as Definition 6.1 to the reduced expression w′ :=
su2su3 · · · sul

. Put

p′u = max{2 ≤ j ≤ l | uj = u} − 1, for u ∈ Supp(w′),
m′

i = ♯{2 ≤ j ≤ i− 1 | uj = ui}, for 2 ≤ i ≤ l.
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Moreover, for 2 ≤ i ≤ l, put

M ′i−1 := (Π′/I ′(su2 · · · sui))eui(m
′
i), P ′ =

⊕
u∈Supp(w′)

M ′p′u .

We have Π′(w′) =
⊕

u∈Supp(w′)M
′p′u(−m′

p′u
). Put M ′ =

⊕l
i=2M

′i−1.

Proposition 6.23. Assume that w = su1su2 · · · sul
is a reduced expression of w ∈ WQ

and u1 = v is a source of Q, l ≥ 2. Let w′ = su2 · · · sul
. Then

(a) G(M1) = 0.

(b) For 2 ≤ j ≤ l, we have an isomorphism ψj : G(M j)
∼−→M ′j−1 in modZΠ′, that is,

ψj : G
(
(Π/I1,j)euj

)
(mj)

∼−→
(
(Π′/I ′2,j)euj

)
(m′

j).

(c) We have ψ =
⊕l

j=1 ψj : G(M) = G(M/M1)
∼−→M ′ in modZΠ′.

Proof. (a) Since a simple module associated with u1 = v does not appear in top(U), we
have HomΠ(U,M

1) = 0.
(b) Since m′

j = mj − δv,uj holds, we show that

G
(
(Π/I1,j)euj

)
≃
(
(Π′/I ′2,j)euj

)
(−δv,uj ).

By a similar calculation of the proof of Lemma 6.21, we have the following morphism of
graded Π′-modules

(I ′2,j/I
′
1,j)(−δv,uj )→ HomΠ((Π/Iv)(1),Π/I1,j),

(Π′/I ′1,j)(−δv,uj )→ HomΠ(Πev(1)⊕Π(1− ev),Π/I1,j),

where both of them are defined by x 7→ (·ρ−1(x)). These morphisms are isomorphisms
by Proposition 6.22. By Proposition 3.3 (e), Ext1Π(Π/Iv,Π/I1,j) = 0 holds. Applying the
functor HomΠ(−,Π/I1,j) to the exact sequence

0→ U → Πev(1)⊕Π(1− ev)→ (Π/Iv)(1)→ 0,

we have the following commutative diagram of exact sequence in modZΠ′;

0 // (I ′2,j/I
′
1,j)(−δv,uj )

//

≃
��

(Π′/I ′1,j)(−δv,uj )
//

≃
��

(Π′/I ′2,j)(−δv,uj )
//

��

0

0 //
Π((Π/Iv)(1),Π/I1,j) //

Π(Πev(1)⊕Π(1− ev),Π/I1,j) //
Π(U,Π/I1,j) // 0.

Therefore we have the assertion.
(c) This comes from (a) and (b).

The following lemma is used later.

Lemma 6.24. Under the setting in Proposition 6.23, for the functor G : modZΠ →
modZΠ′, we have

(a) G restricts to a dense functor projZΠ(w) to projZΠ′
w′ .
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(b) For i ∈ Z, the map GM,M(i) is surjective.

Proof. (a) This comes from Π(w) =
⊕

u∈Supp(w)M
pu(−mpu), Π

′
w′ =

⊕
u∈Supp(w′)M

′p′u(−m′
p′u
),

and Proposition 6.23.
(b) It is enough to show that the map GMj ,Mk(i) is surjective for 2 ≤ j, k ≤ l. By

Lemma 6.22 (b), we have

HomZ
Π(M

j ,Mk(i)) =

(
euj

Ij+1,k

I1,k
euk

)
mk−mj+i

,

HomZ
Π′(M ′j−1,M ′k−1(i)) =

(
euj

I ′j+1,k

I ′2,k
euk

)
m′

k−m′
j+i

.

For 2 ≤ j, k ≤ l, an equation m′
k − m′

j + i = mk − mj + δuj ,v − δuk,v + i holds. Thus

ρ : Π→ Π′ maps
(
euj (Ij+1,k/I1,k)euk

)
mk−mj+i

to
(
euj (I

′
j+1,k/I

′
2,k)euk

)
m′

k−m′
j+i

by Lemma

6.18. We have the following commutative diagram

HomZ
Π(M

j ,Mk(i))
G

Mj,Mk(i)//

≃
��

HomZ
Π′(G(M j),G(Mk)(i)) ∼

α // HomZ
Π′(M ′j−1,M ′k−1(i))

≃
��(

euj

Ij+1,k

I1,k
euk

)
mk−mj+i

//
(
euj

I′j+1,k

I′2,k
euk

)
m′

k−m′
j+i

,

(6.5)

where the lower map is induced by ρ : Π→ Π′, and α is defined by α(f) = ψk(i) ◦ f ◦ψ−1
j .

Since the lower map is surjective and α is an isomorphism by Proposition 6.23 (b), we
have that GMj ,Mk(i) is surjective.

The following theorem is a graded version of [IR, Theorem 3.1, (ii)] and the main
theorem of this subsection.

Theorem 6.25. Under the setting in Proposition 6.23, we have an isomorphism of alge-
bras

G : EndZΠ(w)(M)/[M1(i) | 0 ≤ i ≤ pu1 ]
∼−→ EndZΠ′

w′
(M ′),

where G(−) = ψ ◦ GM,M (−) ◦ ψ−1 and [M1(i) | 0 ≤ i ≤ pu1 ] is an ideal of EndZΠ(w)(M)

consisting of morphisms factoring through objects in add{M1(i) | 0 ≤ i ≤ pu1}.

Proof. We show that G is surjective and Ker(G) = [M1(i) | 0 ≤ i ≤ pu1 ].
(i) By Lemma 6.24 (b), G is surjective.
(ii) Since ψ is an isomorphism, we have Ker(G) = Ker(GM,M ). We show that Ker(GM,M ) =

[M1(i) | 0 ≤ i ≤ pu1 ]. By Proposition 6.23 (a), we have [M1(i) | 0 ≤ i ≤ pu1 ] ⊂
Ker

(
GMj ,Mk

)
. Conversely, we show that Ker

(
GMj ,Mk

)
⊂ [M1(i) | 0 ≤ i ≤ pu1 ] for

2 ≤ j, k ≤ l. By the commutative diagram (6.5), we have

Ker
(
GMj ,Mk

)
=

(
euj

I2,k
I1,k

euk

)
mk−mj

.
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If uj ̸= u1, then eujI1,k = eujI2,k and we have Ker
(
GMj ,Mk

)
= 0. If uj = u1, then we

have

Ker
(
GMj ,Mk

)
=

(
euj

I2,k
I1,k

euk

)
mk−mj

=

(
euj

Π

Iu1

eu1

)(
eu1

I2,k
I1,k

euk

)
mk−mj

= HomZ
Π(M

1(mj),M
k) ◦HomZ

Π(M
j ,M1(mj)).

In particular, we have Ker
(
GMj ,Mk

)
⊂ [M1(i) | 0 ≤ i ≤ pu1 ].

We end this subsection by showing the following lemma which is used later to show
Lemma 6.28. For a source v ∈ Q0 and Q′ = µv(Q), we have the reflection functor

mod KQ
R+

v−−→ mod KQ′.

Note that U is generated by U0 as a left Π-module. In fact, Iveu = Πeu is generated by
eu for u ̸= v and Ivev is generated by all arrows in Q starting at v.We denote by F′ the
degree zero functor on modZΠ′:

F′ = (−)0 : modZΠ′ → modKQ′.

Lemma 6.26. Let v be a source of Q and Q′ = µv(Q).

(a) We have a morphism of functors ϕ : F′ ◦G→ R+
u1
◦ F.

(b) For any X ∈ mod≤0Π, ϕX : G(X)0 → R+
v (X0) is an isomorphism of KQ′-modules,

that is, the following diagram of functors is commutative on mod≤0Π:

modZΠ
G //

F
��

modZΠ′

F′

��
mod KQ

R+
v // mod KQ′.

Proof. By the definition of the functor G, we have G(X)0 = HomZ
Π(U,X). Since Πi ≃

τ−i(KQ) as KQ-modules, U0 = τ−(KQev)⊕KQ(1− ev) holds and this is an APR-tilting
KQ-module associated with v. Therefore we have a morphism of KQ′-modules

ϕX : G(X)0 = HomZ
Π(U,X)→ HomKQ(U0, X0) = R+

v (X0),

given by ϕX(f) = f |U0 . Clearly this gives a morphism ϕ : F′◦G→ R+
u1
◦F of functors. Since

U is generated by U0 as a graded Π-module, a morphism f ∈ HomZ
Π(U,X) is determined

by ϕX(f). This implies that ϕX is injective.
We show that ϕX is surjective when X is in mod≤0Π. Let g ∈ HomKQ(U0, X0). We

define a morphism f : U → X of KQ-modules by f |U0 = g and f |U≥1
= 0. Then f gives

a morphism in modZΠ, since X ∈ mod≤0Π and Π is positively graded.
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6.3 F is surjective

We use the notation in Subsections 6.1 and 6.2. For a quiver Q, we denote byWQ the Cox-
eter group ofQ. Assume thatw = c(0)c(1) · · · c(m) = su1su2 · · · sul

is a c-sortable expression
of w ∈ WQ. Without loss of generality by Lemma 4.1, we assume that Q0 = Supp(w).
Let Q′ = µu1(Q). We show that the morphism F : EndZΠ(w)(M) → EndKQ(M0)/[T ] is
surjective. We first prove the following lemma.

Lemma 6.27. An element w′ with a reduced expression w′ = su2 · · · sul
is a (su1csu1)-

sortable element in WQ′.

Proof. It is clear that su1csu1 is a Coxeter element of WQ′ admissible with respect to the
orientation of Q′. Let a = max{k | u1 ∈ Supp(c(k))}. Put

c′(k) =


su1c

(k)su1 0 ≤ k ≤ a− 1

su1c
(k) k = a

c(k) a+ 1 ≤ k ≤ m.

Then we have a reduced expressionw′ = c′(0)c′(1) · · · c′(m′), wherem′ = m−1 if Supp(c(m)) =
{u1}, and m′ = m if otherwise. Since each c′(k) is a subword of su1csu1 , w

′ is a (su1csu1)-
sortable element.

Let w′ = su2 · · · sul
. By Proposition 6.23 (c), there exists the isomorphism of graded

Π′-modules
ψ : G(M/M1)

∼−→M ′.

By using ψ, we have an isomorphism of algebras

α : EndZΠ′(G(M/M1))→ EndZΠ′(M ′)

defined by α(f) = ψ ◦ f ◦ ψ−1. Moreover we have an isomorphism of algebras

α0 : EndKQ′(G(M/M1)0)→ EndKQ′(M ′
0)

defined by α0(f) = ψ0 ◦ f ◦ ψ−1
0 , where ψ0 = ψ|G(M/M1)0 . Let

F>1 := FM/M1,M/M1 : EndZΠ(M/M1)→ EndKQ

(
(M/M1)0

)
.

Lemma 6.28. The following diagram is commutative:

EndZΠ(M/M1)
G>1 //

F>1

��

EndZΠ′(G(M/M1))

F
′

��

α
∼

// EndZΠ′(M ′)

F ′

��
EndKQ((M/M1)0)

R
∼

// EndKQ′ (G(M/M1)0)
α0

∼
// EndKQ′ (M ′

0),

(6.6)

where G>1 = GM/M1,M/M1, F
′
= F′

G(M/M1),G(M/M1), and R is defined by R(f) = (ϕM/M1)−1◦
R+

u1
(f) ◦ ϕM/M1.

Proof. The commutativity of the left square comes from the functoriality of ϕ of Lemma
6.26. The commutativity of the right square is clear.

37



Proposition 6.29. Assume that w = su1su2 · · · sul
= c(0)c(1) · · · c(m) is a c-sortable ex-

pression of w ∈WQ. Then we have

(a) The morphism F : EndZΠ(w)(M)→ EndKQ(M0), f 7→ f |M0 is surjective.

(b) The morphism F : EndZΠ(w)(M)→ EndKQ(M0)/[T ] is surjective.

Proof. (a) We show the assertion by induction on l. Assume that l = 1. Then we have
M = M1 = M1

0 and Π(w) = KQ. Thus we have EndZΠ(w)(M) = EndKQ(M0). The
assertion holds. Assume that l ≥ 2. We show that two maps

F1 := FM1,M : HomZ
Π(w)(M

1,M)→ HomKQ(M
1
0 ,M0),

FM/M1,M : HomZ
Π(w)(M/M1,M)→ HomKQ

(
(M/M1)0,M0

)
are surjective. Since M1 =M1

0 , M is in mod≤0Π(w), and Πw is positively graded, we can
regard any g ∈ HomKQ(M

1
0 ,M0) as a morphism in modZΠw. Therefore, F1 is surjective.

By [AIRT, Corollary 3.10], we have HomKQ(M
j
0 ,M

i
0) = 0 for i < j. Thus we have

HomKQ

(
(M/M1)0,M0

)
= EndKQ

(
(M/M1)0

)
. Therefore it is enough to show that the

map
F>1 := FM/M1,M/M1 : EndZΠ(w)(M/M1)→ EndKQ

(
(M/M1)0

)
is surjective. We show that F>1 is surjective by using the diagram (6.6). Let w′ =
su2 · · · sul

. By Lemma 6.27 (c), w′ is a (su1csu1)-sortable element in WQ′ . Thus, by the
inductive hypothesis, F ′ in the diagram (6.6) is surjective. By Theorem 6.25, G>1 is
surjective. Since α, α0, and R are isomorphism, F>1 is surjective.

(b) We have the following commutative diagram

EndZΠ(w)(M)
π //

F

��

EndZΠ(w)(M)

F

��
EndKQ(M0)

π′
// EndKQ(M0)/[T ].

(6.7)

Since the bottom and the left morphisms are surjective, the right morphism is surjective.

6.4 F is injective

We show that the morphism F is injective. Letw = su1su2 · · · sul
be a c-sortable expression

and w′ = su2 · · · sul
. Without loss of generality by Lemma 4.1, we assume that Q0 =

Supp(w). Since G(M1) = 0 and by Lemma 6.28, we have the following commutative
diagram:

EndZΠ(w)(M)
G //

F

��

EndZΠ′(w′)(M
′)

F ′

��
EndKQ(M0)

R // EndKQ′(M ′
0),

(6.8)

where R = α0 ◦R.
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Lemma 6.30. Let f ∈ EndZΠw
(M). Assume that G(f) factors through addP ′. Then we

have

(a) f factors through add(P ⊕M1).

(b) If F (f) = 0, then f factors through add(P ).

Proof. (a) By Proposition 6.23 (d), we have G(P ) = P ′. Since G(f) factors through addP ′

and by Theorem 6.25 and Lemma 6.24, there exist morphisms f1, g ∈ EndZΠ(w)(M) such

that f = f1+g, f1 factors through addP , and g factors through add{M1(i) | i ≥ 0}. Thus
g is the sum of morphisms g1, g2 ∈ EndZΠ(w)(M) such that g1 factors through addM1 and

g2 factors through add{M1(i) | i ≥ 1}. By Lemma 6.13, g2 factors through addP .
(b) By (a), there exists g ∈ EndZΠ(w)(M) such that g factors through addM1 and f − g

factors through addP . We show that g factors through addP . Since HomZ
Π(w)(M/M1,M1) =

0, we have g|M/M1 = 0. Therefore we may regard g as a morphism from M1 to M . Since
F (f) = 0, F (g − f) = F (g) : M1

0 → M0 factors through addP0. By Proposition 6.29 (a),
there exists h ∈ HomZ

Π(w)(M
1,M) such that h factors through addP and F (g) = F (h).

Because M1 =M1
0 , we have g = h.

Proposition 6.31. The morphism F : EndZΠ(w)(M)→ EndKQ(M0)/[T ] is injective.

Proof. We show the assertion by induction on l. If l = 1, then we have EndZΠ(w)(M) =
EndKQ(M0)/[T ] = 0. Thus the claim is clear.

Assume that l ≥ 2. Let f be a morphism in EndZΠ(w)(M) satisfying F (π(f)) = 0.

We show π(f) = 0. By the commutative diagram (6.7), we have π′(F (f)) = 0. Since
Kerπ′ = [T ], F (f) factors through addT . By Proposition 6.29 (a) and F(P ) = T , there
exists g ∈ EndZΠ(w)(M) such that g factors through addP and F (f) = F (g). Put h :=

f − g ∈ EndZΠ(w)(M). We have π(f) = π(h). Therefore it is enough to show π(h) = 0.
Consider the following commutative diagram

EndZΠ(w)(M)
G //

F

��

EndZΠ′(w′)(M
′)

η //

F ′

��

EndZΠ′(w′)(M
′)

F ′

��
EndKQ(M0)

R // EndKQ′(M ′
0)

η′ // EndKQ′(M ′
0)/[T

′],

where η and η′ are canonical surjections. We have

F ′(η(G(h))) = η′(F ′(G(h))) = η′(R(F (h))) = 0,

since F (h) = F (f) − F (g) = 0. By the inductive hypothesis, F ′ is injective. Thus
η(G(h)) = 0 and G(h) factors through a graded projective Π′(w′)-module. By the proof
of Proposition 6.15, G(h) factors through addP ′. Thus, by Lemma 6.30 (b), h factors
through addP . Therefore, we have π(f) = π(h) = 0.
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7 The global dimension of the endomorphism algebra

Throughout this section, let A be a finite dimensional algebra and T a cotilting A-module
of finite injective dimension, that is, T satisfies injdimT < ∞, ExtiA(T, T ) = 0 for any
i > 0, and there exists an exact sequence 0 → Tr → · · · → T1 → T0 → DA → 0 where
Ti ∈ addT . We denote by ⊥>0T the full subcategory consisting of modA of modules X
satisfying ExtiA(X,T ) = 0 for any i > 0. The aim of this section is to show the following
theorem.

Theorem 7.1. Assume that the global dimension of A is at most n and that ⊥>0T has an
additive generator M . Then the global dimension of EndA(M)/[T ] is at most 3n− 1.

Note that EndA(M) and EndA(M)/[T ] are relative version of Auslander algebras and
stable Auslander algebras. It is known that Auslander algebras have global dimension
at most two [ARS], and that stable Auslander algebras have global dimension at most
3(gldimA) − 1 [AR74, Proposition 10.2]. We apply Theorem 7.1 to our endomorphism
algebra in Theorem 6.3. We denote by SubT the full subcategory of modA consisting of
submodules of finite direct sums of T .

Corollary 7.2. Under the setting in Theorem 6.3, the global dimension of EndKQ(M0)/[T ]
is at most two.

Proof. Let Q(1) be the full subquiver of Q whose the set of vertices is Supp(w). We
have EndKQ(M0)/[T ] = EndKQ(1)(M0)/[T ]. Moreover, by Theorem 4.9, T is a tilting

KQ(1)-module. By [AIRT, Theorem 3.11], we have SubT = add{M1
0 ,M

2
0 , . . . ,M

l
0}. By

Bongartz’s lemma [ASS, Chapter VI, 2.4. Lemma], tilting modules over a hereditary
algebra coincide with cotilting modules. Since KQ(1) is hereditary, SubT = ⊥>0T holds.
Therefore, by applying Theorem 7.1, the global dimension of EndKQ(1)(M0)/[T ] is at most
two.

To show Theorem 7.1, we use cotilting theory. We recall some properties of cotilting
modules.

Proposition 7.3. [AR91, Theorem 5.4, Proposition 5.11] Let T be a cotilting A-module.
Then

(a) For any X ∈ ⊥>0T , there exists an injective left (addT )-approximation of X.

(b) Let X ∈ ⊥>0T . Then X ∈ addT if and only if Ext1A(Y,X) = 0 for any Y ∈ ⊥>0T .

In the following lemma and proposition, we construct an important long exact se-

quence. For X,Y ∈ modA, we denote by Hom
T
A(X,Y ) the quotient of HomA(X,Y ) by

the subspace consisting of morphisms factoring through addT , that is, Hom
T
A(X,Y ) =

HomA(X,Y )/[T ].

Lemma 7.4. For an exact sequence 0 → X
f−→ Y

g−→ Z → 0 in ⊥>0T and any A-module
N , we have the following exact sequence

Hom
T
A(Z,N)

−◦g−−→ Hom
T
A(Y,N)

−◦f−−→ Hom
T
A(X,N).
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Proof. It is enough to show that Ker(− ◦ f) ⊂ Im(− ◦ g). Assume that α ∈ HomA(Y,N)
satisfies fα = 0 ∈ HomA(X,N)/[T ]. There exists a module T ′ ∈ addT and morphisms
h1 : X → T ′, h2 : T ′ → N such that fα = h1h2. Since Ext1A(Z, T ) = 0, there exists a
morphism β : Y → T ′ such that fβ = h1. Since f(α−βh2) = fα−fβh2 = fα−h1h2 = 0,
there exists a morphism γ : Z → N such that gγ = α− βh2.

X
f //

h1
��

Y
g //

α

��

β

~~|
|
|
|

Z

γ~~}
}
}
}

T ′
h2

// N.

LetX ∈ ⊥>0T . By Proposition 7.3 (b), there exists an injective left (addT )-approximation
f : X → T ′. We have Cok f ∈ ⊥>0T . We denote by Ω−

T (X) a cokernel of f . Note that
Ω−
T (X) is uniquely determined by X up to direct summands in addT . Let Ω−n

T (X) =

Ω−
T (Ω

−(n−1)
T (X)) for n > 1.

Proposition 7.5. Let 0→ X
f−→ Y

g−→ Z → 0 be an exact sequence in ⊥>0T . Then

(a) We have an exact sequence 0→ Y → Z ⊕ T ′ → Ω−
T (X)→ 0, where T ′ ∈ addT .

(b) For any A-module N , we have the following long exact sequence

· · · → Hom
T
A(Ω

−n
T (Z), N)→ Hom

T
A(Ω

−n
T (Y ), N)→ Hom

T
A(Ω

−n
T (X), N)→ · · ·

· · · → Hom
T
A(Ω

−
T (X), N)→ Hom

T
A(Z,N)→ Hom

T
A(Y,N)→ Hom

T
A(X,N).

Proof. (a) Let h : X → T ′ be an injective left (addT )-approximation of X. Since
Ext1A(Z, T ) = 0, h factors through f , and therefore we have the following commutative
diagram

0 // X // Y //

��

Z //

��

0

0 // X // T ′ // Ω−
T (X) // 0.

Thus we have an exact sequence 0→ Y → Z ⊕ T ′ → Ω−
T (X)→ 0.

(b) By applying (a) and Lemma 7.4 inductively, we have the assertion.

In the following two propositions, we assume that the global dimension of A is at most
n.

Proposition 7.6. Let X ∈ ⊥>0T . If the global dimension of A is at most n, then we have
Ω−n
T (X) ∈ addT .

Proof. By Proposition 7.3 (b), it is enough to show that Ext1A(Y,Ω
−n
T (X)) = 0 for any

Y ∈ ⊥>0T . Let Y ∈ ⊥>0T . By using Proposition 7.3 (a), we have the following exact
sequence

0→ X → T0
f0−→ T1

f1−→ · · · → Tn−1
fn−1−−−→ Ω−n

T (X)→ 0,

41



where Ti ∈ addT and Im fi = Ω
−(i+1)
T (X). By applying HomA(Y,−) to this exact se-

quence, we have the following isomorphisms

Ext1A(Y,Ω
−n
T (X)) ≃ Ext2A(Y,Ω

−(n−1)
T (X))

≃ Ext3A(Y,Ω
−(n−2)
T (X))

· · ·
≃ Extn+1

A (Y,X) = 0,

where the last equation follows from gldimA ≤ n.

Proposition 7.7. Assume that the global dimension of A is at most n. For an exact
sequence 0 → X → Y → Z → 0 in ⊥>0T and any A-module N , we have the following
exact sequence

0→ Hom
T
A(Ω

−(n−1)
T (Z), N)→ Hom

T
A(Ω

−(n−1)
T (Y ), N)→ Hom

T
A(Ω

−(n−1)
T (X), N)→ · · ·

· · · → Hom
T
A(Ω

−
T (X), N)→ Hom

T
A(Z,N)→ Hom

T
A(Y,N)→ Hom

T
A(X,N).

Proof. By Proposition 7.6, we have Hom
T
A(Ω

−n
T (X), N) = 0. Therefore, we have a desired

exact sequence by Proposition 7.5 (b).

Then we prove Theorem 7.1.

Proof of Theorem 7.1. We show that projective dimensions of all right EndA(M)/[T ]-
modules are at most 3n − 1. Let N be a right EndA(M)/[T ]-module. There exist
X,Y ∈ ⊥>0T and a homomorphism of A-modules f : X → Y which induce a minimal
projective presentation of N ,

Hom
T
A(Y,M)

−◦f−−→ Hom
T
A(X,M)→ N → 0.

Let g : X → T ′ be an injective left (addT )-approximation of X. We have an injective
morphism h = f ⊕ g : X → Y ⊕ T ′. Since g is a left (addT )-approximation of X, we have

Cokh ∈ ⊥>0T . Let Z = Cokh. We have an exact sequence 0 → X
h−→ Y ⊕ T ′ → Z → 0.

By Proposition 7.7, we have the following exact sequence

0→ Hom
T
A(Ω

−(n−1)
T (Z), N)→ Hom

T
A(Ω

−(n−1)
T (Y ), N)→ Hom

T
A(Ω

−(n−1)
T (X), N)→ · · ·

· · · → Hom
T
A(Ω

−
T (X), N)→ Hom

T
A(Z,N)→ Hom

T
A(Y,N)

−◦f−−→ Hom
T
A(X,N).

Therefore the projective dimension of N is at most 3n− 1.
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Part II

Tilting objects associated to c-starting
and c-ending elements

This part is based on the paper [Ki16]. Throughout this part, we use the notation intro-
duced in Section 3.

8 Preliminary

In this section, we recall basic facts and show basic lemmas on graded algebras which we
will use.

8.1 Graded algebras

In this subsection, we observe some properties of graded algebras. Recall that a graded
algebra A =

⊕
i∈ZAi is said to be positively graded if Ai = 0 for any i < 0. The following

lemma is well-known and we omit the proof.

Lemma 8.1. Let A be a finite dimensional graded algebra and let M,N be finitely gen-
erated indecomposable graded A-modules. If M is isomorphic to N in mod A, then there
exists an integer i such that M(i) is isomorphic to N in modZA.

We need the following lemma later.

Lemma 8.2. Let A be a finite dimensional positively graded algebra such that the global
dimension of A0 is at most m. Let M ∈ mod≥0A and

· · · → P 2 f2

−→ P 1 f1

−→ P 0 f0

−→M → 0 (8.1)

be a minimal projective resolution of M in modZA. Then we have Ker(fm)0 = 0.

Proof. We show that, by taking the degree zero part of (8.1), we have a minimal projective
resolution ofM0 in mod A0. Since A is positively graded andM ∈ mod≥0A, P i ∈ mod≥0A
holds for each i ≥ 0. Thus (P i)0 is either a projective A0-module or a zero module for
any i ≥ 0. Therefore the degree zero part of (8.1) gives a projective resolution of M0 in
modA0. Next we show a minimality, that is, for each i ≥ 0, Ker(f i)0 is a superfluous A0-
submodule of (P i)0. Let L be an A0-submodule of (P i)0 satisfying L+Ker(f i)0 = (P i)0.
There exists an exact sequence 0 → (P i)≥1 → P i → (P i)0 → 0. By taking a pull-back
diagram of P i → (P i)0 ←↩ L, we have an A-module N which is a submodule of P i and
satisfies N0 = L and N≥1 = (P i)≥1. This implies N + Ker(f i) = P i. Therefore we have
N = P i and L = (P i)0.

Since the global dimension of A0 is at most m and the degree zero part of (8.1) is a
minimal projective resolution of M0 in modA0, we have Ker(fm)0 = 0.

We use the following definition in Section 11.

Definition 8.3. Let A,B,C be graded algebras.
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(1) We define a grading on the tensor algebra A⊗B as follows:

(A⊗B)i =
{∑

a⊗ b | a ∈ Aj , b ∈ Bk, j + k = i
}
,

for any i ∈ Z.

(2) Let X be a graded A⊗ Bop-module and Y a graded B ⊗ Cop-module. We define a
grading on the A⊗ Cop-module X ⊗B Y as follows:

(X ⊗B Y )i =
{∑

x⊗ y | x ∈ Xj , y ∈ Yk, j + k = i
}
,

for any i ∈ Z.

8.2 Some results on Π(w) and SubZΠ(w)

Let w ∈ WQ. In this subsection, we show some results on Π(w) and the category
SubZΠ(w). In particular, we show that SubZΠ(w) has a Serre functor. The following
lemma is an easy observation of the grading on Π(w).

Lemma 8.4. The following holds.

(a) Let c ∈WQ be the Coxeter element. We have I(c)0 = 0.

(b) Let w be an element of WQ. If there exists a reduced expression w of w containing
an expression of the Coxeter element c as a subword, then we have I(w)0 = 0. In
particular, we have Π(w)0 = KQ.

(c) Let w = su1su2 · · · sul
be a reduced expression of w ∈ WQ which is a subword of an

expression of the Coxeter element c of WQ. Then we have eu1I(w)0eul
= 0.

Proof. (a) This comes from [BIRSc, Proposition III. 3.2].
(b) By (a), we have I(w)0 ⊂ I(c)0 = 0.
(c) We have eu1I(w)0eul

⊂ eu1I(c)0eul
= 0.

We need the following two observations.

Lemma 8.5. The category SubZΠ(w) is an extension closed subcategory of fdZΠ.

Proof. By [BIRSc, Proposition III. 2.3] (a), SubΠ(w) is an extension closed subcategory
of fdΠ. Let 0→ X → Y → Z → 0 be an exact sequence in fdZΠ and X,Z ∈ SubZΠ(w).
Since Y ∈ SubΠ(w) and Y ∈ fdZΠ, we have Y ∈ SubZΠ(w).

Proposition 8.6. Let Q be a non-Dynkin quiver and Π be the preprojective algebra of Q.
Put Πe = Π ⊗ Πop. Let D = D(ModZΠ) be the derived category of ModZΠ and X,Y in
D. Then the following holds.

(a) RHomΠe(Π,Πe) ≃ Π[−2](1) holds in D(ModZΠe).

(b) If the homology of X is of finite total dimension, then we have a bifunctorial iso-
morphism

HomD(X,Y ) ≃ DHomD(Y,X[2](−1)).
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Proof. (a) By [GLS07, Section 8], we have a graded Πe-module resolution of Π:

0→
⊕
u∈Q0

(Πeu ⊗ euΠ) (−1)→
⊕
β∈Q1

(
Πes(β) ⊗ et(β)Π

)
(−deg β)

→
⊕
u∈Q0

(Πeu ⊗ euΠ)→ Π→ 0.

This resolution induces the desired isomorphism.
(b) This follows from (a) and [Ke08, Lemma 4.1].

Then we have a Serre functor of SubZΠ(w).

Proposition 8.7. For any w ∈ WQ, the triangulated category SubZΠ(w) has a Serre
functor [2](−1).

Proof. By Lemma 4.1, we assume that Q is a non-Dynkin quiver. By Lemma 8.5,
SubZΠ(w) is an extension closed full subcategory in fdZΠ. Thus we have Ext1

SubZ Π(w)
(X,Y ) =

Ext1
ModZ Π

(X,Y ) for X,Y ∈ SubZΠ(w). Therefore we have

HomSubZ Π(w)(X,Y [1]) ≃ Ext1
ModZ Π

(X,Y )

≃ DExt1
ModZ Π

(Y,X(−1))
≃ DHomSubZ Π(w)(Y,X[1](−1)),

for X,Y in SubZΠ(w), where the second isomorphism comes from Proposition 8.6. This
means that SubZΠ(w) has a Serre functor [2](−1).

We need one result of Iwanaga-Gorenstein algebras. The next theorem is the famous
shown in [Bu, Ha91, Ri] and its graded version in the case of injective dimension at most
one [IYa]. For a finite dimensional (resp, graded) algebra A, we denote by Kb(projA)
(resp, Kb(projZA)) the homotopy category of bounded complexes of finitely generated
(resp, graded) projective A-modules.

Theorem 8.8. Let A be an Iwanaga-Gorenstein algebra of dimension at most one. Then
the following holds.

(a) There exists a triangle equivalence

Db(modA)/Kb(projA)
∼−→ SubA,

where a quasi-inverse of this equivalence is induced from the composite of the canon-
ical functors SubA→ Db(modA)→ Db(modA)/Kb(projA).

(b) If A is a graded algebra. Then we have the following triangle equivalence

Db(modZA)/Kb(projZA)
∼−→ SubZA.

where a quasi-inverse of this equivalence is induced from the composite of the canon-
ical functors SubZA→ Db(modZA)→ Db(modZA)/Kb(projZA).
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Note that categories SubA and SubZA for an Iwanaga-Gorenstein algebra A of dimen-
sion at most one are often called singularity categories. We denote by ρA the composite
of triangle functors

ρA : Db(mod A)→ Db(mod A)/Kb(proj A)
∼−→ SubA,

and denote by ρZA the graded version of ρA if A is a graded algebra.

9 A silting object in SubZΠ(w)

In this section, we show that the category SubZΠ(w) has a silting object for any w ∈WQ.
For the definition of silting objects, see Subsection 3.3. In Subsection 9.1, we study a more
general triangulated category than SubZΠ(w).

9.1 Cluster tilting subcategories and thick subcategories

In this subsection, let T be a Hom-finite, Krull-Schmidt triangulated category with a
Serre functor S. Put S2 = S ◦ [−2]. We denote by T /S2 the orbit category of T associated
with S2. For any object M of T , we regard the endomorphism algebra EndT /S2(M) as

a graded algebra by EndT /S2(M)i = HomT (M, S−i
2 (M)). For a subcategory C of T , put

C⊥ = {X ∈ T | HomT (C, X) = 0} and ⊥C = {X ∈ T | HomT (X, C) = 0}.
A subcategory C of T is called a contravariantly finite subcategory of T if for any

X ∈ T , there exists a morphism f : Y → X with Y ∈ C such that the map HomT (Z, f) :
HomT (Z, Y ) → HomT (Z,X) is surjective for any Z ∈ C. Dually, we define a covari-
antly finite subcategory of T . We call C a functorially finite subcategory of T if C is a
contravariantly and covariantly finite subcategory of T .

We recall the definition of cluster tilting subcategories.

Definition 9.1. [IYo] Let C be a subcategory of T . We call C a cluster tilting subcategory
of T if C is a functorially finite subcategory of T and

C = C[−1]⊥ = ⊥C[1].

We recall the following property of cluster tilting subcategories.

Proposition 9.2. [IYo, Theorem 3.1] If C is a cluster tilting subcategory of T , then for
any object X of T , there exists a triangle C0 → X → C1[1]→ C0[1] with C0, C1 ∈ C.

We recall some definitions. We denote by JT the Jacobson radical of T . We call a
morphism f : X → Y in T right minimal if f does not have a direct summand of the form
X ′ → 0 for some X ′ ∈ T . Let C be a full subcategory of T . A morphism f : X → Y in C
is called a right minimal almost split morphism of Y in C if the following three conditions
are satisfied:

(i) f is not a retraction.

(ii) f induces a surjective map HomT (Z,X)→ JT (Z, Y ) for any Z ∈ C.

(iii) f is right minimal.
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Dually, a left minimal almost split morphism is defined.
Note that if there exists a left (resp, right) minimal almost split morphism of Y in C,

then it is unique up to isomorphism. We use the following theorem.

Theorem 9.3. [IYo, Theorem 3.10] Let C be a cluster tilting subcategory of T and X be
an indecomposable object of C. Then there exist triangles

S2(X)
g−→ C1 → Y → S2(X)[1], Y → C0

f−→ X → Y [1], (9.1)

where f is a right minimal almost split morphism in C and g is a left minimal almost split
morphism in C. Dually, there exist triangles

X
g′−→ C0 → Z → X[1], Z → C1 f ′

−→ S−1
2 (X)→ Z[1], (9.2)

where g′ is a left minimal almost split in C and f ′ is a right minimal almost split in C.

Note that the triangles (9.2) are obtained by applying the functor S−1
2 to the triangles

(9.1). In [IYo], the triangles (9.1), regarded as a complex of T , is called an Auslander-
Reiten 4-angle ending at X (AR 4-angle, for short).

Let X be an object of T and X ≃
⊕l

i=1Xi be an indecomposable decomposition of
X. We call X a basic object if Xi ̸≃ Xj holds for any i ̸= j. We assume the following
condition.

Assumption 9.4. Let M be a basic object of a triangulated category T .

(i) We have a cluster tilting subcategory U of T given by

U := add{Si2(M) | i ∈ Z}.

(ii) The graded algebra EndT /S2(M) is generated by homogeneous elements of degree zero
and one.

The condition (ii) is equivalent to the following condition:

(ii)′ There exists a finite quiver Q with a map deg : Q1 → {0, 1} such that there exist a
surjective morphism ϕ : KQ → EndT /S2(M) of graded algebras and the kernel of ϕ
is contained in the ideal of KQ generated by paths of length at least two.

The following lemma is a fundamental observation on the quiver Q of EndT /S2(M)
and on right or left minimal almost split morphisms of M in U .

Lemma 9.5. Under the Assumption 9.4. For each j ∈ Q0, let M
j be an indecomposable

direct summand of M associated with an idempotent ϕ(ej). For j ∈ Q0, let

f := (ϕ(α)) :
⊕

α∈Q1, t(α)=j

Sdeg(α)2 (M s(α))→M j

be a morphism in T . Then f is a right minimal almost split morphism ofM j in U . Dually,
let

g := (ϕ(α)) :M j →
⊕

α∈Q1, s(α)=j

S− deg(α)
2 (M t(α))

be a morphism in T . Then g is a left minimal almost split morphism of M j in U .
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Proof. We show that f is a right minimal almost split morphism of M j in U . Dually, it is
shown that g is a left minimal almost split morphism of M j in U .

By definition, f is right minimal and not a retraction. We denote by X the do-
main of f and E := EndT /S2(M). Since Q is the quiver of E, f induces a surjec-
tive morphism HomT /S2(M,X) → radEej . Since radEej = rad

(
HomT /S2(M,M j)

)
=⊕

i∈Z JT (Si2(M),M j) holds, we have a surjective map f∗ : HomT (Z,X)→ JT (Z,M
j) for

any Z ∈ U .

Before stating the main theorem of this subsection, we need the following definition.
Let Q be a finite quiver with a map deg : Q1 → {0, 1}. We define a quiver Q∗ by Q∗

0 = Q0

and Q∗
1 = {α ∈ Q1 | deg(α) = 0 } ⊔ {α∗ : t(α)→ s(α) | α ∈ Q1, deg(α) = 1 }.

Definition-Proposition 9.6. Let Q be a finite quiver with a map deg : Q1 → {0, 1}. We
call a quiver Q deg-acyclic if one of the following equivalent conditions hold.

(a) The quiver Q∗ is acyclic.

(b) There exists an order {1, 2, . . . , l} on Q0 which satisfies the following conditions: for
any arrow α : i→ j in Q, if deg(α) = 0, then j < i, and if deg(α) = 1, then i < j.

The following is the main theorem of this subsection.

Theorem 9.7. Under the Assumption 9.4. If the quiver Q is deg-acyclic, then we have
thickT M = T .

Proof. Let {1, 2, . . . , l} be an order on Q0 which satisfies the condition of Definition-
Proposition 9.6 (b). Let M =

⊕l
j=1M

j be an indecomposable direct decomposition of

M such that each M j corresponds with a vertex j ∈ {1, 2, . . . , l} = Q0. We show that
Si2(M j) ∈ thickT M by an induction on i and j.

Let i ≥ 1. Assume that Sk2(M) ∈ thickT M for 0 ≤ k ≤ i− 1 and Si2(Mk) ∈ thickT M
for 0 ≤ k ≤ j − 1, where M0 := 0. We show that Si2(M j) ∈ thickT M . By Theorem 9.3,
we have an AR 4-angle ending at M j

S2(M j)
g−→ C1 → X1 → S2(M j)[1], X1 → C0

f−→M j → X1[1], (9.3)

where f is a right minimal almost split of M j in U and g is a left minimal almost split of
S2(M j) in U . By Lemma 9.5 and a uniqueness of a right (resp, left) minimal almost split
morphism, we have

C0 ≃
⊕

α∈Q1, t(α)=j

Sdeg(α)2 (M s(α)), C1 ≃
⊕

α∈Q1, s(α)=j

S1−deg(α)
2 (M t(α)).

By applying Si−1
2 to (9.3), we have an AR 4-angle ending at Si−1

2 (M j). Since {1, 2, . . . , l} =
Q0 satisfies the condition of Definition-Proposition 9.6 (b) and by the inductive hypoth-
esis, we have Si−1

2 (C0), Si−1
2 (C1) ∈ thickT M . Thus we have Si2(M j) ∈ thickT M and

add{Si2(M) | i ≥ 0} ⊂ thickT M holds. An inclusion add{Si2(M) | i ≤ 0} ⊂ thickT M
follows from the dual property of Theorem 9.3 and a similar argument. Therefore we have
U ⊂ thickT M . By Proposition 9.2, we have the assertion.
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We end this subsection with the following proposition which calculates the global
dimension of the endomorphism algebra EndT (M).

Proposition 9.8. Under the Assumption 9.4, suppose that HomT (M,M [−1]) = 0. Then
the global dimension of EndT (M) is at most two.

Proof. Let X be an indecomposable direct summand of M . Take an AR 4-angle ending
at X

S2(X)→ C1 → Y → S2(X)[1], Y → C0 → X → Y [1].

By applying the functor HomT (M,−) to the first triangle, we have

HomT (M,C1) ≃ HomT (M,Y ),

since U is a cluster tilting subcategory and EndT (M) is positively graded. By applying
the functor HomT (M,−) to the second triangle, since HomT (M,M [−1]) = 0, we have an
exact sequence of EndT (M)-modules

0→ HomT (M,C1)→ HomT (M,C0)→ HomT (M,M j).

By Lemma 9.5, we have C0, C1 ∈ add{ Si2(M) | i = 0, 1 }. Since EndT (M) is positively
graded, the EndT (M)-modules HomT (M,C0) and HomT (M,C1) are projective EndT (M)-
modules. Therefore the projective dimension of the simple EndT (M)-module associated
with X is at most two, and we have the assertion.

9.2 A cluster tilting subcategory of SubZΠ(w)

Let w = su1su2 · · · sul
be a reduced expression of w ∈WQ, and put

M(w)i =M i = (Π/I(su1su2 · · · sui))eui , M(w) =M =

l⊕
i=1

M(w)i.

Remark 9.9. As easily seen, the tilting object of Part I (see Subsection 6.1) and M in
this part are quite different even if w is c-sortable. In fact they have different gradings,
and such a difference is crucial when we study Z-graded modules.

Whenever there is no danger of confusion, we denote M(w)i and M(w) by M i and
M , respectively. In this subsection, we show that the object M of SubZΠ(w) is a silting
object. Note that by Proposition 8.7, SubZΠ(w) has a Serre functor S = [2] ◦ (−1), and
hence we have S2 = (−1). Let

U := add{M(i) | i ∈ Z }

be the full subcategory of SubZΠ(w).

Lemma 9.10. U is a cluster tilting subcategory of SubZΠ(w).
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Proof. Let X ∈ SubZΠ(w). Since M and X are finite dimensional, there exists an integer
N > 0 such that HomZ

Π(w)(M,X(i)) = HomZ
Π(w)(X,M(i)) = 0 for any i > |N |. This

means that U is functorially finite in SubZΠ(w). Since S = [2](−1) is a Serre functor on
SubZΠ(w), we have

U [−1]⊥ = ⊥U [1].

By Proposition 3.3 (d), HomΠ(w)(M,M [1]) = 0 holds. Therefore we have an equality

HomZ
Π(w)(M,M [1](i)) = 0 for any integer i. This means U ⊂ ⊥U [1]. Let X ∈ SubZΠ(w)

be an indecomposable object such that X ∈ ⊥U [1] in SubZΠ(w). By forgetting gradings,
we have HomΠ(w)(M,X[1]) = 0. Since M is a cluster tilting object in SubΠ(w), X is
isomorphic to some indecomposable direct summand of M in mod Π(w). By Lemma 8.1,
we have X ∈ U .

For the convenience of the reader, we recall the definition of the quiver Q(w) of
EndΠ(w)(M(w)), which is already defined in Definition 6.5.

Definition 9.11. [BIRSc] Let w be an element ofW . We define a quiver Q(w) associated
with a reduced expression w = su1su2 · · · sul

of w as follows:

• vertices: Q(w)0 = {1, 2, . . . , l}.
A vertex 1 ≤ i ≤ l in Q(w) is said to be type u ∈ Q0 if ui = u.

• arrows:

(a1) For each u ∈ Supp(w), draw an arrow from j to i, where i, j are vertices of type
u, i < j, and there is no vertex of type u between i and j (we call these arrows
going to the left ).

(a2) For each arrow α : u→ v ∈ Q1, draw an arrow αi from i to j, where i < j, i is
a vertex of type u, j is a vertex of type v, there is no vertex of type u between
i and j, and j is the biggest vertex of type v before the next vertex of type u
(we call these arrows Q-arrows).

(a3) For each arrow α : u→ v ∈ Q1, draw an arrow α∗
i from i to j, where i < j, i is

a vertex of type v, j is a vertex of type u, there is no vertex of type v between
i and j, and j is the biggest vertex of type u before the next vertex of type v
(we call these arrows Q∗-arrows).

We denote by Q(w) the full subquiver of Q(w) whose the set of vertices is Q(w)0 \ {pu |
u ∈ Supp(w)}, where pu = max{1 ≤ j ≤ l | uj = u}, for u ∈ Supp(w).

Note that the quiver Q(w) depends on the choice of a reduced expression of w. We
introduce a map deg : Q(w)1 → {0, 1}.

Definition 9.12. We define a map deg : Q(w)1 → {0, 1} as follows:

• deg(β) = 1 if β is a Q∗-arrow.

• deg(β) = 0 if β is a Q-arrow or an arrow going to the left.

We define a map deg on Q(w) as the restriction of deg : Q(w)1 → {0, 1} to Q(w)1.
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Remark 9.13. The map deg : Q(w)1 → {0, 1} in Definition 9.12 is not equal to that of
Definition 6.9, so that our object M in Part II is different from that in Part I.

We give an example of a quiver Q(w).

Example 9.14. Let Q be the quiver
1

2 3

α
{{www
w

β
//

γ
##GG

GG
. Let w be an element of WQ with its

expression w = s1s2s3s1s3s2s1. Then we have the quiver Q(w) with a map deg : Q(w)1 →
{0, 1} as follows:

3

2

1 4

5

6

7

??������

// 33gggggggggggggggg

1
RRR

((RR
RRR

RR 1
00
00
00
0

��0
00

oo

GG�����������

66lllllllllll

oo
1
??

��?
??

?
1

��

oo
1
??

��?
??

?

oo ,

where non numbered arrows have degree zero.

We define a morphism of algebras ϕ : KQ(w)→ EndΠ(w)(M) by

(a0) For a vertex i of Q(w), ϕ(ei) is an idempotent of EndΠ(w)(M) associated with M i.

(a1) For an arrow β : j → i going to the left, ϕ(β) is the canonical surjection M j →M i.

(a2) For a Q-arrow αi : i→ j of the arrow α ∈ Q1, ϕ(αi) is a morphism of Π(w)-modules
from M i to M j given by multiplying α from the right.

(a3) For a Q∗-arrow α∗
i : i→ j of the arrow α ∈ Q1, ϕ(α

∗
i ) is a morphism of Π(w)-modules

from M i to M j given by multiplying α∗ from the right.

We regard the path algebra KQ(w) as a graded algebra by the map deg of Definition 9.12.
The following proposition gives the quiver of the endomorphism algebra

End(SubZ Π(w))/(−1)(M) =
⊕
n∈Z

HomZ
Π(w)(M,M(n)) = EndΠ(w)(M).

Lemma 9.15. The morphism ϕ : KQ(w)→ EndΠ(w)(M) induces a surjective morphism
ϕ : KQ(w)→ EndΠ(w)(M) of graded algebras such that the kernel of ϕ is contained in the
ideal of KQ(w) generated by paths of length at least two.

Proof. The morphism ϕ is a morphism of graded algebras, since ϕ preserves gradings by
the definitions of ϕ and the map deg. The morphism ϕ induces a surjective morphism ϕ
of graded algebras by [BIRSc, Theorem III. 4.1]. The kernel of ϕ is contained in the ideal
of KQ(w) generated by paths of length at least two by [BIRSm, Theorem 6.6].

Then we have the following proposition.

Proposition 9.16. Let w be a reduced expression of w ∈WQ. Then the following holds.

(a) The objectM of SubZΠ(w) satisfies Assumption 9.4, where the quiver of EndΠ(w)(M)
is Q(w) and a map deg is given by Definition 9.12.
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(b) The quiver Q(w) is deg-acyclic. In particular, Q(w) is deg-acyclic.

Proof. (a) This comes from Lemma 9.10 and Lemma 9.15.
(b) By definition, (Q(w)∗)1 is a disjoint union of arrows going to the left, Q-arrows

and reversed arrows of Q∗-arrows. We define a map

ψ : (Q(w)∗)1 → Q0 ⊔Q1

by ψ(β) = u if β is an arrow going to the left associated with a vertex u ∈ Q0 and ψ(β) = α
if β is a Q-arrow or a reversed arrow of Q∗-arrow associated with an arrow α ∈ Q1. Then
ψ extends to a map from the set of all paths in Q(w)∗ to the set of all paths in Q. We
also denote it by ψ.

If there exists a cycle p in Q(w)∗, then ψ(p) is a cycle in Q. This is a contradiction.

Example 9.17. (a) Let Q be the quiver
1

2 3

α
{{www
w

β
//

γ
##GG

GG
. Put c = s1s2s3. Let w = c4s1 =

s1s2s3s1s2s3s1s2s3s1s2s3s1. Then we have the quiver Q(w) as follows:
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where non numbered arrows have degree zero. Then we have the quiver Q(w)∗ of Q(w)

3
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��)
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oo oo oo oo

oo oo oo

oo oo oo

.

As a result, we have the following theorem.

Theorem 9.18. Let w ∈WQ. For any reduced expression w of w, the object M =M(w)
is a silting object of SubZΠ(w).

Proof. By Theorem 9.7 and Proposition 9.16, we have thickM = SubZΠ(w).
We show that M satisfies HomZ

Π(w)(M,M [j]) = 0 for any j > 0. By Proposition 3.3

(c), HomΠ(w)(M,M [1]) = 0 holds. Therefore we have HomZ
Π(w)(M,M [1]) = 0. Assume

that j > 1. By Proposition 8.7, we have

HomZ
Π(w)(M,M [j]) ≃ DHomZ

Π(w)(M,M [2− j](−1)).

Since 2 − j ≤ 0 and Π(w) is positively graded, we have Ω−(2−j)(M) ∈ mod≥0Π(w).
Therefore Ω−(2−j)(M)(−1) ∈ mod≥1Π(w) holds. SinceM is generated by (M)0 as a Π(w)-
module, we have HomZ

Π(w)(M,Ω−(2−j)(M)(−1)) = 0. This means HomZ
Π(w)(M,M [2 −

j](−1)) = 0 for j > 1.
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Note that M(w) is not a tilting object of SubZΠ(w) in general.

Example 9.19. Let Q be a quiver
1

2 3
wwppp

pp

//
''NN

NNN . Then we have a graded algebra Π =

Πe1 ⊕Πe2 ⊕Πe3, and these are represented by their radical filtrations as follows:

Πe1 =

1

2

3

1

2

3

3

1 2

2 3 1

3 1 2 3

1 2 3 1 2

AA }} AA

}} AA AA

AA }} AA

AA }} AA AA }} AA

}} AA AA }} AA AA

, Πe2 =

2

3

1

2

3

1

1

2 3

3 1 2

1 2 3 1

2 3 1 2 3

AA

}} AA

AA }} AA

AA }} AA AA

}} AA AA }} AA

AA }} AA AA }} AA

, Πe3 =

3

1

2

3

1

2

2

3 1

1 2 3

2 3 1 2

3 1 2 3 1

}} AA

AA

AA }} AA

}} AA AA }} AA

AA }} AA AA

AA }} AA AA }} AA

,

where numbers connected by solid lines are concentrated in the same degree, the tops
of the Πei are concentrated in degree 0, and the degree zero parts are denoted by bold
numbers.

Let w be an element of WQ which has a reduced expression w = s3s2s1s2s3s2. Then
we have a graded algebra, Π(w) = Π(w)e1 ⊕Π(w)e2 ⊕Π(w)e3, where

Π(w)e1 =

1

2

3

3, Π(w)e2 =

2

3

1

2

3

1

2 3

3

AA

}} AA
, Π(w)e3 =

3

1

2

3

2

3 1

3

}} AA

AA .

We have a silting object M =M(w) of SubZΠ(w) as follows:

M =M1 ⊕M2 ⊕M4 = 3⊕ 2

3
⊕

2

3 1

3

AA
.

ThisM(w) is not a tilting object of SubZΠ(w), since we see that HomZ
Π(w)(M

4,Ω(M1)) ̸=
0. Note that another reduced expression of w gives a tilting object of SubZΠ(w) (see
Example 10.9 (a)).

10 A tilting object in SubZΠ(w)

Let w ∈ WQ and w be a reduced expression of w. In this section, we give a sufficient
condition on w such that M = M(w) is a tilting object of SubZΠ(w). Throughout this
section, by Lemma 4.1, without loss of generality assume that Supp(w) = Q0. We first
show the following lemma.

Lemma 10.1. If one of the following holds, then we have HomZ
Π(w)(M,M [j]) = 0 for any

j < −1.

(i) There exists a reduced expression of w containing an expression of the Coxeter ele-
ment of WQ as a subword.

(ii) The global dimension of Π(w)0 is at most one.
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Proof. By Lemma 8.4 (b), we assume that (ii) holds. By the definition of M , M is in
mod≥0Π(w). Therefore by Lemma 8.2, we have Ωj(M)0 = 0 for any j > 1. Since M is
generated by (M)0 as a Π(w)-module, we have HomZ

Π(w)(M,Ωj(M)) = 0 for any j > 1.

This means HomZ
Π(w)(M,M [j]) = 0 for any j < −1.

Next we observe when HomZ
Π(w)(M,M [−1]) = 0 holds. We define some notation. A full

subquiver Q′ of Q is said to be convex in Q if any path in Q such that its start and target
are in Q′ is a path in Q′. For any u, v ∈ Q0, we denote by Q(u, v) the minimal convex full
subquiver of Q containing u and v. Let w = su1su2 · · · sul

be a reduced expression of w.
For any u ∈ Q0, put

pu = max{1 ≤ j ≤ l | uj = u}, mu = min{1 ≤ j ≤ l | uj = u}.

Definition 10.2. Let w = su1su2 · · · sul
be a reduced expression of w ∈ WQ and S be a

subset of Q0.

(1) An expression w is c-ending on S if for any u, v ∈ S, pu < pv holds whenever there
exists an arrow from u to v in Q.

(2) An expression w is c-starting on S if for any u, v ∈ S, mu < mv holds whenever
there exists an arrow from u to v in Q.

The following lemma is an easy observation.

Lemma 10.3. Let w ∈ WQ and w be a reduced expression of w. If w is c-ending or c-
starting on Q0, then w contains an expression of the Coxeter element of WQ as a subword,
in particular the global dimension of Π(w)0 is at most one.

Recall the following notation. For a reduced expression su1su2 · · · sul
, let Ik,m =

I(suk
· · · sum) if k ≤ m and Ik,m = Π if m < k. The following proposition is impor-

tant to show the main theorem of this section.

Proposition 10.4. Let w = su1su2 · · · sul
be a reduced expression of w ∈ WQ and i, j ∈

{1, . . . , l} \ {pu | u ∈ Q0}. If an expression w is c-ending on Q(ui, uj)0 or c-starting on
Q(ui, uj)0, then we have HomZ

Π(w)(M
i,Ω(M j)) = 0.

Proof. By Proposition 6.22 and applying the functor HomZ
Π(w)(M

i,−) to an exact sequence

0→ Ω(M j)→ Π(w)euj →M j → 0, we have

HomZ
Π(w)(M

i,Ω(M j)) ≃ eui

(
I1,j ∩ Ii+1,l

I(w)

)
0

euj .

Therefore it is enough to show that eui(I1,j ∩ Ii+1,l)0euj = 0.
Since (I1,j ∩ Ii+1,l)0 ⊂ KQ, if euiKQeuj = 0, then we have eui(I1,j ∩ Ii+1,l)0euj = 0.

Assume that euiKQeuj ̸= 0. Let ci,j be the Coxeter element of WQ(ui,uj). Since Q(ui, uj)
is a full subquiver of Q, an expression of ci,j is a subword of an expression of the Coxeter
element of WQ. Since Q(ui, uj) is a minimal convex subquiver of Q, ui is a unique source
of Q(ui, uj) and uj is a unique sink of Q(ui, uj). Therefore by Lemma 8.4 (c), we have
euiI(ci,j)0euj = 0.
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If w is c-ending on Q(ui, uj)0, then an expression sui+1 · · · sul
contains an expression

of ci,j as a subword, and therefore eui(Ii+1,l)0euj ⊂ euiI(ci,j)0euj = 0 holds.
If w is c-starting on Q(ui, uj)0, then an expression su1 · · · suj contains an expression of

ci,j as a subword, and therefore eui(I1,j)0euj ⊂ euiI(ci,j)0euj = 0. We have the assertion.

Then we show the main theorem of this section.

Theorem 10.5. Let w ∈WQ and w = su1su2 · · · sul
be a reduced expression of w. Put

M i = (Π/I(su1su2 · · · sui))eui , M =

l⊕
i=1

M i.

If the expression w is c-ending on Q0 or c-starting on Q0, then we have the following.

(a) M is a tilting object of SubZΠ(w).

(b) The global dimension of A = EndZΠ(w)(M) is at most two.

(c) We have a triangle equivalence SubZΠ(w) ≃ Db(modA).

Proof. (a) By Theorem 9.18, Lemmas 10.1 and 10.3, we only have to show HomZ
Π(w)(M,M [−1]) =

0. We show that HomZ
Π(w)(M

i,Ω(M j)) = 0 for any i, j ∈ {1, 2, . . . , l} \ {pu | u ∈ Q0}.
Since w is c-ending on Q0 or c-starting on Q0, w is c-ending on Q(ui, uj)0 or c-starting
on Q(ui, uj)0. Therefore, we have HomZ

Π(w)(M
i,Ω(M j)) = 0 by Proposition 10.4.

(b) This comes from (a) and Proposition 9.8.
(c) This follows from (a), (b) and Theorem 3.9.

Remark 10.6. The property (b) of Theorem 10.5 was already shown by [ART] in the
case when w is c-ending on Supp(w) (see Theorem 11.2).

Next we give a more general condition onw such thatM(w) satisfies HomZ
Π(w)(M,M [−1]) =

0. For a reduced expression w, let S(w) := {u ∈ Q0 | pu = mu}.

Definition 10.7. A reduced expression w satisfies (♢) if for any u, v ∈ Q0 \ S(w), w is
c-ending on Q(u, v)0 or c-starting on Q(u, v)0.

Put J = {1, 2, . . . , l} \ {pu | u ∈ Q0}. Note that {ui | i ∈ J } = Q0 \ S(w) holds. We
have the following theorem.

Theorem 10.8. Let w ∈WQ. Assume that the global dimension of Π(w)0 is at most one.
Let w = su1su2 · · · sul

be a reduced expression of w and M be the same object as that in
Theorem 10.5. If w satisfies (♢), then the assertions (a), (b) and (c) of Theorem 10.5
hold.

Proof. These are shown by the same argument as that in Theorem 10.5 since {ui | i ∈
J } = Q0 \ S(w) holds.

An example of a reduced expression which satisfies (♢) but is neither c-ending nor c-
starting on Q0 is given in Example 10.9 (c). We end this section by giving some examples.
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Example 10.9. (a) Let Q be a quiver
1

2 3
wwppp

pp

//
''NN

NNN . Let w be an element of WQ which

has a reduced expression w = s3s2s1s3s2s3. Note that this w is the same element as that
in Example 9.19. The expression w is c-ending on Q0. Then we have a graded algebra,
Π(w) = Π(w)e1 ⊕Π(w)e2 ⊕Π(w)e3, where

Π(w)e1 =

1

2

3

3, Π(w)e2 =

2

3

1

2

3

1

2 3

3

AA

}} AA
, Π(w)e3 =

3

1

2

3

2

3 1

3

}} AA

AA .

We have a tilting object M =M(w) of SubZΠ(w) as follows:

M = 3⊕ 2

3
⊕

3

1

2

3

2

3

}} AA

.

The endomorphism algebra EndZΠ(w)(M) is given by the following quiver with relations

∆ =

[
• a // • b // •

]
, ab = 0.

(b) Let Q be the same quiver as that in (a) and w be an element of WQ with its
expression w = s1s2s3s1s3s2s1. This expression w is a reduced expression and c-starting
on Q0. Then we have

Π(w)e1 =

1

2

3

1

2

3

1 2

2 1

AA }} AA

}} AA AA , Π(w)e2 =

2

3

1

2

1

2 3

1 2

1

AA

}} AA

AA }} AA

AA

, Π(w)e3 =

3

1

2

2

1

}} AA

AA .

A tilting object M =M(w) of SubZΠ(w) is described as follows:

M = 1⊕ 2

1
AA ⊕

3

1 2

1

}} AA

AA ⊕

1

2 3

1 2

1

AA }} AA

AA
.

The endomorphism algebra EndZΠ(w)(M) is given by the following quiver with relations

∆ =


3

2

1 4

b
??�����

c //

a
oo

 , ab = ac = 0.

It is easy to see that the algebra EndZΠ(w)(M) is derived equivalent to the path algebra of
Dynkin quiver of type D4.

56



(c) Let Q be a quiver

1 2

3

4

////
88qqqqq
88qqqqq

&&MM
MMM &&MM
MMM

and w be an element of WQ with its reduced expression w = s4s1s2s3s2s3s1s2s4. An
expression s1s2s3s4 is an expression of the Coxeter element of WQ. The expression w
contains s1s2s3s4 as a subword, and hence the global dimension of Π(w)0 is at most one.
We can see that w satisfies (♢). Thus M = M(w) is a tilting object of SubZΠ(w). The
endomorphism algebra EndZΠ(w)(M) is given by the following quiver with relations:

∆ =

[
• • • • •//// a // b //

c
//

]
, ab = ac = 0.

Note that w is neither c-ending on Q0 nor c-starting on Q0.

There exist examples such that a reduced expression w does not satisfies (♢), but
M =M(w) is a tilting object. In fact, in the following example, HomZ

Π(w)(M,Ω(M)) ̸= 0,

but HomZ
Π(w)(M,M [−1]) = 0 holds.

Example 10.10. Let Q be the same quiver as in Example 10.9 (a) and w be an element
of WQ with its reduced expression w = s3s1s2s3s1s3. Note that w does not satisfies (♢).
We have

M1 = 3, M2 =
1

3
, M3 = Π(w)e2 =

2

3 1

3

AA
,

M4 =

3

1 2

3 1

3

}} AA

AA , M5 = Π(w)e1 =

1

2

3

3

1 2

3 1

3

AA }} AA

AA , M6 = Π(w)e3 =

3

1

2

3

2

3 1

3

}} AA

AA .

It is easy to see that HomZ
Π(w)(M

2,Ω(M1)) ̸= 0 and HomZ
Π(w)(M

2,Ω(M1)) = 0. Moreover,

we see that HomZ
Π(w)(M,M [−1]) = 0. The expression w contains an expression of the

Coxeter element of WQ. Therefore, M =M(w) is a tilting object of SubZΠ(w).

11 The relationship with the result of Amiot-Reiten-Todorov

Before describing the result of [ART], we recall the definition of cluster categories which
are introduced by Amiot [A]. Let A be a finite dimensional algebra of global dimension at
most two. We denote by S = DA⊗L

A (−) a Serre functor on Db(modA). Put S2 = S◦ [−2].
A cluster category C(A) of A is the triangulated hull of the orbit category Db(modA)/S2
in the sense of Keller [Ke05]. We have the composition of functors

πA : Db(modA)→ Db(modA)/S2 → C(A).
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Note that πA is a triangle functor. Let w ∈ WQ. For a reduced expression w =
su1su2 · · · sul

of w, let

M(w)i =M i = (Π/I(su1su2 · · · sui)) eui , M(w) =M =
l⊕

i=1

M(w)i,

A(w) = A = EndZΠ(w)(M(w)).

We denote by ei the idempotent of A associated with M i for each 1 ≤ i ≤ l. Let
eF =

∑
j∈F ej , where F = {pu | u ∈ Supp(w)}. Put

A = A/AeFA.

By definition, we have an exact sequence

0→ AeFA→ A→ A→ 0. (11.1)

Note that, by the definition, M is a right A-module and we have MeF = Π(w) as left
Π(w)-modules.

We see that the algebra A coincides with the our endomorphism algebra EndZΠ(w)(M).

Lemma 11.1. We have AeFA = P(M,M). In particular, we have A = EndZΠ(w)(M).

Proof. Clearly AeFA ⊂ P(M,M) holds. Let f ∈ P(M,M). We can assume that f factors
through (Π(w))(j) = MeF (j) for some j ∈ Z. Then we have a morphism g : M → MeF
of degree j and h : MeF → M of degree −j such that f = gh. Since EndΠ(w)(M) is
positively graded by Lemma 9.15, we have j = 0. This means f ∈ AeFA.

Next we recall the result of [ART]. We denote by ρΠ(w) the composite of triangle
functors

ρΠ(w) : D
b(mod Π(w))→ Db(mod Π(w))/Kb(proj Π(w))

∼−→ SubΠ(w).

Amiot-Reiten-Todorov showed the following theorem.

Theorem 11.2. [ART, Theorem 3.1, Theorem 4.4] Let w ∈ WQ and w be a reduced
expression of w. Put N := M ⊗L

A A ∈ Db(mod(Π(w) ⊗ Aop)). If w is c-ending on
Supp(w), then we have the following.

(a) The global dimension of A is at most two.

(b) There exists a triangle equivalence G : C(A)→ SubΠ(w) which makes the following
diagram commutative up to isomorphism of functors

Db(modA)

πA

��

N⊗L
A−

// Db(modΠ(w))

ρΠ(w)

��
C(A)

G //________ SubΠ(w).
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Remark 11.3. For any reduced expression w of w ∈WQ, since Q is acyclic, there exists
a quiver Q′ such that whose underlying graph coincides with that of Q and w is c-ending
on Supp(w) as an element of WQ′ . Since SubΠ(w) is independent of an orientation of Q,
we have an equivalence (1.1) by Theorem 11.2.

We construct a functor Φ : Db(mod A)→ SubZΠ(w) as follows. By Definition 8.3, the
algebra Π(w)⊗Aop is a graded algebra and M is a graded Π(w)⊗Aop-module. Therefore
N =M ⊗L

A A is an object of Db(modZ(Π(w)⊗Aop)) and we have a derived functor

N ⊗L
A − : Db(mod A)→ Db(modZΠ(w)).

We denote by ρZΠ(w) the graded version of ρΠ(w), that is,

ρZΠ(w) : D
b(modZΠ(w))→ Db(modZΠ(w))/Kb(projZΠ(w))

∼−→ SubZΠ(w).

By composing N ⊗L
A − and ρZΠ(w), we have a triangle functor

Φ = ρZΠ(w) ◦N ⊗
L
A − : Db(mod A)→ SubZΠ(w).

In this section, we show the following theorem which is a graded version of Theorem
11.2.

Theorem 11.4. Let w ∈ WQ and w be a reduced expression of w. If w is c-ending on
Supp(w), then we have the following.

(a) The triangle functor Φ = ρZΠ(w)◦N⊗
L
A− : Db(mod A)→ SubZΠ(w) is an equivalence.

(b) We have the following commutative diagram up to isomorphism of functors

Db(mod A)
Φ //

πA

��

SubZΠ(w)

Forget

��
C(A)

G // SubΠ(w).

We begin with the following lemma.

Lemma 11.5. [ART, Lemma 3.2] If a reduced expression w = su1su2 · · · sul
of w is c-

ending on Supp(w), then we have a projective resolution 0→ P 1 → P 0 → Aei → Aei → 0
of A-module Aei, where i ∈ {1 ≤ j ≤ l} \ F and P 0, P 1 ∈ add(AeF ).

Proof. Since w is c-ending on Supp(w) and by [ART, Lemma 4.3], the conditions (H1) ∼
(H4) in [ART] are satisfied. Then the assertion follows immediately from [ART, Lemma
3.2].

We need the following lemma.

Lemma 11.6. If a reduced expression w = su1su2 · · · sul
of w is c-ending on Supp(w),

then we have the following.

(a) AeFAei = Aei for any i ∈ F .
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(b) We have a projective resolution of AeFA as an A-module

0→ P 1 → P 0 → AeFA→ 0, (11.2)

where P 0, P 1 ∈ add(AeF ).

(c) We have M ⊗L
A (AeFA) ∈ Kb(projZΠ(w)).

Proof. (a) Since ei is an idempotent, this is clear.
(b) We have an exact sequence (11.1). Thus the assertion follows from (a) and Lemma

11.5.
(c) By (b), AeFA ∈ thickAeF holds. Thus we haveM⊗L

A(AeFA) ∈ thick(M⊗L
AAeF ) =

Kb(projZΠ(w)), where the last equality follows from M ⊗L
A AeF =MeF = Π(w).

Then we are ready to show the main theorem.

Proof of Theorem 11.4. (a) We will apply Lemma 3.10 for the triangle functor Φ. We first
show that Φ(A) = ρZΠ(w)(N ⊗

L
A A) ≃ M in SubZΠ(w). Recall that N := M ⊗L

A A. By

applyingM ⊗L
A− to the sequence (11.1), we have the following triangle in Db(modZΠ(w))

M ⊗L
A (AeFA)→M ⊗L

A A→M ⊗L
A A→M ⊗L

A (AeFA)[1].

By Lemma 11.6 (c) and this triangle, M is isomorphic to ρZΠ(w)(N ⊗
L
A A) in SubZΠ(w).

By Theorem 10.5, M is a tilting object in SubZΠ(w). Since the global dimension of A
is at most two, A is a tilting object of Db(mod A).

We next show that ΦA,A induces an isomorphism HomA(A,A) ≃ HomZ
Π(w)(M,M). We

use the following notations:

ρZΠ(w) : D
b(modZΠ(w))

π−→ Db(modZΠ(w))/Kb(projZΠ(w))
ρ−→ SubZΠ(w),

where π is a canonical triangle functor and ρ is an triangle equivalence of Theorem 8.8 (b).
For any a ∈ A = EndZΠ(w)(M), we denote by a ∈ A = EndZΠ(w)(M) the element represented
by a. We denote by ·a the image of a by the usual isomorphism A ≃ EndA(A,A), and we
use the same notation for ·a. We have the following commutative diagram:

0 // AeFA //

��

A //

·a
��

A //

·a
��

0

0 // AeFA // A // A // 0.

By applying M ⊗L
A − to this diagram, we have the following commutative diagram:

M ⊗L
A (AeFA) //

��

M //

a

��

M ⊗L
A A

//

idM⊗L
A(·a)

��

M ⊗L
A (AeFA)[1]

��
M ⊗L

A (AeFA) //M //M ⊗L
A A

//M ⊗L
A (AeFA)[1].

This means that the morphism (π ◦ N ⊗L
A −)A,A : HomA(A,A) → HomU (π(M), π(M))

sends ·a to πM,M (a), where U := Db(modZΠ(w))/Kb(projZΠ(w)). By Theorem 8.8 (b),

60



the composition ρM,M ◦ πM,M : HomZ
Π(w)(M,M) → HomZ

Π(w)(M,M) corresponds to a

canonical morphism. Therefore, ΦA,A = (ρ ◦ π ◦ N ⊗L
A −)A,A sends ·a to a. This means

that ΦA,A induces an isomorphism HomA(A,A) ≃ HomZ
Π(w)(M,M).

By Lemma 3.10, the functor Φ = ρZΠ(w) ◦ (N ⊗
L
A −) is an equivalence.

(b) We have the following commutative diagram up to isomorphism of functors

Db(mod A) Db(modZΠ(w))

Db(mod Π(w))

C(A) SubZΠ(w)

SubΠ(w)

N⊗L
A−

//

N⊗L
A− ))TTT

TTTT
TTTT

uullll
llll

ll

G

**VVV
VVVV

VVVV
VVVV

V

ttiiii
iiii

iiii
iii

πA

��

ρZ
Π(w)

��
ρΠ(w)

��

where Db(modZΠ(w)) → Db(modΠ(w)) and SubZΠ(w) → SubΠ(w) are degree forgetful
functors. In particular, we obtain the desired diagram.
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Part III

Stable categories of hereditary algebras
and derived categories

This part is based on the paper [Ki17].

Notation

In this part, we denote by k a field. All subcategories are full and closed under isomor-
phisms. Let C be an additive category and S be a subclass of objects of C or a subcategory
of C. We denote by addS the subcategory of C whose objects are direct summands of finite
direct sums of objects in S. For subcategories Ci (i ∈ I) of C, we denote by

∨
i∈I Ci the

smallest additive subcategory of C containing all Ci and closed under direct summands.
For objects X,Y ∈ C, we denote by C(X,Y ) the set of morphisms from X to Y in C. We
call a category skeletally small if the class of isomorphism class of objects is a set. We
assume that all categories in this paper are skeletally small.

12 Preliminaries

12.1 Functor categories

In this subsection, we recall the definition of modules over categories. Let A be an additive
category. An A-module is a contravariant additive functor from A to Ab, where Ab is
the category of abelian groups. We denote by ModA the category of A-modules, where
morphisms of ModA are morphisms of functors. Since A is skeletally small, ModA is a
category. It is well known that ModA is abelian.

For two morphisms f : L→M and g :M → N of ModA, the sequence L→M → N
is exact in ModA if and only if the induced sequence L(X)→M(X)→ N(X) is exact in
Ab for any X ∈ A.
Example 12.1. For each X ∈ A, we have an A-module A(−, X). By Yoneda’s lemma,
A(−, X) is projective in ModA.

The following notation is basic and used throughout this paper. We call an A-module
M finitely generated if there exists an epimorphism A(−, X) → M in ModA for some
X ∈ A. We denote by projA the subcategory of ModA consisting of all finitely generated
projective A-modules. Note that finitely generated projective modules are precisely direct
summands of representable functors. We need the following notation which is called FPn

in some literatures (e.g. [BGI, Br]).

Definition 12.2. Let A be an additive category and n ≥ 0 be an integer.

(1) We denote by modnA the subcategory of ModA consisting of all A-modulesM such
that there exists an exact sequence

Pn → · · · → P1 → P0 →M → 0

in ModA, where Pi is in projA for each 0 ≤ i ≤ n.
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(2) We denote by modA the subcategory of ModA consisting of all A-modules M such
that there exists an exact sequence

· · · → P2 → P1 → P0 →M → 0

in ModA, where Pi is in projA for each i ≥ 0.

The following lemma is a basic observation on modnA.

Lemma 12.3. The following statements hold for an additive category A.

(a) Let M ∈ modnA. Assume that there exists an exact sequence Pl → Pl−1 → · · · →
P0 → M → 0 with Pi ∈ projA and l ≤ n. Then there exist Pl+1, . . . , Pn ∈ projA
and an exact sequence Pn → Pn−1 → · · · → P0 →M → 0.

(b) Let M ∈ ModA. Assume that there exist the following two exact sequences

0→ K → Pn → Pn−1 → · · · → P0 →M → 0,

0→ L→ Qn → Qn−1 → · · · → Q0 →M → 0,

where Pi, Qi ∈ projA for each i ≥ 0. Then there exist P,Q ∈ projA such that
K ⊕ P ≃ L⊕Q.

Proof. (a) This follows from (b).
(b) The case where n = 0 is well known as Schanuel’s Lemma. The case where n > 0

is shown by an induction on n and by using the case where n = 0.

The following lemma gives a sufficient condition when an A-module is in modnA. For
simplicity, we use the notation mod−1A := ModA, mod∞A := modA and ∞− 1 :=∞.

Lemma 12.4. Let A be an additive category and M be an A-module. Then we have the
following properties.

(a) Let n ≥ 0 be an integer. If there exists an exact sequence Xn → Xn−1 → · · · →
X0 → M → 0 in ModA with Xi ∈ modn−iA for any 0 ≤ i ≤ n, then we have
M ∈ modnA.

(b) If there exists an exact sequence · · · → X2 → X1 → X0 → M → 0 in ModA with
Xi ∈ modA for any i ≥ 0, then we have M ∈ modA.

(c) Let n ∈ Z≥0 ∪ {∞}. For an exact sequence 0 → L → M → N → 0 in ModA with
L ∈ modn−1A and M ∈ modnA, we have N ∈ modnA.

Proof. (a) We have the following commutative diagram

Xn
// Xn−1

// · · · // X0
//M // 0

Pn,0
//

OO

Pn−1,0
//

OO

· · · // P0,0

OO

Pn−1,1
//

OO

· · · // P0,1

OO

· · ·

OO

P0,n

OO
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in ModA, where each Pi,0 → Xi is epimorphism for 0 ≤ i ≤ n, each vertical sequence is
exact and each Pi,j is in projA. Thus we have an exact sequence

Pn → · · · → P 1 → P 0 →M → 0

in ModA, where P i =
⊕i

j=0 Pj,i−j for 0 ≤ i ≤ n. Since P i is in projA for 0 ≤ i ≤ n, M
is an object of modnA.

(b) This comes from the same argument as (a).
(c) This follows from (a) for n ∈ Z≥0 and (b) for n =∞.

Let A be an abelian category and B be a subcategory of A. We say that B is a
thick subcategory of A if B is closed under direct summands and for any exact sequence
0→ X → Y → Z → 0 in A, if two of X,Y, Z are in A, then so is the third. We have the
following observation of the categories modnA.

Lemma 12.5. Let A be an additive category. Then we have the following statements.

(a) modnA is closed under extensions and direct summands in ModA for each n ≥ 0.

(b) modA =
∩

n≥0modnA holds.

(c) (e.g. [E, Proposition 2.6]) modA is a thick subcategory of ModA.

Proof. (a) By Horseshoe Lemma, modnA is closed under extensions inModA. LetX⊕Y ∈
modnA. We show that X,Y ∈ modnA by an induction on n. If n = 0, then the claim
is clear. Assume n > 0. Since X ⊕ Y ∈ modnA ⊂ modn−1A holds, by the inductive
hypothesis, we have X,Y ∈ modn−1A. Then by Lemma 12.4 (c), we have X,Y ∈ modnA.

(b) In general modA ⊂ modnA holds for each n ≥ 0. The converse follows from
Lemma 12.3 (a).

(c) By (a) and (b), modA is closed under extensions and direct summands. Let 0 →
L→M → N → 0 be an exact sequence in ModA. By Lemma 12.4 (c), if L,M ∈ modA,
then N ∈ modA holds. Assume that M,N ∈ modA. There exists an exact sequence
0 → ΩN → P → N → 0 such that P ∈ projA and ΩN ∈ modA. By taking a pull-back
diagram of M → N ← P , we have an exact sequence 0→ ΩN → P ⊕L→M → 0. Since
modA is closed under extensions and direct summands, we have L ∈ modA.

12.2 Gorenstein-projective modules

We define Gorenstein-projective modules. Let A be an additive category. We first define
a contravariant functor

(−)∗ : ModA → ModAop

as follows: for M ∈ ModA and X ∈ A, let (M)∗(X) := (ModA)(M,A(−, X)). By the
same way, we define a contravariant functor (−)∗ : ModAop → ModA. Let P• := (Pi, di :
Pi → Pi+1)i∈Z be a complex of finitely generated projective A-modules. We say that P•
is totally acyclic if complexes P• and · · · → (Pi+1)

∗ → (Pi)
∗ → (Pi−1)

∗ → · · · are acyclic.
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Definition 12.6. LetA be an additive category. AnA-moduleM is said to beGorenstein-
projective if there exists a totally acyclic complex P• such that Im d0 is isomorphic to M .
We denote by GPA the full subcategory of ModA consisting of all Gorenstein-projective
A-modules.

For instance, a finitely generated projective A-module is Gorenstein-projective. In
general, GPA ⊂ modA holds. We see a fundamental properties of Gorenstein-projective
modules.

Let W be a subcategory of ModA. We denote by ⊥W the subcategory of ModA
consisting of A-modules M satisfying ExtiModA(M,W ) = 0 for any W ∈ W and any i > 0.
We denote by XW the subcategory of ⊥W consisting of A-modules M such that there

exists an exact sequence 0 → M → W0
f0−→ W1

f1−→ · · · with Wi ∈ W and Im fi ∈ ⊥W for
any i ≥ 0. By [AR91, Proposition 5.1], XprojA is closed under extensions, direct summands
and kernels of epimorphisms in ModA.

Lemma 12.7. Let A be an additive category. Then the following holds.

(a) The functor (−)∗ : ModA → ModAop induces a duality (−)∗ : GPA → GPAop.

(b) XprojA ∩modA = GPA holds. In particular, GPA is closed under extensions, direct
summands and kernels of epimorphisms in ModA.

Proof. (a) This follows from the definition of GPA and the fact that (−)∗ induces a duality
between projA and projAop.

(b) In general XprojA ∩modA ⊃ GPA holds. If M ∈ XprojA ∩modA, then there exists
an exact sequence P• = (Pi, di : Pi → Pi+1)i∈Z, where M ≃ Im d0, Pi ∈ projA for any
i ∈ Z and Im di ∈ ⊥(projA) for any i ≥ 1. Then this sequence is totally acyclic, since
Im di ∈ ⊥(projA) holds for any i ≥ 1.

Let B be an extension closed subcategory of an abelian category A. An exact sequence
in A is called an exact sequence in B if each term of it is an object of B. We say that
an object Z in B is relative-projective if any exact sequence 0 → X → Y → Z → 0 in B
splits. Dually, we define relative-injective objects. We say that B has enough projectives if
for any X ∈ B, there exists an exact sequence 0→ Z → P → X → 0 in B such that P is
relative-projective. Dually, we define a subcategory of A which has enough injectives. An
extension closed subcategory B of A is said to be Frobenius if B has enough projectives,
enough injectives and the relative-projective objects coincide with the relative-injective
objects.

The following observation is immediate (cf. [C]).

Proposition 12.8. Let A be an additive category. Then GPA is a Frobenius category,
where the relative-projective objects are precisely finitely generated A-modules.

Proof. GPA is extension closed in ModA by Lemma 12.7 (b). By the definition of GPA
and the duality (−)∗ : GPA → GPAop, GPA has enough projectives and enough injectives.
Again by the definition of GPA, the relative-projective objects coincide with the relative-
injective objects, which coincide with finitely generated projective A-modules.
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12.3 Dualizing k-varieties and Serre dualities

In this subsection, we recall the definition of dualizing k-varieties. Let A be an additive
category. We call an object of mod1A a finitely presented A-module.

A morphism X → Y in A is a weak kernel of a morphism Y → Z if the induced
sequence A(−, X) → A(−, Y ) → A(−, Z) is exact in ModA. We say that A has weak
kernels if each morphism in A has a weak kernel. The following lemma says when an
additive category has weak kernels.

Lemma 12.9. Let A be an additive category. The following statements are equivalent.

(i) A has weak kernels.

(ii) mod1A is abelian.

(iii) mod1A = modA holds.

Proof. It is well known that the statements (i) and (ii) are equivalent. The statements (i)
and (iii) are equivalent by [E, Proposition 2.7].

Let A be an additive category and X ∈ A. A morphism e : X → X in A is called an
idempotent if e2 = e. We call A idempotent complete if each idempotent of A has a kernel.

Let k be a field. A k-linear category A is a category such that A(X,Y ) admits a struc-
ture of k-modules and the composition of morphisms of A is k-bilinear. A contravariant
functor F : A → B between k-linear categories are called k-functor if FX,Y : A(X,Y ) →
B(FY, FX) is k-linear for any X,Y ∈ A. If A is an additive k-linear category, then any
A-module can be regarded as a contravariant additive k-functor from A to Mod k, where
Mod k is the category of k-modules.

Let A be a k-linear additive category. We call A Hom-finite if A(X,Y ) is finitely
generated over k for any X,Y ∈ A. We recall one proposition about the Krull-Schmidt
property of k-linear additive categories.

Proposition 12.10. Let A be a k-linear, Hom-finite additive category. Then the following
properties are equivalent.

(i) A is idempotent complete.

(ii) The endomorphism algebra of each indecomposable object in A is local.

(iii) A is Krull-Schmidt, that is, each object of A is a finite direct sum of objects whose
endomorphism algebras are local.

Moreover the decomposition of (iii) is unique up to isomorphism.

Proposition 12.11. Let A be a k-linear, Hom-finite additive category. Then modA is
Krull-Schmidt. In particular, each object of modA has a minimal projective resolution.

Proof. Since modA is closed under direct summands in ModA, modA is idempotent
complete. modA is Hom-finite, since A is Hom-finite.

We recall the definition of dualizing k-varieties. Let A be a k-linear additive category.
We have contravariant functors D : ModA → ModAop and D : ModAop → ModA given
by (DM)(X) := D(M(X)).
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Definition 12.12. Let A be a k-linear, Hom-finite, idempotent complete additive cat-
egory. We call A a dualizing k-variety if the functor D : ModA → ModAop induces a
duality between mod1A and mod1Aop.

The following is typical examples of dualizing k-varieties.

Example 12.13. [AR74]

(a) If A is a dualizing k-variety, then Aop is a dualizing k-variety.

(b) Let A be a finite dimensional k-algebra and modA be the category of finitely gener-
ated A-modules. Let projA be the full subcategory of modA consisting of all finitely
generated projective A-modules. Then modA and projA are dualizing k-varieties.

We state some properties of dualizing k-varieties.

Lemma 12.14. [AR74] Let A be a dualizing k-variety, then we have the following prop-
erties.

(a) A and Aop have weak kernels.

(b) modA is a dualizing k-variety.

(c) Each object in modA has a projective cover and an injective hull.

Let A be a k-linear, Hom-finite additive category. A Serre functor on A is an auto-
equivalence S : A → A such that there exists a bifunctorial isomorphism

HomA(X,Y ) ≃ DHomA(Y, S(X))

for any X,Y ∈ A. We denote by S−1 a quasi-inverse of S. It is easy to see that if A has a
Serre functor S, then Aop has a Serre functor S−1.

If A has a Serre functor S, then (−)∗ is described as in the following lemma. Since S is
an auto-equivalence, we have an equivalence ModA → ModA given by M 7→M ◦S−1. By
composing the functor D : ModA → ModAop, we have a contravariant functor ModA →
ModAop given by M 7→ D(M ◦ S−1). We denote by ModfgA the subcategory of ModA
consisting of A-modules M such that M(X) is finitely generated over k for any X ∈ A.
Note that D induces a duality ModfgA → ModfgAop and the categories mod0A and GPA
are contained in ModfgA.

Lemma 12.15. Let A be a k-linear, Hom-finite additive category with a Serre functor S.
Then the following statements hold.

(a) We have an isomorphism of functors (−)∗ ≃ D(− ◦ S−1) : ModfgA → ModfgAop,
and this functor is a duality.

(b) Let M ∈ ModA. The following statements are equivalent.

(i) M ∈ GPA.
(ii) M ∈ modA and M∗ ∈ modAop.
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Proof. (a) Let M ∈ ModfgA and X ∈ A. We have the following equalities.

(M)∗(X) = (ModA)(M,A(−, X))

≃ (ModAop)(DA(−, X),DM)

≃ (ModAop)(A(S−1(X),−),DM)

≃ D(M(S−1(X))),

which functorial on X. Thus we have an isomorphism of functors (−)∗ ≃ D(−◦S−1). This
functor is a duality, since D is a duality and S is an equivalence.

(b) Assume that M ∈ GPA. By Lemma 12.7 (a), we have M∗ ∈ GPAop. In general
GPA ⊂ modA holds, thus (i) implies (ii). Assume that (ii) holds. There exists an exact
sequence · · · → Q2 → Q1 → M∗ → 0, where Qi ∈ projAop. By (a), (−)∗ is an exact
functor. Therefore we have an exact sequence

· · · → P2 → P1 → P0
d−→ Q∗

1 → Q∗
2 → · · · ,

where Pi, Q
∗
i ∈ projA and Im d ≃M . This exact sequence is totally acyclic, since (−)∗ is

exact. We have M ∈ GPA.

Later we use the following characterization of dualizing k-varieties with Serre functors.

Proposition 12.16. Let A be a k-linear, Hom-finite, idempotent complete additive cate-
gory. Then the following statements are equivalent.

(i) A is a dualizing k-variety and has a Serre functor.

(ii) A and Aop have weak kernels and A has a Serre functor.

(iii) GPA = mod1A, GPAop = mod1Aop hold and DA(X,−) ∈ mod1A, DA(−, X) ∈
mod1Aop hold for any X ∈ A.

Proof. By Lemma 12.14, (i) implies (ii). We show that (ii) implies (i). Let M ∈ mod1A.
We show that DM is in mod1Aop. There exists an exact sequence P1 → P0 → M → 0
for some P1, P0 ∈ projA. By the functor D : ModA → ModAop, we have an exact
sequence 0 → DM → DP0 → DP1 in ModA. Since A has a Serre functor, we have
DP1,DP0 ∈ projAop. Since Aop has weak kernels, DM is in mod1Aop. By the dual
argument, for any N ∈ mod1Aop, we have DN ∈ mod1A. Thus D : mod1A → mod1Aop

is a duality.
We show that (i) implies (iii). Since A is a dualizing k-variety, DA(X,−) ∈ mod1A,

DA(−, X) ∈ mod1Aop hold for any X ∈ A. By Lemma 12.9, we have modA = mod1A
and modAop = mod1Aop. In general GPA ⊂ modA holds. Let M ∈ modA. We show
that M ∈ GPA. Since A is a dualizing k-variety, DM ∈ modAop holds. By Lemma 12.15
(a), M∗ ∈ modAop holds. Thus by Lemma 12.15 (b), M ∈ GPA holds.

We show that (iii) implies (ii). In general, GPA ⊂ modA ⊂ mod1A holds. Therefore
by Lemma 12.9, A and Aop have weak kernels. Consider the functor D ◦(−)∗ : ModA →
ModA. This functor induces an equivalence projA ∼−→ projA. In fact, if M ∈ projA,
then M∗ ∈ projAop. By the assumption, we have D(M∗) ∈ mod1A = GPA. Since
D : ModfgAop → ModfgA is a duality, D(M∗) is an injective object of ModfgA. In
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particular, D(M∗) is a relative-injective object of GPA. Since GPA is Frobenius, D(M∗)
is an object of projA. Thus we have a functor D ◦(−)∗ : projA → projA. This is an
equivalence, since its quasi-inverse is given by (−)∗ ◦D. Since A is idempotent complete,
the Yoneda embedding A → projA, X 7→ A(−, X) is equivalence. Thus there exists an
equivalence S : A → A such that the following diagram is commutative:

projA
D ◦(−)∗ // projA

A S //

≃
OO

A.

≃
OO

For X,Y ∈ A, we have the following isomorphisms which are functorial at X,Y :

A(Y, SX) ≃ D(A(−, X)∗)(Y )

≃ D(ModA(A(−, X),A(−, Y )))

≃ DA(X,Y ).

This means that S is a Serre functor on A.

12.4 Some observations on triangulated categories

In this subsection, we state some propositions which we use later. We state one theorem
for Frobenius categories. Let A be an additive category and B be a subcategory of A. For
two objects X,Y ∈ A, we denote by AB(X,Y ) the subspace of A(X,Y ) consisting of all
morphisms which factor through an object of B. We denote by A/[B] the category defined
as follows: the objects of A/[B] are the same as A and the morphism space is defined by

(A/[B])(X,Y ) := A(X,Y )/AB(X,Y ),

for X,Y ∈ A.
Let F be a Frobenius category, P the full subcategory of F consisting of the projective

objects in F and F := F/[P]. By Happel [Ha88], it is known that F is a triangulated
category. Assume that P is idempotent complete. Let Kb(P) be the homotopy category
of complexes of P. We denote by K−,b(P) the full subcategory of K(P) consisting of
complexes X = (Xi, di : Xi → Xi+1) satisfying the following conditions.

(1) There exists nX ∈ Z such that Xi = 0 for any i > nX .

(2) There exist mX ∈ Z and exact sequences 0 → Y i−1 ai−1

−−−→ Xi bi−→ Y i → 0 in F for
any i ≤ mX such that di = aibi for any i < mX .

We identify the category F with the full subcategory of K−,b(P) consisting of X satisfying
nX ≤ 0 ≤ mX . Then we have the following analogy of the well known equivalence due to
[Bu, KV, Ri].

Theorem 12.17. [IYa] Let F be a Frobenius category and P the full subcategory of F con-
sisting of the projective objects. Assume that P is idempotent complete. Then the compos-
ite F → K−,b(P)→ K−,b(P)/Kb(P) induces a triangle equivalence F ∼−→ K−,b(P)/Kb(P).
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Let U be a triangulated category and X be a full subcategory of U . We call X a
thick subcategory of U if X is a triangulated subcategory of U and closed under direct
summands. We denote by thickU X the smallest thick subcategory of U which contains X .
Whenever if there is no danger of confusion, let thickU X = thickX .

Lemma 12.18. Let T ,U be triangulated categories and F : U → T a triangle functor.
Let X be a full subcategory of U . Then the following holds.

• Assume that a map

FM,N [n] : U(M,N)→ T (FM,FN [n])

is an isomorphism for any M,N ∈ X and any n ∈ Z. Then F : thickX → T is fully
faithful.

• If moreover U is idempotent complete, thickX = U and thick(Im(F )) = T , then F
is an equivalence.

13 Repetitive categories

13.1 Repetitive categories

We recall the definition of repetitive categories of additive categories. The aim of this
subsection is to show Theorem 13.7.

Definition 13.1. Let A be a k-linear additive category. The repetitive category RA is
the k-linear additive category generated by the following category: the class of objects is
{(X, i) | X ∈ A, i ∈ Z} and the morphism space is given by

RA
(
(X, i), (Y, j)

)
=


A(X,Y ) i = j,

DA(Y,X) j = i+ 1,

0 else.

For f ∈ RA
(
(X, i), (Y, j)

)
and g ∈ RA

(
(Y, j), (Z, k)

)
, the composition is given by

g ◦ f =


g ◦ f i = j = k,(
DA(Z, f)

)
(g) i = j = k − 1,(

DA(g,X)
)
(f) i+ 1 = j = k,

0 else.

We describe fundamental properties of repetitive categories of Hom-finite categories.

Lemma 13.2. Let A be a k-linear, Hom-finite additive category. The following statements
hold.

(a) RA is Hom-finite.

(b) RA has a Serre functor S which is defined by S(X, i) := (X, i+ 1).
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(c) If A is idempotent complete, then so is RA.

Proof. (a) (b) These are clear by the definition.
(c) By the definition, an object of RA is indecomposable if and only if it is isomorphic

to an object (X, i), where X is an indecomposable object of A and i is some integer. Let
X be an indecomposable object of A and i be an integer. Since A is idempotent complete
and Proposition 12.10, EndRA(X, i) = EndA(X) is local. Therefore again by Proposition
12.10, RA is idempotent complete.

We see a relation between the categories modA and modRA and consequently, we
show Theorem 13.7. Let A be a k-linear additive category and i ∈ Z. Put the following
full subcategory of RA:

Ai := add{ (X, i) ∈ RA | X ∈ A}.

An inclusion functor Ai → RA induces an exact functor

ρi : ModRA → ModAi.

Since a functor A → Ai defined by X 7→ (X, i) is an equivalence, we denote an object
(X, i) of Ai by X for simplicity.

Since we have a full dense functor RA → Ai given by (X, j) 7→ X if j = i and
(X, j) 7→ 0 if else, we have a fully faithful functor from ModAi to ModRA. Therefore we
identify ModAi with the full subcategory of ModRA consisting of RA-modules M such
that M(X, j) = 0 for any j ̸= i and any X ∈ A.

Lemma 13.3. Let A be an additive category and i, j ∈ Z.

(a) We have ρj |ModAi
= idModAi

if j = i and ρj |ModAi
= 0 if else.

(b) For any X ∈ A, we have an exact sequence

0→ DAi−1(X,−)
β−→ RA(−, (X, i)) α−→ Ai(−, X)→ 0 (13.1)

in ModRA. In particular, we have ρj(P ) ∈ add{Aj(−, X),DAj(X,−) | X ∈ A} for
any P ∈ proj RA and j ∈ Z.

(c) Each finitely generated Ai-module is a finitely generated RA-module.

Proof. (a) The assertions follow from the definition of ρj .
(b) We construct morphisms α, β in ModRA. For an object (Y, j) of RA, define

α(Y,j) :=

{
idA(Y,X) j = i,

0 else,
β(Y,j) :=

{
idDA(X,Y ) j + 1 = i,

0 else,

and extend α and β on RA additively. We can show that α and β are actually morphisms
in ModRA. By definitions of α and β, for an object (Y, j) of RA, we have the following
exact sequence

0→ DAi−1(X, (Y, j))
β(Y,j)−−−→ RA((Y, j), (X, i))

α(Y,j)−−−→ Ai((Y, j), X)→ 0

in Mod k. Thus we have an exact sequence (13.1). Since ρj is exact, by applying ρj to the
exact sequence (13.1) and by using (a), we have the assertion.

(c) This follows from (b).
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By the following lemma, we construct a filtration of a module over repetitive categories.
For M ∈ ModRA, put SuppM := { i ∈ Z | ρi(M) ̸= 0 }.

Lemma 13.4. Let M ∈ ModRA and i ∈ Z.

(a) If ρi−1(M) = 0, then there exists a short exact sequence

0→ ρi(M)
α−→M → N → 0

in ModRA such that ρi(N) = 0 and ρj(N) = ρj(M) for any j > i.

(b) Assume that SuppM is a finite set and put m := maxSuppM and n := min SuppM .
Then there exists a sequence of subobjects of M :

0 =Mn−1 ⊂Mn ⊂ · · · ⊂Mm−1 ⊂Mm =M

such that Mi/Mi−1 ≃ ρi(M) for any i = n, n+ 1, . . . ,m.

Proof. (a) We construct a monomorphism α : ρi(M) → M in ModRA. For an object
(X, j) of RA, define

α(X,j) :=

{
idM(X,j) j = i,

0 else,

and extend this on RA additively. Since ρi−1(M) = 0, α is a morphism of ModRA. By
the definition, α is mono. Then we have an exact sequence 0 → ρi(M) → M → N → 0
in ModRA, where N := Cok(α). By Lemma 13.3, we have ρj(ρi(M)) = ρi(M) if j = i
and ρj(ρi(M)) = 0 if else. Therefore by applying the functor ρj to this exact sequence,
we have the assertion.

(b) This follows from (a).

By the following two lemmas, we see that the functors ModA → ModRA and ρi :
ModRA → ModA restrict to functors between modA and modRA under certain assump-
tions. For simplicity, we use the notation mod−1A := ModA, mod∞A := modA and
∞− 1 :=∞.

Lemma 13.5. Let A be a k-linear, Hom-finite additive category and n ∈ Z≥0 ∪ {∞}.
Assume that DA(X,−) ∈ modn−1A holds for any X ∈ A. Then an inclusion functor
ModAi → ModRA restricts to a functor modnAi → modn RA for any i ∈ Z.

Proof. Let n ∈ Z≥0. It is sufficient to show that Ai(−, X) ∈ modn RA for any i ∈ Z. In
fact, any M ∈ modnAi has an exact sequence Pn → · · · → P0 →M → 0 with Pi ∈ projAi

and hence M belongs to modn RA by Lemma 12.4 (a).
We show projAi ⊂ modn RA for any i ∈ Z by an induction on n. If n = 0, then by

Lemma 13.3 (c), we have the assertion. Let n > 0, X ∈ A and i ∈ Z. By Lemma 13.3 (b),
there exists an exact sequence

0→ DAi−1(X,−)→ RA(−, (X, i))→ Ai(−, X)→ 0.

By the inductive hypothesis, DAi−1(X,−) ∈ modn−1 RA holds. Therefore we have
Ai(−, X) ∈ modn RA by Lemma 12.4 (c).

By an argument similar to the above, the assertion holds when n =∞.

72



Lemma 13.6. Let A be a k-linear, Hom-finite additive category, n ∈ Z≥0∪{∞}. Assume
that DA(X,−) ∈ modnA holds for any X ∈ A. Then the functor ρi : ModRA → ModAi

restricts to a functor modn RA → modnAi for any i ∈ Z.

Proof. Let n ∈ Z≥0 and M ∈ modn RA. We have an exact sequence Pn → · · · → P1 →
P0 → M → 0 in ModRA, where Pj ∈ proj RA for each j ≥ 0. Since ρi is exact, we
have an exact sequence ρi(Pn) → · · · → ρi(P1) → ρi(P0) → ρi(M) → 0 in ModAi. By
the assumption and Lemma 13.3 (b), ρi(Pj) ∈ modnAi holds for any j ≥ 0. Therefore
ρi(M) ∈ modnAi holds by Lemma 12.4 (a).

By an argument similar to the above, the assertion holds when n =∞.

Note that in general modRA = mod1 RA does not hold for a k-linear additive category
A. This is the case where A is a dualizing k-variety by Theorem 13.7 below. Note that
there exists an equivalence (RA)op ≃ R(Aop) given by (X, i) 7→ (X,−i).

Theorem 13.7. Let A be a dualizing k-variety. Then the following statements hold.

(a) RA and (RA)op have weak kernels.

(b) RA is a dualizing k-variety.

Proof. Note that since A is a dualizing k-variety, DA(−, X) ∈ mod1A holds for any
X ∈ A and mod1A = modA holds.

(a) Let X,Y ∈ RA and f : RA(−,X) → RA(−,Y) be a morphism of modRA. We
show that K := Ker(f) is a finitely generated RA-module. For any i ∈ Z, we have an
exact sequence 0 → ρi(K) → ρi(RA(−,X)) → ρi(RA(−,Y)) in ModAi. By Lemma 13.6,
we have ρi(RA(−,X)), ρi(RA(−,Y)) ∈ modAi. Therefore ρi(K) ∈ modAi for any i ∈ Z,
since Ai ≃ A is a dualizing k-variety. By Lemma 13.5, ρi(K) ∈ modRA for any i ∈ Z.
Since K is a submodule of RA(−,X), SuppK is a finite set. Thus by Lemma 13.4 (b),
K has a finite filtration by finitely presented RA-modules {ρi(K) | i ∈ Z} and we have
K ∈ modRA. In particular, K is finitely generated and RA has weak kernels. Since
(RA)op ≃ R(Aop) holds and Aop is a dualizing k-variety, (RA)op has weak kernels.

(b) By the definition of dualizing k-varieties, A is Hom-finite and idempotent com-
plete. By Lemma 13.2, RA is Hom-finite and idempotent complete with a Serre functor.
Therefore by Proposition 12.16, RA is a dualizing k-variety.

13.2 Tilting subcategories

The aim of this subsection is to show Theorem 13.10. Before stating the main theorem,
we need the following definition.

Let A be a k-linear, Hom-finite additive category. We denote by

ρ : ModRA → ModA

the forgetful functor, that is, ρ(M) :=
⊕

i∈Z ρi(M) for anyM ∈ ModRA, where we regard
an Ai-module ρi(M) as an A-module by the equivalence ModAi ≃ ModA. Note that ρ is
an exact functor. We denote by GP(RA,A) the full subcategory of GP(RA) consisting of
all objects M such that the projective dimension of ρ(M) over A is finite, that is,

GP(RA,A) := {M ∈ GP(RA) | projdimA ρ(M) <∞}.

We consider the following condition on A:
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(G) : the projective dimension of DA(X,−) over A is finite for any X ∈ A.

Proposition 13.8. Let A be a k-linear, Hom-finite additive category. Then A satisfies
(G) if and only if proj RA ⊂ GP(RA,A) holds. In this case, the following statements fold.

(a) GP(RA,A) is a Frobenius category such that the projective objects is the objects of
proj RA.

(b) The inclusion functor GP(RA,A)→ GP(RA) induces a fully faithful triangle functor
GP(RA,A)→ GP(RA).

Proof. The first assertion follows from Lemma 13.3 (b). Assume that A satisfies (G).
(a) By the definition and since ρ is exact, GP(RA,A) is extension closed subcategory

of ModRA and has enough projectives and enough injectives. Clearly, an object of proj RA
is relative projective of GP(RA,A). Let Q be a relative projective object of GP(RA,A).
There exists an exact sequence 0 → M → P → Q → 0 in GP(RA) with P ∈ proj RA.
We have M ∈ GP(RA,A) and therefore this sequence splits. Consequently, the relative
projective objects of GP(RA,A) is the objects of proj RA.

(b) This follows from (a).

We regard GP(RA,A) as a thick subcategory of GP(RA) by Proposition 13.8 (b) if A
satisfies (G). Let A be a k-linear, Hom-finite additive category. We consider the following
condition on A:

(IFP) : DA(X,−) ∈ modA holds for any X ∈ A.

Note that if A is a dualizing k-variety, then A satisfies (IFP). We denote by M the full
subcategory of ModRA given by

M := add{A0(−, X) | X ∈ A}.

We recall the definition of tilting subcategories of a triangulated category.

Definition 13.9. Let T be a triangulated category. A full subcategoryM of T is called
a tilting subcategory of T if T (M,M[i]) = 0 for any i ̸= 0 and thickM = T .

We establish the following result.

Theorem 13.10. Let A be a k-linear, Hom-finite additive category and assume that A
and Aop satisfy (IFP). Then the following holds.

(a) If A and Aop satisfy (G), thenM⊂ GP(RA,A) holds andM gives a tilting subcat-
egory of GP(RA,A).

(b) If each object of modA and modAop has finite projective dimension, then M ⊂
GP(RA) holds andM gives a tilting subcategory of GP(RA).

In the case where A is a dualizing k-variety, we have the following corollary.

Corollary 13.11. Let A be a dualizing k-variety. If each object of modA and modAop

has finite projective dimension, thenM is a tilting subcategory of modRA.
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Before starting the proof of Theorem 13.10, we prepare two lemmas. Let A be a
k-linear additive category and i ∈ Z. Put the following full subcategories of RA:

A<i :=
∨
j<i

Aj , A≥i :=
∨
j≥i

Aj .

For M ∈ ModRA and i ∈ Z, let ρ<i(M) :=
⊕

j<i ρj(M) and ρ≥i(M) :=
⊕

j≥i ρj(M).

Lemma 13.12. Let A be a k-linear, Hom-finite additive category. LetM and N be finitely
generated RA-modules and i ∈ Z. Assume that ρ≥i(M) = 0 and ρ<i(N) = 0.

(a) There exist epimorphisms

RA(−,X)→M, RA(−,Y)→ N,

for some X ∈ A<i and Y ∈ A≥i.

(b) We have (ModRA)(M,N) = 0 and (ModRA)(N,M) = 0.

(c) Assume M ∈ modRA. Let

· · · → P2
f2−→ P1

f1−→ P0
f0−→M → 0 (13.2)

be a minimal projective resolution of M in modRA. Then we have ρ≥i(Ker fl) = 0
for l ≥ 0. Moreover by applying a functor ρi−1, we have a minimal projective
resolution of ρi−1(M) in modAi−1.

Proof. (a) SinceM and N are finitely generated, there exist epimorphisms RA(−,X)→M
and RA(−,Y)→ N , where X and Y are in RA. Let W be an object of A≥i. By Yoneda’s
lemma and the assumption, we have (ModRA)(RA(−,W),M) ≃ M(W) = 0. Therefore
we can replace X with an object of A<i. Similarly, we can replace Y with an object of
A≥i.

(b) By (a), there exists an epimorphism RA(−,X) → M , where X ∈ A<i. We have a
monomorphism (ModRA)(M,N)→ (ModRA)(RA(−,X), N). Since (ModRA)(RA(−,X),
N) ≃ N(X) = 0, (ModRA)(M,N) = 0 holds. Similarly, by applying (ModRA)(−,M) to
an epimorphism RA(−,Y)→ N , we have (ModRA)(N,M) = 0.

(c) By (a), there exists X0 ∈ A<i such that P0 is a direct summands of RA(−,X0).
We have ρ≥i(RA(−,X0)) = 0. Therefore the submodule Ker f0 of RA(−,X0) satisfies
ρ≥i(Ker f0) = 0. By using this argument inductively, we have that there exist Xl ∈
A<i such that Pl is a direct summands of RA(−,Xl) for any l ≥ 0. Therefore we have
ρ≥i(Ker fl) = 0 for l ≥ 0.

For any l ≥ 0, by Lemma 13.3, ρi−1(Pl) is a direct sum of Ai−1(−, X) for some X ∈ A
and zero objects. Therefore each ρi−1(Pl) is a projective Ai−1-module. Minimality comes
from the minimality of the resolution (13.2).

We see when GP(RA) contains the representable functors on A. Note that there exists
an equivalence (RA)op ≃ R(Aop) given by (X, i) 7→ (X,−i). Thus we have a duality

Modfg RA
D−→ Modfg(RA)op

∼−→ Modfg R(Aop).

By this duality, a full subcategorymodAi ofmodRA goes to a full subcategorymod(Aop)−i

of modR(Aop).
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Lemma 13.13. Let A be a k-linear, Hom-finite additive category.

(a) The following statements are equivalent.

(i) A and Aop satisfy (IFP).

(ii) Ai(−, X) ∈ GP(RA) and Ai(X,−) ∈ GP(RA)op hold for any X ∈ A and i ∈ Z.
(iii) DAi(X,−) ∈ GP(RA) and DAi(−, X) ∈ GP(RA)op hold for any X ∈ A and

i ∈ Z.

(b) If A and Aop satisfy (IFP), then ρi(M) ∈ GP(RA) holds for any M ∈ GP(RA) and
i ∈ Z.

Proof. Note that by Lemma 13.2, RA has a Serre functor S. Thus by Lemma 12.15, we
have an isomorphism of functors (−)∗ ≃ D(− ◦ S−1) : Modfg RA → Modfg R(Aop). We
have

(Ai(−, X))∗ ≃ D(Aop)−i−1(X,−) = DA−i−1(−, X) (13.3)

for any X ∈ A and i ∈ Z. Therefore (ii) and (iii) of (a) are equivalent.
(a) We show that (i) implies (ii). Let X ∈ A. By Lemma 13.5, Ai(−, X) ∈ modRA

holds. We have (Ai(−, X))∗ ∈ mod(RA)op, by the equality (13.3) and Lemma 13.5.
Therefore by Lemma 12.15 (b), we have Ai(−, X) ∈ GP(RA). Dually, we have Ai(X,−) ∈
GP(RA)op.

We show that (ii) implies (i). Let X ∈ A. Take a minimal projective resolution of
Ai(−, X) in modRA:

· · · → Q2 → Q1
d1−→ RA(−, (X, i))→ Ai(−, X)→ 0.

By Lemma 13.3 (b), we have Im d1 = DAi−1(X,−). By Lemma 13.12 (c), applying ρi−1,
we have DAi−1(X,−) ∈ modAi−1. This means DA(X,−) ∈ modA. Dually, we have
DA(−, X) ∈ modAop.

(b) By Lemma 13.3 (b), we have ρi(P ) ∈ add{Ai(−, X),DAi(X,−) | X ∈ A} for
any P ∈ proj RA. Therefore (ρi(P ))

∗ ∈ mod(Aop)−i−1 holds by the equality (13.3) and
the assumption. Let M ∈ GP(RA) and P• = (Pj , dj : Pj → Pj+1) be a totally acyclic
complex such that Im d0 = M , where Pj ∈ proj RA. By applying ρi, we have an exact
sequence ρi(P•) = (ρi(Pj), ρi(dj) : ρi(Pj) → ρi(Pj+1)) such that Im ρi(d0) = ρi(M).
We have an exact sequence · · · → ρi(P−1) → ρi(P0) → ρi(M) → 0. By Lemmas 12.4
(b) and 13.5, ρi(M) ∈ modRA holds. By applying a functor (−)∗ to 0 → ρi(M) →
ρi(P1) → ρi(P2) → · · · , and using Lemma 12.4 (b) to the resulting exact sequence, we
have (ρi(M))∗ ∈ mod(RA)op. Therefore we have ρi(M) ∈ GP(RA) by Lemma 12.15
(b).

By Lemma 13.13, if A and Aop satisfy (IFP), thenM⊂ GP(RA) holds. We also denote
by M the subcategory of GP(RA) consisting of objects A0(−, X) for any X ∈ A. Then
we show Theorem 13.10. We divide the proof into two propositions. Put T := GP(RA).

Proposition 13.14. Let A be a k-linear, Hom-finite additive category and assume that
A and Aop satisfy (IFP). Then we have T (M,M[i]) = 0 for any i ̸= 0.
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Proof. Let X ∈ A and

· · · → P2
f2−→ P1

f1−→ P0
f0−→ A0(−, X)→ 0

be a minimal projective resolution in modRA. Put Ki := Ker(f i−1) for i ≥ 1. By
Lemmas 13.3 (b) and 13.12 (c), we have ρ≥0(K

i) = 0 for i ≥ 1. Let Y ∈ A. Since
ρ<0(A0(−, Y )) = 0 and Lemma 13.12 (b), we have

(ModRA)(Ki,A0(−, Y )) = 0, (ModRA)(A0(−, Y ),Ki) = 0,

for any i ≥ 1. Therefore we have

T (A0(−, Y ),A0(−, X)[−i]) = T (A0(−, Y ),Ki) = 0,

T (A0(−, X),A0(−, Y )[i]) = T (Ki,A0(−, Y )) = 0,

for any i ≥ 1.

Proposition 13.15. Let A be a k-linear, Hom-finite additive category and assume that
A and Aop satisfy (IFP). If A and Aop satisfy (G), then we have thickT M = GP(RA,A).

Proof. Since A and Aop satisfy (IFP), we have M ⊂ GP(RA,A). Therefore we have
thickM := thickT M⊂ GP(RA,A).

Let i ∈ Z and N ∈ modAi. Assume that N has finite projective dimension over Ai.
Since the inclusion modAi → modRA is exact, we have a resolution of N by objects of
the form Ai(−, X), (X ∈ A) in modRA. Therefore if N is an object of GP(RA,A), then
N is in thickM if Ai(−, X) is in thickM for any X ∈ A.

Let M ∈ GP(RA,A). Since M is a factor module of a finitely generated projective
RA-module, SuppM is a finite set. Thus by Lemma 13.4 (b), M has a finite filtration by
ρi(M) for i = n, n+ 1, . . . ,m, where n = min SuppM and m = maxSuppM . By Lemma
13.13 (b) and since ρ(M) has finite projective dimension over A, ρi(M) ∈ GP(RA,A)
for any i ∈ Z. Therefore M is in thickM if Ai(−, X) is in thickM for any X ∈ A and
i = n, n+ 1, . . . ,m.

We show that Ai(−, X) is in thickM for any X ∈ A and i ∈ Z by an induction
on i. We first show Ai(−, X) ∈ thickM for i ≥ 0. Since A0(−, X) ∈ M, we have
A0(−, X) ∈ thickM. Assume that Aj(−, X) ∈ thickM for 0 ≤ j ≤ i − 1. By Lemma
13.3, we have an exact sequence in GP(RA)

0→ DAi−1(X,−)→ RA(−, (X, i))→ Ai(−, X)→ 0.

Since DAi−1(X,−) has finite projective dimension over A and by the inductive hypothesis,
we have DAi−1(X,−) ∈ thickM. Therefore Ai(−, X) is in thickM.

Next we show that A−i(−, X) ∈ thickM for i > 0. Assume that A−j(−, X) ∈ thickM
for 0 ≤ j ≤ i− 1. Let n be the projective dimension of DA−i(−, X) ≃ D(Aop)i(X,−) in
mod(Aop)i and

Qn
f−→ · · · → Q1 → Q0 → DA−i(−, X)→ 0

be a minimal projective resolution inmod(RA)op ≃ modR(Aop). PutK := Ker f . We have
K ∈ GP(R(Aop)) by Lemmas 12.7 (b) and 13.13 (a). By applying ρ to this resolution, we
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have K ∈ GP(R(Aop),Aop). Since the projective dimension of DA−i(−, X) in mod(Aop)i
is n and by Lemma 13.12 (c), we have ρi(K) = 0. Moreover by Lemma 13.12 (c), we
have ρ≥i+1(K) = 0. Therefore a RA-module DK satisfies ρ<−i+1(DK) = 0. Since DK
is a finitely generated RA-module, SuppDK is finite. Thus by Lemma 13.4 (b), DK has
a finite filtration by ρj(DK) for −i + 1 ≤ j ≤ m, where m = maxSuppDK. By the
inductive hypothesis, DK ∈ thickM holds. We have an exact sequence in GP(RA)

0→ A−i(−, X)→ DQ0 → DQ1 → · · · → DQn → DK → 0,

where each DQl is a projective RA-module. This means A−i(−, X) ≃ (DK)[−n − 1] in
GP(RA,A). Therefore we have A−i(−, X) ∈ thickM.

Proof of Theorem 13.10. (a) This follows from Propositions 13.14 and 13.15.
(b) Sine each object of modA has finite projective dimension, GP(RA,A) = GP(RA)

holds. Thus the assertion follows from (a).

Proof of Corollary 13.11. If A is a dualizing k-variety, then GP(RA) = modRA holds.
The assertion directly follows from Theorem 13.10.

13.3 Happel’s theorem for functor categories

As an application of Theorem 13.10, we show Happel’s theorem for functor categories. We
need the following lemma.

Lemma 13.16. Let A be a k-linear, Hom-finite additive category and assume that A and
Aop satisfy (IFP). Let X,Y ∈ A, T := GP(RA). We have the following equality:

T (A0(−, X),A0(−, Y )[n]) ≃

{
A(X,Y ) n = 0,

0 else.

Proof. By Proposition 13.14, T (A0(−, X),A0(−, Y )[n ̸= 0]) = 0 holds. Moreover we have

(ModRA)(A0(−, X),RA(−, (Y, 0))) ≃ (Mod(RA)op)(DRA(−, (Y, 0)),DA0(−, X))

≃ (Mod(RA)op)(RA((Y,−1),−),DA0(−, X))

≃ DA0((Y,−1), X) = 0, (13.4)

where we use Lemma 13.2 (b) and Yoneda’s lemma. By Lemma 13.3 (b), if a morphism
f : A0(−, X) → A0(−, Y ) in ModRA factors though an object of proj RA, then f factors
though RA(−, (Y, 0)). Thus by the equality (13.4), we have

T (A0(−, X),A0(−, Y )) = (ModRA)(A0(−, X),A0(−, Y )).

By applying the functor (ModRA)(−,A0(−, Y )) to the exact sequence of Lemma 13.3 (b),
since (ModRA)(DA−1(X,−),A0(−, Y )) = 0 holds, we have

(ModRA)(A0(−, X),A0(−, Y )) ≃ (ModRA)(RA(−, (X, 0)),A0(−, Y ))

≃ A0((X, 0), Y )

≃ A(X,Y ).
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We have the following result, which is a functor category version of Happel’s theorem.

Corollary 13.17. Let A be a k-linear, Hom-finite additive category and assume that A
and Aop satisfy (IFP).

(a) If A and Aop satisfy (G), then we have a triangle equivalence

Kb(projA) ≃ GP(RA,A).

(b) If each object of modA and modAop has finite projective dimension, then we have
a triangle equivalence

Kb(projA) ≃ GP(RA).

Proof. (a) Let F := GP(RA,A) and P := proj RA. An inclusion functor projA ≃ projA0 →
F induces a triangle functor Kb(projA) → K−,b(P). Then we have the following triangle
functors

F : Kb(projA)→ K−,b(P)→ K−,b(P)/Kb(P)→ F ,

where the third is a quasi-inverse of Theorem 12.17. We denote by F the composite of
these functors. We show that F is an equivalence by using Lemma 12.18.

Put U := Kb(projA) and T := GP(RA,A) = F . Note that projA is a subcategory of
U . We show that a map

FM,N [n] : U(M,N)→ T (FM,FN [n])

is an isomorphism for any M,N ∈ projA and n ∈ Z. By Theorem 12.17, a quasi-inverse
of K−,b(P)/Kb(P) → F is induced from the composite of the canonical functors F →
K−,b(P) → K−,b(P)/Kb(P). Therefore we have F (A(−, X)) = A0(−, X) for any X ∈ A.
For any X,Y ∈ A, we have

U(A(−, X),A(−, Y )) = A(X,Y ), U(A(−, X),A(−, Y )[n ̸= 0]) = 0.

Consequently, by Lemma 13.16, FM,N [n] is an isomorphism for any M,N ∈ projA and
n ∈ Z.

Since projA is Hom-finite and idempotent complete, so is Kb(projA). Clearly we have
thickU (projA) = U . Since Im(F |projA) =M holds, we have thick(Im(F )) = T by Theorem
13.10 (a). Therefore F is an equivalence by Lemma 12.18.

(b) Since each object of modA has finite projective dimension, we have GP(RA,A) ≃
GP(RA). Therefore we have the assertion by (a).

Corollary 13.18. Let A be a dualizing k-variety. If each object of modA and modAop

has finite projective dimension, then we have the following triangle equivalence

Db(modA) ≃ modRA.

Proof. If A is a dualizing k-variety, then GP(RA) = modRA holds. The assertion directly
follows from Corollary 13.17.
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14 Proof of Theorem 1.8

Throughout this section, let k be an algebraically closed field. Let A be a finite dimensional
hereditary k-algebra, that is, gldim(A) ≤ 1. In this section, we apply Corollary 13.18 to
modA and show Theorem 14.5.

We denote by modA the category of the finitely generated A-modules and denote by
τ and τ−1 the Auslander-Reiten translations on modA. We call an indecomposable A-
module M preprojective (resp. preinjective) if there exists an indecomposable projective
A-module P (resp. injective A-module I) and an integer i such that M ≃ τ i(P ) (resp.
M ≃ τ i(I)). We call an indecomposable A-module M regular if τ i(M) ̸= 0 for any i ∈ Z.
Put the following subcategories of modA:

P := add{M ∈ modA |M is a preprojective module},
I := add{M ∈ modA |M is a preinjective module},
R := add{M ∈ modA |M is a regular module}.

We denote by Db(modA) the bounded derived category of modA and denote by S a
Serre functor of Db(modA). We regard modA as a full subcategory of Db(modA) by the
canonical inclusion. Thus for any X ∈ Db(modA), X ∈ modA if and only if Hi(X) = 0
for any i ̸= 0.

The following proposition is well known (see [ASS, Chapter VIII. 2.1. Proposition]
[Ha88, Chapter I, 5.2, Lemma]).

Proposition 14.1. Let A be a representation infinite hereditary algebra. Then we have
the following equalities.

Db(modA) =
∨
i∈Z

(modA)[i],

modA = P ∨R ∨ I.

We denote by modpA the full subcategory of modA consisting of modules without
non-zero projective direct summands. We define an additive functor

Φ : R(modpA)→ Db(modA)

as follows. For X ∈ modpA and i ∈ Z, let Φ(X, i) := Si(X). For X,Y ∈ modpA and
i, j ∈ Z, since S is a Serre functor of Db(modA), we have

HomDb(modA)

(
Si(X), Sj(Y )

)
≃


HomDb(modA)(X,Y ) i = j,

DHomDb(modA)(Y,X) j = i+ 1,

0 else,

where the last isomorphism follows from Lemma 14.2. By using these isomorphisms, we
define a map

Φ(X,i),(Y,j) : HomR(modp A)((X, i), (Y, j))→ HomDb(modA)

(
Si(X),Sj(Y )

)
,

and we extend Φ on R(modpA) additively. Φ is actually a functor, since a Serre duality
is bifunctorial.
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Lemma 14.2. Let A be a representation infinite hereditary algebra. For any i < 0 and
j > 1, we have

Si(modpA) ⊂ add(A) ∨
∨
l<0

modA [l], Sj(modpA) ⊂ add(DA) ∨
∨
l>1

modA [l].

Proof. The assertions come from Proposition 14.1.

The first theorem of this section is the following. Put S1 := S ◦ [−1]. Note that
H0(S1(M)) ≃ τ(M) and H0(S−1

1 (M)) ≃ τ−1(M) hold for any M ∈ modA.

Theorem 14.3. The functor Φ : R(modpA) → Db(modA) is an equivalence of additive
categories.

Proof. By the definition, Φ is fully faithful. We show that Φ is dense. Let X be an
indecomposable object of Db(modA). By Proposition 14.1, there exist an indecomposable
A-module M and an integer l such that X ≃M [l].

Assume thatM is a preprojective module. There exist an indecomposable projectiveA-

module P and i ≥ 0 such thatM ≃ S−i
1 (P ). If i+l > 0, then we have S−(i+l)

1 (P ) ∈ modpA
and

Φ(S−(i+l)
1 (P ),−l) = Sl(S−(i+l)

1 (P ))

= S−i
1 (P )[l].

If i+ l ≤ 0, then we have S−(i+l)
1 (S(P )) ∈ modpA and

Φ(S−(i+l)
1 (S(P )),−l + 1) = Sl−1(S−(i+l)

1 (S(P )))
= S−i

1 (P )[l].

Next assume thatM is a preinjective module. There exist an indecomposable injective
A-module I and i ≥ 0 such that M ≃ Si1(I). If i− l ≥ 0, then we have Si−l

1 (I) ∈ modpA
and

Φ(Si−l
1 (I),−l) = Sl(Si−l

1 (I))

= Si1(I)[l].

If i− l < 0, then we have Si−l
1 (S−1(I)) ∈ modpA and

Φ(Si−l
1 (S−1(I)),−l − 1) = Sl+1(Si−l

1 (S−1(I)))

= Si1(I)[l].

Assume that M is a regular module. Then we have S−l
1 (M) ∈ R ⊂ modpA and

Φ(S−l
1 (M),−l) = Sl(S−l

1 (M)) = M [l] holds. Therefore the functor Φ : R(modpA) → D is
dense.

Theorem 14.3 is an analog of the well known equivalence Db(H) ≃ RepH for a hered-
itary abelian category H [Le, Theorem 3.1]. But they are quite different, since the defini-
tions of RepH and R(modA) are quite different.

We recall the following proposition.
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Proposition 14.4. [AR74, Propositions 6.2, 10.2] Let A be a dualizing k-variety and
B := modA. Let P be the full subcategory of B consisting of the projective modules. Then
the following statements hold.

(a) B/[P] is a dualizing k-variety.

(b) Assume that the global dimension of modA is at most n, then the global dimension
of mod(B/[P]) is at most 3n− 1.

Then we apply Corollary 13.18 to modA.

Theorem 14.5. Let A be a representation infinite hereditary algebra. Then we have the
following triangle equivalences

modDb(modA) ≃ modR(modA) ≃ Db(mod(modA)).

Proof. Since A is hereditary, a canonical functor modpA→ modA induces an equivalence
modpA ≃ modA. Therefore the first equivalence comes from Theorem 14.3. By Propo-
sition 14.4, modA is a dualizing k-variety such that the global dimension of mod(modA)
is at most two. Therefore we can apply Corollary 13.18 to the dualizing k-variety modA.
We have the second equivalence.

We say that two dualizing k-varieties A and A′ are derived equivalent if the derived
categories of modA and modA′ are triangle equivalent.

Corollary 14.6. Let A,A′ be representation infinite hereditary algebras. If A and A′ are
derived equivalent, then modA and modA′ are derived equivalent.

Remark 14.7. If A is a representation finite hereditary algebra, then Theorems 14.3,
14.5 and Corollary 14.6 were shown by [IO].
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