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Preface

In the classical representation theory, one of the important problem is to classify all objects
of a given category up to isomorphisms. However, this problem is quite difficult and
impossible almost always except special cases. Therefore, classifying subcategories which
are closed under some operation has been considered so far as the next but most reasonable
problem. Namely, instead of classifying objects, we would like to classify subcategories
generated by an object in some sense.

Let C be an essentially small category. Classifying subcategories means for a property
P of full subcategories, finding a one-to-one correspondence

{subcategories of C satisgying P} // S,oo

between the set of subcategories of C satisfying P and some set S. This set S is normally
expected to be easier to understand. By using such a correspondence, we would like to
understand the set {subcategories of C satisgying P} and moreover, the structure of C.

For a triangulated category, one of the important classes of subcategories is that of
thick subcategories. A full subcategory of a triangulated category is called thick if it is
triangulated and closed under taking direct summands. It naturally appears as the kernel
of some cohomological functor and also as the inverse image of some tensorial support (for
the definition, we refer to Definitions 1.3 and 2.5).

Classification of subcategories was first considered by Hopkins-Smith [HS] in stable
homotopy theory. They classified thick subcategories of p-local finite spectra:

Theorem 1. [HS, Theorem 7] Let p be a prime number. Then there is a one-to-one
correspondence:

{thick subcategories of SHfin
(p)} // Z>0 ∪ {∞},oo

where SHfin
(p) denotes the triangulated category of p-local finite spectra.

Indeed, they verified that every thick subcategory of SHfin
(p) is obtained as the kernel of

a cohomological functor given by tensoring with the Morava K -theory spectrum.
Motivated by this classification, Hopkins [Hop] and Neeman [Nee92] proved the following

classification theorem for Noetherian affine schemes and Thomason [Tho] generalized it to
Noetherian schemes, which classifies thick subcategories of perfect complexes closed under
the tensor action by each object:

Theorem 2. [Hop, Nee92, Tho] Let X be a Noetherian scheme. Then there is a one-to-
one correspondence:

{
thick subcategories of Dperf(X)

closed under ⊗L

OX

}
// {specialization closed subsets of X},oo

where Dperf(X) denotes the perfect derived category of X.

In fact, this theorem states that every thick subcategory of Dperf(X) which is closed
under the action via ⊗L

OX
, is obtained as the inverse image Supp−1W of exactly one

specialization closed subset W of X by the cohomological support Supp; see Example 1.4
for details.

On the other hand, in modular representation theory, Benson-Carlson-Rickard [BCR]
and Benson-Iyengar-Krause [BIK] classified thick subcategories of the stable module cat-
egories of a finite group which are closed under the tensor action by each object:
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Theorem 3. [BCR, BIK] Let k be a field and G a finite group. Then there is a one-to-one
correspondence:
{
thick subcategories of mod kG

closed under ⊗k

}
// {specialization closed subsets of Proj H∗(G; k)},oo

where we denote by mod kG the stable module category of kG and by H∗(G; k) the coho-
mology ring of G with coefficients in k.

As in the case of the above classification, this theorem states that every thick subcate-
gory of mod kG which is closed under the action via ⊗k, is obtained as the inverse image
V −1
G (W ) of exactly one specialization closed subset W of Proj H∗(G; k) by the support

variety VG; see Example 1.4 for details.
In all of these results, tensor structures of triangulated categories play crucial roles.

Indeed, these classifications come from the same framework of tensor triangular geometry.
Tensor triangular geometry is a theory established by Balmer at the beginning of this

century. Let (T ,⊗,1) be an (essentially small) tensor triangulated category, that is, a
triangulated category T equipped with symmetric tensor product ⊗ and unit object 1.
One can then define the notions of thick tensor ideals, prime thick tensor ideals and
radical thick tensor ideals of T , which behave similarly to ideals, prime ideals and radical
ideals of a commutative ring. The Balmer spectrum Spec T of T is defined as the set
of prime thick tensor ideals of T . This set has the structure of a topological space.
Tensor triangular geometry studies Balmer spectra and develops commutative-algebraic
and algebro-geometric observations for them. He accomplished the following monumental
work in this direction.

Theorem 4. [Bal05, Theorem 4.10] Let T be a tensor triangulated category. Then there
is a one-to-one correspondence:

{radical thick tensor ideals of T } // {Thomason subsets of Spec T }.oo

Here, a subset of a topological space is said to be Thomason if it is the union of
closed subsets whose complements are quasi-compact. Thus, the classification of radical
thick tensor ideals is interpreted as the study of the topological space Spec T . Balmer
[Bal05, Bal10a] also determined the Balmer spectra of Dperf(X), mod kG and the category

SHfin of finite spectra, by using classification Theorem 1, 2 and 3. Furthermore, these
classification theorems are restored from Theorem 4.

The Balmer spectrum is hard to calculate from the definition without classification. To
explore Spec T , Balmer [Bal10a] defined a graded commutative ring R•

T which is called

the graded central ring of T and a continuous map ρ•T : Spec T → SpechR•
T (SpechR•

T
stands for the homogeneous prime spectrum of R•

T ). Surjectivity of the comparison map
is investigated in [Bal10a] and frequently it becomes surjective (e.g., it does provided R•

T
is Noetherian). Contrary to this, injectivity of the comparison map is hard to observe and
there are only affirmative answers for each individual tensor triangulated category. For
example, in the cases of Dperf(X) for a Noetherian affine scheme X, and mod kG for a finite
group G with a field k, their comparison maps are injective; see [Bal10a, Propositions 8.1
and 8.5]. Note that these categories are algebraic triangulated categories, namely the stable
categories of Frobenius exact categories. By contrast, for a topological tensor triangulated
category, such as SHfin, the map may not be injective; see [Bal10a, Proposition 9.4]. From
this observation, Balmer conjectured the following.
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Conjecture 5. [Bal10b, Conjecture 72] The comparison map

ρ•T : Spec T → SpechR•
T

is (locally) injective if T is “algebraic enough”.

Here, “algebraic enough” tensor triangulated categories could mean algebraic ones, or
derived categories of dg-categories, or ones locally generated by the unit.

LetA be an (essentially small) additive category. We say that an additive subcategory X
is additively closed if it is closed under taking direct summands and dense if every object
of A is a direct summand of some object of X . Then one can easily check that every
additive subcategory of A is a dense subcategory of some additively closed subcategory of
A. Thus, to classify additive subcategories, it suffices to classify dense ones and additively
closed ones. So far, we have considered classifying additively closed subcategories. As
classification of dense subcategories, Thomason proved the following theorem.

Theorem 6. [Tho, Theorem 2.1] Let T be a triangulated category. Then there is a one-
to-one correspondence:

{dense triangulated subcategories of T } // {subgroups of K0(T )},oo

where K0(T ) denotes the Grothendieck group of T .
Combining this theorem (classification of dense subcategories) and Theorem 2 (classifi-

cation of additively closed subcategories) yields a complete classification of the triangulated
subcategories of Dperf(X) for a Noetherian scheme X.

In this thesis, we discuss various problems concerning classification theory of subcate-
gories: tensor triangular geometry for the right bounded derived category D-(modR) of
a commutative Noetherian ring R, reconstruction problems from classification of subcat-
egories, and classification of dense subcategories of exact categories. We do it mainly for
categories appearing in commutative algebra.

This thesis consists of four parts which are based on the papers [MT, Mat17a, Mat17b,
Mat17c].

In Part 1, we give a short survey of support theory of triangulated categories and tensor
triangular geometry for later use. At the end of this part, we give a geometric criterion
for the perfect derived category of a Noetherian scheme to satisfy Balmer’s conjecture.
Moreover, using this criterion, we prove that Balmer’s comparison map ρ•

Dperf(X)
is locally

injective for the perfect derived categories of Noetherian quasi-affine schemes:

Theorem A (Part 1, Theorem 2.31). Let X be a Noetherian quasi-affine scheme (i.e.,
an open subscheme of an affine scheme). Then the comparison map ρ•

Dperf(X)
is locally

injective.

Note that if X is quasi-affine, then Dperf(X) is generated by the unit OX .
In Part 2, we discuss tensor triangular geometry for the tensor triangulated category

D-(modR) of right bounded complexes of finitely generated modules over a commutative
Noetherian ring R. Tensor triangular geometry for tensor triangulated categories which are
rigid (small in some sense), have been studied by several authors so far [Bal07, BF, SS] and

various results are known. For example, SHfin, Dperf(X), and mod kG are rigid. However,
our tensor triangulated category D-(modR) is far from rigid and hence we cannot apply
general results on rigid tensor triangulated categories.

First, we classify thick tensor ideals of D-(modR) generated by bounded complexes:
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Theorem B (Part 2, Theorem 5.12). Let R be a commutative Noetherian ring. Then
there is a one-to-one correspondence:

{
thick tensor ideals of D-(modR)
generated by bounded complexes

}
// {specialization closed subsets of SpecR}.oo

This theorem can be considered as a generalization of Theorem 2 in the case of an
affine scheme. To prove this theorem, we generalize the smash nilpotence theorem for
perfect complexes due to Hopkins [Hop, Theorem 10] and Neeman [Nee92, Theorem 1.1]
to unbounded complexes.

Next, we relate the Balmer spectrum SpecD-(modR) to the Zariski spectrum SpecR.
As stated above, classification of subcategories gives information on the Balmer spectrum.
Therefore, Theorem B gives us a way to investigate the structure of SpecD-(modR) by
comparing with the Zariski spectrum SpecR. More precisely, we introduce two order-
reversing maps

SpecD-(modR)
s //

SpecR,
S

oo

and investigate SpecD-(modR) through s and S. Then the map s is continuous and
s ◦ S = 1. Furthermore, these maps connect Balmer’s classification theorem and our
classification theorem (Theorem 9.20). One of our main results in this direction is the
following theorem.

Theorem C (Part 2, Corollary 7.5 and Theorem 10.5). (1) The following are equiva-
lent:
(a) S is an immersion.
(b) SpecR is a finite set (i.e., R has Krull dimension at most 1 and semilocal).

(2) The following are equivalent:
(a) S is a homeomorphism.
(b) R is Artinian (i.e., R has Krull dimension 0).

As a direct consequence, we can classify all the thick tensor ideals of D-(modR) via spe-
cialization closed subsets of SpecR provided R is Artinian. Conversely, such classification
is possible only in the case of Artinian rings.

As Balmer’s classification theorem says, topological information on the Balmer spec-
trum provides significant information to classify radical thick tensor ideals. We have the
following results concerning topological properties such as Noetherianity, connectedness,
and irreducibility of SpecD-(modR).

Theorem D (Part 2, Corollary 8.9). (1) If SpecD-(modR) is Noetherian, then SpecR
is a finite set.

(2) SpecD-(R) is connected (resp. irreducible) if and only if SpecR is connected (resp.
irreducible).

For our category D-(modR), one has R•
D-(modR)

= R and SpechR•
D-(modR)

= SpecR.

Actually, the map s is nothing but Balmer’s comparison map ρ•
D-(modR)

(Proposition 10.9).

Using the properties of s, we obtain the following result.

Theorem E (Part 2, Corollary 10.10). Assume that R has positive Krull dimension and
that R is either a domain or a local ring. Then the map s is not locally injective.

In view of Conjecture 5, this theorem says that D-(modR) is not “algebraic enough”; an
algebraic tensor triangulated category is not sufficiently “algebraic enough”.
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For the remainder of this part, we give some calculations of prime thick tensor ideals
of D-(modR) for a discrete valuation ring R. In this case, it is known that every complex
X in D-(modR) is isomorphic to its cohomology complex H(X) := ⊕n∈ZHn(X)[−n] in
D-(modR). Thus, we can ignore differentials of complexes. This makes it easy to compute
tensor products of complexes. The following theorem would say that the Balmer spectrum
SpecD-(modR) is quite complicated even in the case of a discrete valuation ring.

Theorem F (Part 2, Propositions 11.7, 11.17 and Theorems 11.11, 11.14). Let (R, xR)
be a discrete valuation ring, and let n > 0 be an integer. Let Pn be the full subcategory of
D-(modR) consisting of complexes X with finite length homologies such that there exists
an integer t > 0 with ℓℓ(H−iX) 6 tin for all i≫ 0. Here, ℓℓ(M) denotes the Loewy length
ℓℓ(M) := inf{i | xiM = 0}. Then:

(1) Pn coincides with the smallest thick tensor ideal of D-(R) containing the complex
⊕

i>0(R/x
inR)[i] = (· · · 0−→ R/x3

n
R 0−→ R/x2

n
R 0−→ R/x1

n
R→ 0).

(2) Pn is a prime thick tensor ideal of D-(modR).
(3) One has P0 ( P1 ( P2 ( · · · . Hence SpecD-(modR) has infinite Krull dimension.

In Part 3, as an application of classification theory of subcategories, we consider recon-
struction of classifying spaces. Here, by a classifying space, we mean a Noetherian sober
space whose specialization closed subsets bijectively correspond to thick subcategories of
a given triangulated category via some support; for the precise definition, see Definition
13.5. The first main result of this part is the following reconstruction theorem.

Theorem G (Part 3, Theorem 13.11). Let T and T ′ be essentially small triangulated
categories, X and Y their classifying spaces, respectively. If T and T ′ are triangulated
equivalent, then X and Y are homeomorphic.

By [Bal05, Theorem 5.2], such result can be proven using tensor structures, however,
what I would like to emphasize is that we don’t need any tensor structures to prove this
theorem. Such a reconstruction problem has been dealt with so far in connection with
non-commutative algebraic geometry. For example, we refer to [Gab, Ros, Bal05].

Of course, a tensor triangle equivalence T ∼= T ′ between tensor triangulated categories
implies that Spec T and Spec T ′ are homeomorphic. Applying this theorem, we show that
the topology of the Balmer spectrum of T is reconstructed just from the triangle structure
of a certain tensor triangulated category T :
Theorem H (Part 3, Corollary 14.5). Let T and T ′ be closed tensor triangulated cate-
gories such that

(1) Spec T and Spec T ′ are Noetherian, and
(2) T and T ′ are generated by their unit objects.

If T and T ′ are triangulated equivalent, then Spec T and Spec T ′ are homeomorphic.

Combining this theorem and Theorems 2 and 3, we obtain the following results.

Theorem I (Part 3, Theorem 14.7). Let X and Y be Noetherian quasi-affine schemes. If
Dperf(X) and Dperf(Y ) are triangulated equivalent, then X and Y are homeomorphic.

Theorem J (Part 3, Theorem 14.10, Corollary 14.11). Let k (resp. l) be a field of char-
acteristic p (resp. q), G (resp. H) a finite p-group (resp. q-group). Then the implications

mod kG ∼= mod lH =⇒ Proj H∗(G; k) and Proj H∗(H; l) are homoemorphic

=⇒ rp(G) = rq(H)



8

hold. Here, we set rp(G) := sup{r | (Z/p)r ⊆ G} and call it the p-rank of G.

In the 1980s, Buchweitz [Buc] defined the stable derived category of a Noetherian ring
R, which is recently called the singularity category of R. It is by definition the Verdier
quotient

Dsg(R) := Db(modR)/Kb(projR)

of the bounded derived category Db(modR) of finitely generated R-modules by its sub-
category Kb(projR) of bounded complexes of finitely generated projective R-modules (i.e.,
perfect complexes over R). Singularity categories have been deeply investigated from
algebro-geometric and representation-theoretic motivations [Che, IW, Ste, Tak10] and con-
nected to Kontsevich’s Homological Mirror Symmetry Conjecture by Orlov [Orl04]. For
two commutative Noetherian rings R and S, we say that they are singularly equivalent if
their singularity categories Dsg(R) and Dsg(S) are equivalent as triangulated categories.
Regarding the singularity category, the following classification was obtained by Takahashi.

Theorem K. [Tak10, Theorem 6.7] Let (R,m, k) be a Gorenstein local ring which is locally
a hypersurface on the punctured spectrum. Then there is a one-to-one correspondence:
{
thick subcategories of Dsg(R)

containing k

}
// {non-empty specialization closed subsets of SingR},oo

where SingR denotes the singular locus of R.

To apply Theorem G for this classification, we have to check that the condition “con-
taining the residue field” for a thick subcategory is preserved by a singular equivalence.
For this, we introduce the notion of a test object of a triangulated category which is a cat-
egorically defined object and hence preserved by a triangle equivalence. In fact, we prove
that a thick subcategory of the singularity category contains a test object if and only if it
contains the residue field for a complete intersection local ring (Proposition 15.12). Thus,
we obtain the following result.

Theorem L (Part 3, Theorem 15.4). Let R and S be complete intersection local rings that
are locally hypersurfaces on the punctured spectra. If R and S are singularly equivalent,
then SingR and SingS are homeomorphic.

In Part 4, we handle classification of dense subcategories of an exact category E . We
say that an additive subcategory X of E is a 2-out-of-3 subcategory if it satisfies the 2-out-
of-3 property with respect to conflations. By definition, an additively closed 2-out-of-3
subcategory is nothing but a so-called thick subcategory. The main theorem of this section
is the following.

Theorem M (Part 4, Theorem 17.7). Let E be an essentially small exact category ad-
mitting either a generator or a cogenerator G (Definition 17.1). There is a one-to-one
correspondence:

{
dense 2-out-of-3 subcategories of E containing G

} //oo

{
subgroups of K0(E)

containing the image of G

}
,

where K0(E) stands for the Grothendieck group of E.
Combining this theorem with Theorem 6, we obtain:

Theorem N (Part 4, Corollary 18.3). Let E be an essentially small exact category ad-
mitting either a generator or a cogenerator G. Then there are one-to-one correspondences
among the sets:
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(1) {dense 2-out-of-3 subcategories of E containing G},
(2) {dense triangulated subcategories of Db(E) containing G}, and
(3) {subgroups of K0(E) containing the image of G}.

This result can be viewed as a dense version of [KS, Theorem 1] whenever we take
E = proj E .
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Conventions

For a left Noetherian ring A, we denote by modA (resp. projA) the category of finitely
generated left A-modules (resp. finitely generated projective left A-modules).

For an ordered set P , we denote by MaxP (resp. MinP ) the set of maximal (resp.
minimal) elements of P .

Let R be a commutative Noetherian ring. We denote by SpecR (resp. MaxR, MinR)
the set of prime (resp. maximal prime, minimal prime) ideals of R. For an ideal I of R,

we denote by V(I) the set of prime ideals of R containing I, and set D(I) = V(I)∁ =
SpecR\V(I). When I is generated by a single element x, we simply write V(x) and D(x).
For a prime ideal p of R, the residue field of Rp is denoted by κ(p), i.e., κ(p) = Rp/pRp.
We denote by ht p the height of p, that is the supremum of the length of all chains of
prime ideals contained in p. For an ideal a, we also denote by ht a the height of a, which
is the infimum of the heights of prime ideals containing a. For a sequence x = x1, . . . , xn
of elements of R, the Koszul complex of R with respect to x is denoted by K(x, R); see
[BH] for the definition.

For an additive category C we denote by 0 the zero subcategory of C, that is, the full
subcategory consisting of objects isomorphic to the zero object. For objects X,Y of C, we
mean by X ⋖ Y (or Y ⋗X) that X is a direct summand of Y in C.

For a triangulated category T , its n-shift functor is denoted by [n].
Throughout this thesis, all categories are assumed to be essentially small (i.e., isomor-

phism classes form a set) and all subcategories are assumed to be full. We often omit
subscripts, superscripts and parentheses, if there is no danger of confusion.
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Part 1. Support theory of triangulated categories

In this part, we recall the theory of tensor triangular geometry developed in [Bal05, Bal07,
Bal10a, Bal10b]. At the end of this part, we discuss Balmer’s conjecture for perfect derived
categories of schemes.

1. Preliminaries

This section is a recollection of basic notions from point-set topology and the theory of
triangulated categories.

Definition 1.1. Let X be a topological space.

(1) A subspace W of X is said to be specialization-closed if for any element x of W , its

closure {x} is contained in W . Note that W is specialization-closed if and only if it is
a union of closed subspaces of X. Denote by Spcl(X) the set of specialization closed
subsets of X.

(2) We say that X is irreducible if it is non-empty and not the union of two proper closed
subspaces. For a subspace Y of X, we say that Y is an irreducible subspace of X if it is
an irreducible space by induced topology. Moreover, an irreducible component of X is
a maximal irreducible subspace of X, which is automatically closed since the closure
of irreducible subspace is also irreducible.

(3) We say that X is sober if every irreducible closed subset of X is the closure of exactly
one point.

(4) We say that X is Noetherian if every descending chain of closed subspaces stabilizes.
(5) The (Krull) dimension of X, denoted by dimX, is defined to be the supremum of

integers n > 0 such that there exists a chain Z0 ( Z1 ( · · · ( Zn of nonempty
irreducible closed subsets of X.

Definition 1.2. Let T be a triangulated category. We say that an additive subcategory
X of T is thick if it satisfies the following conditions:

(i) closed under taking shifts: X [1] = X .
(ii) closed under taking extensions: for a triangle L→M → N → L[1] in T , if L and N

belong to X , then so does M .
(iii) closed under taking direct summands: for two objects L,M of T , if the direct sum

L⊕M belongs to X , then so do L and M .

For a subcategory X of T , denote by thickT X the smallest thick subcategory of T con-
taining X . Denote by Th(T ) the set of thick subcategories of T .

Next, let me introduce the notion of a support data for a triangulated category, which
appears in many places of this thesis.

Definition 1.3. Let T be a triangulated category. A support data for T is a pair (X,σ)
where X is a topological space and σ is an assignment which assigns to an object M of T
a closed subset σ(M) of X satisfying the following conditions:

(1) σ(0) = ∅.
(2) σ(M [n]) = σ(M) for any M ∈ T and n ∈ Z.
(3) σ(M ⊕N) = σ(M) ∪ σ(N) for any M,N ∈ T .
(4) σ(M) ⊆ σ(L) ∪ σ(N) for any triangle L→M → N → L[1] in T .

Support data for triangulated categories is naturally appears various areas of mathe-
matics. The followings are examples of them.
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Example 1.4. (1) Let X be a Noetherian scheme. Denote by Dperf(X) the category of
perfect complexes on X. For F ∈ Dperf(X), we define the cohomological support of F
by

SuppX(F) := {x ∈ X | Fx 6∼= 0 in Dperf(OX,x)}.
Then, SuppX(F) =

⋃
n∈Z SuppX(H

n(F)) is a finite union of supports of coherent OX -
modules and hence is a closed subspace of X. Moreover, (X, SuppX) is a support data
for Dperf(X) because the localization is exact. For details, please see [Tho].

(2) Let k be a field of characteristic p > 0 and G a finite group such that p divides the
order of G. Recall that the stable module category mod kG of an group algebra kG is
the category whose objects are the same as mod kG and the set of morphisms from M
to N is given by

HomkG(M,N) := HomkG(M,N)/PkG(M,N),

where PkG(M,N) consists of all kG-linear maps from M to N factoring through
some free kG-module. Then the category mod kG has the structure of a triangulated
category; see [Hap].

We denote by

H∗(G; k) =

{
⊕i∈ZHi(G; k) p = 2

⊕i∈2ZHi(G; k) p : odd

the direct sum of cohomologies of G with coefficient k. Then H∗(G; k) has the structure
of a graded-commutative Noetherian ring by using the cup product and we call it the
cohomology ring of G with coefficient k. Thus, we can consider its homogeneous
prime spectrum Proj H∗(G; k) of H∗(G; k). Denote by VG(M) the support variety for
a finitely generated kG-module M which is a closed space of Proj H∗(G; k). Then the
pair (Proj H∗(G; k), VG) becomes a support data for mod kG. For details, please refer
to [Ben, Chapter 5].

(3) Let R be a commutative Noetherian ring. For M ∈ Dsg(R), we define the singular
support of M by

SSuppR(M) := {p ∈ SingR |Mp 6∼= 0 in Dsg(Rp)}.
Then (SingR, SSuppR) is a support data for Dsg(R). Indeed, it follows from [AIL,
Theorem 1.1] and [BM, Lemma 4.5] that SSuppR(M) is a closed subset of SingR.
The remained conditions (1)-(4) are clear because the localization functor Dsg(R) →
Dsg(Rp) is exact.

Assume that R is Gorenstein. Denote by CM(R) the category of maximal Cohen-
MacaulayR-modules (i.e., modulesM satisfying ExtiR(M,R) = 0 for all integers i > 0).
As in the case of a group algebra, we can define the stable category CM(R) and it
has the structure of a triangulated category. Moreover, the natural inclusion induces

a triangle equivalence F : CM(R)
∼=−→ Dsg(R) by [Buc]. Thus we obtain the support

data (SingR, Supp
R
) for CM(R) by using this equivalence. Here,

Supp
R
(M) := SSuppR(F (M)) = {p ∈ SingR |Mp 6∼= 0 in CM(Rp)}

for M ∈ CM(R).

Remark 1.5. Actually, the above examples of support data satisfy the following stronger
condition:

(1′) σ(M) = ∅ if and only if M ∼= 0.
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Let (X,σ) be a support data for T , X a thick subcategory of T , andW a specialization-
closed subset of X. Then one can easily check that fσ(X ) := σ(X ) := ⋃

M∈X σ(M) is a

specialization-closed subset of X and gσ(W ) := σ−1(W ) := {M ∈ T | σ(M) ⊆ W} is a
thick subcategory of T . Therefore, we obtain two order-preserving maps

Th(T )
fσ //

Spcl(X)
gσ

oo

with respect to the inclusion relations.

2. Tensor triangular geometry

2.1. Balmer spectra

In this subsection, we give some basic terminologies from the theory of tensor triangulated
categories. To begin with, let us recall the definition of a tensor triangulated category.

Definition 2.1. We say that (T ,⊗,1) is a tensor triangulated category if T is a triangu-
lated category equipped with a symmetric monoidal structure which is compatible with
the triangulated structure of T ; see [HPS, Appendix A] for the precise definition. Thus,
⊗ : T ×T → T is a functor which is exact in each variables and 1 is an object of T which
is a unit with respect to ⊗.

The followings are examples of tensor triangulated categories. The first two examples
have been well examined in [Tho, BCR, BIK]. The last one will be discussed in Part 3 of
this thesis.

Example 2.2. (1) Let X be a scheme. Then the perfect derived category Dperf(X) is a
tensor triangulated category with symmetric monoidal tensor product ⊗L

OX
and unit

object OX .
(2) Let k be a field and G a finite group. Then the stable module category mod kG is

a tensor triangulated category with symmetric monoidal tensor product ⊗k and unit
object k.

(3) Let R be a commutative Noetherian ring. Then the right bounded derived category
D-(modR) is a tensor triangulated category with symmetric monoidal tensor product
⊗L

R and unit object R.

For the rest of this part, let us fix a tensor triangulated category (T ,⊗,1). Then one
can define the notions of thick tensor ideals and prime thick tensor ideals, which behave
similarly to ideals and prime ideals of a commutative ring.

Definition 2.3. (1) A full subcategory X of T is called a thick tensor ideal if it is a thick
subcategory of T and closed under the action of T by ⊗, namely M ⊗ N ∈ X for
any M ∈ X and N ∈ T . We often abbreviate “tensor ideal” to “⊗-ideal”. For a
subcategory X of T , denote by thick⊗T X the smallest thick ⊗-ideal of T containing X .

(2) A proper thick ⊗-ideal P of T is called prime if it satisfies

M ⊗N ∈ P ⇒M ∈ P or N ∈ P.
Denote by Spec T the set of all prime thick ⊗-ideals of T .

(3) For a family E of objects of T , we denote by Z(E) the following subset of Spec T :
Z(E) := {P ∈ Spec T | E ∩ P = ∅}.
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Clearly, we have
⋂
i∈I Z(Ei) = Z(

⋃
i∈I Ei), Z(E1)∪Z(E2) = Z(E1⊕E2), Z(T ) = ∅ and

Z(∅) = Spec T . Thus, we can define a topology on Spec T with the family of closed
subsets {Z(E) | E ⊆ T }. We call this topological space Spec T the Balmer spectrum
of T . Moreover, denote by U(E) the complement of Z(E) which is an open subset of
the Balmer spectrum.

(4) For M ∈ T , the Balmer support of M is defined as a closed subset

BSuppM := Z({M}) = {P ∈ Spec T |M /∈ P}.
Remark 2.4. Note that a family {BSuppM |M ∈ T } of Balmer supports forms a closed
basis of Spec T . Therefore, a family {U(M) |M ∈ T } forms an open basis of Spec T .

Balmer supports define a support data for T with an additional condition which reflects
tensor structure. We call such a support data tensorial:

Definition 2.5. We say that a support data (X,σ) for T is tensorial if it satisfies

σ(M ⊗N) = σ(M) ∩ σ(N)

for any M,N ∈ T .
Note that tensorial support data are called simply support data in [Bal05].

Example 2.6. Support data given in Example 1.4 (1), (2) are tensorial.

Lemma 2.7. [Bal05, Lemma 2.6] The pair (Spec T ,BSupp) is a tensorial support data
for T , namely it satisfies the following conditions:

(1) BSupp(0) = ∅.
(2) BSupp(M [n]) = BSupp(M) for any M ∈ T and n ∈ Z.
(3) BSupp(M ⊕N) = BSupp(M) ∪ BSupp(N) for any M,N ∈ T .
(4) BSupp(M) ⊆ BSupp(L) ∪ BSupp(N) for any triangle L→M → N → L[1] in T .
(5) BSupp(M ⊗N) = BSupp(M) ∩ BSupp(N) for any M,N ∈ T .

Recall that a tensor triangulated category T is rigid if

(1) the functor M ⊗− : T → T has a right adjoint F (M,−) : T → T for each M ∈ T
and

(2) every object M is strongly dualizable (i.e., the natural map F (M,1) ⊗ N →
F (M,N) is an isomorphism for each N).

If T is rigid, then (Spec T ,BSupp) satisfies the stronger condition.

Lemma 2.8. Assume that T is rigid. Then the support data (Spec T ,BSupp) satisfies
the condition (1′) in Remark 1.5.

Proof. Take an object M ∈ T with BSupp(M) = ∅. By [Bal05, Corollary 2.4], there is a
positive integer n such that M⊗n ∼= 0. On the other hand, by [HPS, Lemma A 2.6], M i

belongs to thick⊗T (M
2i) for any positive integer since every object is strongly dualizable.

Therefore, by using induction, we conclude that M ∼= 0. �

The following propositions are analogues of the well known result in commutative ring
theory.

Proposition 2.9. [Bal05, Proposition 2.3]

(1) For any proper thick ⊗-ideal I of T , there is a prime ideal P of T containing I.
(2) Every maximal proper thick ⊗-ideal is prime.
(3) The Balmer spectrum Spec T is not empty provided T 6∼= 0.
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Proposition 2.10. [Bal05, Proposition 2.9, Proposition 2.18]

(1) For any P ∈ Spec T , one has the equality

{P} = {Q ∈ Spec T | Q ⊆ P}.
(2) For any closed subset Z of Spec T , Z is irreducible if and only if Z = {P} holds for

some P ∈ Spec T .
In particular, Spec T is a sober space.

Proposition 2.11. [Bal05, Proposition 2.14] Let U be an open subset of Spec T . Then
U is quasi-compact if and only if U = U(M) for some M ∈ T . In particular, Spec T is
quasi-compact as Spec T = U(0).

Remark 2.12. A topological space X is said to be a spectral space if it is sober, quasi-
compact and quasi-compact open subsets form an open basis of X and closed under
taking finite intersections. The previous two propositions show that the Balmer spectrum
is spectral for any tensor triangulated category.

Proposition 2.13. For a tensor triangulated functor F : T → T ′, the map
aF := SpecF : Spec T ′ → Spec T , P → F−1(P)

is continuous.

2.2. The classification theorem of Balmer

Since (Spec T ,BSupp) is a support data by Lemma 2.7, there are two maps

Th(T )
fBSupp //

Spcl(Spec T ).
gBSupp
oo

Of course, images of gBSupp is not just thick subcategories but also have more special
condition because (Spec T ,BSupp) is tensorial.
Definition 2.14. For a thick ⊗-ideal X of T , define its radical by

√
X := {M ∈ T |M⊗n ∈ X for some integer n},

where M⊗n is an n-fold tensor product. As the following lemma says, the radical of a
thick ⊗-ideal is also a thick ⊗-ideal.

We say that a thick ⊗-ideal X of T is radical if
√
X = X . Denote by Rad(T ) the set

of radical thick ⊗-ideals of T .
Lemma 2.15. [Bal05, Lemma 4.2] Let X be a thick ⊗-ideal. Then one has

√
X =

⋂

X⊆P

P

We can easily check that images of gBSupp are radical thick ⊗-ideals. Thus, gBSupp takes
values in Rad(T ). On the other hand, the image of fBSupp also becomes smaller than
Spcl(Spec T ). It takes values in Thomson subsets.

Definition 2.16. For a topological space X, a subset W is called a Thomason subset
if it is the union of closed subsets whose complements are quasi-compact. Denote by
Thom(X) the set of Thomason subsets of X. Note that Thom(X) ⊆ Spcl(X) holds and
if X is Noetherian, it becomes an equality.
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Balmer proved the following celebrated result. The first statement gives a classification
of radical thick ⊗-ideals via Thomason subsets of the Balmer spectrum and the second
one says that the Balmer spectrum and the Balmer support is uniquely determined by
such a property.

Theorem 2.17. [Bal05, Theorem 4.10, Theorem 5.2]

(1) There is a one-to-one correspondence:

Rad(T )
fBSupp //

Thom(Spec T ).
gBSupp
oo

(2) Let (X,σ) be a tensorial support data for T satisfying:
(a) X is a Noetherian sober space.
(b) There is a one-to-one correspondence:

Rad(T )
fσ //

Spcl(X).
gσ

oo

Then the map

ϕ : X → Spec T , x 7→ {M ∈ T | x 6∈ σ(M)}.
is a homeomorphism. Moreover, this map satisfies ϕ(σ(M)) = BSupp(M) for any
M ∈ T .

The conditions (a) and (b) in the above theorem satisfied in the following cases for
instance.

Theorem 2.18. [Tho, Theorem 3.15] Let X be a Noetherian scheme. Then the support
data (X, SuppX) for Dperf(X) satisfies the conditions (a), (b) in Theorem 2.17(2).

Theorem 2.19. [BCR, BIK] Let k be a field of characteristic p > 0 and G a finite group
such that p divides the order of G. Then the support data (Proj H∗(G; k), VG) for mod kG
satisfies the conditions (a), (b) in Theorem 2.17(2).

By using the above theorems, Balmer determined the Balmer spectra for tensor trian-
gulated categories Dperf(X) and mod kG.

Corollary 2.20. [Bal05, Theorem 6.3]

(1) Let X be a Noetherian scheme. Then SpecDperf(X) and X are homeomorphic.
(2) Let k be a field of characteristic p and G a finite group such that p divides the order

of G. Then Specmod kG and Proj H∗(G; k) are homeomorphic.

Remark 2.21. In [Bal05], Balmer introduced a locally ringed space structure on Spec T
and proved that the above homeomorphisms are actually isomorphisms of schemes, see
[Bal05, Theorem 6.3].

2.3. Balmer’s conjecture

By Theorem 2.17, we can determine the Balmer spectrum of T using a classification of
radical thick ⊗-ideals of T . However, classifying radical thick ⊗-ideals is hard problem and
hence the structure of the Balmer spectrum is as hard as that. Balmer defined a continuous
map from the Balmer spectrum to the Zariski spectrum of some graded-commutative ring
to analyze the structure of the Balmer spectrum without classification.



17

The Z-graded abelian group

R•
T :=

⊕

n∈Z

HomT (1,1[n])

becomes an associative graded ring via the multiplication:

g · f := g[m] ◦ f
for f ∈ RmT and g ∈ RnT . Actually, this multiplication is graded-commutative.

Proposition 2.22. [Bal10a, Proposition 3.3] R•
T is a graded-commutative ring (i.e., g·f =

(−1)|g||f |f · g). In particular, R0
T is a commutative ring.

Definition 2.23. We call the graded-commutative ring R•
T the graded central ring of T .

Since R•
T is graded-commutative, we can define homogeneous prime ideals of R•

T and

Zariski topology on the set SpechR•
T of homogeneous prime ideals of R•

T . Balmer defined
the following map.

Definition 2.24. [Bal10a, Definition 5.1] Let P be a prime thick ⊗-ideal of T . Define
ρ•T (P) to be the homogeneous ideal of R•

T generated by homogeneous elements f with
cone(f) 6∈ P:

ρ•T (P) := (f ∈ Rhom
T | cone(f) 6∈ P).

Similarly, we define the ideal ρ0T (P) = (f ∈ R0
T | cone(f) 6∈ P) of R0

T .

Theorem 2.25. [Bal10a, Theorem 5.3, Corollary 5.6]

(1) ρ•T (P) is a homogeneous prime ideal of R•
T .

(2) ρ0T (P) is a prime ideal of R0
T .

(3) The maps ρ•T : Spec T → SpechR•
T and ρ0T : Spec T → SpecR0

T are continuous.

These continuous maps ρ•T and ρ0T frequently become surjective:

Proposition 2.26. [Bal10a, Theorem 7.3, Theorem 7.13]

(1) The maps ρ•T and ρ0T are surjective if R•
T is Noetherian.

(2) The map ρ0T is surjective if T is connective (i.e., R>0
T = HomT (1,1[> 0]) = 0).

On the other hand, injectivity of ρ•T or ρ0T the comparison map is hard to observe and
there are only affirmative answers for each individual tensor triangulated category:

Theorem 2.27. [Bal10a, Propositions 8.1, 8.5 and Corollary 9.5]

(1) Let R be a commutative Noetherian ring. Then ρ•T and ρ0T are equal and homoemor-

phisms for T = Kb(projR).
(2) Let k be a field and G a finite group. Then ρ•T is injective for T = mod kG.

(3) ρ0T is not injective for T = SHfin the stable homotopy category of finite spectra.

We say that a triangulated category is algebraic if it is a stable category of a Frobenius
exact category. From the above observation, Balmer conjectured:

Conjecture 2.28. [Bal10b, Conjecture 72] Let T be a tensor triangulated category which
is “algebraic enough”. Then

ρ•T : Spec T → SpechR•
T

is locally injective.
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Here, “algebraic enough” tensor triangulated categories could mean algebraic ones, or
derived categories of dg-categories, or ones locally generated by the unit. Recall that a
continuous map f : X → Y of topological spaces is called locally injective at x ∈ X if
there exists a neighborhood N of x such that the restriction f |N : N → Y is an injective
map. We say that f is locally injective if it is locally injective at every point in X.

For the lest of this part, we prove that Balmer’s conjecture holds for Dperf(X) for
a Noetherian quasi-affine scheme X. First of all, we give a geometric criterion for the
perfect derived category of a Noetherian scheme to satisfy Balmer’s conjecture.

Lemma 2.29. Let X be a Noetherian scheme. Then the following are equivalent:

(1) ρ•
Dperf(X)

is locally injective.

(2) ρ0
Dperf(X)

is locally injective.

(3) For any x ∈ X, there is an affine open subset U such that the natural map
SpecΓ(U,OX)→ SpecΓ(X,OX) is injective.

Proof. By Theorem 2.17(2) and Theorem 2.18, there is a homeomorphism

ϕ : X → SpecDperf(X)

such that ϕ(x) := {F ∈ Dperf(X) | Fx ∼= 0}.
Take f ∈ Rn

Dperf(X)
:= HomDperf(X)(OX ,OX [n]) and embed it into a triangle:

OX
f−→ OX [n]→ cone(f)→ OX [1].

Localize at x, we obtain a triangle

OX,x
fx−→ OX,x[n]→ cone(f)x → OX,x[1]

in Dperf(OX,x). If n 6= 0, then cone(f)x ⋗ OX,x[n] 6= 0 as fx ∈ ExtnOX,x
(OX,x,OX,x) = 0.

Thus, one has cone(f)x 6= 0. If n = 0, then cone(f)x = 0 if and only if fx is an isomorphism.
Therefore, ρ•

Dperf(X)
(ϕ(x)) is a homogeneous ideal of R•

Dperf(X)
generated by f ∈ Rn

Dperf(X)

for n > 0 or fx is invertible for n = 0 and hence

ρ•Dperf(X)(ϕ(x)) = R<0
Dperf(X)

⊕ ρ0Dperf(X)(ϕ(x))⊕ R>0
Dperf(X)

,

where ρ0
Dperf(X)

(ϕ(x)) = {f ∈ R0
T | fx is not an isomorphism}. Hence, ρ•

Dperf(X)
locally

injective if and only if ρ0
Dperf(X)

is locally injective.

For an affine open neighborhood U of X, let r : Dperf(X) → Dperf(U) be a restriction
functor. Then r is a tensor triangle functor and hence it induces a continuous map

ar : SpecDperf(U)→ SpecDperf(X), P 7→ r−1(P).
by Proposition 2.13. One can easily check that there is a commutative diagram

U
i−−−−→ X

∼=

y
y∼=

SpecDperf(U)
ar−−−−→ SpecDperf(X)

ρ0
Dperf (U)

∼=

y
yρ0Dperf (X)

SpecΓ(U,OX) −−−−→ SpecΓ(X,OX).
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Here, the bottom map is a continuous map associated to the restriction map Γ(X,OX)→
Γ(U,OX). Thus, ρ0Dperf(X)

◦ ar is injective if and only if SpecΓ(U,OX)→ SpecΓ(X,OX) is
injective. Hence ρ0

Dperf(X)
is locally injective if and only if the condition (3) is satisfied. �

Remark 2.30. The comparison map ρ•
Dperf(X)

may not be locally injective in general.

Let n > 1 be an integer. For the projective space Pnk over a field k, one has Γ(Pnk ,OPn
k
) =

k. Then the map Pnk
∼= SpecDperf(Pnk)

ρ0
Dperf (Pn

k
)

−−−−−−→ Spec k is not locally injective. Therefore,
by Lemma 2.29, ρ•

Dperf(Pn
k
)
is not locally injective.

Let X be a scheme and s ∈ Γ(X,OX). Note that a subset Xs := {x ∈ X | sx =
0 in k(x)} is an open subset of X and s |Xs is an invertible in Γ(Xs,OX). Therefore, the
restriction map Γ(X,OX)→ Γ(Xs,OX) induces a ring map

αs : Γ(X,OX)s → Γ(Xs,OX).
The following theorem is the main result in this part.

Theorem 2.31. If X is a Noetherian quasi-affine scheme, then ρ•
Dperf(X)

is locally injective.

Proof. By [Iit, Corollary to Theorem 1.15], the map αs : Γ(X,OX)s → Γ(Xs,OX) is an
isomorphism for any s ∈ Γ(X,OX). Consider a commutative diagram:

SpecΓ(Xs,OX)
aαs

∼=
//

))❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
SpecΓ(X,OX)s

��
SpecΓ(X,OX).

Here, the vertical map is injective since it is induced by a localization map. Thus, the
natural map SpecΓ(Xs,OX)→ SpecΓ(X,OX) induced by restriction is injective.

Since X is quasi-affine, the structure sheaf OX is ample, and hence there is a finitely
many s1, . . . , sn ∈ Γ(X,OX) such that Xsi is affine and X = ∪ni=1Xsi . Consequently, X
satisfies the condition (3) in Lemma 2.29. �

Remark 2.32. If X is quasi-affine scheme, then one has Dperf(X) = thickOX . Therefore,
this theorem gives an evidence that “algebraic enough” tensor triangulated categories need
to be algebraic ones which are locally generated by the unit.
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Part 2. Thick tensor ideals of right bounded derived cate-

gories

3. Introduction

The contents of this part is based on the author’s paper [MT] with R. Takahashi and
author’s solo work [Mat17b].

Let R be a commutative Noetherian ring. Denote by D-(R) the right bounded de-
rived category of finitely generated R-modules, namely, the derived category of (cochain)
complexes X of finitely generated R-modules such that Hi(X) = 0 for all i ≫ 0. Then
(D-(R),⊗L

R, R) is a tensor triangulated category. The main purpose of this part is to in-
vestigate thick tensor ideals of the tensor triangulated category D-(R) and analyzing the
structure of the Balmer spectrum SpecD-(R) of D-(R).

From now on, let us explain the main results of this part. First of all, recall that
an object M of a triangulated category T is compact (resp. cocompact) if the natural
morphism

⊕
λ∈ΛHomT (M,Nλ)→ HomT (M,

⊕
λ∈ΛNλ)(

resp.
⊕

λ∈ΛHomT (Nλ,M)→ HomT (
∏
λ∈ΛNλ,M)

)

is an isomorphism for every family {Nλ}λ∈Λ of objects of T with
⊕

λ∈ΛNλ ∈ T (resp.∏
λ∈ΛNλ ∈ T ). A thick tensor ideal of D-(R) is called compactly generated (resp. cocom-

pactly generated) if it is generated by compact (resp. cocompact) objects of D-(R) as a
thick tensor ideal. For a subcategory X of D-(R) we denote by SuppX the union of the
supports of complexes in X , and for a subset S of SpecR we denote by 〈S〉 the thick tensor
ideal of D-(R) generated by R/p with p ∈ S. We shall prove the following theorem.

Theorem 3.1 (Proposition 5.1, Theorem 5.12 and Corollary 5.16). (1) A thick ⊗-ideal
of D-(R) is compactly generated if and only if it is cocompactly generated.

(2) The assignments X 7→ SuppX and 〈W 〉 ←[ W make mutually inverse bijections
{

cocompactly generated
thick ⊗-ideals of D-(R)

}
// {specialization closed subsets of SpecR}.oo

The core of this theorem is constituted by the classification of the cocompactly generated
thick tensor ideals of D-(R), which is obtained by establishment of a generalized smash
nilpotence theorem, extending the classical smash nilpotence theorem due to Hopkins [Hop]
and Neeman [Nee92] for the homotopy category of perfect complexes. In view of Theorem
3.1, we may simply call X compact if X is compactly generated and/or cocompactly
generated. We should remark that in general we have

〈W 〉 6= Supp−1W,

where Supp−1W consists of the complexes whose supports are contained in W . Thus we
call a thick tensor ideal of D-(R) tame if it has the form Supp−1W for some specialization-
closed subset W of SpecR.

Next, we relate the Balmer spectrum SpecD-(R) of D-(R) to the Zariski spectrum
SpecR of R, i.e., the set of prime ideals of R. More precisely, we introduce a pair of
order-reversing maps

S : SpecR // SpecD-(R) : soo



21

and investigate their topological properties. These maps are defined as follows: let p ∈
SpecR and P ∈ SpecD-(R). Then S(p) consists of the complexesX ∈ D-(R) withXp = 0,
and s(P) is the unique maximal element of ideals I of R with R/I /∈ P with respect to
the inclusion relation. Our main result in this direction is the following theorem. Denote
by tSpecD-(R) the set of tame prime thick tensor ideals of D-(R), and by MxD-(R)
(resp. MnD-(R)) the maximal (resp. minimal) elements of SpecD-(R) with respect to the
inclusion relation. For each full subcategory X of D-(R), let X tame stand for the smallest
tame thick tensor ideal of D-(R) containing X .

Theorem 3.2 (Theorems 6.8, 7.2, 7.4, 7.10, 7.12 and Corollary 6.15). The following
statements hold.

(1) One has s · S = 1 and S · s = Supp−1 Supp = ()tame. In particular, dim(SpecD-(R)) >
dimR.

(2) The image of S coincides with tSpecD-(R), and it is dense in SpecD-(R).
(3) The map s is continuous, and its restriction s′ : tSpecD-(R)→ SpecR is a continuous

bijection.
(4) The map S ′ : SpecR→ tSpecD-(R) induced by S is an open and closed bijection.
(5) The map MinR→ MxD-(R) induced by S is a homeomorphism.
(6) The map MaxR→ MnD-(R) induced by S is a homeomorphism if R is semilocal.
(7) One has: S is continuous ⇔ S ′ is homeomorphic ⇔ s′ is homeomorphic ⇔

SpecR is finite.

The celebrated classification theorem due to Balmer [Bal05] asserts that taking the
Balmer support BSupp makes a one-to-one correspondence between the set Rad of radical
thick tensor ideals of D-(R) and the set Thom of Thomason subsets of SpecD-(R):

BSupp : Rad // Thom : BSupp−1oo

This bijection means that the study of topological structure of SpecD-(R) is directly
linked to the study of radical thick tensor ideals of D-(R). From this motivation, we
will investigate some topological properties of SpecD-(R). For example, we investigate
Noetherianity, connectedness and irreducibility of SpecD-(R).

Theorem 3.3 (Theorem 8.1 and Corollary 8.9). (1) If the Balmer spectrum SpecD-(R)
is a Noetherian topological space, then the Zariski spectrum SpecR is a finite set.

(2) The Balmer spectrum SpecD-(R) is connected (resp. irreducible) if and only if the
Zariski spectrum SpecR is so.

Our next goal is to complete this one-to-one correspondence to the following commu-
tative diagram, giving complete classifications of compact and tame thick tensor ideals of
D-(R). Denote by Cpt (resp. Tame) the set of compact (resp. tame) thick tensor ideals
of D-(R), and by Spcl(SpecR) (resp. Spcl(tSpecD-(R))) the set of specialization-closed
subsets of SpecR (resp. tSpecD-(R)).
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Theorem 3.4 (Theorems 9.13, 9.20). There is a diagram

Rad
BSupp //

()cpt

��

Thom
BSupp−1

oo

S−1

��

()spcl

))❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚

Cpt

()rad

OO

Supp //

()tame

((◗◗
◗◗◗

◗◗◗
◗◗

◗◗◗
◗◗◗

◗◗
◗◗◗

◗◗◗
◗◗

◗◗◗
◗ Spcl(SpecR)

S

OO

〈〉
oo

S //

Supp−1

��

Spcl(tSpecD-(R))

()spcl

ii❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚

s
oo

BSp−1

uu❥❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥

Tame

()cpt

hh◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗

BSp

55❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

Supp

OO

where the pairs of maps A = (()rad, ()cpt), B = (S,S−1), C = (()spcl, ()spcl) are section-
retraction pairs (as sets), and all the other pairs consist of mutually inverse bijections.
The diagram with the sections (resp. retractions) and bijections is commutative.

We do not give here the definitions of the maps appearing above (we do this in Section
9); what we want to emphasize now is that those maps are given explicitly.

Moreover, we prove that some/any of the three section-retraction pairs A,B,C in the
above theorem are bijections if and only if R is Artinian, which is incorporated into the
following theorem.

Theorem 3.5 (Theorem 10.5). The following are equivalent.

(1) R is Artinian.
(2) Every thick tensor ideal of D-(R) is compact, tame and radical.
(3) Every radical thick tensor ideal of D-(R) is tame.
(4) The pair of maps (S, s) consists of mutually inverse homeomorphisms.
(5) Some/all of the maps S, s are bijective.
(6) Some/all of the pairs A,B,C consist of mutually inverse bijections.

This theorem says that in the case of Artinian rings everything is clear. An essential role
is played in the proof of this theorem by a certain complex in D-(R) constructed from
shifted Koszul complexes.

Let (T ,⊗,1) be a tensor triangulated category. Balmer [Bal10a] constructs a continuous
map

ρ•T : Spec T // SpechR•
T ,

where R•
T = HomT (1,Σ

•1) is a graded-commutative ring. Balmer [Bal10b] conjectures
that the map ρ•T is (locally) injective when T is “algebraic enough”. Here, “algebraic
enough” tensor triangulated categories could mean algebraic ones, or derived categories of
dg-categories, or ones locally generated by the unit. Our D-(R) is evidently an algebraic
triangulated category, but does not satisfy this conjecture under a quite mild assumption:

Theorem 3.6 (Corollary 10.10). Assume that dimR > 0 and that R is either a domain
or a local ring. Then the map ρ•

D-(R)
is not locally injective.

In fact, the assumption of the theorem gives an element x ∈ R with ht(x) > 0. Then we
can find a non-tame prime thick tensor ideal P of D-(R) associated with x at which ρ•

D-(R)
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is not locally injective. In view of Balmer’s conjecture, this theorem says that D-(modR)
is not “algebraic enough”; an algebraic tensor triangulated category is not sufficiently
“algebraic enough”.

Finally, we explore thick tensor ideals of D-(R) in the case where R is a discrete valuation
ring, because this should be the simplest unclear case, now that everything is clarified by
Theorem 3.5 in the case of Artinian rings. We show the following theorem, which says
that even if R is such a good ring, the structure of the Balmer spectrum of D-(R) is rather
complicated. (Here, ℓℓ(−) stands for the Loewy length.)

Theorem 3.7 (Propositions 11.7, 11.17 and Theorems 11.11, 11.14). Let (R, xR) be a
discrete valuation ring, and let n > 0 be an integer. Let Pn be the full subcategory of
D-(R) consisting of complexes X with finite length homologies such that there exists an
integer t > 0 with ℓℓ(H−iX) 6 tin for all i≫ 0. Then:

(1) Pn coincides with the smallest thick tensor ideal of D-(R) containing the complex
⊕

i>0(R/x
inR)[i] = (· · · 0−→ R/x3

n
R 0−→ R/x2

n
R 0−→ R/x1

n
R→ 0).

(2) Pn is a prime thick tensor ideal of D-(R) which is not tame. If n > 1, then Pn is not
compact.

(3) One has P0 ( P1 ( P2 ( · · · . Hence SpecD-(R) has infinite Krull dimension.

4. Fundamental materials

In this section, we give several basic definitions and study fundamental properties, which
will be used in later sections. Throughout this part, unless otherwise specified, R is a
commutative Noetherian ring, and all subcategories are nonempty and full.

We denote by D-(R) (resp. Db(R)) the derived category of (cochain) complexes X of
finitely generated R-modules with Hi(X) = 0 for all i ≫ 0 (resp. |i| ≫ 0). We denote
by D-fl(R) (resp. Db

fl(R)) the subcategory of D-(R) (resp. Db(R)) consisting of complexes

X whose homologies have finite length as R-modules. By K-(R) (resp. Kb(projR)) we
denote the homotopy category of complexes P of finitely generated projective R-modules
with P i = 0 for all i≫ 0 (resp. |i| ≫ 0). By K-,b(R) the subcategory of K-(R) consisting
of complexes P with Hi(P ) = 0 for all i≪ 0. Note that there are chains

Db
fl(R) ⊆ Db(R) ⊆ D-(R), Db

fl(R) ⊆ D-fl(R) ⊆ D-(R), Kb(projR) ⊆ K-,b(R) ⊆ K-(R)

of thick subcategories and triangle equivalences

D-(R) ∼= K-(R), Db(R) ∼= K-,b(R).

We will often identify D-(R),Db(R) with K-(R),K-,b(R) respectively, via these equiv-
alences. Note that (Kb(projR),⊗R, R) and (D-(R),⊗L

R, R) are essentially small tensor
triangulated categories. (In general, if C is an essentially small additive category, then so
is the category of complexes of objects in C, and so is the homotopy category.)

Remark 4.1. The tensor triangulated category D-(R) is never rigid. More strongly, it
is never closed. In fact, assume that there is a functor F : D-(R) × D-(R) → D-(R)
such that HomD-(R)(X ⊗L

R Y, Z)
∼= HomD-(R)(Y, F (X,Z)) for all X,Y, Z ∈ D-(R). We

have HomD-(R)(X ⊗L

R Y, Z) = HomD(R)(X ⊗L

R Y, Z)
∼= HomD(R)(Y,RHomR(X,Z)), where

D(R) is the unbounded derived category of R-modules. Letting Y = R[−i] for i ∈ Z, we
obtain Hi(F (X,Z)) ∼= ExtiR(X,Z). Since F (X,Z) is in D-(R), we have Hi(F (X,Z)) = 0
for i≫ 0. Hence Ext≫0

R (X,Z) = 0 for all X,Z ∈ D-(R). This is a contradiction.
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Here we compute some thick closures and thick tensor ideal closures.

Proposition 4.2. There are equalities:

(1) thick⊗
D-(R)

R = D-(R).

(2) thickD-(R)R = thickDb(R)R = thickKb(projR)R = thick⊗
Kb(projR)

R = Kb(projR).

(3) thickD-(R) k = thickDb(R) k = Db
fl(R), if R is local with residue field k.

Proof. The following hold in general, which are easy to check.

(a) Let T be a triangulated category, U a thick subcategory and U ∈ U . Then thickU U =
thickT U .

(b) Let (T ,⊗,1) be a tensor triangulated category. Then thick⊗ 1 = T .
The assertion is shown by these two statements. �

From now on, we deal with the supports of objects and subcategories of D-(R). Recall
that the support of an R-module M is defined as the set of prime ideals p of R such that
the Rp-module Mp is nonzero, which is denoted by SuppRM .

Proposition 4.3. Let X be a complex in D-(R). Then the following three sets are equal.

(1)
⋃
i∈Z SuppR Hi(X),

(2) {p ∈ SpecR | Xp 6∼= 0 in D-(Rp)},
(3) {p ∈ SpecR | κ(p)⊗L

R X 6∼= 0 in D-(Rp)}.
Proof. It is clear that the first and second sets coincide. For a prime ideal p of R one has
κ(p) ⊗L

R X
∼= κ(p) ⊗L

Rp
Xp. It is seen by [Chr, Corollary (A.4.16)] that the second and

third sets coincide. �

Definition 4.4. The set in Proposition 4.3 is called the support of X and denoted by
SuppRX. For a subcategory C of D-(R), we set Supp C =

⋃
C∈C SuppC, and call this the

support of C. For a subset S of SpecR, we denote by Supp−1 S the subcategory of D-(R)
consisting of complexes whose supports are contained in S.

Remark 4.5. The fact that the second and third sets in Proposition 4.3 coincide will
often play an important role in this part. Note that these two sets are different if X
is a complex outside D-(R). For example, let (R,m, k) be a local ring of positive Krull
dimension. Take any nonmaximal prime ideal p, and let X be the injective hull E(R/p)
of the R-module R/p. Then k ⊗L

R X = 0, while Xm 6= 0.

Remark 4.6. For X ∈ D-(R) one has SuppX = ∅ if and only if X = 0. In other words,
it holds that Supp−1 ∅ = 0. (If we define the support of X as the third set in Proposition
4.3, then the assumption that X belongs to D-(R) is essential, as the example given in
Remark 4.5 shows.)

In the following lemma and proposition, we state several basic properties of Supp and
Supp−1 defined above. Both results will often be used later. First lemma says that the
pair (SpecR, Supp) satisfies the condition of a support data except that the support Supp
takes values in not only closed subsets but also specialization closed subsets.

Lemma 4.7. The following statements holds:

(1) Supp(0) = ∅.
(2) Supp(M [n]) = Supp(M) for any M ∈ T and n ∈ Z.
(3) Supp(M ⊕N) = Supp(M) ∪ Supp(N) for any M,N ∈ T .
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(4) Supp(M) ⊆ σ(L) ∪ Supp(N) for any triangle L→M → N → L[1] in T .
(5) Supp(M ⊗N) = Supp(M) ∩ Supp(N) for any M,N ∈ T .
Proof. The assertions (1), (2), (3) and (4) are straightforward by definition. For each
prime ideal p of R there is an isomorphism (X⊗L

R Y )p ∼= Xp⊗L

Rp
Yp. Hence (X⊗L

R Y )p = 0

if and only if either Xp = 0 or Yp = 0 by [Chr, Corollary (A.4.16)]. This shows the
assertion (5). �

Let X be a topological space. For a subset A of X, denote by Aspcl the largest

specialization-closed subset of X contained in A, which is the union of {a} with {a} ⊆ A.
It will be called the spcl-closure of A in Section 9.

Proposition 4.8. (1) Let S be a subset of SpecR. Then there are equalities Supp−1 S =
Supp−1(Sspcl) and Supp(Supp−1 S) = Sspcl. Moreover, Supp−1 S is a thick ⊗-ideal of
D-(R).

(2) Let X be any subcategory of D-(R). Then SuppX is a specialization-closed subset of
SpecR, and one has SuppX = Supp(thick⊗X ).

(3) It holds that D-fl(R) = Supp−1(MaxR). In particular, D-fl(R) is a thick ⊗-ideal of
D-(R).

Proof. (1) We putW = Sspcl. LetX be a complex in D-(R). Since SuppX is specialization-

closed, it is contained in S if and only if it is contained inW . Hence Supp−1 S = Supp−1W .
Evidently, W contains Supp(Supp−1W ), while we have p ∈ SuppR/p = V(p) ⊆ W for
p ∈ W . Hence Supp(Supp−1W ) = W , and thus Supp(Supp−1 S) = W . It is seen from
Lemma 4.7 that Supp−1 S is a thick ⊗-ideal of D-(R).

(2) We have SuppX =
⋃
X∈X SuppX =

⋃
X∈X

⋃
i∈Z SuppH

iX by Proposition 4.3. Since

HiX is a finitely generated R-module, SuppHiX is closed. Hence SuppX is specialization-

closed. A prime ideal p of R is not in SuppX if and only if X is contained in Supp−1({p}∁),
if and only if thick⊗X is contained in Supp−1({p}∁), if and only if p does not belong to

Supp(thick⊗X ). It follows from (1) that Supp−1({p}∁) is a thick ⊗-ideal of D-(R), which
shows the second equivalence. The other two equivalences are obvious.

(3) The equality is straightforward, and the last assertion is shown by (1). �

5. Classification of compact thick tensor ideals

In this section, we prove a generalized version of the smash nilpotence theorem due to
Hopkins [Hop] and Neeman [Nee92], and using this we give a complete classification of
cocompact thick tensor ideals of D-(R).

We begin with recalling the definitions of compact and cocompact objects. Let T be a
triangulated category. We say that an object M ∈ T is compact (resp. cocompact) if the
natural morphism

⊕
λ∈ΛHomT (M,Nλ)→ HomT (M,

⊕
λ∈ΛNλ)

(resp.
⊕

λ∈ΛHomT (Nλ,M)→ HomT (
∏
λ∈ΛNλ,M))

is an isomorphism for every family {Nλ}λ∈Λ of objects of T with
⊕

λ∈ΛNλ ∈ T (resp.∏
λ∈ΛNλ ∈ T ). We denote by T c (resp. T cc) the subcategory of T consisting of compact

(resp. cocompact) objects. For T = D-(R) we have explicit descriptions of the compact
objects and cocompact objects:

Proposition 5.1. One has D-(R)c = Kb(projR) and D-(R)cc = Db(R).
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Proof. The second statement follows from [OS, Theorem 18]. The first one can be shown
in the same way as the proof of the fact that the compact objects of the unbounded derived
category of all R-modules coincides with Kb(projR). For the convenience of the reader,
we give a proof.

First of all, R is compact since each homology functor Hi commutes with direct sums.
Since the compact objects form a thick subcategory, one has Kb(projR) ⊆ D-(R)c. Next,
let X ∈ D-(R) be a compact object. Replacing X with its projective resolution, we may
assume X ∈ K-(R). Consider the chain map

X

fn
��

= (· · · // Xn−1 d
n−1

//

��

Xn dn //

fnn
��

Xn+1 //

��

· · · )

Cn[−n] = (· · · // 0 // Cn // 0 // · · · ),

where Cn is the cokernel of dn−1, and fnn : Xn → Cn is a natural surjection. Put
Y =

⊕
n∈ZC

n[−n]. A chain map f : X → Y is induced by {fn}n∈Z. As X ∈ K-(R) is
compact in D-(R), we have isomorphisms

HomK (X,Y ) ∼= HomD-(R)(X,Y ) ∼=
⊕

n∈Z

HomD-(R)(X,C
n[−n])

∼=
⊕

n∈Z

HomK (X,Cn[−n]),

where K is the homotopy category of R-modules. The composition of these isomorphisms
sends f to (fn)n∈Z, which implies that there exists t ∈ Z such that fn = 0 in K for all n 6 t.
Hence, there is an R-linear map g : Xn+1 → Cn such that g◦dn = fnn . Let d

n : Cn → Xn+1

be the map induced by dn. We have gdnfnn = gdn = fnn , and obtain gdn = 1 as fnn is
a surjection. Thus, Cn is a direct summand of Xn+1, and thereby projective. Also,
HnX is isomorphic to the kernel of dn, which vanishes since dn is a split monomorphism.

Consequently, the truncated complex X ′ := (0 → Ct
dt−→ Xt+1 dt+1

−−−→ Xt+2 dt+2

−−−→ · · · ),
which is quasi-isomorphic to X, is in Kb(projR). We now conclude that X belongs to
Kb(projR). �

Next, we make the definitions of the annihilators of morphisms and objects in D-(R).

Definition 5.2. (1) Let f : X → Y be a morphism in D-(R). We define the annihilator
of f as the set of elements a ∈ R such that af = 0 in D-(R), and denote it by AnnR(f).
This is an ideal of R.

(2) The annihilator of an object X ∈ D-(R) is defined as the annihilator of the identity
morphism X, and denoted by AnnR(X). This is the set of elements a ∈ R such that

(X
a−→ X) = 0 in D-(R).

Here are some properties of annihilators.

Proposition 5.3. (1) Let f : X → Y be a morphism in D-(R) and p a prime ideal of R.
(a) The ideal AnnR(f) is the kernel of the map ηf : R → HomD-(R)(X,Y ) given by

a 7→ af .
(b) If the natural map τX,Y,p : HomD-(R)(X,Y )p → HomD-(Rp)

(Xp, Yp) is an isomor-

phism, then there is an equality AnnR(f)p = AnnRp
(fp).
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(2) For any X ∈ D-(R) one has V(AnnX) ⊇ SuppX. The equality holds if τX,X,p is an

isomorphism for all p ∈ SpecR. In particular, for X ∈ Db(R) one has V(AnnX) =
SuppX.

(3) Let x = x1, . . . , xn be a sequence of elements of R. Then it holds that AnnK(x, R) =
xR. In particular, there is an equality SuppK(x, R) = V(x), and K(x, R) belongs to
Supp−1V(x).

Proof. (1) The assertion (a) is obvious, while (b) follows from (a) and the commutative
diagram

Rp

(ηf )p // HomD-(R)(X,Y )p

∼= τX,Y,p

��
Rp

ηfp // HomD-(Rp)
(Xp, Yp).

(2) The first assertion is easy to show. Suppose that τX,X,p is an isomorphism for all
p ∈ SpecR. By (1) one has (AnnRX)p = AnnRp

Xp. We have Xp 6= 0 if and only if
(AnnRX)p 6= Rp, if and only if p ∈ V(AnnRX). This shows V(AnnRX) = SuppRX. As
for the last assertion, use [AF, Lemma 5.2(b)].

(3) The second statement follows from the first one and (2). Therefore it suffices
to show the equality AnnK(x, R) = xR. It follows from [BH, Proposition 1.6.5] that
AnnK(x, R) contains xR. Conversely, pick a ∈ AnnK(x, R). Then the multiplication
map a : K(x, R)→ K(x, R) is null-homotopic, and there is a homotopy {si : Ki−1(x, R)→
Ki(x, R)} from a to 0. In particular, we have a = d1s1, where d1 is the first differential
of K(x, R). Writing d1 = (x1, . . . , xn) : Rn → R and s1 = t(a1, . . . , an) : R → Rn, we
get a = (x1, . . . , xn)

t(a1, . . . , an) = a1x1 + · · · + anxn ∈ xR. Consequently, we obtain
AnnK(x, R) = xR. �

To state our next results, we need to introduce some notation.

Definition 5.4. Let T be a triangulated category.

(1) For two subcategories C1, C2 of T , we denote by C1 ∗C2 the subcategory of T consisting
of objects M such that there is an exact triangle C1 → M → C2  with Ci ∈ Ci for
i = 1, 2.

(2) For a subcategory C of T , we denote by addΣ C the smallest subcategory of T that
contains C and is closed under finite direct sums, direct summands and shifts. Induc-
tively we define thick1T (C) = addΣ C and thickrT (C) = addΣ(thickr−1

T (C) ∗ addΣ C) for
r > 1. This is sometimes called the r-th thickening of C. When C consists of a single
object X, we simply denote it by thickrT (X).

(3) For a morphism f : X → Y in T and an integer n > 1, we denote by f⊗n the n-fold
tensor product f ⊗ · · · ⊗ f︸ ︷︷ ︸

n

. Note that for T = D-(R) we mean by f⊗n the morphism

f ⊗L

R · · · ⊗L

R f︸ ︷︷ ︸
n

.

We establish two lemmas, which will be used to show the generalized smash nilpotence
theorem. The first one concerns general tensor triangulated categories, while the second
one is specific to our D-(R).

Lemma 5.5. Let T be a tensor triangulated category.
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(1) Let X ,Y be subcategories of T . Let f :M →M ′ and g : N → N ′ be morphisms in T .
If f ⊗X = 0 and g ⊗ Y = 0, then f ⊗ g ⊗ (X ∗ Y) = 0.

(2) Let φ : A → B be a morphism in T , and let C be an object of T . If φ⊗ C = 0, then
φ⊗n ⊗ thicknT (C) = 0 for all integers n > 0.

Proof. As (2) is shown by induction on n and (1), so let us show (1). Let X → E → Y  
be an exact triangle in T with X ∈ X and Y ∈ Y. Then f ⊗ X = 0 and g ⊗ Y = 0 by
assumption. There is a diagram

M ⊗N ⊗X //

M⊗g⊗X
��

M ⊗N ⊗ E //

M⊗g⊗E
��

	

M ⊗N ⊗ Y ///o/o/o

M⊗g⊗Y 0
��

M ⊗N ′ ⊗X //

f⊗N ′⊗X 0
�� 0 ++❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

M ⊗N ′ ⊗ E //

f⊗N ′⊗E
��

	 	

M ⊗N ′ ⊗ Y ///o/o/o

f⊗N ′⊗Y
��hss

M ′ ⊗N ′ ⊗X //
	

M ′ ⊗N ′ ⊗ E // M ′ ⊗N ′ ⊗ Y ///o/o/o

in T whose rows are exact triangles, and we obtain a morphism h as in it. It is observed
from this diagram that f ⊗ g ⊗E = (f ⊗N ′ ⊗E) ◦ (M ⊗ g ⊗E) is a zero morphism. �

Lemma 5.6. (1) Let f : X → Y be a morphism in D-(R). Let x = x1, . . . , xn be a
sequence of elements of R. If f ⊗L

RR/(x) = 0 in D-(R), then f⊗2n ⊗L

RK(x, R) = 0 in
D-(R).

(2) Let x = x1, . . . , xn be a sequence of elements of R, and let e > 0 be an integer. Then
K(xe, R) belongs to thickne

K-(R)
(K(x, R)), where x

e = xe1, . . . , x
e
n.

Proof. (1) We use induction on n. Let n = 1 and set x = x1. There are exact sequences
0 → (0 : x) → R → (x) → 0 and 0 → (x) → R → R/(x) → 0. Applying the octahedral

axiom to (R → (x) → R) = (R
x−→ R) gives an exact triangle (0 : x)[1] → K(x,R) →

R/(x) in D-(R). We have f⊗L

RR/(x) = 0, and f⊗L

R (0 : x)[1] = (f⊗L

RR/(x))⊗L

R/(x) (0 :

x)[1] = 0. Lemma 5.5(1) yields f⊗2 ⊗L

R K(x,R) = 0.

Let n > 2. We have 0 = f ⊗L

R R/(x) = (f ⊗L

R R/(x1)) ⊗L

R/(x1)
R/(x). The induction

hypothesis gives

0 = (f ⊗L

R R/(x1))
⊗2n−1 ⊗L

R/(x1)
K(x2, . . . , xn, R/(x1))

= (f⊗2n−1 ⊗L

R K(x2, . . . , xn, R))⊗L

R R/(x1).

The induction basis shows 0 = (f⊗2n−1 ⊗L

R K(x2, . . . , xn, R))
⊗2 ⊗L

R K(x1, R) = f⊗2n ⊗L

R
K(x2, . . . , xn,x, R). Note that K(x, R) is a direct summand of K(x2, . . . , xn,x, R); see
[BH, Proposition 1.6.21]. We thus obtain the desired equality f⊗2n ⊗L

R K(x, R) = 0.
(2) Again, we use induction on n. Consider the case n = 1. Put x = x1. Ap-

plying the octahedral axiom to (R
xe−1

−−−→ R
x−→ R) = (R

xe−→ R), we get an exact
triangle K(xe−1, R) → K(xe, R) → K(x,R)  . Induction on e shows K(xe, R) ∈
thickeK(x,R). Let n > 2. By the induction hypothesis, K(xe1, . . . , x

e
n−1, R) be-

longs to thick(n−1)eK(x1, . . . , xn−1, R). Applying the exact functor − ⊗ K(xen, R),

we see that K(xe, R) belongs to thick(n−1)eK(x1, . . . , xn−1, x
e
n, R). Applying the ex-

act functor K(x1, . . . , xn−1, R) ⊗ − to the containment K(xen, R) ∈ thickeK(xn, R)
gives rise to K(x1, . . . , xn−1, x

e
n, R) ∈ thickeK(x, R). Therefore K(xe, R) belongs to

thickneK(x, R). �
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We now achieve the goal of generalizing the Hopkins–Neeman smash nilpotence theorem.

Theorem 5.7 (Generalized Smash Nilpotence). Let f : X → Y be a morphism in K-(R)
with Y ∈ Kb(projR). Suppose that f ⊗ κ(p) = 0 for all p ∈ SpecR. Then f⊗t = 0 for
some t > 0.

Proof. We have an ascending chain AnnR(f) ⊆ AnnR(f
⊗2) ⊆ AnnR(f

⊗3) ⊆ · · · of ideals
of R. Since R is Noetherian, there is an integer c such that AnnR(f

⊗c) = AnnR(f
⊗i) for

all i > c. Replacing f by f⊗c, we may assume that AnnR(f) = AnnR(f
⊗i) for all i > 0.

Note that AnnR(f) = R if and only if f = 0.
We assume AnnR(f) 6= R, and shall derive a contradiction. Take a minimal prime ideal

p of AnnR(f). Then localization at p reduces to the following situation:

(R,m, k) is a local ring, AnnR(f) is an m-primary ideal, f ⊗R k = 0 and
AnnR(f) = AnnR(f

⊗i) for all i > 0.

Indeed, since Y is in Kb(projR), it follows from [AF, Lemma 5.2(b)] that the map
τX,Y,p is an isomorphism, and Proposition 5.3(1) yields AnnRp

(fp) = AnnR(f)p, which

is a pRp-primary ideal of Rp. Also, we have AnnRp
(fp) = AnnR(f)p = AnnR(f

⊗i)p =

AnnRp
((f⊗i)p) = AnnRp

((fp)
⊗i) for all i > 0. Furthermore, it holds that fp ⊗Rp

κ(p) =
f ⊗R κ(p) = 0 by the assumption of the theorem.

For each nonnegative integer n, consider the following two statements.

F (n): Let (R,m, k) be a reduced local ring with dimR 6 n. Let f : X → Y be a
morphism in K-(R) with Y ∈ Kb(projR). If AnnR(f) is m-primary and f⊗Rk = 0,
then f⊗t = 0 for some t > 0.

G(n): Let (R,m, k) be a local ring with dimR 6 n. Let f : X → Y be a morphism
in K-(R) with Y ∈ Kb(projR). If AnnR(f) is m-primary and f ⊗R k = 0, then
f⊗t = 0 for some t > 0.

If the statement G(n) holds true for all n > 0, we have AnnR(f) = AnnR(f
⊗t) = R,

which gives a desired contradiction. Note that the statement F (0) always holds true since
a 0-dimensional reduced local ring is a field. It is thus enough to show the implications
F (n)⇒ G(n)⇒ F (n+ 1).
F (n) ⇒ G(n): We consider the reduced ring Rred = R/ nilR, where nilR stands

for the nilradical of R. The ideal AnnRred
(f ⊗R Rred) of Rred is mRred-primary since

it contains (AnnR f)Rred. We have (f ⊗R Rred) ⊗Rred
k = f ⊗R k = 0. Thus Rred

and f ⊗R Rred satisfy the assumption F (n), and we find an integer t > 0 such that
f⊗t⊗RRred = (f ⊗RRred)

⊗t = 0. Using Lemma 5.6(1), we get f⊗tu⊗RK(x, R)=0, where
x = x1, · · · , xn is a system of generators of nilR and u = 2n. Choose an integer e > 0
such that xei = 0 for all 1 6 i 6 n. Then R is a direct summand of K(xe, R) by [BH,
Proposition 1.6.21], whence R is in thickneK(x, R) by Lemma 5.6(2). Finally, Lemma
5.5(2) gives rise to the equality f⊗netu = 0.
G(n)⇒ F (n+1): We may assume dimR = n+1 > 0. Since R is reduced and AnnR(f)

is m-primary, we can choose an R-regular element x ∈ AnnR(f). Then the local ring
R/(x) has dimension n, the ideal AnnR/(x)(f ⊗R R/(x)) of R/(x) is m/(x)-primary and
(f ⊗R R/(x))⊗R/(x) k = 0. Hence R/(x) and f ⊗R R/(x) satisfy the assumption of G(n),

and there is an integer t > 0 such that (f ⊗R R/(x))⊗t = 0. The short exact sequence

0 → R
x−→ R → R/(x) → 0 induces an exact triangle R/(x)[−1] → R

x−→ R  in D-(R).

Tensoring Y with this gives an exact triangle Y ⊗R R/(x)[−1]
g−→ Y

x−→ Y  in D-(R).
As xf = 0, there is a morphism h : X → Y ⊗R R/(x)[−1] with f = gh. Now f⊗t+1 is



30

decomposed as follows:

X⊗t+1 h⊗X⊗t

−−−−→ (Y ⊗R R/(x)[−1])⊗R X⊗t (Y⊗R/(x)[−1])⊗f⊗t

−−−−−−−−−−−−−→

(Y ⊗R R/(x)[−1])⊗R Y ⊗t g⊗Y ⊗t

−−−−→ Y ⊗t+1.

The middle morphism is identified with Y [−1] ⊗R (f ⊗R R/(x))⊗t, which is zero. Thus,
f⊗t+1 = 0. �

Remark 5.8. (1) Theorem 5.7 extends the smash nilpotence theorem due to Hopkins
[Hop, Theorem 10] and Neeman [Nee92, Theorem 1.1], where X is also assumed to
belong to Kb(projR), so that f : X → Y is a morphism in Kb(projR). Under this
assumption one can reduce to the case where X = R, which plays a key role in the
proof of the original Hopkins–Neeman smash nilpotence theorem.

(2) The proof of Theorem 5.7 has a similar frame to that of the original Hopkins–Neeman
smash nilpotence theorem, but we should notice that various delicate modifications are
actually made there. Indeed, Proposition 5.3, Lemmas 5.5 and 5.6 are all established
to prove Theorem 5.7, which are not necessary to prove the original smash nilpotence
theorem.

(3) The assumption in Theorem 5.7 that Y belongs to Kb(projR) is used only to have
AnnRp

(fp) = AnnR(f)p.

Our next goal is to classify cocompactly generated thick tensor ideals of D-(R). To
this end, we begin with deducing the following proposition concerning generation of thick
tensor ideals of D-(R), which will play an essential role throughout the rest of the part.

Proposition 5.9. Let X be an object of D-(R), and let Y be a subcategory of D-(R). If
V(AnnX) ⊆ SuppY, then X ∈ thick⊗ Y.
Proof. Clearly, we may assume X 6= 0. We prove the proposition by replacing D-(R) with
K-(R). There are a finite number of prime ideals p1, . . . , pn of R such that V(AnnX) =⋃n
i=1V(pi). Since each pi is in the support of Y, we find an object Yi ∈ Y with pi ∈ SuppYi.

All pi are in the support of Y := Y1 ⊕ · · · ⊕ Yn ∈ K-(R). Choose an integer t with
p1, · · · , pn ∈

⋃
i>t SuppH

i(Y ), and let Y ′ = (· · · → 0 → 0 → Y t → Y t+1 → · · · ) ∈
Kb(projR) be the truncated complex of Y . Then V(AnnX) is contained in SuppY ′. Let f :
Y ′ → Y be the natural morphism, and let φ : R→ HomR(Y

′, Y ) be the composition of the
homothety morphism R → HomR(Y, Y ) and HomR(f, Y ) : HomR(Y, Y ) → HomR(Y

′, Y ).

There is an exact triangle Z
ψ−→ R

φ−→ HomR(Y
′, Y ) in K-(R). We establish two claims.

Claim 1. Let Φ : R→ C be a nonzero morphism in K-(R). If R is a field, then Φ is a split
monomorphism.

Proof. Since C is isomorphic to H(C) in K-(R), we may assume that the differentials of
C are zero. As z := Φ0(1) is nonzero, we can construct a chain map Ψ : C → R with
Ψ0(z) = 1 and Ψi = 0 for all i 6= 0. It then holds that ΨΦ = 1. �

Claim 2. The morphism φ ⊗R κ(p) in K-(κ(p)) is a split monomorphism for each p ∈
V(AnnX).

Proof of Claim. Set S =
⋃
i>t SuppH

i(Y ); note that this contains V(AnnX). We prove
the stronger statement that φ⊗ κ(p) is a split monomorphism for each p ∈ S. Since Y ′ is
a perfect complex, there are natural isomorphisms HomR(Y

′, Y )⊗ κ(p) ∼= HomR(Y
′, Y ⊗

κ(p)) ∼= Homκ(p)(Y
′⊗κ(p), Y ⊗κ(p)), which says that φ⊗κ(p) is identified with the natural
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morphism κ(p)→ Homκ(p)(Y
′⊗κ(p), Y ⊗κ(p)). This induces a map H0(φ⊗κ(p)) : κ(p)→

HomK-(κ(p))(Y
′ ⊗ κ(p), Y ⊗ κ(p)), sending 1 to f ⊗ κ(p). If f ⊗ κ(p) = 0 in K-(κ(p)), then

we see that H>t(Y ⊗ κ(p)) = 0, contradicting the fact that p ∈ S. Thus H0(φ ⊗ κ(p)) is
nonzero, and so is φ⊗ κ(p). Applying Claim 1 completes the proof. �

Claim 2 implies ψ ⊗R κ(p) = 0 for all p ∈ V(AnnX). Using Theorem 5.7 for the
morphism ψ⊗R (R/AnnX) in K-(R/AnnX), we have ψ⊗m⊗R (R/AnnX) = 0 for some
m > 0. Lemma 5.6(1) shows

(5.9.1) 0 = ψ⊗u ⊗R K(x, R) : Z⊗u ⊗K(x, R)→ K(x, R),

where x = x1, . . . , xr is a system of generators of the ideal AnnX, and u = 2rm.
For each i > 0, let Wi be the cone of the morphism ψ⊗i : Z⊗i → R. Applying the

octahedral axiom to the composition ψ ◦ (ψ⊗i ⊗ Z) = ψ⊗i+1, we get an exact triangle
Wi ⊗ Z → Wi+1 → W1  in K-(R). As W1

∼= HomR(Y
′, Y ) and Y ′ ∈ Kb(projR), we

see that W1 is in thickY . Using the triangle, we inductively observe that Wi belongs to
thick⊗ Y for all i > 0, and so does Wu ⊗K(x, R). It follows from (5.9.1) that K(x, R) is a
direct summand of Wu ⊗K(x, R), and therefore K(x, R) belongs to thick⊗ Y .

There is an exact triangle R
xi−→ R→ K(xi, R) in K-(R) for each 1 6 i 6 r. Tensoring

X with this and using the fact that each xi kills X, we see that X is a direct summand of
X ⊗K(x, R). Consequently, X belongs to thick⊗ Y . By construction Y is in thickY, and
hence X belongs to thick⊗ Y. �

Remark 5.10. (1) Proposition 5.9 extends Neeman’s result [Nee92, Lemma 1.2], where
both X and Y are contained in Kb(projR) (and Y is assumed to consist of a single
object).

(2) Proposition 5.9 is no longer true if we replace V(AnnX) with SuppX, or if we replace
SuppY with V(AnnY). This will be explained in Remarks 10.7(1) and 11.15.

The following results are consequences of Proposition 5.9, which will often be used later.

Corollary 5.11. Let X be a thick ⊗-ideal of D-(R). Let I be an ideal of R and x =
x1, . . . , xn a system of generators of I. Then there are equivalences:

V(I) ⊆ SuppX ⇔ R/I ∈ X ⇔ K(x, R) ∈ X .
Proof. Proposition 5.3(3) implies SuppR/I = V(AnnR/I) = V(I) = V(AnnK(x, R)) =
SuppK(x, R). The assertion is shown by combining this with Proposition 5.9. �

Now we can give a complete classification of the cocompactly generated thick ten-
sor ideals of D-(R), using Proposition 5.9. For each subset S of SpecR, we set
〈S〉 = thick⊗{R/p | p ∈ S}.
Theorem 5.12. The assignments X 7→ SuppX and 〈W 〉 ←[ W make mutually inverse
bijections

{
cocompactly generated
thick ⊗-ideals of D-(R)

}
// {specialization closed subsets of SpecR}.oo

Proof. Proposition 4.8(2) shows that the map X 7→ SuppX is well-defined and that for a
specialization-closed subset W of SpecR the equality W = Supp〈W 〉 holds. It remains to
show that for any cocompactly generated thick ⊗-ideal X of D-(R) one has X = 〈SuppX〉.
Proposition 5.9 implies that X contains 〈SuppX〉. Since X is cocompactly generated, there
is a subcategory C of Db(R) with X = thick⊗ C by Proposition 5.1. Thus, it suffices to
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prove that each M ∈ C belongs to 〈SuppX〉. The complex M belongs to thickH(M) as
M ∈ Db(R), and the finitely generated module H(M) has a finite filtration each of whose
subquotients has the form R/p with p ∈ SuppH(M). Hence M is in 〈SuppM〉, and we are
done. �

Let us give several applications of our Theorem 5.12.

Corollary 5.13. (1) Let C be a subcategory of Db(R). Then thick⊗
D-(R)

C consists of the

complexes X ∈ D-(R) with V(AnnX) ⊆ Supp C. In particular, those complexes X
form a thick ⊗-ideal of D-(R).

(2) Let I be an ideal of R. Then thick⊗
D-(R)

(R/I) consists of the complexes X ∈ D-(R)

with I ⊆
√
AnnX.

(3) Let W be a specialization-closed subset of SpecR. Then 〈W 〉 consists of the complexes
X ∈ D-(R) such that V(AnnX) ⊆W .

(4) Let X ,Y be thick subcategories in Db(R). Then thick⊗X = thick⊗ Y if and only if
SuppX = SuppY.

Proof. (1) Let X be the subcategory of D-(R) consisting of objects X ∈ D-(R) with
V(AnnX) ⊆ Supp C. Proposition 5.9 says that thick⊗ C contains X . Propositions 4.8(2),
5.1 and Theorem 5.12 yield thick⊗ C = 〈Supp(thick⊗ C)〉 = 〈Supp C〉. For each p ∈ Supp C,
the set V(AnnR/p) = V(p) is contained in Supp C, whence R/p is in X . Hence thick⊗ C is
contained in X , and we get the equality thick⊗ C = X .

(2) Applying (1) to C = {R/I}, we immediately obtain the assertion.
(3) Setting C = {R/p | p ∈ W} ⊆ Db(R), we have Supp C = W . The assertion follows

from (1).
(4) Let C be either X or Y. By Proposition 5.1 the thick ⊗-ideal thick⊗ C is cocompactly

generated, and Supp(thick⊗ C) = Supp C by Proposition 4.8(2). The assertion now follows
from Theorem 5.12. �

We obtain the following one-to-one correspondence by combining our Theorem 5.12
with the celebrated Hopkins–Neeman classification theorem [Nee92, Theorem 1.5].

Corollary 5.14. The assignments X 7→ X ∩Kb(projR) and thick⊗ Y ←[ Y make mutually
inverse bijections

{cocompactly generated thick ⊗-ideals of D-(R)}⇄ {thick subcategories of Kb(projR)}.
In particular, all cocompactly generated thick ⊗-ideals of D-(R) are compactly generated.

Proof. It is directly verified (resp. follows from Proposition 5.1) that the assignment
X 7→ X ∩ Kb(projR) (resp. thick⊗ Y ←[ Y) makes a well-defined map. It follows from
[Nee92, Theorem 1.5] that

(#) the assignments X 7→ SuppX and W 7→ Supp−1
Kb(projR)

(W ) := Supp−1W ∩ Kb(projR)

make mutually inverse bijections between the thick subcategories of Kb(projR) and
the specialization-closed subsets of SpecR.

In view of Theorem 5.12 and (#), we have only to show that

(a) Supp−1
Kb(projR)

(SuppX ) = X ∩ Kb(projR) for any cocompactly generated thick ⊗-ideal
X of D-(R), and

(b) 〈SuppY〉 = thick⊗ Y for any thick subcategory Y of Kb(projR).
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Using Propositions 5.1 and 4.8(2), we see that 〈SuppY〉 and thick⊗ Y are cocompactly
generated thick ⊗-ideals of D-(R) whose supports are equal to SuppY. Now Theorem 5.12
shows the statement (b).

Clearly, Supp(X ∩ Kb(projR)) is contained in SuppX . Take a prime ideal p ∈ SuppX ,
and let x be a system of generators of p. Then V(AnnK(x, R)) = SuppK(x, R) = V(p) ⊆
SuppX by Proposition 5.3(3), and K(x, R) ∈ X ∩Kb(projR) by Proposition 5.9. It follows
that p ∈ SuppK(x, R) ⊆ Supp(X ∩ Kb(projR)). Thus we get Supp(X ∩ Kb(projR)) =
SuppX , and obtain Supp−1

Kb(projR)
(SuppX ) = Supp−1

Kb(projR)
(Supp(X ∩ Kb(projR))) = X ∩

Kb(projR), where the last equality is shown by (#). Now the statement (a) is proved. �

Remark 5.15. Corollary 5.14 in particular gives a classification of the compactly gen-
erated thick ⊗-ideals of D-(R). This itself can also be deduced as follows: Let X ,Y
be thick subcategories of Kb(projR) with Supp(thick⊗X ) = Supp(thick⊗ Y). Then
SuppX = SuppY by Proposition 4.8(2), and the Hopkins–Neeman theorem yields X = Y.
Hence thick⊗X = thick⊗ Y.

The essential benefit that Corollary 5.14 produces is the classification of the cocompactly
generated thick ⊗-ideals of D-(R). This should not follow from the Hopkins–Neeman
theorem or other known results, but require the arguments established in this section so
far (especially, the Generalized Smash Nilpotence Theorem 5.7). A compactly generated
thick tensor ideal of D-(R) is clearly cocompactly generated by Proposition 5.1, but the
converse (shown in Corollary 5.14) should be rather non-trivial.

In view of Corollary 5.14 and Proposition 5.1, we obtain the following result and defi-
nition.

Corollary 5.16. The following four conditions are equivalent for a thick ⊗-ideal X of
D-(R).

• X is compactly generated. • X is generated by objects in Kb(projR).
• X is cocompactly generated. • X is generated by objects in Db(R).

Definition 5.17. Let X be a thick ⊗-ideal of D-(R). We say that X is compact if it
satisfies one (hence all) of the equivalent conditions in Corollary 7.17.

Next, for two thick ⊗-ideals X ,Y of D-(R) we define the thick ⊗-ideals X ∧Y and X ∨Y
by:

X ∧ Y = thick⊗{X ⊗L

R Y | X ∈ X , Y ∈ Y}, X ∨ Y = thick⊗(X ∪ Y).
These two operations yield a lattice structure in the compact thick ⊗-ideals of D-(R):
Proposition 5.18. (1) Let A and B be specialization-closed subsets of SpecR. One then

has equalities

〈A〉 ∧ 〈B〉 = 〈A ∩B〉, 〈A〉 ∨ 〈B〉 = 〈A ∪B〉.
(2) The set of compact thick ⊗-ideals of D-(R) is a lattice with meet ∧ and join ∨.
Proof. (1) It is evident that the second equality holds. Let us show the first one.

We claim that for two subcategoriesM,N of D-(R) it holds that

(thick⊗M) ∧ (thick⊗N ) = thick⊗{M ⊗L

R N |M ∈M, N ∈ N}.
In fact, clearly (thick⊗M)∧ (thick⊗N ) contains C := thick⊗{M ⊗L

RN |M ∈M, N ∈ N}.
For each N ∈ N , the subcategory of D-(R) consisting of objects X with X ⊗L

R N ∈ C is a
thick ⊗-ideal containingM, so contains thick⊗M. Let X be an object in thick⊗M. Then
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X ⊗L

R N belongs to C for all N ∈ N . The subcategory of D-(R) consisting of objects Y

with X ⊗L

R Y ∈ C is a thick ⊗-ideal containing N , so contains thick⊗N . Hence X ⊗L

R Y
is in C for all X ∈ thick⊗M and Y ∈ thick⊗N , and the claim follows.

Using the claim, we see that 〈A〉∧〈B〉 = thick⊗{R/p⊗L

RR/q | p ∈ A, q ∈ B}. Therefore

Supp(〈A〉 ∧ 〈B〉) = Supp{R/p⊗L

R R/q | p ∈ A, q ∈ B}
=

⋃
p∈A, q∈B Supp(R/p⊗L

R R/q)

=
⋃

p∈A, q∈B(V(p) ∩V(q)) = A ∩B = Supp〈A ∩B〉

by Proposition 4.8(2), Lemma 4.7(4) and the assumption that A,B are specialization-
closed. Theorem 5.12 implies that 〈A〉 ∧ 〈B〉 = 〈A ∩B〉.

(2) Let X ,Y be compact thick ⊗-ideals of D-(R). Theorem 5.12 implies that X =
〈SuppX〉 and Y = 〈SuppY〉, and SuppX and SuppY are specialization-closed. It follows
from (1) that X ∧ Y = 〈SuppX ∩ SuppY〉 and X ∨ Y = 〈SuppX ∪ SuppY〉, which are
compact. It is seen by definition that any thick ⊗-ideal containing both X and Y contains
X ∨ Y. Let Z be a compact thick ⊗-ideal contained in both X and Y. By Theorem 5.12
again we get Z = 〈SuppZ〉. Since SuppZ is contained in SuppX ∩ SuppY, we have that
Z is contained in X ∧ Y. These arguments prove the assertion. �

Note that the specialization-closed subsets of SpecR form a lattice with meet ∩ and
join ∪. As an immediate consequence of this fact and Proposition 5.18(2), we obtain a
refinement of Theorem 5.12:

Theorem 5.19. The assignments X 7→ SuppX and 〈W 〉 ←[ W induce a lattice isomor-
phism

{compact thick ⊗-ideals of D-(R)} ∼= {specialization-closed subsets of SpecR}.

Restricting to the Artinian case, we get a complete classification of thick tensor ideals
of D-(R).

Corollary 5.20. Let R be an Artinian ring. Then the following statements are true.

(1) All the thick ⊗-ideals of D-(R) are compact.
(2) The assignments X 7→ SuppX and 〈S〉 ←[ S induce a lattice isomorphism

{thick ⊗-ideals of D-(R)} ∼= {subsets of SpecR}.

Proof. (1) Take any thick ⊗-ideal X of D-(R). We want to show X = 〈SuppX〉. Corollary
5.11 implies that X contains 〈SuppX〉. To show the opposite inclusion, we may assume
that X consists of a single object X. Let m1, . . . ,ms,ms+1, . . . ,mn be the maximal ideals of
R with SuppX = {m1, . . . ,ms}. Find an integer t > 0 with (m1 · · ·mn)

t = 0. The Chinese
remainder theorem yields an isomorphism R ∼= R/mt

1⊕· · ·⊕R/mt
n of R-modules. Tensoring

X, we obtain an isomorphism X ∼= (X⊗L

RR/m
t
1)⊕· · ·⊕(X⊗L

RR/m
t
n). Lemma 4.7(4) gives

Supp(X⊗L

RR/m
t
i) = SuppX ∩{mi}, which is an empty set for s+1 6 i 6 n. For such an i

we have X⊗L

RR/m
t
i = 0 by Remark 4.6, and get X ∼= (X⊗L

RR/m
t
1)⊕· · ·⊕(X⊗L

RR/m
t
s). It

follows that X is in thick⊗{R/mt
1, . . . , R/m

t
s}, which is the same as 〈SuppX〉 by Corollary

5.13.
(2) Since all prime ideals of R are maximal, every subset of SpecR is specialization-

closed. (A more general statement will be given in Lemma 7.3.) The assertion follows
from (1) and Theorem 5.19. �
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6. Correspondence between the Balmer and Zariski spectra

In this section, we construct a pair of maps between the Balmer spectrum SpecD-(R)
and the Zariski spectrum SpecR, which will play a crucial role in later sections. We begin
with the following proposition which will be used later.

Proposition 6.1. For each complex X ∈ D-(R) it holds that

SuppX = SpecR ⇔ thick⊗X = D-(R) ⇔ BSuppX = SpecD-(R).

Proof. The second equivalence follows from [Bal05, Corollary 2.5]. Let us prove the first
equivalence. Proposition 4.8(2) implies SuppX = Supp(thick⊗X), which shows (⇐). As
for (⇒), for every M ∈ D-(R) we have V(AnnM) ⊆ SpecR = SuppX, by which and
Proposition 5.9 we get M ∈ thick⊗X. �

Let us introduce the following notation.

Notation 6.2. For a prime ideal p of R, we denote by S(p) the subcategory of D-(R)
consisting of complexes X with Xp

∼= 0 in D-(Rp).

The subcategory S(p) is always a prime thick tensor ideal:

Proposition 6.3. Let p be a prime ideal of R. Then S(p) is a prime thick ⊗-ideal of
D-(R) satisfying

SuppS(p) = {q ∈ SpecR | q * p}.
Proof. Since S(p) does not contain R, it is not equal to D-(R). Note that S(p) =

Supp−1({p}∁). Using Lemma 4.7(4) and Proposition 4.8(1), we observe that S(p) is a
prime thick ⊗-ideal of D-(R).

Fix a prime ideal q of R. If q is in SuppS(p), then there is a complex X ∈ S(p)
with q ∈ SuppX, and it follows that Xp = 0 6= Xq. If q is contained in p, then we have
Xq = (Xp)q and get a contradiction. Therefore q is not contained in p. Conversely, assume
this. Take a system of generators x = x1, . . . , xn of q, and put K = K(x, R). Then we
have Kq 6= 0 = Kp by Proposition 5.3(3). Hence K belongs to S(p) and q is in SuppK,
which implies q ∈ SuppS(p). We thus obtain the equality in the proposition. �

As an easy consequence of the above proposition, we get the following.

Corollary 6.4. Let R be an integral domain of dimension one. It then holds that D-fl(R) =
S((0)), where (0) stands for the zero ideal of R. Hence D-fl(R) is a prime thick ⊗-ideal of
D-(R).

Proof. For a complex X ∈ D-(R) it holds that

X ∈ D-fl(R) ⇔ ℓ(HiX) <∞ for all i ⇔ HiX(0) = 0 for all i ⇔ X(0) = 0 ⇔ X ∈ S((0)),
where the second equivalence follows from the fact that SpecR = {(0)} ∪MaxR. This
shows D-fl(R) = S((0)). Proposition 6.3 implies that S((0)) is prime, which gives the last
statement of the corollary. �

Remark 6.5. Corollary 6.4 is no longer valid if we remove the assumption that R is an
integral domain. More precisely, the assertion of the corollary is not true even if R is
reduced. In fact, consider the ring R = k[[x, y]]/(xy), where k is a field. Then R is a
1-dimensional reduced local ring. It is observed by Proposition 5.3(3) that the Koszul
complexes K(x,R),K(y,R) are outside D-fl(R), while the complex K(x,R) ⊗L

R K(y,R) =
K(x, y,R) is in D-fl(R). This shows that D

-
fl(R) is not prime.
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We have constructed from each prime ideal p of R the prime thick tensor ideal S(p)
of D-(R). Now we are concerned with the opposite direction, that is, we construct from
a prime thick tensor ideal of D-(R) a prime ideal of R, which is done in the following
proposition.

Proposition 6.6. Let P be a prime thick ⊗-ideal of D-(R). Let K be the set of ideals
I of R such that V(I) is not contained in SuppP. Then K has the maximum element P
with respect to the inclusion relation, and P is a prime ideal of R.

Proof. We claim that for ideals I, J of R, if SuppP contains V(I+J), then it contains either
V(I) or V(J). Indeed, let x = x1, . . . , xa and y = y1, . . . , yb be systems of generators of I
and J , respectively. Corollary 5.11 yields that K(x,y, R) is in P. There is an isomorphism
K(x, R)⊗L

RK(y, R) ∼= K(x,y, R) of complexes, whence K(x, R)⊗L

RK(y, R) belongs to P.
Since P is prime, it contains either K(x, R) or K(y, R). Thus SuppP contains either V(I)
or V(J) by Corollary 5.11 again.

The claim says that K is closed under sums of ideals of R. Taking into account that R
is Noetherian, we see that K has the maximum element P with respect to the inclusion
relation. There is a filtration 0 = M0 ( M1 ( · · · ( Mt = R/P of submodules of
the R-module R/P such that for every 1 6 i 6 t one has Mi/Mi−1

∼= R/pi with some
pi ∈ SuppRR/P , whence each pi contains P . Suppose that P is not a prime ideal of R.
Then the pi strictly contain P , and the maximality of P shows that SuppP contains V(pi).

There is an equality SuppRR/P =
⋃t
i=1 SuppR/pi, or equivalently, V(P ) =

⋃t
i=1V(pi). It

follows that SuppP contains V(P ), which is a contradiction. Consequently, P is a prime
ideal of R. �

Thus we have got two maps in the mutually inverse directions, between SpecR and
SpecD-(R):

Notation 6.7. Let P be a prime thick ⊗-ideal of D-(R). With the notation of Proposition
6.6, we set I(P) = K and s(P) = P . In view of Proposition 6.3, we obtain a pair of maps

S : SpecR⇄ SpecD-(R) : s

given by p 7→ S(p) and P 7→ s(P) for p ∈ SpecR and P ∈ SpecD-(R).

Now we compare the maps S, s, and for this recall two basic definitions from set theory.
Let f : A → B be a map of partially ordered sets. We say that f is order-reversing if
x 6 y implies f(x) > f(y) for all x, y ∈ A. Also, we call f an order anti-embedding if
x 6 y is equivalent to f(x) > f(y) for all x, y ∈ A. Note that any order anti-embedding is
an injection. We regard SpecR and SpecD-(R) as partially ordered sets with respect to
the inclusion relations. The following theorem is the main result of this section.

Theorem 6.8. The maps S : SpecR⇄ SpecD-(R) : s are order-reversing, and satisfy

s · S = 1, S · s = Supp−1 Supp .

Hence, S is an order anti-embedding.

Proof. Let p, q be prime ideals of R with q ⊆ p. Then Proposition 6.3 shows that q is
not in SuppS(p). Hence Xq = 0 for all X ∈ S(p), which means that S(p) is contained in
S(q). On the other hand, let P,Q be prime thick ⊗-ideals of D-(R) with P ⊆ Q. Then
SuppP is contained in SuppQ, and we see from the definition of s that s(P) contains s(Q).
Therefore, the maps S, s are order-reversing.
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Fix a prime ideal p of R. Then s(S(p)) is the maximum element of I(S(p)), which
consists of ideals I with V(I) * SuppS(p). This is equivalent to saying that I ⊆ p by
Proposition 6.3. Hence s(S(p)) = p.

Let P be a prime thick ⊗-ideal of D-(R). Note that a prime ideal p of R belongs to
I(P) if and only if p is not in SuppP. Let X ∈ D-(R) be a complex with Xs(P) = 0.
If p is a prime ideal of R with Xp 6= 0, then p is not contained in s(P), and p must
not belong to I(P), which means p ∈ SuppP. Therefore SuppX is contained in SuppP,
and we obtain S(s(P)) ⊆ Supp−1 SuppP. Conversely, let X ∈ D-(R) be a complex with
SuppX ⊆ SuppP. Since s(P) is in I(P), it does not belong to SuppP. Hence s(P) is not
in SuppX, which means Xs(P) = 0. We thus conclude that S(s(P)) = Supp−1 SuppP.

The last assertion is shown by using the equality p = s(S(p)) for all prime ideals p of
R. �

From this theorem, we obtain the following evaluation of the (Krull) dimension of
SpecD-(R).

Proposition 6.9. (1) Let T be an essentially small ⊗-triangulated category. The dimen-
sion of Spec T is equal to the supremum of integers n > 0 such that there is a chain
P0 ( P1 ( · · · ( Pn in Spec T .

(2) There is an inequality
dim(SpecD-(R)) > dimR.

Proof. Applying Proposition 2.10 shows (1), while (2) follows from (1) and Theorem 6.8.
�

Remark 6.10. We will see that the inequality in Proposition 6.9(2) sometimes becomes
equality, and sometimes becomes strict inequality. See Corollaries 7.14, 11.13 and Theorem
11.11.

The above theorem also gives rise to several corollaries, which will often be used later.
The rest of this section is devoted to stating and proving them.

Corollary 6.11. Let p be a prime ideal of R, and let P a prime thick ⊗-ideal of D-(R).
It holds that:

p ⊆ s(P) ⇔ R/p /∈ P ⇔ p /∈ SuppP ⇔ P ⊆ S(p).
In particular, s(P) is the maximum element of (SuppP)∁ with respect to the inclusion
relation.

Proof. The second equivalence follows from Corollary 5.11, while the third one is trivial. If
p /∈ SuppP, then p ⊆ s(P). If this is the case, then S(p) ⊇ S(s(P)) = Supp−1 SuppP ⊇ P
by Theorem 6.8. �

Corollary 6.12. For two prime thick ⊗-ideals P,Q of D-(R) one has:

s(P) ⊆ s(Q) ⇔ SuppP ⊇ SuppQ, s(P) = s(Q) ⇔ SuppP = SuppQ.
Proof. Theorem 6.8 and Proposition 4.8(1) yield the first equivalence, which implies the
second one. �

Here we introduce a new class of thick tensor ideals, which will play main roles in the
rest of this part.

Definition 6.13. A thick ⊗-ideal X of D-(R) is called tame if one can write X = Supp−1 S
for some subset S of SpecR. The set of tame prime thick ⊗-ideals of D-(R) is denoted by
tSpecD-(R).
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Remark 6.14. For each subcategory X of D-(R) the following are equivalent.

(1) X is a tame thick ⊗-ideal of D-(R).
(2) X = Supp−1 S for some subset S of SpecR.
(3) X = Supp−1W for some specialization-closed subset W of SpecR.

This is a direct consequence of Proposition 4.8(1).

The following corollary of Theorem 6.8 gives an explicit description of tame prime thick
tensor ideals.

Corollary 6.15. It holds that

tSpecD-(R) = ImS = {S(p) | p ∈ SpecR}.
Proof. For a prime ideal p of R, we have S(p) = SsS(p) = Supp−1(SuppS(p)) by Theorem
6.8, which shows that the prime thick ⊗-ideal S(p) of D-(R) is tame. On the other hand,
let P be a tame prime thick ⊗-ideal of D-(R). Using Theorem 6.8 and Proposition 4.8,
we get S(s(P)) = Supp−1(SuppP) = P. �

Here is one more application of Theorem 6.8, giving a criterion for a thick tensor ideal
to be prime.

Corollary 6.16. Let W be a specialization-closed subset of SpecR. The following are
equivalent.

(1) The tame thick ⊗-ideal Supp−1W of D-(R) is prime.
(2) There exists a prime ideal p of R such that W = SuppS(p).
(3) There exists a prime thick ⊗-ideal P of D-(R) such that W = SuppP.
(4) The set W ∁ has a unique maximal element with respect to the inclusion relation.

Proof. (1) ⇒ (2): By Corollary 6.11, the complement of W = Supp(Supp−1W ) (see
Proposition 4.8(2)) has the maximum element p := s(Supp−1W ). Using Theorem 6.8, we
obtain W = SuppS(p).

(2) ⇒ (3): Take P = S(p), which is a prime thick ⊗-ideal of D-(R) by Proposition 6.3.
(3) ⇒ (4): This implication follows from Corollary 6.11.

(4)⇒ (1): Let p be a unique maximal element ofW ∁. We claim that there is an equality
W = SuppS(p). Indeed, SuppS(p) consists of the prime ideals q of R not contained in p

by Proposition 6.3. Now fix a prime ideal q of R. Suppose that q is inW . If q is contained
in p, then p belongs to W as W is specialization-closed. This contradicts the choice of

p, whence q belongs to SuppS(p). Conversely, if q is not in W , then q is in W ∁, and the
choice of p shows that q is contained in p. Thus the claim follows. Applying Theorem 6.8,
we obtain Supp−1W = S(p) and this is a prime thick ⊗-ideal of D-(R). �

7. More on the maps s and S

In this section, we study various topological properties of the maps S, s defined in the
previous section. We first consider fibers of the map s : SpecD-(R)→ SpecR.

Proposition 7.1. There is a direct sum decomposition of sets

SpecD-(R) =
∐

p∈SpecR s−1(p),

where s−1(p) := {P ∈ SpecD-(R) | s(P) = p} = {P ∈ SpecD-(R) | SuppP = {q ∈
SpecR | q * p}}



39

Proof. Theorem 6.8 says that the map s is surjective. Using this, we easily get the direct
sum decomposition. Applying Theorem 6.8, Corollary 6.12 and Proposition 6.3, we observe
that for any p ∈ SpecR and P ∈ SpecD-(R) one has s(P) = p if and only if SuppP =
{q ∈ SpecR | q * p}. �

Let P,Q be prime thick ⊗-ideals of D-(R). We write P ∼ Q if SuppP = SuppQ.
Then ∼ defines an equivalence relation on SpecD-(R). We denote by SpecD-(R)/ Supp
the quotient topological space of SpecD-(R) by the equivalence relation ∼, so that a
subset U of SpecD-(R)/ Supp is open if and only if π−1(U) is open in SpecD-(R), where
π : SpecD-(R) → SpecD-(R)/ Supp stands for the canonical surjection. By definition, π
is a continuous map. Denote by θ : tSpecD-(R)→ SpecD-(R) the inclusion map, which
is continuous. Now we can state our first main result in this section.

Theorem 7.2. (1) The set tSpecD-(R) is dense in SpecD-(R).
(2) The composition πθ is a continuous bijection.

(3) The maps S, s induce the bijections S ′, S̃, s′, s̃ which make the diagram below commute.

tSpecD-(R)

θ
��

s′

))❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚

SpecR

S̃

))❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚

S //

S′
55❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥
SpecD-(R)

π
��

s // SpecR

SpecD-(R)/ Supp

s̃

55❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

In particular, one has sS = s′S ′ = s̃S̃ = 1.

(4) The maps s, s′, s̃ are continuous. The maps S ′, S̃ are open and closed.

Proof. First of all, recall from Corollary 6.15 that the image of S coincides with
tSpecD-(R).

(1) Let X be a complex in D-(R), and suppose that U := U(X) is nonempty. Then U
contains a prime thick ⊗-ideal P of D-(R), and X is in P. It is seen from Theorem 6.8
that P is contained in S(s(P)), and hence X is in S(s(P)). Therefore S(s(P)) belongs to
the intersection U ∩ tSpecD-(R), and we have U ∩ tSpecD-(R) 6= ∅. This shows that any
nonempty open subset of SpecD-(R) meets tSpecD-(R).

(2) Since π and θ are continuous, so is πθ. Let P,Q be tame prime thick ⊗-ideals of
D-(R). Then P = Ss(P) and Q = Ss(Q) by Theorem 6.8. One has P ∼ Q if and only if
s(P) = s(Q) by Corollary 6.12, if and only if P = Q by Theorem 6.8 again. This shows
that the map πθ is well-defined and injective. To show the surjectivity, pick a prime thick
⊗-ideal R of D-(R). It is seen from Proposition 4.8(1) that R ∼ Supp−1 SuppR, and the
latter thick ⊗-ideal is tame. Consequently, πθ is a bijection.

(3) Using Theorem 6.8, we obtain the bijection S ′ satisfying θS ′ = S. Set S̃ = πS
and s′ = sθ. Define the map s̃ : SpecD-(R)/ Supp → SpecR by s̃([P]) = s(P) for
P ∈ SpecD-(R). Corollary 6.12 guarantees that this is well-defined, and by definition
we have s̃π = s. Thus the commutative diagram in the assertion is obtained, which and

Theorem 6.8 yield 1 = sS = s′S ′ = s̃S̃. It follows that the map S ′ is bijective, and so is

s′. We have S̃ = (πθ)S ′, which is bijective by (2), and so is s̃.
(4) Let P ∈ SpecD-(R). An ideal I of R is contained in s(P) if and only if V(I) is

not contained in SuppP, if and only if R/I does not belong to P by Corollary 5.11. We



40

obtain an equality

s
−1(V(I)) = BSuppR/I,

which shows that s is a continuous map. Since the map θ is continuous, so is the com-
position s′ = sθ. The equality s′ = S ′−1 from (3) and the continuity of s′ imply that the
map S ′ is open and closed.

Fix an ideal I of R. A prime ideal p of R is in D(I) if and only if S(p) is in U(R/I).

This shows S(D(I)) = U(R/I) ∩ tSpecD-(R), and we get π−1S̃(D(I)) = π−1πS(D(I)) =
π−1π(U(R/I) ∩ tSpecD-(R)). Let P ∈ SpecD-(R) and Q ∈ tSpecD-(R). One has
π(P) = π(Q) if and only if SuppP = SuppQ, if and only if Supp−1 SuppP = Q since
Supp−1 SuppQ = Q by Proposition 4.8. Hence P is in π−1π(U(R/I)∩ tSpecD-(R)) if and
only if Supp−1 SuppP contains R/I (note here that Supp−1 SuppP is in tSpecD-(R) by
Theorem 6.8), if and only if SuppP contains V(I), if and only if R/I belongs to P by

Corollary 5.11. Thus we obtain π−1S̃(D(I)) = U(R/I), which shows that S̃(D(I)) is an

open subset of SpecD-(R)/ Supp. Therefore S̃ is an open map. This map is also closed

since it is bijective. Combining the equality s̃ = S̃−1 from (3) and the openness of S̃, we
observe that s̃ is a continuous map. �

The assertions of the above theorem naturally lead us to ask when the maps in the
diagram in the theorem are homeomorphisms. We start by establishing a lemma.

Lemma 7.3. The following are equivalent.

(1) The set SpecR is finite.
(2) There are only finitely many specialization-closed subsets of SpecR.
(3) There are only finitely many closed subsets of SpecR.
(4) Every specialization-closed subset of SpecR is closed.
(5) There are no countable antichains of prime ideals of R.

Proof. (1) ⇒ (2): If SpecR is finite, then there are only finitely many subsets of SpecR.
(2)⇒ (3): This implication follows from the fact that any closed subset is specialization-

closed.
(3) ⇒ (4): Every specialization-closed subset is a union of closed subsets. This is a

finite union by assumption, and hence it is closed.
(4) ⇒ (5): Since MaxR is specialization-closed, it is closed by our assumption. Hence

MaxR possesses only finitely many minimal elements with respect to the inclusion relation,
which means that it is a finite set. Therefore the ring R is semilocal. In particular, it has
finite Krull dimension, say d.

Suppose that there is a countable antichain S of prime ideals of R. Then there exists
an integer 0 6 n 6 d such that the set Sn := {p ∈ S | ht p = n} is infinite. Then
the specialization-closed subset W =

⋃
p∈Sn

V(p) is not closed because Sn consists of
the minimal elements of W , which is an infinite set. This provides a contradiction, and
consequently, there are no countable antichains of prime ideals of R.

(5)⇒ (1): Assume that SpecR is infinite. As every subset of MaxR forms an antichain
of prime ideals, we may assume that R has only finitely many maximal ideals. Then R
has finite Krull dimension d. Since R has infinitely many prime ideals, there is a non-
negative integer 0 6 n 6 d such that the set {p ∈ SpecR | ht p = n} has infinitely many
elements. Then a countable subset of this set is a countable antichain of prime ideals of
R, a contradiction. �
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Now we can prove the following theorem, which answers the question stated just before
the lemma.

Theorem 7.4. Consider the following seven conditions.

(1) S is continuous. (2) S ′ is homeomorphic. (3) s′ is homeomorphic. (4) S̃ is home-
omorphic.
(5) s̃ is homeomorphic. (6) πθ is homeomorphic. (7) SpecR is finite.
Then the following implications hold:

(1) ks +3 (2) ks +3 (3) ks +3 (5 + 6) ks +3

w� ①①
①①
①①
①①

①①
①①
①①
①①

�'
❋❋

❋❋
❋❋

❋❋

❋❋
❋❋

❋❋
❋❋

(7)

(4) ks +3 (5) (6)

Proof. In this proof we tacitly use Theorem 7.2.
(2) ⇔ (3): Note that S ′ and s′ are mutually inverse bijections. The equivalence follows

from this.
(4) ⇔ (5): As S̃, s̃ are mutually inverse bijections, we have the equivalence.
(7) ⇒ (2): For each X ∈ D-(R) we have S ′−1(BSuppX ∩ tSpecD-(R)) = {p ∈ SpecR |

S(p) ∈ BSuppX} = SuppX. As SuppX is specialization-closed, it is closed by Lemma
7.3. Hence the map S ′ is continuous.

(2) ⇒ (1): This follows from the fact that S is the composition of the continuous maps
S ′ and θ.

(1) ⇒ (7): It is easy to observe that for any complex X ∈ D-(R) one has

(7.4.1) S−1(BSuppX) = SuppX.

Since S is continuous, SuppX is closed in SpecR for all X ∈ D-(R) by (7.4.1). Suppose
that SpecR is an infinite set. Then by Lemma 7.3 there is a non-closed specialization-
closed subset W of SpecR. There are infinitely many minimal elements of W with respect
to the inclusion relation, and we can choose countably many pairwise distinct minimal
elements p1, p2, p3, . . . of W . Consider the complex X =

⊕∞
i=1(R/pi)[i] ∈ D-(R). Then

SuppX =
⋃∞
i=1V(pi) is not closed since it has infinitely many minimal elements. This

contradiction shows that SpecR is a finite set.

(2) ⇒ (4+6): Since π, θ,S ′ are all continuous, so is S̃ = πθS ′. Combining this with

the fact that S̃ is bijective and open, we see that S̃ is a homeomorphism. As S ′ is

homeomorphic, so is πθ = S̃S ′−1.

(4+6) ⇒ (2): We have S ′ = (πθ)−1S̃. Since πθ and S̃ are homeomorphisms, so is
S ′. �

This theorem contains the following corollary.

Corollary 7.5. The following are equivalent:

(1) S : SpecR→ SpecD-(R) is an immersion.
(2) s : SpecD-(R)→ SpecR is a quotient map.
(3) SpecR is a finite set.

Next we consider the maximal and minimal elements of SpecD-(R) with respect to the
inclusion relation.

Definition 7.6. Let T be an essentially small tensor triangulated category.
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(1) A thick ⊗-ideal M of T is said to be maximal if M 6= T and there is no thick ⊗-
ideal X of T with M ( X ( T . We denote the set of maximal thick ⊗-ideals of T
by Mx T . According to Proposition 2.9(2), any maximal thick ⊗-ideal is prime, or in
other words, it holds that Max T ⊆ Spec T .

(2) A prime thick ⊗-ideal P of T is said to be minimal if it is minimal in Spec T with
respect to the inclusion relation. We denote the set of minimal prime thick ⊗-ideals
of T by Min T .

By Proposition 7.1 the Balmer spectrum of D-(R) is decomposed into the fibers by
s : SpecD-(R) → SpecR as a set. Concerning the fibers of maximal ideals and minimal
primes of R, we have the following.

Proposition 7.7. Let m ∈ MaxR and p ∈ MinR. Then

Min s−1(m) ⊆ MinD-(R), Max s−1(p) ⊆ MaxD-(R).

Proof. Take P ∈ Min s−1(m), and let Q be a prime thick ⊗-ideal contained in P. Then
m = s(P) ⊆ s(Q) by Theorem 6.8. Since m is a maximal ideal, we get m = s(P) = s(Q),
and Q ∈ s−1(m). The minimality of P implies P = Q. Thus the first inclusion follows.
The second inclusion is obtained similarly. �

Next, we compare maximal elements of the Balmer support BSuppC with minimal
elements of the usual support SuppC for a bounded complex C ∈ Db(R). By Theorem
5.12, C ∈ X if and only if SuppC ⊆ SuppX for a thick ⊗-ideal X . By combining this
with Theorem 6.8, one has P ∈ BSuppC if and only if Ss(P) ∈ BSuppC for a prime thick
tensor ideal P of D-(R).

Lemma 7.8. (1) s(BSuppC) = SuppC.
(2) S(SuppC) ⊆ BSuppC.

Proof. (1) For a prime thick tensor ideal P in BSuppC, we have the following equivalences.

P ∈ s
−1(SuppC)⇔ s(P) ∈ SuppC

⇔ SuppC 6⊆ SuppP = {p ∈ SpecR | p 6⊆ s(P)}
⇔ C 6∈ P
⇔ P ∈ BSuppC.

Here, the first and the last equivalences are clear. Since {p ∈ SpecR | p 6⊆ s(P)} is the
largest specialization closed subset of SpecR not containing s(P), the second equivalence
holds. The third one follows from the above discussion. As a result, we obtain SuppC =
s(s−1(SuppC)) = s(BSuppC) since s is surjective.

(2) For an element p ∈ SuppC, since C 6∈ S(p) SuppC 6⊆ SuppS(p) = {q ∈ SpecR | q 6⊆
sS(p) = p} shows C 6∈ S(p). Thus, we obtain S(p) ∈ BSuppC. �

From this lemma, the maps

s : SpecD-(R)⇄ SpecR : S
restrict to maps

s : BSuppC ⇄ SuppC : S.
Now we can prove the following theorem.

Theorem 7.9. Let C be an object of Db(R). The above pair of maps induce mutually
inverse bijections

s : MaxBSuppC ⇄ Min SuppC : S.
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Proof. Because S : SpecR→ SpecD-(R) is injective, we have only to check that the map
S : Min SuppC → MaxBSuppC is well-defined and surjective.

Let p be a minimal element of SuppC. We show that S(p) is a maximal element of
BSuppC. Take a prime thick tensor ideal P in BSuppC containing S(p). Then s(P) ⊆
sS(p) = p by Theorem 6.8. Since both p and s(P) belong to SuppC by Lemma 7.8, the
minimality of p shows the equality p = s(P). Hence, we have

SuppP = {q ∈ SpecR | q 6⊆ s(P) = p = sS(p)} = SuppS(p).
This shows that P ⊆ S(p) and thus S(p) is a maximal element in BSuppC. For this
reason, the map S : Min SuppC → MaxBSuppC is well-defined.

Next we check the surjectivity of the map S : Min SuppC → MaxBSuppC. Let P
be a maximal element of BSuppC. It follows from Lemma 7.8 that Ss(P) is also an
element in BSuppC. On the other hand, Ss(P) contains P by Theorem 6.8. Thus, we
get P = Ss(P) from the maximality of P. Let p be an element of SuppC with p ⊆ s(P).
Then P = Ss(P) ⊆ S(p). Since P is maximal in BSuppC, one has P = S(p). Hence,
p = sS(p) = s(P) and this shows that s(P) is a minimal element of SuppC. As a result,
one has S(p) = Ss(P) = P and this shows that S : Min SuppC → MaxBSuppC is
surjective. �

Taking C = R, we get the following corollary. This especially says that D-(R) is
“semilocal” in the sense that D-(R) admits only a finite number of maximal thick tensor
ideals. If R is an integral domain, then D-(R) is “local” in the sense that D-(R) has a
unique maximal thick tensor ideal.

Corollary 7.10. There is a mutually inverse bijections

s : MaxD-(R)⇄ MinR : S.
The following theorem is opposite to Theorem 7.9.

Theorem 7.11. Let C be an object of Db(R).

(1) The map S : SuppC → BSuppC restricts to an injective map

S : Max SuppC →֒ MinBSuppC.

(2) Assume that Max SuppC consists of finitely many maximal ideals of R. Then the
maps s and S restrict to mutually inverse bijections

s : MaxBSuppC ⇄ Min SuppC : S.
Proof. (1) Fix a maximal element m of SuppC and show that S(m) is minimal in BSuppC.
Note that m is a maximal ideal. Take P ∈ BSuppC with P ⊆ S(m). Then for any
X ∈ S(m), Supp(X⊗L

RR/m) = SuppX∩{m} = ∅. Remark 4.6 showsX⊗L

RR/m = 0, which
belongs to P. As P is prime, either X or R/m is in P. Since S(m) does not contain R/m,
neither does P. Therefore X must be in P, and we obtain P = S(m). This shows that the
prime thick ⊗-ideal S(m) is minimal. Thus, S induces a map Max SuppC → MinBSuppC.
The injectivity follows from Theorem 6.8.

(2) We have already shown that the map S : Max SuppC → MinBSuppC is injective.
Hence it suffices to show that this map is surjective.

Write Max SuppC = {m1,m2, . . . ,mr}. Suppose that P is a minimal element of BSuppC
with P 6= S(mi) for any i. For each 1 6 i 6 r we find an object Xi of D-(R) with
Xi ∈ S(mi) and Xi /∈ P. Then C ⊗L

R X1 ⊗L

R X2 ⊗L

R · · · ⊗L

R Xr has the empty support and
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hence isomorphic to 0 by Remark 4.6. As P is prime, it contains some Xi, which is a
contradiction.

Consequently, P must contain S(m) for some m ∈ Max SuppC. The minimality of P
shows that P = S(m). We conclude that the map S : Max SuppC →֒ MinBSuppC is
surjective, whence it is bijective. �

Again taking C = R, we obtain the following opposite result of Corollary 7.10. The
third assertion says that if R is local, then D-(R) is an “integral domain” in the sense that
0 is a (unique) minimal prime thick tensor ideal of D-(R).

Corollary 7.12. (1) For every maximal ideal m of R, the subcategory S(m) is a minimal
prime thick ⊗-ideal of D-(R), or in other words, the restriction of S to MaxR induces
an injection

(7.12.1) S : MaxR →֒ MnD-(R).

(2) The ring R is semilocal if and only if D-(R) has only finitely many minimal prime
thick ⊗-ideals. When this is the case, the map (7.12.1) is a bijection.

(3) If (R,m) is a local ring, then S(m) = 0 is a unique minimal prime thick ⊗-ideal of
D-(R).

Question 7.13. Is the map (7.12.1) bijective even if R is not semilocal?

Applying the above two theorems to the Artinian case gives rise to the following result.

Corollary 7.14. Let R be an Artinian ring. Then the map S : SpecR → SpecD-(R)
is a homeomorphism. Hence the topological space SpecD-(R) is Noetherian, and one has
dim(SpecD-(R)) = dimR = 0 <∞.

Proof. Since SpecR = MinR = MaxR, the assertion is deduced from Corollaries 7.10 and
7.12(2). �

From here we consider when D-(R) is a local tensor triangulated category. Let us recall
the definition.

Definition 7.15. (1) A topological space X is called local if for any open cover X =⋃
i∈I Ui of X there exists t ∈ I such that X = Ut. In particular, any local topological

space is quasi-compact.
(2) An essentially small tensor triangulated category T is called local if Spec T is a local
topological space.

Remark 7.16. It is clear that the topological space SpecR is local if and only if the ring
R is local.

For an essentially small ⊗-triangulated category T the following are equivalent ([Bal10a,
Proposition 4.2]).

(i) T is local.
(ii) T has a unique minimal prime thick ⊗-ideal.
(iii) The radical thick ⊗-ideal

√
0 of T is prime.

If moreover T is rigid, then the above three conditions are equivalent to:

(iv) The zero subcategory 0 of T is a prime thick ⊗-ideal.
Also, it follows from [Bal10a, Example 4.4] that Kb(projR) is local if and only if so is R.

The following result says that the same statements hold for D-(R). Also, we emphasize
that it contains the equivalent condition (4), even though D-(R) is not rigid; see Remark
4.1.
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Corollary 7.17. The following are equivalent.

(1) The ⊗-triangulated category D-(R) is local.
(2) There is a unique minimal thick ⊗-ideal of D-(R).
(3) The radical thick ⊗-ideal

√
0 of D-(R) is prime.

(4) The zero subcategory 0 of D-(R) is a prime thick ⊗-ideal.
(5) The ring R is local.

Proof. Combining Theorem 7.12 with the result given just before the corollary, we observe
that (1) ⇔ (2) ⇔ (3) ⇔ (5) ⇒ (4) hold. If 0 is prime, then it is easy to see that

√
0 = 0.

Thus (4) implies (3). �

One can indeed obtain more precise information on the structure of SpecD-(R) than
Corollary 7.17:

Proposition 7.18. One has

SpecD-(R) =

{
U(R/m) ⊔ {0} if (R,m) is local,⋃

m∈MaxR U(R/m) if R is non-local.

If m, n are distinct maximal ideals of R, then SpecD-(R) = U(R/m) ∪ U(R/n).
Proof. Suppose that (R,m, k) is a local ring. Corollary 7.17 implies that 0 is prime, and
SpecD-(R) contains U(k) ∪ {0}. Let P be a nonzero prime thick ⊗-ideal of D-(R). Then
there exists an object X 6= 0 in P. By Remark 4.6 the support of X is nonempty and
specialization-closed, whence contains m. Using Lemma 4.7(4), we have Supp(X ⊗L

R k) =

SuppX ∩ Supp k = {m} 6= ∅. Hence X ⊗L

R k is nonzero by Remark 4.6 again. Since

X ⊗L

R k is isomorphic to a direct sum of shifts of k-vector spaces, it contains k[n] as a

direct summand for some n ∈ Z. As X ⊗L

R k is in P, so is k. Therefore P is in U(k), and
we obtain SpecD-(R) = U(k) ∪ {0}. It is obvious that U(k) ∩ {0} = ∅. We conclude that
SpecD-(R) = U(k) ⊔ {0}.

Now, let m and n be distinct maximal ideals of R. Applying Lemma 4.7(4), we have
Supp(R/m ⊗L

R R/n) = {m} ∩ {n} = ∅, and hence R/m ⊗L

R R/n = 0 by Remark 4.6.

Therefore we obtain U(R/m)∪ U(R/n) = U(R/m⊗L

RR/n) = U(0) = SpecD-(R), where the
first equality follows from Lemma 2.7. Thus the last assertion of the proposition follows,
which shows the first assertion in the non-local case. �

8. Connectedness of the Balmer spectrum

In this section, we discuss Noetherianity, connectedness and irreducibility of the Balmer
spectrum SpecD-(R). Besides, we prove that the following theorem which gives a neces-
sary condition for the Balmer spectrum SpecD-(R) to be Noetherian.

Theorem 8.1. If the Balmer spectrum SpecD-(R) is a Noetherian topological space, then
SpecR is a finite set (i.e., semilocal ring with Krull dimension at most 1).

Proof. Assume that SpecD-(R) is Noetherian. Then for any chain of the form BSuppM1 ⊇
BSuppM2 ⊇ BSuppM3 · · · with Mi ∈ D-(R) stabilizes. Thus, by Theorem 2.17, every

descending chain
√

thick⊗M1 ⊇
√

thick⊗M2 ⊇
√

thick⊗M3 ⊇ · · · stabilizes.
Assume furthermore that R has infinitely many prime ideals. From Lemma 7.3, we can

take a countable antichain {pn}n>1 of prime ideals. Set Mn :=
⊕

i>nR/pi[i] to be the
complex

Mn := (· · · 0−→ R/pn+2
0−→ R/pn+1

0−→ R/pn → 0 · · · ).
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Here, R/pi fit into the (−i)-th component. Then Mn belongs to D-(R), and Mn+1 is a
direct summand of Mn for each integer n > 1. Therefore, we have a descending chain√
thick⊗M1 ⊇

√
thick⊗M2 ⊇

√
thick⊗M3 ⊇ · · · of radical thick tensor ideals. From the

above argument, we get an equality
√
thick⊗Mn =

√
thick⊗Mn+1 for some integer n > 1.

Taking Supp, we obtain
⋃

i>n

V(pi) = Supp
√
thick⊗Mn = Supp

√
thick⊗Mn+1 =

⋃

i>n+1

V(pi).

Hence, there is an integer m > n+ 1 such that pm ⊆ pn. This gives a contradiction. �

Next, we discuss connectedness and irreducibility of SpecD-(R). To begin with, let us
recall some notions from point-set topology.

Definition 8.2. Let X be a topological space.

(1) We say that a subset of X is clopen if it is both open and closed.
(2) A subspace W of X is said to be generalization closed if for any x ∈ W and y ∈ X,

x ∈ {y} implies y ∈W .
(3) We say that X is connected if it contains no non-trivial clopen subset. For a subspace

Y of X, we say that Y is a connected subspace of X if it is a connected space by induced
topology. Moreover, a connected component of X is a maximal connected subspace
of X. Besides, we show the following theorem which gives a sufficient condition for
Noetherianity of the Balmer spectrum SpecD-(R).

Remark 8.3. (1) A subspace is generalization closed if and only if its complement is
specialization closed. In particular, every open subset of X is generalization closed.

(2) Let X ⊇ Y ⊇ Z be subspaces. If Y is specialization closed in X and Z is specialization
closed in Y , then Z is specialization closed in X.

(3) Let W be a subspace of SpecR. Then W is specialization closed (resp. generalization
closed) in SpecR if and only if

p ∈W, p ⊆ q =⇒ q ∈W.
(resp. q ∈W, p ⊆ q =⇒ p ∈W.)

(4) [Bal05, Proposition 2.9] Let T be an essentially small tensor triangulated category
and W a subspace of Spec T . Then W is specialization closed (resp. generalization
closed) in Spec T if and only if

P ∈W, P ⊇ Q =⇒ Q ∈W.
(resp. Q ∈W, P ⊇ Q =⇒ P ∈W.)

The following theorem is the second main result of this section.

Theorem 8.4. Let C ∈ Db(R) be a bounded complex.

(1) There is a one-to-one correspondence

{
connected components of BSuppC

} s //

s−1
oo

{
connected components of SuppC

}
.

(2) There is a one-to-one correspondence

{
irreducible components of BSuppC

} s //

s−1
oo

{
irreducible components of SuppC

}
.
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The proof of this theorem is divided into several lemmata. Let us start the following
general fact about connected components of a topological space. For a while, we fix a
bounded complex C ∈ Db(R). The first one is a remark about general topological spaces.

Lemma 8.5. Let X be a topological space. Then every connected component of X is both
specialization closed and generalization closed.

Proof. Fix a connected component O of X. For x ∈ O, {x} is irreducible and in particular

connected. Since O ∩ {x} is non-empty, O ∪ {x} is connected. Thus, O ∪ {x} must be

equal to O, and hence {x} ⊆ O. This shows that O is specialization closed in X.

For x 6∈ O, assume that there exists y ∈ {x} with y ∈ O. Then {x} ∩ O is non-empty

as it contains y. Therefore, the same argument as above shows that {x} ⊆ O. This
gives a contradiction to x /∈ O. Thus, X \ O is specialization closed in X and hence O is
generalization closed in X. �

The following result gives an easier way to check whether a given subspace is clopen for
our topological spaces SuppC or BSuppC.

Lemma 8.6. Let X be either SuppC or BSuppC and W a subset of X. If W is both
specialization closed and generalization closed, then W is clopen.

Proof. We show this statement only for X = BSuppC because a similar argument works
also for X = SuppC. By symmetry, we need to check that W is closed.

Claim. W =
⋃

P∈MaxBSuppC∩W {P}.

Proof of claim. Since W is specialization closed, W ⊇ ⋃
P∈maxBSuppC∩W {P} holds. Let

P be an element of W . Take a minimal element p in SuppC contained in s(P). We can
take such a p since SuppC is a closed subset of SpecR. Then

P ⊆ Ss(P) ⊆ S(p).
By Theorem 7.9, S(p) is a maximal element of BSuppC. Moreover, S(p) belongs to W
since W is generalization closed and P ∈W . These show that S(p) is a maximal element

of BSuppC. Accordingly, we obtain P ∈ {S(p)} with S(p) ∈ maxBSuppC and hence the
converse inclusion holds true. �

Note that SuppC is closed and thus contains only finitely many minimal elements. By
using the one-to-one correspondence in Theorem 7.9, MaxBSuppC is also a finite set.
Consequently, W is a finite union of closed subsets, and hence is closed. �

Lemma 8.7. Let U be a clopen subset of BSuppC. Then

(1) p ∈ s(U) if and only if S(p) ∈ U , and
(2) s(U) is a clopen subset in SuppC.

Proof. (1) The ‘if’ part is from Theorem 6.8. Let p be an element of s(U) ⊆ s(BSuppC) =
SuppC. Then there is a prime thick tensor ideal P ∈ U such that s(P) = p. Then S(p)
belongs to U because P ⊆ Ss(P) = S(p) and U is generalization closed in BSuppC.

(2) By Lemma 8.6, we have only to check that s(U) and SuppC \s(U) are specialization
closed in SuppC.

Take p ∈ s(U) and q ∈ V(p). Then S(q) ⊆ S(p). From (1), one has S(p) ∈ U . Since U
is specialization closed, we get S(q) ∈ U . Thus, q = sS(q) belongs to s(U). This shows
that s(U) is specialization closed in SuppC.
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Take p ∈ SuppC \ s(U) and q ∈ V(p). Then S(q) ⊆ S(p). From (1), one has S(p) 6∈ U .
Assume that S(q) belongs to U . Since U is generalization closed, S(p) belongs to U , a
contradiction. Thus, S(q) 6∈ U and hence q 6∈ s(U) by (1). This shows that SuppC \ s(U)
is specialization closed in SuppC. �

Lemma 8.8. Let U be a clopen subset of BSuppC. Then s−1s(U) = U .

Proof. The inclusion U ⊆ s−1s(U) is trivial. For a prime thick tensor ideal P ∈ s−1s(U),
one has s(P) ∈ s(U). By Lemma 8.7(1), we obtain Ss(P) ∈ U . Since U is specialization
closed in BSuppC and P ⊆ Ss(P), we conclude that P belongs U . �

Now, we are ready to prove Theorem 8.4.

(Proof of Theorem 8.4). (1) By Lemma 8.7(2), we obtain a well-defined map

{clopen subsets of BSuppC} → {clopen subsets of SuppC}, U 7→ s(U).

This map is injective by Lemma 8.8 and surjective since s : BSuppC → SuppC is contin-
uous and surjecive. Thus, this map is an order-preserving one-to-one correspondence.

Our topological spaces BSuppC and SuppC have only finitely many connected com-
ponents by Theorem 7.9 and Lemma 8.5, and the proof of Lemma 8.6. Thus, connected
components are nothing but minimal non-empty clopen subsets. Therefore, the statement
(1) follows from the above order-isomorphism.

(2) By Proposition 2.10, every irreducible closed subset of BSuppC is of the form

{P} = {Q ∈ SpecD-(R) | Q ⊆ P}
for a unique prime thick tensor ideal P ∈ BSuppC. Since an irreducible component is by
definition a maximal irreducible closed subset, every irreducible component of BSuppC is
of the form {P} for a unique maximal element P of BSuppC. Thus, P = S(p) for some
minimal element p of SuppC by Theorem 7.9. Similarly, every irreducible component of
SuppC is of the form {p} for a unique minimal element p of SuppC. Therefore, there
is a maximal element P of BSuppC such that p = s(P) by Theorem 7.9. Altogether,
the one-to-one correspondence of Theorem 7.9 gives a one-to-one correspondence what we
want. �

The following connectedness and irreducibility result is a direct consequence of Theorem
8.4.

Corollary 8.9. For a bounded complex C ∈ Db(R), BSuppC is connected (resp. irre-
ducible) if and only if SuppC is connected (resp. irreducible). In particular, SpecD-(R)
is connected (resp. irreducible) if and only if SpecR is connected (resp. irreducible).

As an application of Theorem 8.4, we obtain the following corollary.

Corollary 8.10. Let C ∈ Db(R) be a bounded complex. If C is indecomposable in D-(R),
then BSuppC is connected.

Proof. By Theorem 8.4, it is enough to show that SuppC is connected if C is indecom-
posable.

Take an ideal I with SuppC = V(I). It follows from [Orl11, Lemma 2.1] that there
exists a bounded complex B such that

(i) B is isomorphic to C in Db(R),
(ii) SuppBi ⊆ V(I).
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By (ii), we can take an integer n > 0 with InBi = 0 for each i. Thus by (i), we may
assume that SuppC = V(I) and ICi = 0 for each i.

Consider a decomposition SuppC = F1 ⊔ F2 with F1, F2 closed. Then there are radical
ideals I1 and I2 such that Fi = V(Ii) (i = 1, 2), I1 + I2 = R, and I1 ∩ I2 =

√
I. Using

Chinese remainder theorem, we obtain a direct sum decomposition

R/
√
I ∼= R/I1 ⊕R/I2.

Moreover, from the idempotent lifting theorem (see [Lam, Proposition 21.25]), we obtain
the following decomposition

R/I ∼= R/J1 ⊕R/J2.
Here, J1 and J2 are ideals with

√
Ji = Ii for i = 1, 2. Tensoring with C, we get the

following direct sum decomposition:

C ∼= C ⊗R R/I ∼= (C ⊗R R/J1)⊕ (C ⊗R R/J2).
Since C is indecomposable, C ⊗R R/J1 ∼= C or C ⊗R R/J2 ∼= C. If C ⊗R R/J1 ∼= C, then
we obtain

V(I) = SuppC = Supp(C ⊗R R/J1) ⊆ V(J1)

and thus SuppC = V(I) = V(I1) = F1. Similarly, if C ⊗R R/J2 ∼= C, then one has
SuppC = F2. Thus, we are done. �

This corollary means that the Balmer support of an indecomposable boundedR-complex
is connected. Such a result has been shown by Carlson [Car] for the stable category of finite
dimensional representations over a finite group, and more generally, by Balmer [Bal07] for
an idempotent complete rigid tensor triangulated category.

For the last of this section, we prove that every clopen subset of SpecD-(R) is home-
omorphic to the Balmer spectrum of the Eilenberg-Moore category of some ring object.
Following [Bal11, Bal14], we recall the notion of a ring object and related concepts.

Let (T ,⊗,1) be a tensor triangulated category. We say that an object A ∈ T is a ring
object of T if there is a morphisms

µ : A⊗A→ A,

η : 1→ A

satisfying the following commutative diagrams:

A⊗A⊗AA⊗µ //

µ⊗A
��

A⊗A
µ

��
A⊗A µ

// A

1⊗A η⊗A //

∼=
%%❏

❏❏
❏❏

❏❏
❏❏

❏
A⊗A
µ

��

A⊗ 1
A⊗ηoo

∼=
yytt
tt
tt
tt
tt

A

We say that a ring object A of T is commutative if µτ = µ holds, where

τ : A⊗A→ A⊗A
is the swap of factors. We say that a ring object A of T is separable if there is a morphism

σ : A→ A⊗A
such that (A⊗ µ)(σ ⊗A) = σµ = (µ⊗A)(A⊗ σ).

We say that an object M ∈ T is a (left) A-module if there is a morphism

λ : A⊗M →M
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satisfying the following commutative diagrams:

A⊗A⊗M A⊗λ //

µ⊗M
��

A⊗M
λ
��

A⊗M
λ

// M

1⊗M η⊗M //

∼= %%❑❑
❑❑

❑❑
❑❑

❑❑
❑

A⊗M
λ
��
M

Denote by ModA the category of A-modules.
Let me give the following easy observation.

Lemma 8.11. If R is decomposed into R = A × B as rings, then A has a unique ring
object structure by the natural multiplication µ : A⊗L

RA
∼= A⊗RA ∼= A and the projection

η : R→ A. Moreover, the following holds true.

(1) A is a commutative separable ring object in D-(R).
(2) For any complexM ∈ D-(R), it has an A-module structure if and only if A⊗L

RM
∼=M .

This is the case, its A-module structure is uniquely determined by underlying complex.
(3) For A-modules M and N , M ⊗L

R N is an A-module. Hence ModA is a tensor trian-
gulated category and UA preserves tensor products.

Proof. Since A is a projective R-module, the statement (1) means that A is a commutative
separable R-algebra in the usual sense and this is clear. Uniqueness of this structure follows
from (2).

(2) Let M be an A-module. Consider the following commutative diagram:

R⊗L

RM
η⊗L

RM//

∼=
&&▼▼

▼▼
▼▼

▼▼
▼▼

▼
A⊗L

RM

λ
��
M

In particular, the composition Hi(λ) ◦ Hi(η ⊗L

R M) is an isomorphism for each integer i.

Since η ⊗L

R M is a split surjection, Hi(η ⊗L

R M) is also a split surjection and hence is an

isomorphism for each i. This shows that η ⊗L

R X is a quasi-isomorphism. From the above
commutative diagram, λ is also a quasi-isomorphism.

Take an object M ∈ D-(R) with A⊗L

RM
∼=M . Then the following morphism gives an

A-module structure to M :

A⊗L

RM
∼= A⊗L

R A⊗L

RM
µ⊗L

RM−−−−→ A⊗L

RM
∼=M.

Moreover, the A-module structure λ is uniquely determined as

A⊗L

RM
(η⊗L

RM)−1

−−−−−−−→ R⊗L

RM
∼=−→M.

The last statement (3) directly follows from the definition of ⊗A and (2), for details,
see [Bal14]. �

From (2) in the above lemma, we can define a unique A-module structure for a complex
M ∈ D-(R) with A ⊗L

R M
∼= M . For simplicity, we denote this A-module by MA. In

addition, for a complex M ∈ D-(R), A ⊗L

R M has an A-module structure and hence we
can define a triangulated functor

FA : D-(R)→ ModA, M 7→ A⊗L

RM.
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Corollary 8.12. For any non-empty clopen subset W of SpecD-(R), there is a commu-
tative separable ring object A of D-(R) such that

ϕA := aFA : Spec(ModA)→ SpecD-(R), P 7→ F−1
A (P)

gives a homeomorphism onto W .

Proof. By Lemma 8.7, s(W ) is a clopen subset of SpecR. Therefore, by Corollary 8.10,
there is a direct sum decomposition R = A×B of rings with s(W ) = SuppA. Then Lemma
8.11 shows that A has a commutative separable ring object structure. Since UA preserves
tensor products, one can easily check that the forgetful functor UA : ModA → D-(R)
induces a continuous injective map

ψA : BSuppA→ Spec(ModA),P 7→ U−1
A (P),

see Proposition 2.13. Furthermore, the image of ϕA is contained in BSuppA and ψAϕA = 1
because FAUA ∼= 1. For this reason, we have only to check that the image of ϕA is W .

Let P be a prime thick tensor ideal of ModA. By definition,

ϕA(P) = {X ∈ D-(R) | FA(X) = (A⊗L

R X)A ∈ P}
and it contains B because A⊗L

R B = 0. In particular,

SuppB ⊆ SuppϕA(P) = {p ∈ SpecR | p 6⊆ s(ϕA(P))}
and thus s(ϕA(P)) ∈ SpecR \ SuppB = SuppA. Therefore, ϕA(P) ∈ W by Lemma 8.8.
Conversely, take a prime thick tensor ideal P from W . Then s(P) ∈ s(W ) = SuppA
implies that A 6∈ P. Therefore,

ϕA(ψA(P)) = {X ∈ D-(R) | A⊗L

R X ∈ P} = P
since A /∈ P. Thus, we conclude that ϕA(Spec(ModA)) =W . �

9. Relationships among thick tensor ideals and specialization-closed subsets

This section compares compact, tame and radical thick tensor ideals of D-(R), relating
them to specialization closed subsets of SpecR, tSpecD-(R) and Thomason subsets of
SpecD-(R). We start with some notation.

Definition 9.1. (1) Let T be a tensor triangulated category. Let P be a property of
thick ⊗-ideals of T . For a subcategory X of C we denote by X P (resp. XP) the P-closure
(resp. P-interior) of X , that is to say, the smallest (resp. largest) thick ⊗-ideal of T which
contains (resp. which is contained in) X and satisfies the property P. We define this only
when it exists.
(2) Let X be a topological space. Let P be a property of subsets of X. For a subset A of
X we denote by AP (resp. AP) the P-closure (resp. P-interior) of A, namely, the smallest
(resp. largest) subset of X that contains (resp. that is contained in) A and satisfies P.
We define this only when it exists.

Here is a list of properties P as in the above definition which we consider:

rad = radical, tame = tame, cpt = compact, spcl = specialization-closed.

Notation 9.2. We denote by Rad (resp. Tame, Cpt) the set of radical (resp. tame,
compact) thick ⊗-ideals of D-(R). Also, Spcl(Spec) (resp. Spcl(tSpec)) stands for the
set of specialization-closed subsets of the topological space SpecR (resp. tSpecD-(R)).
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Our first purpose in this section is to give a certain commutative diagram of bijections.
To achieve this purpose, we prepare several propositions. We state here two propositions.
The first one is shown by using Proposition 4.8, while the second one is nothing but
Theorem 5.19.

Proposition 9.3. There is a one-to-one correspondence Supp : Tame ⇄ Spcl(Spec) :
Supp−1.

Proposition 9.4. There is a one-to-one correspondence Supp : Cpt⇄ Spcl(Spec) : 〈〉.
Notation 9.5. For an object M of D-(R) we denote by BSpM the set of tame prime
thick ⊗-ideals of D-(R) not containing M , i.e., BSpM = BSuppM ∩ tSpecD-(R). For a
subcategory X of D-(R) we set BSpX =

⋃
M∈X BSpM . For a subset A of SpecD-(R) we

denote by BSp−1A the subcategory of D-(R) consisting of objects M such that BSpM is
contained in A.

We make a lemma, whose second assertion is a variant of [Bal05, Lemma 4.8].

Lemma 9.6. (1) For a subcategory X of D-(R), the subset BSpX of tSpecD-(R) is
specialization-closed.

(2) For a subset A of tSpecD-(R) one has BSp−1A =
⋂

P∈A∁ P, where A∁ = tSpecD-(R)\
A.

(3) Let {Xλ}λ∈Λ be a collection of tame thick ⊗-ideals of D-(R). Then the intersection⋂
λ∈ΛXλ is also a tame thick ⊗-ideal of D-(R).

Proof. (1) We have BSpX =
⋃
X∈X BSpX, and BSpX = BSuppX ∩ tSpecD-(R) is closed

in tSpecD-(R) since BSuppX is closed in SpecD-(R). Therefore BSpX is specialization-
closed in tSpecD-(R).

(2) An object X of D-(R) belongs to BSp−1A if and only if BSpX is contained in A, if

and only if A∁ is contained in (BSpX)∁ = {P ∈ tSpecD-(R) | X ∈ P}, if and only if X
belongs to

⋂
P∈A∁ P.

(3) For each λ ∈ Λ there is a subset Sλ of SpecR such that Xλ = Supp−1 Sλ. Then it is
clear that the equality

⋂
λ∈ΛXλ = Supp−1(

⋂
λ∈Λ Sλ) holds, which shows the assertion. �

Using the above lemma, we obtain a bijection induced by BSp.

Proposition 9.7. There is a one-to-one correspondence BSp : Tame ⇄ Spcl(tSpec) :
BSp−1.

Proof. Fix a tame thick ⊗-ideal X of D-(R) and a specialization-closed subset U of
tSpecD-(R). Lemma 9.6(1) implies that BSpX is specialization-closed in tSpecD-(R),
that is, BSpX ∈ Spcl(tSpec). Lemma 9.6(2) implies that BSp−1 U =

⋂
P∈U∁ P, and each

P ∈ U ∁ is a tame thick ⊗-ideal of D-(R). Hence BSp−1 U is also a tame thick ⊗-ideal of
D-(R) by Lemma 9.6(3), namely, BSp−1 U ∈ Tame.

Let us show that BSp(BSp−1 U) = U . It is evident that BSp(BSp−1 U) is contained
in U . Pick any P ∈ U . Corollary 6.15 says P = S(p) for some prime ideal p of R.
Since U is specialization-closed in tSpecD-(R), the closure C of S(p) in tSpecD-(R) is
contained in U . Using Proposition 2.10, we see that C consists of the prime thick ⊗-ideals
of the form S(q), where q is a prime ideal of R with S(q) ⊆ S(p). In view of Theorem
6.8, we have C = {S(q) | q ∈ V(p)}, and it is easy to observe that this coincides with
BSp(R/p). Hence R/p is in BSp−1 U , and P = S(p) belongs to BSp(BSp−1 U). Now we
obtain BSp(BSp−1 U) = U .
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It remains to prove that BSp−1(BSpX ) = X . We have BSp−1(BSpX ) =
⋂

P∈(BSpX )∁ P
by Lemma 9.6(2). Fix a prime thick ⊗-ideal P of D-(R). Then P is in (BSpX )∁ if and
only if P is tame and P is not in BSpX . The former statement is equivalent to saying that
P = S(p) for some p ∈ SpecR by Corollary 6.15, while the latter is equivalent to saying
that X is contained in P. Hence BSp−1(BSpX ) = ⋂

p∈SpecR,X⊆S(p) S(p). Thus an object

Y of D-(R) belongs to BSp−1(BSpX ) if and only if Y belongs to S(p) for all p ∈ SpecR
with X ⊆ S(p), if and only if Yp = 0 for all p ∈ SpecR with Xp = 0, if and only if SuppY
is contained in SuppX , if and only if Y belongs to X by Proposition 9.3. �

Here we consider describing rad-closures, tame-closures and cpt-interiors, and their sup-
ports.

Lemma 9.8. Let X be a subcategory of D-(R), and let Y be a thick ⊗-ideal of D-(R).
One has:

(1) (thick⊗X )cpt = 〈SuppX〉, X rad =
√
thick⊗X , X tame = Supp−1 SuppX ,

(2) Ycpt ⊆ Y ⊆ Y rad ⊆ Ytame, Supp(Ycpt) = SuppY = Supp(Y rad) = Supp(Ytame),

Proof. (1) It follows from Lemma 2.15 (resp. Remark 6.14) that
√
thick⊗X (resp.

Supp−1 SuppX ) is a thick ⊗-ideal of D-(R). It is clear that
√
thick⊗X (resp.

Supp−1 SuppX ) is radical (resp. tame) and contains X . If C is a radical (resp. tame)

thick ⊗-ideal of D-(R) containing X , then we have
√
thick⊗X ⊆

√
thick⊗ C =

√
C = C

(resp. Supp−1 SuppX ⊆ Supp−1 Supp C = C by Proposition 9.3). Thus, we obtain the

two equalities X rad =
√
thick⊗X and X tame = Supp−1 SuppX . It remains to show the

equality (thick⊗X )cpt = 〈SuppX〉. Clearly, 〈SuppX〉 is a compact thick ⊗-ideal of D-(R).
Applying Corollary 5.11, we observe that 〈SuppX〉 is contained in thick⊗X . Let C be a
compact thick ⊗-ideal of D-(R) contained in thick⊗X . Then it follows from Proposition
9.4 that C = 〈Supp C〉, which is contained in 〈Supp(thick⊗X )〉 = 〈SuppX〉 by Proposition
4.8(2). We now conclude (thick⊗X )cpt = 〈SuppX〉.

(2) Fix a prime ideal p of R. Proposition 6.3 says that S(p) is a prime thick ⊗-ideal
of D-(R), whence it is radical. Therefore Yp = 0 if and only if (

√
Y)p = 0. This shows

Supp(
√
Y) = SuppY. Hence

√
Y is contained in Supp−1 SuppY, meaning that Y rad is

contained in Ytame by (1). Thus we get the inclusions Ycpt ⊆ Y ⊆ Y rad ⊆ Ytame, which

implies Supp(Ycpt) ⊆ SuppY ⊆ Supp(Y rad) ⊆ Supp(Ytame). By (1) and Proposition 4.8 we
get Supp(Ytame) = SuppY = Supp(Ycpt). The equalities in the assertion follow. �

The inclusion Y rad ⊆ Ytame in Lemma 9.8 in particular says:

Corollary 9.9. Every tame thick ⊗-ideal of D-(R) is radical.

We now obtain a bijection, using the above lemma.

Proposition 9.10. There is a one-to-one correspondence ()tame : Cpt⇄ Tame : ()cpt.

Proof. Fix a compact thick ⊗-ideal X , and a tame thick ⊗-ideal Y of D-(R). We have
(X tame)cpt = 〈Supp(X tame)〉 = 〈SuppX〉 = X , where the first equality follows from Lemma
9.8(1), the second from Lemma 9.8(2), and the last from Proposition 9.4. Also, it holds
that (Ycpt)tame = Supp−1 Supp(Ycpt) = Supp−1 SuppY = Y, where the first equality follows
from Lemma 9.8(1), the second from Lemma 9.8(2), and the last from Proposition 9.3.
Thus we obtain the one-to-one correspondence in the proposition. �

For each subset A of SpecR, we put S(A) = {S(p) | p ∈ A}. For each subset B of
SpecD-(R), we put s(B) = {s(P) | P ∈ B}. We get another bijection.
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Proposition 9.11. There is a one-to-one correspondence S : Spcl(Spec)⇄ Spcl(tSpec) :
s.

Proof. First of all, applying Theorem 6.8 and Corollary 6.15, we observe that
(9.11.1)

s(S(p)) = p for all p ∈ SpecR and S(s(P)) = P for all P ∈ tSpecD-(R).

Fix a specialization-closed subset W of SpecR and a specialization-closed subset U of
tSpecD-(R). It follows from (9.11.1) that s(S(W )) =W and S(s(U)) = U .

Pick a prime ideal p in W . Let X be the closure of {S(p)} in tSpecD-(R). Then
X = Y ∩ tSpecD-(R), where Y is the closure of {S(p)} in SpecD-(R), and hence

X = {P ∈ tSpecD-(R) | P ⊆ S(p)}
= {S(q) | q ∈ SpecR, S(q) ⊆ S(p)}
= {S(q) | q ∈ V(p)} ⊆ S(W ),

where the first equality follows from Proposition 2.10, the second from Corollary 6.15, and
the third from Theorem 6.8. The inclusion holds since W is a specialization-closed subset
of SpecR. Therefore, S(W ) is a specialization-closed subset of tSpecD-(R), namely,
S(W ) ∈ Spcl(tSpec).

Pick P ∈ U . As U is a subset of tSpecD-(R), the prime thick ⊗-ideal P is tame. Let q
be a prime ideal of R containing s(P). We then get S(q) ⊆ S(s(P)) = P by Theorem 6.8
and (9.11.1), which says that S(q) belongs to the closure of the set {P} in tSpecD-(R) by
Proposition 2.10. The specialization-closed property of U implies that S(q) belongs to U .
We have q = s(S(q)) by (9.11.1), which belongs to s(U). Consequently, the subset s(U)
of SpecR is specialization-closed, that is, s(U) ∈ Spcl(Spec). �

Here we note an elementary fact on commutativity of a diagram of maps.

Remark 9.12. Consider the following diagram of bijections

A

a��⑦⑦
⑦⑦
⑦⑦
⑦⑦ c−1

  ❆
❆❆

❆❆
❆❆

B

a−1
??⑦⑦⑦⑦⑦⑦⑦⑦ b //

C.
c

``❆❆❆❆❆❆❆

b−1
oo

One can choose infinitely many compositions of maps in the diagram, but once one of
them is equal to another, this triangle with edges having any directions commutes. To be
more explicit, if c = ba for instance, then the set {1, a, a−1, b, b−1, c, c−1} is closed under
possible compositions.

Now we can state and prove our first main result in this section.

Theorem 9.13. There is a commutative diagram of mutually inverse bijections:

Spcl(Spec)

〈〉tt❤❤❤❤
❤❤❤

❤❤❤
❤❤❤

❤❤❤
❤❤❤

S
∼= ++❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱

Supp−1∼=

��

Cpt

∼=

Supp
44❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

()tame

∼=
++❱❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱ Spcl(tSpec)

s

kk❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱

BSp−1

∼=

ss❤❤❤❤❤
❤❤❤❤

❤❤❤❤
❤❤❤❤

❤❤❤❤

Tame
()cpt

kk❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱

BSp
33❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

Supp

OO
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Proof. The five one-to-one correspondences in the diagram are shown in Propositions 9.3,
9.4, 9.7, 9.10 and 9.11. It remains to show the commutativity, and for this we take Remark
9.12 into account.

For a thick ⊗-ideal X of D-(R), we have Supp(X tame) = SuppX by Lemma 9.8(2),
which shows that the left triangle in the diagram commutes. It is easy to observe from
Corollary 6.15 that

(9.13.1) BSpX = S(SuppX ) for any subcategory X of D-(R).

The commutativity of the right triangle in the diagram follows from (9.13.1). �

Remark 9.14. The bijections in the diagram of Theorem 9.13 induce lattice structures
in Tame and Spcl(tSpec), so that the maps are lattice isomorphisms. However, we do
not know if there is an explicit way to define lattice structures like the one of Cpt given
in Proposition 5.18(2).

Let f : A→ B and g : B → A be maps with gf = 1. Then we say that (f, g) is a section-
retraction pair, and write f ⊣ g. Our next goal is to construct a certain commutative
diagram of section-retraction pairs, and for this we again give several propositions. The
first one is a consequence of Theorem 2.17.

Proposition 9.15. There is a one-to-one correspondence BSupp : Rad ⇄ Thom :
BSupp−1.

Proposition 9.16. There is a section-retraction pair ()rad : Cpt⇄ Rad : ()cpt.

Proof. For every X ∈ Cpt, we have (X rad)cpt = 〈Supp(X rad)〉 = 〈SuppX〉 = Xcpt = X by
Lemma 9.8. �

For each subset A of SpecR, we set S(A) =
⋃

p∈A {S(p)}. For each subset B of

SpecD-(R), we set S−1(B) = {p ∈ SpecR | S(p) ∈ B}. We obtain another section-
retraction pair.

Proposition 9.17. There is a section-retraction pair S : Spcl(Spec)⇄ Thom : S−1.

Proof. Proposition 2.10 and Corollary 6.11 yield

(9.17.1) BSupp(R/p) = {S(p)} for any prime ideal p of R,

whence ({S(p)})∁ = U(R/p), which is quasi-compact by Proposition 2.11. Hence S(A) is
a Thomason subset of SpecD-(R) for any subset A of SpecR. In particular, we get a map
S : Spcl(Spec)→ Thom.

Let T be a Thomason subset of SpecD-(R). Let p, q be prime ideals of R with p ⊆ q

and S(p) ∈ T . Then S(q) belongs to {S(p)} by Proposition 2.10 and Theorem 6.8. Since

T is Thomason, it contains {S(p)}. Hence S(q) belongs to T . Thus the assignment
T 7→ S−1(T ) defines a map S−1 : Thom→ Spcl(Spec).

For a specialization-closed subset W of SpecR and a prime ideal p of R, one has

S(p) ∈ {S(q)} for some q ∈W ⇔ S(p) ⊆ S(q) for some q ∈W
⇔ p ⊇ q for some q ∈W
⇔ p ∈W,

where the first and second equivalences follow from Proposition 2.10 and Theorem 6.8,
and the last equivalence holds by the fact that W is specialization-closed. This yields
S−1(S(W )) =W . �
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Now we consider describing spcl-closures and spcl-interiors.

Proposition 9.18. Let A be a specialization-closed subset of SpecD-(R), and let B be a
specialization-closed subset of tSpecD-(R).

(1) Let Aspcl stand for the spcl-interior of A in tSpecD-(R). Then

Aspcl = A ∩ tSpecD-(R).

(2) Let Bspcl stand for the spcl-closure of B in SpecD-(R). Then

Bspcl = {P ∈ SpecD-(R) | Ptame ∈ B} = ⋃
P∈Bspcl BSupp(R/s(P)).

In particular, Bspcl is a Thomason subset of SpecD-(R).

Proof. (1) We easily observe that A ∩ tSpecD-(R) is a specialization-closed subset of
the topological space tSpecD-(R) contained in A. Also, it is obvious that if X is a
specialization-closed subset of tSpecD-(R) contained in A, then X is contained in A ∩
tSpecD-(R). Hence A ∩ tSpecD-(R) coincides with Aspcl.

(2) Let C be the set of prime thick ⊗-ideals P of D-(R) with Ptame ∈ B. We proceed
step by step.
(a) Each Q ∈ B is tame. Hence we have Qtame = Q ∈ B. This shows that C contains B.
(b) Let Y be a specialization-closed subset of SpecD-(R) containing B. Take any element
P of C. Then Ptame belongs to B, and hence to Y . Since Y is specialization-closed,
{Ptame} is contained in Y . Hence P belongs to Y by Proposition 2.10. It follows that C
is contained in Y .
(c) We prove C =

⋃
P∈C BSupp(R/s(P)). Combining Theorem 6.8, Lemma 9.8(1)

and (9.17.1) gives rise to BSupp(R/s(P)) = {Ptame}, and thus it is enough to verify

C =
⋃

P∈C {Ptame}. By Proposition2.10 we see that C is contained in
⋃

P∈C {Ptame}.
Conversely, let P ∈ C and Q ∈ {Ptame}. Then Ptame belongs to B, and Q is contained
in Ptame by Proposition 2.10, which shows that Qtame is contained in Ptame. Hence Qtame

is in {Ptame} ∩ tSpecD-(R). As B is specialization-closed in tSpecD-(R), it contains

{Ptame} ∩ tSpecD-(R), and therefore Qtame is in B. Thus Q belongs to C. We obtain

C =
⋃

P∈C {Ptame}.
The equality C =

⋃
P∈C BSupp(R/s(P)) shown in (c) especially says that C is

specialization-closed. By this together with (a) and (b) we obtain C = Bspcl, and it
follows that C =

⋃
P∈Bspcl BSupp(R/s(P)). �

We now obtain another section-retraction pair:

Proposition 9.19. The operations ()spcl and ()spcl defined in Proposition 9.18 make a

section-retraction pair ()spcl : Spcl(tSpec)⇄ Thom : ()spcl.

Proof. Let U be a specialization-closed subset of tSpecD-(R). By Proposition 9.18, U spcl

is a Thomason subset of SpecD-(R), and (U spcl)spcl = U spcl ∩ tSpecD-(R) = {P ∈
tSpecD-(R) | Ptame ∈ U} = U . �

We can prove our second main result in this section.
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Theorem 9.20. There is a diagram

Rad
∼

⊣ ()cpt

��

Thom

⊣ S−1

��

Thom

⊣ ()spcl

��
Cpt

∼

()rad

OO

Spcl(Spec)

S

OO

∼
Spcl(tSpec)

()spcl

OO

where the upper horizontal bijections are the one given in Proposition 9.15 and an equality,
and the lower horizontal bijections are the ones appearing in Theorem 9.13. The diagram
with vertical arrows from the bottom (resp. top) to the top (resp. bottom) is commutative.

Proof. The three section-retraction pairs are obtained in Propositions 9.16, 9.17 and 9.19.
We claim that for any thick ⊗-ideal X of D-(R) one has

(9.20.1) BSupp(X rad) = BSuppX .
Indeed, Lemma 9.8(1) shows X rad =

√
X . The inclusion X ⊆

√
X implies BSuppX ⊆

BSupp
√
X . Let P be a prime thick ⊗-ideal of D-(R). If X is contained in P, then so is√

X as P is prime. Therefore we obtain BSupp
√
X = BSuppX , and the claim follows.

Fix a thick ⊗-ideal C of D-(R). For a prime ideal p of R one has S(p) ∈ BSupp C
if and only if C * S(p), if and only if Cp 6= 0, if and only if p ∈ Supp C. This shows
S−1(BSupp C) = Supp C. Lemma 9.8(2) gives Supp(Ccpt) = S−1(BSupp C). Next, suppose
that C is compact. Lemma 9.8(1), (9.17.1) and (9.20.1) yield

BSupp(Crad) = BSupp C = BSupp(Ccpt) = BSupp(〈Supp C〉)
= BSupp{R/p | p ∈ Supp C} = S(Supp C).

Thus we obtain the commutativity of the left square of the diagram.
Let A be any subset of SpecR. It is clear that S(A) = {S(p) | p ∈ A} is contained in

S(A). As S(A) is a union of closed subsets of the topological space SpecD-(R), it is a
specialization-closed subset of SpecD-(R). Note that any specialization-closed subset of
SpecD-(R) containing S(A) contains S(A). Hence we have S(A) = (S(A))spcl. Let B be a
specialization-closed subset of SpecD-(R). Then S(S−1(B)) = {S(p) | p ∈ SpecR, S(p) ∈
B} = B ∩ tSpecD-(R) = Bspcl by Corollary 6.15 and Proposition 9.18(1). Now it follows
that the right square of the diagram commutes. �

We close this section by producing another commutative diagram, coming from the
above theorem.

Corollary 9.21. There is a commutative diagram:

Rad

()cpt

uu❥❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥❥

Supp

����
��
��
��
��
��
��
��

()tame

��✾
✾✾

✾✾
✾✾

✾✾
✾✾

✾✾
✾✾

BSp

))❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙

Cpt
∼

Spcl(Spec)
∼

Tame
∼

Spcl(tSpec)

Here, the three bijections are the ones appearing in Theorem 9.13, and the other maps are
retractions.
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Proof. We have the following diagram.

Rad

()cpt⊣
��

Cpt

()rad

OO

Supp

∼=
//
Spcl(Spec)

Supp−1

∼=
//

〈〉
oo Tame

BSp

∼=
//

Supp
oo Spcl(tSpec)

BSp−1
oo

Thus it suffices to verify the equalities of compositions of maps Supp ◦()cpt = Supp,

Supp−1 ◦ Supp = ()tame and BSp ◦()tame = BSp. This is equivalent to showing that the
equalities

(i) Supp(Xcpt) = SuppX , (ii) Supp−1 SuppX = X tame, (iii) BSp(X tame) = BSpX
hold for each (radical) thick ⊗-ideal X of D-(R). The equalities (i) and (ii) im-
mediately follow from Lemma 9.8. We have BSp(X tame) = BSp(Supp−1 SuppX ) =
(BSp ◦ Supp−1)(SuppX ) = S(SuppX ) = BSpX , where the first and last equalities fol-
low from Lemma 9.8(1) and (9.13.1). Proposition 4.8(2) says that SuppX belongs to
Spcl(Spec), and the third equality above is obtained by Theorem 9.13. Now the assertion
(iii) follows, and the proof of the corollary is completed. �

10. Distinction between thick tensor ideals, and Balmer’s conjecture

In this section, we consider when the section-retraction pairs in Theorem 9.20 and Corol-
lary 9.21 are one-to-one correspondences, and construct a counterexample to the conjecture
of Balmer. We begin with a lemma on the annihilator of an object in the thick ⊗-ideal
closure.

Lemma 10.1. Let {Xλ}λ∈Λ be a family of objects of D-(R). For M ∈ thick⊗{Xλ}λ∈Λ
there are (pairwise distinct) indices λ1, . . . , λn ∈ Λ and integers e1, . . . , en > 0 such that
AnnM contains

∏n
i=1(AnnXλi)

ei .

Proof. Let C be the subcategory of D-(R) consisting of objects C such that there are
λ1, . . . , λn ∈ Λ and e1, . . . , en > 0 such that AnnC contains

∏n
i=1(AnnXλi)

ei . The follow-
ing statements hold in general.

• If A is an object of D-(R) and B is a direct summand of A, then AnnA ⊆ AnnB.
• For each object A ∈ D-(R) one has Ann(A[±1]) = AnnA.
• If A → B → C → A[1] is an exact triangle in D-(R), then AnnB contains
AnnA ·AnnC.
• For any objects A,B of D-(R) one has Ann(A⊗L

R B) ⊇ AnnA.

It follows from these that C is a thick ⊗-ideal of D-(R). Since Xλ is in C for all λ ∈ Λ, it
holds that C contains thick⊗{Xλ}λ∈Λ. The assertion of the lemma now follows. �

The proposition below says in particular that in the case where R is a local ring D-(R)
has a compact prime thick tensor ideal. On the other hand, in the nonlocal case it is often
that D-(R) has no such one.

Proposition 10.2. (1) If R is a local ring with maximal ideal m, then Cpt ∩ s−1(m) =
{0} 6= ∅.

(2) Let R be a nonlocal semilocal domain. Then there exists no compact prime thick
⊗-ideal of D-(R). In particular, one has Pcpt ( P = P rad for all P ∈ SpecD-(R).
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Proof. (1) Let P be in SpecD-(R). Then P is in s−1(m) if and only if SuppP = {p ∈
SpecR | p * m} = ∅ by Proposition 7.1, if and only if P = 0 by Remark 4.6. Since 0 is
compact, we are done.

(2) Let m1, . . . ,mn be the (pairwise distinct) maximal ideals of R with n > 2. For
each 1 6 i 6 n one finds an element xi ∈ mi that does not belong to any other maximal
ideals. As R is a domain of positive dimension, xi is a non-zerodivisor of R. Set Ci =⊕

t>0R/x
t+1
i [t]; note that this is an object of D-(R). We have Supp(C1 ⊗L

R · · · ⊗L

R Cn) =⋂n
i=1 SuppCi =

⋂n
i=1V(xi) = V(x1, . . . , xn) = ∅ by Lemma 4.7(4) and the fact that

(x1, x2) is a unit ideal of R. Remark 4.6 gives C1 ⊗L

R · · · ⊗L

R Cn = 0.

Suppose that there exists a compact prime thick ⊗-ideal P of D-(R). Then C1 ⊗L

R

· · · ⊗L

R Cn = 0 is contained in P, and so is Cℓ for some 1 6 ℓ 6 n. We have P = 〈SuppP〉
by Proposition 9.4, and by Lemma 10.1 there exist prime ideals p1, . . . , pr ∈ SuppP
and integers e1, . . . , er > 0 such that AnnCℓ contains (AnnR/p1)

e1 · · · (AnnR/pr)er =
p
e1
1 · · · perr . SinceR is a domain and xℓ is a non-unit ofR, we have AnnCℓ =

⋂
t>0 x

t+1
ℓ R = 0

by Krull’s intersection theorem. Therefore p
e1
1 · · · perr = 0, and ps = 0 for some 1 6 s 6 r

as R is a domain. Thus the zero ideal 0 of R belongs to SuppP, which implies SuppP =
SpecR. We obtain P = D-(R) by Proposition 6.1, which is a contradiction. �

To show a main result of this section, we make two lemmas. The first one concerns
the structure of the radical and tame closures, while the second one gives an elementary
characterization of Artinian rings.

Lemma 10.3. Let X be a subcategory of D-(R). One has

X rad =
⋂

X⊆P∈SpecD-(R) P, X tame =
⋂

X⊆P∈tSpecD-(R) P.

Proof. Lemma 9.8(1) implies X rad =
√
thick⊗X , which coincides with the intersection of

the prime thick ⊗-ideals of D-(R) containing thick⊗X by Lemma 2.15. This is equal
to the intersection of the prime thick ⊗-ideals containing X , and thus the first equality
holds. As for the second equality, if P is a tame thick ⊗-ideal containing X , then we
have X tame ⊆ Ptame = P, which shows the inclusion (⊆). Let M be an object of D-(R)
belonging to all P ∈ tSpecD-(R) with X ⊆ P. Corollary 6.15 says that M is in S(p) for
all prime ideals p of R with X ⊆ S(p). This means that SuppM is contained in SuppX .
Hence M is in Supp−1 SuppX , which coincides with X tame by Lemma 9.8(1). Thus the
second equality follows. �

Lemma 10.4. The ring R is Artinian if and only if for any sequence I1, I2, . . . of ideals
of R it holds that V(

⋂
n>1 In) =

⋃
n>1V(In).

Proof. First of all, note that the inclusion V(
⋂
n>1 In) ⊇

⋃
n>1V(In) always holds.

If R is Artinian, then there exists an integer m > 1 such that
⋂
n>1 In =

⋂m
j=1 Ij . From

this we obtain V(
⋂
n>1 In) = V(

⋂m
j=1 Ij) =

⋃m
j=1V(Ij) ⊆

⋃
n>1V(In). This shows the

“only if” part.
Let us prove the “if” part. Assume first that R has infinitely many maximal ideals,

and take a sequence m1,m2, . . . of pairwise distinct maximal ideals of R. By assump-
tion, we get V(

⋂
n>1mn) =

⋃
n>1V(mn). Since V(

⋂
n>1mn) is a closed subset of

SpecR, it has only finitely many minimal elements with respect to the inclusion re-
lation. However,

⋃
n>1V(mn) = {m1,m2, . . .} has infinitely many minimal elements,

which is a contradiction. Thus, R is a semilocal ring. Let m1, . . . ,mt be the maximal
ideals of R, and J = m1 ∩ · · · ∩ mt the Jacobson radical of R. Applying the assump-
tion to the sequence {Jn}n>1 of ideals gives V(

⋂
n>1 J

n) =
⋃
n>1V(Jn) = V(J). By
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Krull’s intersection theorem, we obtain
⋂
n>1 J

n = 0, whence V(J) = SpecR. Hence
SpecR = {m1, . . . ,mt} = MaxR, and we conclude that R is Artinian. �

Now we can prove our first main result in this section. Roughly speaking, if our ring
R is Artinian, then everything is explicit and behaves well, and vice versa. Note that this
result includes Corollary 7.14.

Theorem 10.5. The following are equivalent.

(1) The ring R is Artinian.
(2) Every thick ⊗-ideal of D-(R) is compact, tame and radical.
(3) The maps S : SpecR⇄ SpecD-(R) : s are mutually inverse homeomorphisms.
(4) The section-retraction pair S : SpecR ⇄ SpecD-(R) : s is a one-to-one correspon-

dence.
(5) The section-retraction pair ()cpt : Rad⇄ Cpt : ()rad is a one-to-one correspondence.

(6) The section-retraction pair S−1 : Thom ⇄ Spcl(Spec) : S is a one-to-one corre-
spondence.

(7) The section-retraction pair ()spcl : Thom ⇄ Spcl(tSpec) : ()spcl is a one-to-one
correspondence.

(8) The retraction Supp : Rad→ Spcl(Spec) is a bijection.
(9) The retraction ()tame : Rad→ Tame is a bijection.
(10) The retraction BSp : Rad→ Spcl(tSpec) is a bijection.
(11) The inclusion Rad ⊇ Tame is an equality.

Proof. Theorems 6.8, 9.13, 9.20 and Corollary 9.9 imply that the pairs in (4), (5), (6),
(7) are section-retraction pairs, the maps in (8), (9), (10) are retractions, and one has the
inclusion in (11).

The equivalences (5) ⇔ (6) ⇔ (7) and (5) ⇔ (8) ⇔ (9) ⇔ (10) follow from Theorem
9.20 and Corollary 9.21, respectively. It is trivial that (3) implies (4), while (1) implies
(2) by Corollaries 5.20, 9.9 and Proposition 4.8(1). If SpecD-(R) = tSpecD-(R), then
S = S ′ and s = s′. From Theorems 7.2(3) and 7.4 we see that (2) implies (3). Corollary
9.9 says X tame ∈ Rad for each X ∈ Rad. Hence, if ()tame : Rad → Tame is injective,
then X = X tame holds. This shows that (9) implies (11). It is easily seen that the converse
is also true, and we get the equivalence (9) ⇔ (11). When S : SpecR → SpecD-(R) is
surjective, we have SpecD-(R) = tSpecD-(R), and for a radical thick ⊗-ideal X it holds
that X = X rad =

⋂
X⊆P∈SpecD-(R) P =

⋂
X⊆P∈tSpecD-(R) P = X tame by Lemma 10.3,

whence X is tame. Therefore, (4) implies (11).
Now it remains to prove that (11) implies (1). By Lemma 10.4, it suffices to prove that

V(
⋂
n>1 In) is contained in

⋃
n>1V(In) for any sequence I1, I2, . . . of ideals of R. For each

n > 1, fix a system of generators x(n) of In. Set C =
⊕

n>1K(x(n), R)[n]; note that this

is defined in D-(R). Then SuppC =
⋃
n>1 SuppK(x(n), R) =

⋃
n>1V(In) by Proposition

5.3(3). The radical closure E of 〈⋃n>1V(In)〉 is tame by assumption. Lemma 9.8 implies

Supp E =
⋃
n>1V(In) = SuppC. Thus C is in Supp−1 Supp E = E by Proposition 9.3, and

C⊗r ∈ 〈⋃n>1V(In)〉 for some r > 0. Using [BH, Proposition 1.6.21], we have

C⊗r =
⊕

n>1(
⊕

i1+···+ir=n
K(x(i1), R)⊗L

R · · · ⊗L

R K(x(ir), R))[n](10.5.1)

⋗
⊕

n>1K(x(n), R)⊗r[nr] =
⊕

n>1K(x(n), . . . ,x(n)︸ ︷︷ ︸
r

, R)[nr]

⋗
⊕

n>1K(x(n), R)[nr] =: B.
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Thus B is in 〈⋃n>1V(In)〉, and Corollary 5.13(3) implies V(AnnB) ⊆ ⋃
n>1V(In). We

have AnnB =
⋂
n>1AnnK(x(n), R) =

⋂
n>1 In by Proposition 5.3(3). It follows that

V(
⋂
n>1 In) ⊆

⋃
n>1V(In). �

Our second main result in this section deals with the difference between the radical and
tame closures.

Theorem 10.6. Let W be a specialization-closed subset of SpecR. Set X = 〈W 〉 and
Y = Supp−1W .

(1) The subcategory X is compact, and satisfies X rad =
√
X and X tame = Y.

(2) The subcategory X (resp. Y) is the smallest (resp. largest) thick ⊗-ideal of D-(R)
whose support is W . In particular, one has X ⊆

√
X ⊆ Y.

(3) Assume that R is either a domain or a local ring, and that W is nonempty and proper.

Then one has
√
X ( Y. Hence Y is not compact, and X rad ( X tame.

Proof. (1) The first statement is evident. The equalities follows from Lemma 9.8 and
Proposition 4.8.

(2) Let Z be a thick ⊗-ideal of D-(R) whose support is W . Then it is clear that Z is
contained in Y. Proposition 5.9 implies that R/p belongs to Z for each p ∈ W , which
shows that Z contains X .

(3) Since W is nonempty, there is a prime ideal p ∈W . Let x = x1, . . . , xr be a system
of generators of p, and put C =

⊕
i>0K(xi+1, R)[i], which is an object of D-(R). The

support of C is equal to V(p) by Proposition 5.3(3), which is contained in W as it is
specialization-closed. Hence C is in Supp−1W = Y.

Suppose that
√
X coincides with Y, and let us derive a contradiction. There exists an

integer n > 0 such that the n-fold tensor product D := C ⊗L

R · · · ⊗L

R C belongs to X .
An analogous argument to (10.5.1) yields that D contains E :=

⊕
k>0K(xk+1, R)[nk] as

a direct summand, whence E belongs to X . We use a similar technique to the one in
the latter half of the proof of Proposition 10.2. By Lemma 10.1, there are prime ideals
p1, . . . , pm ∈W and integers e1, . . . , em > 0 such that AnnE contains pe11 · · · pemm . We have

(10.6.1) AnnE =
⋂
k>0AnnK(xk+1, R) =

⋂
k>0 x

k+1R = 0

by Proposition 5.3(3) and Krull’s intersection theorem. This yields pe11 · · · pemm = 0, which
says that each prime ideal of R contains pi for some 1 6 i 6 m. As W is specialization-
closed, we observe that W = SpecR, which is contrary to the assumption. Consequently,√
X is strictly contained in Y.
If Y is compact, then we have Y = 〈SuppY〉 = 〈W 〉 = X ⊆

√
X by Proposition 9.4 and

Proposition 4.8(1), which is a contradiction. Hence Y is not compact. �

Remark 10.7. (1) Let p, C be as in the proof of Theorem 10.6(3). Then
(a) SuppC is contained in SuppR/p, but C does not belong to thick⊗R/p.
(b) V(AnnR) is contained in V(AnnC), but R does not belong to thick⊗C.

This guarantees in Proposition 5.9 one cannot replace V(AnnX) by SuppX, or SuppY
by V(AnnY).

Indeed, we have SuppC = SuppR/p = V(p) ⊆ W 6= SpecR and AnnC =⋂
i>0 x

i+1R = 0. The former together with Proposition 6.1 shows R /∈ thick⊗C,

while the latter implies V(AnnR) = V(0) = V(AnnC). Assume C is in thick⊗R/p.
Then AnnC = 0 contains some power of AnnR/p = p by Lemma 10.1. Hence
V(p) = SpecR, which is a contradiction. Therefore C is not in thick⊗R/p.
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(2) The assumption in Theorem 10.6(3) that R is either domain or local is indispensable.
In fact, let R = A × B be a direct product of two commutative Noetherian rings.
Then SpecR = SpecA ⊔ SpecB and D-(R) ∼= D-(A) × D-(B), which imply that
Supp−1

D-(R)
(SpecA) = D-(A) = 〈SpecA〉D-(R).

(3) Recall that we have the following first section-retraction pair (Proposition 9.16), while
Corollary 9.9 gives rise to the following second section-retraction pair.

()rad : Cpt⇄ Rad : ()cpt, inc : Tame⇄ Rad : ()tame.

Corollary 9.21 implies that the left diagram below commutes. Therefore, it is natural
to ask whether the right diagram below also commutes.

Rad
()cpt

{{✇✇
✇✇
✇✇
✇✇
✇

()tame

$$■
■■

■■
■■

■■

Cpt
∼

Tame

Rad

Cpt

()rad
;;✇✇✇✇✇✇✇✇✇
∼

Tame

inc

dd■■■■■■■■■

This is equivalent to asking if (Xcpt)
rad = X for all X ∈ Tame, and to asking if

Ytame = Y rad for all Y ∈ Cpt. Theorem 10.6 gives rise to a negative answer to this
question.

Finally, we consider a conjecture of Balmer. Recall that Balmer [Bal10b, Conjecture
72] conjectures the following; see Part 1 for details.

Conjecture 10.8 (Balmer). Let T be a tensor triangulated category. The map ρ•T is
(locally) injective when T is “algebraic enough”.

Here, “algebraic enough” tensor triangulated categories could mean algebraic ones, or
derived categories of dg-categories, or ones locally generated by the unit. Recall that a
continuous map f : X → Y of topological spaces is called locally injective at x ∈ X if
there exists a neighborhood N of x such that the restriction f |N : N → Y is an injective
map. We say that f is locally injective if it is locally injective at every point in X. If for
any x ∈ X there exists a neighborhood E of f(x) such that the induced map f−1(E)→ E
is injective, then f is locally injective.

Let us consider the above conjecture for our tensor triangulated category D-(R). It turns
out that for T = D-(R), Balmer’s constructed map ρ•T coincides with our constructed map
s : SpecD-(R)→ SpecR.

Proposition 10.9. Let P be a prime thick ⊗-ideal of D-(R). One then has the following.
(1) s(P) = (a ∈ R | R/a /∈ P) = {a ∈ R | R/a /∈ P}. (2) s(P) = ρ•

D-(R)
(P).

Proof. Corollary 5.11 and (1) imply (2). Let us show (1). Set J = (a ∈ R | R/a /∈ P). As
R is Noetherian, we find a finite number of elements x1, . . . , xn with R/x1, . . . , R/xn /∈ P
and J = (x1, . . . , xn). Therefore K(x1, . . . , xn, R) = K(x1, R) ⊗L

R · · · ⊗L

R K(xn, R) is not
in P by Corollary 5.11 and the fact that P is prime. Using Corollary 5.11 again shows
J ∈ I(P), whence J is contained in s(P). Next, take any a ∈ s(P). Since V(s(P)) is not
contained in SuppP, neither is V(a). This implies R/a /∈ P by Corollary 5.11. �

As an application of our Theorem 10.6, we confirm that Conjecture 10.8 is not true in
general; our D-(R) is an algebraic triangulated category, but does not satisfy Conjecture
10.8 under quite mild assumptions:

Corollary 10.10. Assume that R has positive dimension, and that R is either a domain
or a local ring. Then the map s : SpecD-(R)→ SpecR is not locally injective.
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In view of Conjecture 10.8, this theorem says that D-(modR) is not “algebraic enough”;
an algebraic tensor triangulated category is not sufficiently “algebraic enough”.

Proof. We can choose a nonunit x ∈ R such that the ideal xR of R has positive height
(hence it has height 1). Put X = 〈V(x)〉. Using Theorem 10.6(3) and Lemma 10.3, we
find a prime thick ⊗-ideal P such that X ⊆ P ( Ptame. Suppose that s is locally injective
at P. Then there exists a complex M ∈ D-(R) with P ∈ U(M) such that the restriction
s|U(M) : U(M)→ SpecR is injective. SinceM is in P, it is also in Ptame. Hence both P and

Ptame belong to U(M). However, these two prime thick ⊗-ideals are sent by s to the same
point; see Theorem 6.8. This contradicts the injectivity of s|U(M), and we conclude that s
is not locally injective at P. The last assertion of the corollary follows from Proposition
10.9(2). �

Remark 10.11. The reader may think that Corollary 10.10 can also be obtained by
showing that the map

f : SpecD-(R)→ SpecKb(projR), P 7→ P ∩ Kb(projR)

is not injective. We are not sure whether the non-injectivity of the map f implies Corollary
10.10, but at least showing the non-injectivity of f is equivalent to our approach: Using
Proposition 5.9, we see that P ∩ Kb(projR) contains the Koszul complex of a system
of generators of each prime ideal belonging to SuppP. Hence Supp(P ∩ Kb(projR)) =
SuppP, and the Hopkins–Neeman theorem implies P ∩Kb(projR) = Supp−1

Kb(projR)
SuppP.

Therefore, for P,Q ∈ SpecD-(R) it holds that

f(P) = f(Q) ⇐⇒ SuppP = SuppQ,
which says that the map f is injective if and only if all the prime thick ⊗-ideals of D-(R)
are tame. In the end, even if we intend to prove Corollary 10.10 by showing the non-
injectivity of the map f , we must find a non-tame prime thick ⊗-ideal of D-(R), which is
what we have done in this section.

11. Thick tensor ideals over discrete valuation rings

In this section, we concentrate on handling the case where R is a discrete valuation ring.
Several properties that are specific to this case are found out in this section. Just for
convenience, we write complexes as chain complexes, rather than as cochain complexes.
We start by studying complexes with zero differentials.

Proposition 11.1. Let X =
⊕

i>0Xi[i] = (· · · 0−→ X3
0−→ X2

0−→ X1
0−→ X0 → 0) be a

complex in D-(R). Then it holds that thick⊗X = thick⊗ Y in D-(R), where

Y =
⊕

i>0(
⊕i

j=0Xj)[i] = (· · · 0−→ X3⊕X2⊕X1⊕X0
0−→ X2⊕X1⊕X0

0−→ X1⊕X0
0−→ X0 → 0).

Proof. Putting F =
⊕

j>0R[j], we have X ⊗L

R F = (
⊕

i>0Xi[i]) ⊗L

R (
⊕

j>0R[j]) =⊕
i,j>0Xi[i + j] = Y . Hence thick⊗X contains thick⊗ Y . The opposite inclusion also

holds as X is a direct summand of Y . �

Proposition 11.2. Let X =
⊕

i>0Xi[i] = (· · · 0−→ X3
0−→ X2

0−→ X1
0−→ X0 → 0) be a

complex in D-(R). Then for all integers ai > 0, the thick ⊗-ideal closure thick⊗X in
D-(R) contains

⊕
i>0X

⊕ai
i [2i] = (· · · → X⊕a3

3 → 0→ X⊕a2
2 → 0→ X⊕a1

1 → 0→ X⊕a0
0 → 0).
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Proof. In the category D-(R) the complex
⊕

i>0X
⊕ai
i [2i] =

⊕
i>0(Xi ⊗L

R R
⊕ai)[2i] is a

direct summand of
⊕

i,j>0(Xi⊗L

RR
⊕aj )[i+j] = (

⊕
i>0Xi[i])⊗L

R (
⊕

j>0R
⊕aj [j]) = X⊗L

RY ,

where Y =
⊕

j>0R
⊕aj [j] = (· · · 0−→ R⊕a2 0−→ R⊕a1 0−→ R⊕a0 → 0) is a complex in D-(R).

Thus the assertion follows. �

Corollary 11.3. Let X =
⊕

i>0Xi[i] = (· · · 0−→ X3
0−→ X2

0−→ X1
0−→ X0 → 0) be a complex

in D-(R). Then for any integers ai > 0 the complex

Y =
⊕

i>0X
⊕ai
i [i] = (· · · 0−→ X⊕a3

3
0−→ X⊕a2

2
0−→ X⊕a1

1
0−→ X⊕a0

0 → 0)

is in thick⊗{Xeven, Xodd}, where Xeven =
⊕

i>0X2i[i] = (· · · 0−→ X6
0−→ X4

0−→ X2
0−→ X0 →

0) and Xodd =
⊕

i>0X2i+1[i] = (· · · 0−→ X7
0−→ X5

0−→ X3
0−→ X1 → 0).

Proof. The complex Y is the direct sum of A = (· · · → 0 → X⊕a4
4 → 0 → X⊕a2

2 → 0 →
X⊕a0

0 → 0) and B = (· · · → X⊕a5
5 → 0 → X⊕a3

3 → 0 → X⊕a1
1 → 0 → 0). Proposition

11.2 shows that A is in thick⊗Xeven and B is in thick⊗Xodd. Therefore Y belongs to
thick⊗{Xeven, Xodd}. �

A natural question arises from Proposition 11.2 and Corollary 11.3:

Question 11.4. Does thick⊗(· · · → 0 → X2 → 0 → X1 → 0 → X0 → 0) contain

(· · · 0−→ X2
0−→ X1

0−→ X0 → 0)? Does thick⊗(· · · 0−→ X1
0−→ X0 → 0) contain (· · · 0−→ X⊕a1

1
0−→

X⊕a0
0 → 0) for all integers ai > 0?

We do not know the general answer to this question. The following example gives an
affirmative answer.

Example 11.5. Let (R, xR) be a discrete valuation ring. Then

thick⊗(· · · 0−→R/x3 0−→ R/x2 0−→ R/x→ 0)

= thick⊗(· · · → 0→ R/x3 → 0→ R/x2 → 0→ R/x→ 0).

Proof. In fact, the inclusion (⊇) follows from Proposition 11.2. To check the inclusion

(⊆), set A = (· · · 0−→ R/x3 0−→ R/x2 0−→ R/x → 0) and B = (· · · → 0 → R/x3 → 0 →
R/x2 → 0 → R/x → 0). Note that for each integer n > 0 there is an exact sequence

0 → R/xn
xn+1

−−−→ R/x2n+1 → R/xn+1 → 0 of R-modules. This induces an exact sequence
0→ C → A→ B → 0 of complexes of R-modules, where

C = (· · · 0−→ R/xn 0−→ R/x2n 0−→R/xn−1 0−→ R/x2(n−1) 0−→ · · ·
0−→ R/x2 0−→ R/x4 0−→ R/x 0−→ R/x2 → 0).

We see that C = B[2]⊕D, where D = (· · · → 0→ R/x2n → 0→ · · · → 0→ R/x4 → 0→
R/x2 → 0), and have an exact sequence 0 → B[1] → D → B[1] → 0 of complexes. The
assertion now follows. �

The Loewy length of a finitely generated R-module M , denoted by ℓℓR(M), is by defi-
nition the infimum of integers i such that the ideal (radR)i kills M . Let us consider thick
⊗-ideals defined by Loewy lengths.

Notation 11.6. Let R be a local ring with maximal ideal m. Let c > 0 be an integer.

(1) Let Lc be the subcategory of D-fl(R) consisting of complexes X such that there exists
an integer t > 0 with ℓℓ(HiX) 6 tic−1 for all i≫ 0.
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(2) When c > 1, let Gc be the complex
⊕

i>0

(R/mic−1
)[i] = (· · · 0−→ R/m3c−1 0−→ R/m2c−1 0−→ R/m→ 0).

Proposition 11.7. Let (R,m, k) be local. One has L0 ( L1 ( L2 ( · · · and L0 =
Db
fl(R) = thickD-(R) k.

Proof. Fix an integer n > 0. It is clear that Ln is contained in Ln+1. We have
ℓℓ(HiGn+1) = in for each i > 0, which shows Ln 6= Ln+1. Hence the chain L0 ( L1 (
L2 ( · · · is obtained. Let X be a complex in D-(R). Suppose that there exists an integer
t > 0 such that ℓℓ(HiX) 6 ti−1 for i ≫ 0. Then we have to have ℓℓ(HiX) = 0 for i ≫ 0,
which says that HjX = 0 for j ≫ 0. Thus we obtain L0 = Db

fl(R) = thickD-(R) k, where

the second equality is shown in Proposition 4.2. �

Recall that an abelian category A is called hereditary if it has global dimension at most
one, that is, if Ext2A(A,A) = 0. Recall also that a ring R is called hereditary if R has
global dimension at most one.

From now on, we study thick ⊗-ideals of D-(R) when R is local and hereditary. In
this case, R is either a field or a discrete valuation ring. If R is a field, then by Corollary
5.20 there are only trivial thick ⊗-ideals. So, we mainly consider the case of a discrete
valuation ring. First, we mention a well-known fact, saying that each complex in the
derived category of a hereditary abelian category has zero differentials.

Lemma 11.8. [Kra, 1.6] Let A be a hereditary abelian category. Then for each object
M ∈ D(A) there exists an isomorphism M ∼= H(M) =

⊕
i∈Z Hi(M)[i] in D(A).

The lemma below is part of our first main result in this section.

Lemma 11.9. Let R be a discrete valuation ring. Then Lc is a thick ⊗-ideal of D-(R)
for every c > 1.

Proof. By Proposition 4.8(3), it suffices to show Lc is a thick ⊗-ideal of D-fl(R). We do
this step by step.
(1) Take any complex X in Lc. There exist integers t, u > 0 such that ℓℓ(HiX) 6 tic−1 for
all i > u. Let Y be a direct summand of X in D-fl(R). Then HiY is a direct summand of
HiX, and we have ℓℓ(HiY ) 6 ℓℓ(HiX) 6 tic−1 for all i > u. Hence Y belongs to Lc.
(2) Let X → Y → Z  be an exact triangle in D-fl(R). Suppose that both X and Z belong
to Lc. Then there exist integers t, u, a, b > 0 such that ℓℓ(HiX) 6 tic−1 and ℓℓ(HjZ) 6
ujc−1 for all i > a and j > b. An exact sequence · · · → HkX → HkY → HkZ → · · · is
induced, and from this we see that ℓℓ(HkY ) 6 ℓℓ(HkX) + ℓℓ(HkZ) 6 (t + u)kc−1 for all
k > max{a, b}. Therefore, Y belongs to Lc.
(3) Let X be a complex in Lc. Then there exist integers t, u > 0 such that ℓℓ(HiX) 6 tic−1

for all i > u. It holds that ℓℓ(Hi(X[1])) = ℓℓ(Hi−1X) 6 t(i− 1)c−1 6 tic−1 for all i > u+1
for all i > u + 1, where the second inequality holds as c > 1. Also, ℓℓ(Hi(X[−1])) =
ℓℓ(Hi+1X) 6 t(i+ 1)c−1 6 t(i+ i)c−1 = (2c−1t) · ic−1 for all i > max{1, u− 1}, where the
first inequality holds as i > u − 1, and the second one holds since i > 1 and c > 1. Thus
the complexes X[1] and X[−1] belong to Lc.
(4) Let X,Y be complexes in D-fl(R). Suppose that X belongs to Lc. We want to show

that X ⊗L

R Y also belongs to Lc. Taking into account (3) and Lemma 11.8, we may
assume that X =

⊕
i>1Xi[i] and Y =

⊕
j>0 Yj [j] with Xi, Yj being R-modules, and that

there exist s > 1, t > 0 such that ℓℓ(Xi) 6 tic−1 for all i > s. Set u = max{ℓℓ(Xi) |
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1 6 i 6 s − 1}; note that each Xi has finite length, whence has finite Loewy length.
We have X ⊗L

R Y =
⊕

i>1, j>0(Xi ⊗L

R Yj)[i + j], and from this we get Hk(X ⊗L

R Y ) =⊕
i>1, j>0, i+j6k Tor

R
k−i−j(Xi, Yj) for all integers k. Note here that Tor

R
k−i−j(Xi, Yj) = 0 for

i+ j > k.
We claim that ℓℓ(Xi) 6 (t+u)ic−1 for all i > 1. In fact, recall c > 1 and t, u > 0. If i > s,

then ℓℓ(Xi) 6 ti
c−1 6 (t+ u)ic−1. If 1 6 i 6 s− 1, then ℓℓ(Xi) 6 u 6 t+ u 6 (t+ u)ic−1.

The claim follows.
Fix three integers i, j, k with i > 1, j > 0 and i+ j 6 k. Then (t+ u)kc−1 > (t+ u)ic−1

since k > i and c > 1. The claim shows that Xi is killed by m(t+u)kc−1
, and so is

TorRk−i−j(Xi, Yj), where m stands for the maximal ideal of R. Hence ℓℓ(Hk(X ⊗L

R Y )) 6

(t+ u)kc−1 for all k ∈ Z, which implies X ⊗L

R Y ∈ Lc.
It follows from the above arguments (1)–(4) that Lc is a thick ⊗-ideal of D-fl(R). �

Remark 11.10. Let (R,m, k) be a local ring. When c = 0, the subcategory Lc is never
a thick ⊗-ideal of D-(R). Indeed, by Proposition 11.7 we have L0 = Db

fl(R). The module

k is in L0, but the complex (· · · 0−→ k 0−→ k → 0) = k ⊗L

R (· · · 0−→ R 0−→ R→ 0) is not in L0.
Now we have our first theorem concerning the subcategories Lc of D-(R) for a discrete

valuation ring R. This especially says that the equality of Proposition 6.9(2) does not
necessarily hold.

Theorem 11.11. Let R be a discrete valuation ring. Then Lc is a prime thick ⊗-ideal of
D-(R) for all integers c > 1. In particular, one has

dim(SpecD-(R)) =∞ > 1 = dimR.

Proof. Lemma 11.9 says that Lc is a thick ⊗-ideal of D-(R). Proposition 11.7 especially
says Lc 6= D-(R). Let X,Y be complexes in D-(R) with X ⊗L

R Y ∈ Lc, and we shall
prove that either X or Y is in Lc. Applying Lemma 11.8 and taking shifts if necessary, we
may assume X =

⊕
i>0Xi[i] and Y =

⊕
j>0 Yj [j], where Xi, Yj are finitely generated R-

modules. Assume that X is not in D-fl(R). Then Xa has infinite length for some a > 0. As
R is a discrete valuation ring, Xa has a nonzero free direct summand. Hence R[a] is a direct
summand of X, and Y [a] = R[a]⊗L

RY is a direct summand of X⊗L

RY . As X⊗L

RY is in Lc,
so is Y . Similarly, if Y /∈ D-fl(R), then X ∈ Lc. This argument shows that we may assume
that bothX and Y belong to D-fl(R), or equivalently, that allXi and Yj have finite length as

R-modules. Since X⊗L

RY belongs to Lc, there exist integers t, u > 0 such that Hn(X⊗L

RY )
has Loewy length at most tnc−1 for all n > u. Assume that X is not in Lc. Then we can
find an integer e > u such that ℓℓ(Xe) > tec−1. We have X⊗L

RY =
⊕

i,j>0(Xi⊗L

RYj)[i+j],

which gives rise to Hn(X ⊗L

R Y ) =
⊕

i,j>0 Torn−i−j(Xi, Yj) for all integers n. Setting

ai = ℓℓ(Xi) and bj = ℓℓ(Yj) for i, j > 0, we obtain for every integer n > e:

Hn(X⊗L

RY )⋗Torn−e−(n−e)(Xe, Yn−e) = Xe⊗RYn−e⋗R/xae⊗RR/xbn−e = R/xmin{ae,bn−e}

It is seen that min{ae, bn−e} 6 tnc−1 for all n > e. As ae > tec−1, we must have ae > bn−e,
and bn−e 6 tnc−1 for all n > e. Hence ℓℓ(Hn(Y [e])) = ℓℓ(Yn−e) = bn−e 6 tnc−1 for n > e,
which implies that Y [e] is in Lc, and so is Y . Similarly, if Y is not in Lc, then X is in
Lc. Thus Lc is a prime thick ⊗-ideal of D-(R). Now L1 ( L2 ( L3 ( · · · from Lemma
11.9 is an ascending chain of prime thick ⊗-ideals with infinite length, which shows the
inequality in the proposition; see Proposition 6.9(1). �

To make an application of the above theorem, we state and prove a lemma.
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Lemma 11.12. For each prime ideal p of R, one has dim SpecD-(Rp) 6 dim SpecD-(R).

Proof. We first show that the localization functor L : D-(R) → D-(Rp) is an essentially

surjective. Let X = (· · · d2−→ X1
d1−→ X0 → 0) be a complex in D-(Rp). What we want

is a complex Y ∈ D-(R) such that X ∼= L(Y ). For each integer i > 0, choose a finitely
generated R-module Yi with (Yi)p = Xi, and R-linear maps dYi : Yi → Yi−1 and si ∈ R \ p
such that dXi =

dYi
si

in HomRp
(Xi, Xi−1) = Hom(Yi, Yi−1)p. Then

dYi−1d
Y
i

si−1si
= dXi−1d

X
i = 0,

and there is an element ti ∈ R \ p such that tid
Y
i−1d

Y
i = 0. Define a complex Y =

(· · ·
ti+1d

Y
i−1−−−−−→ Yi

tid
Y
i−−−→ · · · t2d

Y
2−−−→ Y1

t1dY1−−−→ Y0 → 0) in D-(R). Then there is an isomorphism

Yp

��

= (· · · // (Yi)p

tid
Y
i

1 //

ui∼=

��

(Yi−1)p //

ui−1∼=

��

· · · // (Y2)p

t2d
Y
2

1 //

u2∼=

��

(Y1)p

t1d
Y
1

1 //

u1∼=

��

(Y0)p // 0)

X = (· · · // Xi

dXi // Xi−1
// · · · // X2

dX2 // X1

dX1 // X0
// 0),

of complexes, where ui := t1 · · · tis1 · · · si. Thus, we obtain L(Y ) = Yp ∼= X.
The essentially surjective tensor triangulated functor L induces an injective continuous

map SpecL : SpecD-(Rp) → SpecD-(R) given by P 7→ L−1(P); see [Bal05, Corollary
3.8]. This map sends a chain P0 ( · · · ( Pn of prime thick ⊗-ideals of D-(Rp) to the chain
L−1(P0) ( · · · ( L−1(Pn) of prime thick ⊗-ideals of D-(R). The lemma now follows. �

The following corollary of Theorem 11.11 provides a class of rings R such that the
Balmer spectrum of D-(R) has infinite Krull dimension. This class includes normal local
domains for instance.

Corollary 11.13. If Rp is regular for some p with ht p > 0, then dim SpecD-(R) =∞.

Proof. We may assume ht p = 1. We have dim SpecD-(R) > dim SpecD-(Rp) =∞, where
the inequality follows from Lemma 11.12, and the equality is shown in Theorem 11.11. �

Next we study generation of the thick ⊗-ideals Lc. In fact each of them possesses a
single generator.

Theorem 11.14. Let (R, xR, k) be a discrete valuation ring, and let c > 1 be an integer.
It then holds that Lc = thick⊗

D-(R)
Gc. In particular, one has L1 = thick⊗

D-(R)
k.

Proof. Clearly, Gc is in Lc. Lemma 11.9 implies that thick⊗Gc is contained in Lc. We
establish a claim.

Claim. Let 0 6 n 6 c − 1 be an integer. Let X ∈ D-fl(R) be a complex. Suppose that
there exists an integer t > 0 such that ℓℓ(HiX) 6 tin for all i ≫ 0. Then X belongs to
thick⊗Gc.

Once we show this claim, it will follow that Lc is contained in thick⊗Gc, and we will be
done.

First of all, note that k is a direct summand of Gc. Combining this with Proposition
4.2, we have

(11.14.1) thick⊗Gc ⊇ thick⊗ k ⊇ thick k = Db
fl(R).

Let X be a complex as in the claim. Using Lemma 11.8, we may assume X =
⊕

i>sXi[i]
for some integer s and R-modules Xi of finite length. There is an integer u > s with
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ℓℓ(Xi) 6 tin for all i > u. We have X = (
⊕

i>uXi[i]) ⊕ (
⊕u−1

i=s Xi[i]), whose latter

summand is in Db
fl(R). In view of (11.14.1), replacing X with the former summand, we

may assume u = s. When s > 0, we set Xi = 0 for 0 6 i 6 s − 1. When s < 0, we
have X = (

⊕
i>0Xi[i]) ⊕ (

⊕−1
i=sXi[i]), whose latter summand is in Db

fl(R). By similar
replacement as above, we may assume s = 0. Thus, X =

⊕
i>0Xi[i] and ℓℓ(Xi) 6 tin for

all i > 0.
Since R is a discrete valuation ring with maximal ideal xR, for every i > 1 there is an

integer aij > 0 such that Xi is isomorphic to
⊕tin

j=1(R/x
j)⊕aij . Therefore it holds that

X ∼=
⊕

i>0(
⊕tin

j=1(R/x
j)⊕aij )[i]⋖

⊕
i>0(

⊕tin

j=1R/x
j)⊕ai [i]

∈ thick⊗
{⊕

i>0(
⊕t(2i)n

j=1 R/xj)[i],
⊕

i>0(
⊕t(2i+1)n

j=1 R/xj)[i]
}

= thick⊗



A1, A2 ⊕ (

t⊕

j=1

R/xj)



 ,

where ai := max{aij | 1 6 j 6 tin} and Al :=
⊕

i>1(
⊕t(2i−l+2)n

j=t(2i−l)n+1R/x
j)[i] for l = 1, 2.

The relations “∈” and “=” follow from Corollary 11.3 and Proposition 11.1, respectively.
Since

⊕t
j=1R/x

j is in thick⊗Gc by (11.14.1), it suffices to show that Al belongs to

thick⊗Gc for l = 1, 2.
We prove this by induction on n. When n = 0, we have A1 = A2 = 0 ∈ thick⊗Gc, and

are done. Let n > 1. Fix l = 1, 2. The exact sequences

0→ R/xt(2i−l)
n xj−→ R/xj+t(2i−l)

n → R/xj → 0 (i > 1, 1 6 j 6 tbil)

with bil = (2i− l + 2)n − (2i− l)n induce exact sequences

0→ (R/xt(2i−l)
n
)⊕tbil →⊕t(2i−l+2)n

j=t(2i−l)n+1R/x
j →⊕tbil

j=1R/x
j → 0 (i > 1),

which induce an exact triangle Bl → Al → Cl  in D-fl(R), where we set Bl =⊕
i>1(R/x

t(2i−l)n)⊕tbil [i] and Cl =
⊕

i>1(
⊕tbil

j=1R/x
j)[i]. Since ℓℓ(HiCl) = tbil has de-

gree at most n − 1 as a polynomial in i, the induction hypothesis implies that Cl is in
thick⊗Gc. By Corollary 11.3, Bl belongs to

thick⊗{⊕i>0(R/x
t(4i+r)n)[i] | 0 6 r 6 3}.

Let f(i) be a polynomial in i over N with leading term ein. The exact sequences

0→ R/x(t−1)f(i) xf(i)−−−→ R/xtf(i) → R/xf(i) → 0 (i > 0)

induce an exact triangle Dt−1 → Dt → D1  in D-fl(R), where we put Dt =⊕
i>0R/x

tf(i)[i]. An inductive argument on t shows that Dt belongs to the thick clo-
sure of D1. The exact sequences

0→ R/xf(i)−(m+1)in xi
n

−−→ R/xf(i)−mi
n → R/xi

n → 0 (i > 0)

induce an exact triangle Em+1 → Em → Gc  , where we set Em =
⊕

i>0(R/x
f(i)−min)[i]

for 0 6 m 6 e. Hence E0 is in the thick closure of Gc and Ee. Since ℓℓ(HiEe) = f(i)− ein
has degree at most n−1 as a polynomial in i, the induction hypothesis shows that Ee is in
thick⊗Gc. Hence D1 = E0 is also in thick⊗Gc, and so is Dt. Therefore Bl is in thick⊗Gc.
Thus Al belongs to thick⊗Gc for l = 1, 2. �
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Remark 11.15. Let (R, xR, k) be a discrete valuation ring, and let c > 2 be an integer.
Then SuppGc = {xR} = Supp k. In particular, we have SuppGc 6= SpecR, so that R is not
in thick⊗Gc by Proposition 6.1. Krull’s intersection theorem implies AnnGc = 0 = AnnR.
Proposition 11.7 and Theorem 11.14 imply that Gc is not in L1 = thick⊗ k. In summary:

(1) SuppGc is contained in Supp k, but Gc does not belong to thick⊗ k.
(2) V(AnnR) is contained in V(AnnGc), but R does not belong to thick⊗Gc.

This guarantees that in Proposition 5.9 one cannot replace V(AnnX) by SuppX, or SuppY
by V(AnnY).
Example 11.16. Let us deduce the conclusion of Proposition 10.2(1) directly in the
case where (R,m, k) is a discrete valuation ring. In this case, we have Spcl(Spec) =
{∅, {m}, SpecR}. Using Proposition 9.4, we obtain Cpt = {0, thick⊗ k,D-(R)}. Note that
0 = S(m) is prime and Theorems 11.14, 11.11 say that thick⊗ k is prime. Thus the compact
prime thick ⊗-ideals of D-(R) are 0 and thick⊗ k. It follows from Corollary 6.11 that
s(thick⊗ k) does not contain m, which implies s(thick⊗ k) = 0. Hence Cpt∩s−1(m) = {0}.

Let us consider for a discrete valuation ring R the tameness and compactness of the
thick ⊗-ideals Lc.
Proposition 11.17. Let R be a discrete valuation ring, and let c > 1 be an integer. Then
Lc is a non-tame prime thick ⊗-ideal of D-(R). If c > 2, then Lc is non-compact.

Proof. It is shown in Theorem 11.11 that Lc is a prime thick ⊗-ideal of D-(R). Denote
by xR the maximal ideal of R. Using Proposition 11.7 and Theorem 11.14, we easily see
that SuppLc = V(x) = {xR}.

Suppose that Lc is tame. Then Lc = Supp−1{xR} by Proposition 9.3. For example,
consider the complex E =

⊕
i>0(R/x

i!)[i]. We have SuppE = {xR}, which shows E ∈ Lc.
Hence there exists an integer t > 0 such that i! = ℓℓ(HiE) 6 tic−1 for all i ≫ 0. This
contradiction shows that Lc is not tame.

Suppose that Lc is compact. Then Lc = 〈SuppLc〉 = thick⊗ k = L1 by Proposition 9.4
and Theorem 11.14. This gives a contradiction when c > 2; see Proposition 11.7. Thus
Lc is not compact for all c > 2. �

Remark 11.18. Theorem 11.14 implies that Lc is generated by the complex Gc, whose
support is the closed subset {m} of SpecR. Corollary 11.17 says that Lc is not compact
for c > 2. This gives an example of a non-compact thick ⊗-ideal which is generated by
objects with closed supports.

In the proof of Proposition 11.17, a complex defined by using factorials of integers played
an essential role. In relation to this, a natural question arises.

Question 11.19. Let (R, xR) be a discrete valuation ring. Consider the complex

E =
⊕

i>0(R/x
i!)[i] = (· · · 0−→ R/x120 0−→ R/x24 0−→ R/x6 0−→ R/x2 0−→ R/x 0−→ R/x→ 0)

in D-(R). Is it possible to establish a similar result to Theorem 11.14 for thick⊗E? For
example, can one characterize the objects of thick⊗E in terms of the Loewy lengths of
their homologies?

We have no idea to answer this question. In relation to it, in the next example we will
consider complexes defined by using not factorials but polynomials. To do this, we provide
a lemma.
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Lemma 11.20. Let x be a non-zerodivisor of R. Then the complex
⊕

i>0(R/x
ai+bi)[i]

belongs to the thick closure of
⊕

i>0(R/x
ai)[i] and

⊕
i>0(R/x

bi)[i] for all integers ai, bi > 0.
In particular, the complex

⊕
i>0(R/x

cai)[i] is in the thick closure of
⊕

i>0(R/x
ai)[i] for all

integers c, ai > 0.

Proof. For each i > 0 there is an exact sequence 0 → R/xai
xbi−−→ R/xai+bi →

R/xbi → 0. From this an exact sequence 0 → ⊕
i>0(R/x

ai)[i] → ⊕
i>0(R/x

ai+bi)[i] →⊕
i>0(R/x

bi)[i]→ 0 is induced. The first assertion follows from this. The second assertion
is shown by induction and the first assertion. �

Example 11.21. Let x ∈ R be a non-zerodivisor. For integers a, b, c > 0, define a complex

X(a, b, c) =
⊕

i>0(R/fi)[i] = (· · · 0−→ R/f2
0−→ R/f1

0−→ R/f0 → 0),

where fi = xai
2+bi+c ∈ R. Then it holds that thick⊗{X(a, b, c) | a, b, c > 0} =

thick⊗{X(1, 0, 0)}.
Proof. It is obvious that the left-hand side contains the right-hand side. In view of Lemma
11.20, the opposite inclusion will follow if we show that X(1, 0, 0), X(0, 1, 0), X(0, 0, 1) are
in thick⊗{X(1, 0, 0)}, whose first containment is evident. The complex X(1, 0, 0) has
the direct summand (R/x)[1], so the module R/x belongs to thick⊗{X(1, 0, 0)}. We

have X(0, 0, 1) = R/x ⊗L

R (· · · 0−→ R 0−→ R → 0), which is in thick⊗{X(1, 0, 0)}. The

exact sequences 0 → R/xi
2 x2i+1

−−−→ R/x(i+1)2 → R/x2i+1 → 0 and 0 → R/x2i+1 x−→
R/x2i+2 → R/x→ 0 with i > 0 induce exact sequences 0→ X(1, 0, 0)→ X(1, 0, 0)[−1]→
X(0, 2, 1) → 0 and 0 → X(0, 2, 1) → X(0, 2, 2) → X(0, 0, 1) → 0, which shows that

thick⊗{X(1, 0, 0)} contains X(0, 2, 1) = (· · · 0−→ R/x5 0−→ R/x3 0−→ R/x → 0) and

X(0, 2, 2) = (· · · 0−→ R/x6 0−→ R/x4 0−→ R/x2 → 0). Applying Corollary 11.3, we see
that X(0, 1, 0) belongs to thick⊗{X(1, 0, 0)}. �

Remark 11.22. One can consider a general statement of Example 11.21 by defining

fi = xa0i
d+a1id−1+···+ad , so that it is nothing but the example for d = 2. We do not know

if it holds for d > 3.
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Part 3. Classification of subcategories and reconstruction of

classifying spaces

12. Introduction

The contents of this part is based on the author’s paper [Mat17c].
As is a common approach in many branches of algebra including algebraic geometry,

modular representation theory and commutative ring theory, we assign to an algebraic
object A (e.g., a scheme X, a finite group G, a commutative Noetherian ring R) a trian-
gulated category T (e.g., the perfect derived category Dperf(X), the stable module category
mod kG, the singularity category Dsg(R)) and a topological space S (e.g., the underlying
topological spaces X, Proj H∗(G; k), SingR). By studying such a triangulated category
and a topological space, we aim to grasp the structure of the original algebraic object.
From this motivation, it is natural to ask what kind of relationship there exists between
T and S.

algebraic objects A:
X, G, R

ww♦♦♦
♦♦
♦♦
♦♦
♦♦
♦

''❖❖
❖❖

❖❖
❖❖

❖❖
❖

triangulated categories T :
Dperf(X), mod kG, Dsg(R)

oo ??? ///o/o/o/o/o/o/o/o/o/o/o/o/o/o topological spaces S:
X, Proj H∗(G; k), SingR

In this part, we consider this question, more precisely, the following:

Question 12.1. Let A, A′ be algebraic objects, T , T ′ corresponding triangulated cate-
gories, and S, S′ corresponding topological spaces, respectively. Does the implication

T ∼= T ′ =⇒ S ∼= S′

hold?

We introduce the notion of a classifying space of a triangulated category (see Definition
13.5), and prove the following result, which gives a machinery to answer the above question.

Theorem 12.2 (Theorem 14.10). Let T , T ′ be essentially small triangulated categories
and S, S′ classifying spaces for T and T ′, respectively. Then the implication

T ∼= T ′ =⇒ S ∼= S′

holds.

The key role to prove this theorem is played by the support theory for triangulated
categories. For tensor triangulated categories, the support theory has been developed by
Balmer [Bal02, Bal05] and is a powerful tool to show such a reconstruction theorem. Since
we focus on triangulated categories without tensor structure, we need to invent the support
theory without tensor structure.

12.1. Algebraic geometry

Let X be a scheme. The derived category of perfect complexes on X is called the perfect
derived category and denoted by Dperf(X). The case where X = SpecR is affine, it is well
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known that the original scheme is reconstructed from Dperf(R) := Dperf(X). Indeed, for
two commutative rings R and S, if the perfect derived categories of R and S are equivalent,
then R is isomorphic to S (see [Ric, Proposition 9.2]), and hence

Dperf(R) ∼= Dperf(S) =⇒ SpecR ∼= SpecS as topological spaces. (∗)
However, such a result no longer holds for non-affine schemes. In fact, there exist a lot of
non-isomorphic schemes X and Y such that Dperf(X) ∼= Dperf(Y ); see [Muk, Orl97]. When
there is a triangulated equivalence Dperf(X) ∼= Dperf(Y ), X and Y are said to be derived
equivalent. In section 3, we shall prove that the underlying topological spaces of a certain
class of schemes can be reconstructed from their perfect derived categories:

Theorem 12.3 (Theorem 14.7). Let X and Y be Noetherian quasi-affine schemes (i.e.,
open subschemes of affine schemes). Then the implication

Dperf(X) ∼= Dperf(Y ) =⇒ X ∼= Y as topological spaces

holds.

This theorem recovers (∗) for Noetherian rings as any affine scheme is quasi-affine. A
typical example of a non-affine quasi-affine scheme is the punctured spectrum of a local
ring. As an application of this theorem, we obtain that a derived equivalence of X and Y
yields the equality of the dimensions of X and Y .

12.2. Modular representation theory

In modular representation theory, finite groups are studied in various contexts. From an
algebraic viewpoint, a finite group G has been studied through its group algebra kG and
stable module category mod kG, where k is a field whose characteristic divides the order of
G. Here, mod kG is a triangulated category consisting of finitely generated kG-modules
modulo projectives. On the other hand, the cohomology ring H∗(G; k) gives an approach
to study a finite group G from the topological aspect because it is isomorphic to the
cohomology ring of a classifying space BG of G; see [Ben, Chapter 2] for instance. The
second main result in section 3 is the following:

Theorem 12.4 (Theorem 14.10). Let k (resp. l) be a field of characteristic p (resp. q),
and let G (resp. H) be a finite p-group (resp. q-group). Then the implication

mod kG ∼= mod lH =⇒ Proj H∗(G; k) ∼= Proj H∗(H; l) as topological spaces

holds.

If there exists a triangulated equivalence mod kG ∼= mod lH, we say that kG and lH are
stably equivalent. As an application of this theorem, we have that a stable equivalence of
kG and lH yields that the p-rank of G and the q-rank of H are equal.

12.3. Commutative ring theory

Let R be a left Noetherian ring. The singularity category of R is by definition the Verdier
quotient

Dsg(R) := Db(modR)/Dperf(R),

which has been introduced by Buchweitz [Buc] in 1980s. Here, modR stands for the
category of finitely generated left R-modules and Db(modR) its bounded derived cate-
gory. The singularity categories have been deeply investigated from algebro-geometric
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and representation-theoretic motivations [Che, IW, Ste, Tak10] and connected to the Ho-
mological Mirror Symmetry Conjecture by Orlov [Orl04].

One of the important subjects in representation theory of rings is to classify rings up to
certain category equivalence. For example, left Noetherian rings R and S are said to be:

• Morita equivalent if modR ∼= modS as abelian categories,
• derived equivalent if Db(modR) ∼= Db(modS) as triangulated categories,
• singularly equivalent if Dsg(R) ∼= Dsg(S) as triangulated categories.

It is well known that these equivalences have the following relations:

Morita equivalence⇒ derived equivalence⇒ singular equivalence.

Complete characterizations of Morita and derived equivalence have already been obtained
in [Mor, Ric], while singular equivalence is quite difficult to characterize even in the case of
commutative rings. Indeed, only a few examples of singular equivalences of commutative
Noetherian rings are known. Furthermore, for all of such known examples, the singular
loci of rings are homeomorphic. Thus, it is natural to ask the following question.

Question 12.5. Let R and S be commutative Noetherian rings. Are their singular loci
homeomorphic if R and S are singularly equivalent?

In section 4, we show that this question is affirmative for certain classes of commutative
Noetherian rings. To be precise, we shall prove the following theorem.

Theorem 12.6 (Theorem 15.4). Let R and S be commutative Noetherian local rings that
are locally hypersurfaces on the punctured spectra. Assume that R and S are either

(a) complete intersection rings, or
(b) Cohen-Macaulay rings with quasi-decomposable maximal ideal.

Then the implication

Dsg(R) ∼= Dsg(S) =⇒ SingR ∼= SingS as topological spaces

holds.

Here, we say that an ideal I of a commutative ring R is quasi-decomposable if there is
an R-regular sequence x in I such that I/(x) is decomposable as an R-module. Moreover,
we prove that singular equivalence localizes by using such a homeomorphism.

The organization of this part is as follows. In section 2, we introduce the notions of a
classifying support data for a given triangulated category and develop the support theory
without tensor structure, and finally prove Theorem 12.2. In section 3, we connect the
results obtained in section 2 with the support theory for tensor triangulated categories
and study reconstructing the topologies of the Balmer spectra without tensor structure.
Using this method, we prove Theorem 12.3 and 12.4. In section 4, we prove Theorem 12.6
and give examples of commutative rings which are not singularly equivalent.

For two triangulated category T , T ′ (resp. topological spaces X, X ′), the notation
T ∼= T ′ (resp. X ∼= X ′) means that T and T ′ are equivalent as triangulated categories
(resp. X and X ′ are homeomorphic) unless otherwise specified.

13. Reconstruction of classifying spaces

In this section, we discuss the support theory for triangulated categories and reconstruction
of classifying spaces.
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Definition 13.1. Let U be a full subcategory of T . We say that U is a ⊕-ideal if it
satisfies

M ∈ U , N ∈ T ⇒M ⊕N ∈ U .
Remark 13.2. U ⊆ T is a ⊕-ideal if and only if T \ U is closed under taking direct
summands.

Example 13.3. (1) The full subcategory T \ {0} is a ⊕-ideal.
(2) The full subcategory T(T ) of test objects (see Definition 15.8 below) of T is a ⊕-ideal.

Let us fix the following notations:

Notation 13.4. Let T be a triangulated category, U ⊆ T a ⊕-ideal, and X a topological
space. Then we set:

• Th(T ) := {thick subcategories of T },
• ThU (T ) := {thick subcategories of T containing an object of U},
• Spcl(X) := {specialization closed subsets of X},
• Nesc(X) := {non-empty specialization-closed subsets of X},
• Nec(X) := {non-empty closed subsets of X},
• Irr(X) := {irreducible closed subsets of X}.

Let (X,σ) be a support data for T , X a thick subcategory of T , andW a specialization-
closed subset of X. Recall that fσ(X ) :=

⋃
M∈X σ(M) is a specialization-closed subset of

X and gσ(W ) := {M ∈ T | σ(M) ⊆W} is a thick subcategory of T . Therefore, we obtain
two order-preserving maps

Th(T )
fσ //

Spcl(X).
gσ

oo

with respect to the inclusion relations. Now, let us introduce the notions of a classifying
support data and a classifying space.

Definition 13.5. Let (X,σ) be a support data for T and U ⊆ T a ⊕-ideal. Then we say
that (X,σ) is a classifying support data for T with respect to U if

(i) X is a Noetherian sober space, and
(ii) the above maps fσ and gσ restrict to mutually inverse bijections:

ThU (T )
fσ //

Nesc(X).
gσ

oo

When this is the case, we say that X is a classifying space of T with respect to U .
If (X,σ) is a classifying support data for T with respect to U = T \ {0}, then we call

it a classifying support data for T and X a classifying space of T for simplicity.

Remark 13.6. A classifying support data (X,σ) for T classifies all thick subcategories of
T containing gσ(∅) = σ−1(∅). Indeed, the map gσ : Nesc(X)→ ThU (T ) is injective with
image {X ∈ Th(T ) | X ) σ−1(∅)}. In particular, if (X,σ) satisfies the condition (1′) in
Remark 1.5, we obtain a one-to-one correspondence:

Th(T )
fσ //

Spcl(X).
gσ

oo

Every classifying support data automatically satisfies the following realization property.

Lemma 13.7. Let (X,σ) be a classifying support data for T with respect to U . Then for
any non-empty closed subset Z of X, there is an object M of U , such that Z = σ(M).
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Proof. Since X is a Noetherian sober space and σ(M) ∪ σ(N) = σ(M ⊕ N), we may

assume that Z = {x} for some x ∈ X. From the assumption, one has Z = fσgσ(Z) =⋃
M∈gσ(Z)

σ(M). Hence, there is an element x of σ(M) for some M ∈ gσ(Z). Then we

obtain x ∈ σ(M) ⊆ Z = {x} and this implies that σ(M) = {x} = Z.
By definition of a classifying support data with respect to U , gσ(Z) = {N ∈ T | σ(N) ⊆

σ(M)} contains a object T of U . We conclude that σ(T ⊕M) = σ(T )∪σ(M) = σ(M) = Z
for T ⊕M ∈ U . �

Let me give two more classes of thick subcategories which play an important role in the
proof of first main theorem.

Definition 13.8. Let U be a ⊕-ideal of T .
(1) We say that a thick subcategory X of T is U-principal if there is an objectM of U such

that X = thickT M . Denote by PThU (T ) the set of all U -principal thick subcategories
of T .

(2) We say that a U -principal thick subcategory X of T is U-irreducible if X = thickT (X1∪
X2) (X1,X2 ∈ PThU (T )) implies that X1 = X or X2 = X . Denote by IrrU (T ) the set
of all U -irreducible thick subcategories of T .

The following lemma shows that by using classifying support data with respect to U ,
we can also classify U -principal thick subcategories and U -irreducible thick subcategories.

Lemma 13.9. Let (X,σ) be a classifying support data for T with respect to U , then the
one-to-one correspondence

ThU (T )
fσ //

Nesc(X)
gσ

oo

restricts to one-to-one correspondences

PThU (T )
fσ //

Nec(X),
gσ

oo

IrrU (T )
fσ //

Irr(X).
gσ

oo

Proof. Note that fσ(thickT M) = σ(M) for any M ∈ T . Therefore, the injective map
fσ : ThU (T )→ Nesc(X) induces a well defined injective map fσ : PThU (T )→ Nec(X).
The surjectivity has already been shown in Lemma 13.7.

Next, we show the second one-to-one correspondence. For X1,X2 ∈ ThU (T ), one has

fσ(thickT (X1 ∪ X2)) =
⋃

M∈thickT (X1∪X2)

σ(M)(1)

=
⋃

M∈X1∪X2

σ(M)

= (
⋃

M∈X1

σ(M)) ∪ (
⋃

M∈X2

σ(M))

= fσ(X1) ∪ fσ(X2).

On the other hand, for Z1, Z2 ∈ Nesc(X), one has

fσ(thickT (gσ(Z1) ∪ gσ(Z2))) = fσ(gσ(Z1)) ∪ fσ(σ(Z2))

= Z1 ∪ Z2.



76

Applying gσ to this equality, we get

(2) thickT (gσ(Z1) ∪ gσ(Z2)) = gσ(Z1 ∪ Z2).

Let W be an irreducible closed subset of X. Assume gσ(W ) = thickT (X1∪X2) for some
X1,X2 ∈ PThU (T ). Then from the above equality (1), we obtain an equality

W = fσ(gσ(W )) = fσ(thickT (X1 ∪ X2)) = fσ(X1) ∪ fσ(X2).

Since W is irreducible, fσ(X1) =W or fσ(X2) =W and hence X1 = gσ(fσ(X1)) = gσ(W )
or X2 = gσ(fσ(X2)) = gσ(W ). This shows that gσ(W ) is U -irreducible.

Conversely, take a U -irreducible thick subcategory X of T and assume fσ(X ) = Z1∪Z2

for some non-empty closed subsets Z1, Z2 of X. From the above equality (2), we get

X = gσ(fσ(X )) = gσ(Z1 ∪ Z2) = thickT (gσ(Z1) ∪ gσ(Z2)).

Since X is U -irreducible, X = gσ(Z1) or X = gσ(Z2) and therefore, Z1 = fσ(gσ(Z1)) =
fσ(X ) or Z2 = fσ(gσ(Z2)) = fσ(X ). Thus, fσ(X ) is irreducible.

These observations show the second one-to-one correspondence. �

From this lemma, we can show the following uniqueness result for classifying support
data with respect to U .
Proposition 13.10. Let (X,σ) and (Y, τ) be classifying support data for T with respect
to a ⊕-ideal U . Then X and Y are homeomorphic.

Proof. First note that for a topological space X, the natural map ιX : X → Irr(X), x 7→
{x} is bijective iff X is sober.

Define maps ϕ : X → Y and ψ : Y → X to be the composites

ϕ : X
ιX−→ Irr(X)

gσ−→ IrrU (T )
fτ−→ Irr(Y )

ι−1
Y−−→ Y,

ψ : Y
ιY−→ Irr(Y )

gτ−→ IrrU (T )
fσ−→ Irr(X)

ι−1
X−−→ X.

Then ϕ and ψ are well defined and mutually inverse bijections by Lemma 13.9.
Fix x ∈ X. For x′ ∈ {x}, one has ιX(x

′) ⊆ ιX(x) and hence

{ϕ(x′)} = ιY (ϕ(x
′)) = fτ (gσ(ιX(x

′))) ⊆ {ϕ(x)} = ιY (ϕ(x)) = fτ (gσ(ιX(x))).

In particular, ϕ(x′) belongs to {ϕ(x)}. Therefore, ϕ({x}) ⊆ {ϕ(x)}.
Conversely, for y ∈ {ϕ(x)}, the above argument shows

ψ(y) ∈ ψ({ϕ(x)}) ⊆ {ψϕ(x)} = {x}.
Applying ϕ to this inclusion, we obtain y ∈ ϕ({x}) and therefore, {ϕ(x)} ⊆ ϕ({x}). Thus,
we conclude that ϕ({x}) = {ϕ(x)}. Since X is Noetherian, this equation means that ϕ is
a closed map. Similarly, ψ is also a closed map. �

The following theorem is the main result of this section.

Theorem 13.11. Consider the following setting:

• T and T ′ are triangulated categories.
• U and U ′ are ⊕-ideals of T and T ′, respectively.
• (X,σ) and (Y, τ) are classifying support data for T and T ′ with respect to U and
U ′, respectively.

Suppose that there is a triangle equivalence F : T → T ′ with F (U) = U ′. Then X and Y
are homeomorphic.
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Proof. From the assumption, F induces a one-to-one correspondence

F̃ : ThU (T )
∼=−→ ThU ′(T ′), X 7→ F̃ (X ),

where F̃ (X ) := {N ∈ T ′ | ∃M ∈ X such that N ∼= F (M)}. For an object M of T , set
τF (M) := τ(F (M)). Then we can easily verify that the pair (Y, τF ) is a support data for
T . Furthermore, it becomes a classifying support data for T with respect to U . Indeed,
for X ∈ ThU (T ) and W ∈ Nesc(Y ), we obtain

fτF (X ) =
⋃

M∈X

τF (M) =
⋃

M∈X

τ(F (M)) =
⋃

N∈F̃ (X )

τ(N) = fτ (F̃ (X )),

F̃ (gτF (W )) = F̃ ({M ∈ T | τF (M) ⊆W})
= {N ∈ T ′ | τ(N) ⊆W} = gτ (W ).

From these equalities, we get equalities fτF = fτ ◦ F̃ and F̃ ◦ gτF = gτ and thus fτF and
gτF give mutually inverse bijections between ThU (T ) and Nesc(Y ). Consequently, we
obtain two classifying support data (X,σ) and (Y, τF ) for T with respect to U , and hence
X and Y are homeomorphic by Proposition 13.10. �

14. Comparison with tensor triangulated structure

In this section, we discuss relation between the support theory we discussed in the previous
section and that for tensor triangulated categories. Throughout this section, fix a tensor
triangulated category (T ,⊗,1).

Recall that a support data (X,σ) for T is tensorial if it satisfies:

σ(M ⊗N) = σ(M) ∩ σ(N)

for any M,N ∈ T . Then gσ(W ) is a radical thick ⊗-ideal of T for every specialization-
closed subset W of X. We say that a tensorial support data (X,σ) is classifying if X is a
Noetherian sober space and there is a one-to-one correspondence:

Rad(T )
fσ //

Spcl(X).
gσ

oo

Balmer showed the following celebrated result:

Theorem 14.1. [Bal05, Lemma 2.6, Theorem 4.10]

(1) The pair (Spec T ,BSupp) is a tensorial support data for T .
(2) There is a one-to-one correspondence:

{radical thick ⊗-ideals of T }
fBSupp //

Thom(Spec T ).
gBSupp
oo

Remark 14.2. The above theorem shows that (Spec T ,BSupp) is a classifying tensorial
support data for T provided Spec T is Noetherian.

Note that a tensorial classifying support data for T is a classifying tensorial support
data for T . Indeed, for a tensorial classifying support data (X,σ) for T and X ∈ Th(T ),
we obtain an equalities

X = gσ(fσ(X )) = gσ(fσ(
√

thick⊗X )) =
√
thick⊗X .

The following lemma gives a criterion for the converse implication of this fact.
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Lemma 14.3. Let (X,σ) be a classifying tensorial support data for T . Suppose that T is
rigid. Then the following are equivalent:

(1) There is a one-to-one correspondence:

Th(T )
fσ //

Spcl(X).
gσ

oo

(2) (X,σ) is a classifying support data for T .
(3) Every thick subcategory of T is a thick ⊗-ideal.
(4) T = thickT 1.

Proof. By Lemma 2.8 and Theorem 2.17, (X,σ) satisfies the condition (1′) in Remark 1.5.
Therefore, (1) and (2) means the same conditions from Remark 13.6.

(1) ⇒ (3): From the assumption, every thick subcategory X of T is of the form X =
gσ(W ) for some specialization-closed subset W of X. On the other hand, gσ(W ) is a
radical thick ⊗-ideal as (X,σ) is a tensorial support data.

(3)⇒ (4): By assumption, the thick subcategory thickT 1 is a thick tensor ideal. Thus,
for any M ∈ T , M ∼=M ⊗ 1 belongs to thickT 1.

(4) ⇒ (1): Note that 1 is strongly dualizable and the family of all strongly dualizable
objects forms a thick subcategory of T by [HPS, Theorem A.2.5 (a)]. Therefore, every
object of T = thickT 1 is strongly dualizable. Thus, for any object M ∈ T , M belongs to
thick⊗T (M ⊗M) by [HPS, Lemma A.2.6]. Then [Bal05, Proposition 4.4] shows that every
thick tensor ideal of T is radical.

On the other hand, for any thick subcategory X of Y, one can easily verify that the
subcategory

Y := {M ∈ T |M ⊗X ⊆ X}
is a thick ⊗-ideal of T containing 1. Thus, we obtain Y = thickT 1 = T and hence X is a
thick ⊗-ideal.

From these discussion, we conclude that every thick subcategory of T is a radical thick
⊗-ideal and this shows the implication (4)⇒ (1). �

The following corollaries are direct consequences of this lemma, Proposition 13.10 and
Theorem 13.11.

Corollary 14.4. Let T be a closed tensor triangulated category. Assume that the Balmer
spectrum Spec T of T is Noetherian and that T = thickT 1. Then for any classifying
support data (X,σ) for T , X is homeomorphic to Spec T .
Corollary 14.5. Let T and T ′ be closed tensor triangulated categories such that

(1) Spec T and Spec T ′ are Noetherian, and
(2) T and T ′ are generated by their unit objects.

If T and T ′ are equivalent as triangulated categories, then Spec T and Spec T ′ are home-
omorphic.

Next, we consider applications of these corollaries to tensorial support data appeared
in Example 1.4.

Thomason showed the following classification theorem of thick tensor ideas of Dperf(X):

Theorem 14.6. [Tho, Theorem 3.15] Let X be a Noetherian scheme. Then (X, SuppX)
is a classifying tensorial support data for Dperf(X).
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As an application of Corollary 14.5, we can reconstruct underlying topological spaces of
a certain class of schemes from their perfect derived categories without tensor structure.

Theorem 14.7. Let X and Y be Noetherian quasi-affine schemes (i.e., open subschemes
of affine schemes). If X and Y are derived equivalent, then X and Y are homeomorphic.
In particular, topologically determined properties, such as the dimensions and the num-
bers of irreducible components of quasi-affine Noetherian schemes are preserved by derived
equivalences.

Proof. First, let me remark that the functor F ⊗L

OX
− : Dperf(X) → Dperf(X) has a right

adjoint RHomOX
(F ,−) : Dperf(X) → Dperf(X) for each F ∈ Dperf(X). Thus, Dperf(X) is

a closed tensor triangulated category.
Note that a scheme X is quasi-affine if and only if its structure sheaf OX is ample. Thus,

every thick subcategory of Dperf(X) is thick tensor ideal by [Tho, Proposition 3.11.1].
Applying Corollary 14.5, we obtain the result. �

Remark 14.8. Let X and Y be Noetherian schemes.

(1) As we have already remarked in the introduction, if X and Y are affine, then a derived
equivalence Dperf(X) ∼= Dperf(Y ) implies that X and Y are isomorphic as schemes.

(2) By [Bal02, Theorem 9.7], if Dperf(X) and Dperf(Y ) are equivalent as tensor triangulated
categories, then X and Y are isomorphic as schemes.

Next consider stable module categories over group rings of finite groups. In this case,
the following classification theorem is given by Benson-Carlson-Rickard for algebraically
closed field k and by Benson-Iyenger-Krause for general k.

Theorem 14.9. [BCR, BIK] Let k be a field of characteristic p > 0 and G a finite
group such that p divides the order of G. Then the support data (Proj H∗(G; k), VG) is a
classifying tensorial support data for mod kG.

Applying Corollary 14.5 to this classifying tensorial support data, we obtain the follow-
ing result:

Theorem 14.10. Let k (resp. l) be field of characteristic p (resp. q), G (resp. H) be a
finite p-group (resp. q-group). If kG and lH are stably equivalent, then Proj H∗(G; k) and
Proj H∗(H; l) are homeomorphic.

Proof. For each M ∈ mod kG, the functor M ⊗k − : mod kG → mod kG has a right
adjoint Homk(M,−) : mod kG → mod kG. Thus, mod kG is a closed tensor triangulated
category. Moreover, for a p-group G, kG has only one simple module k. Therefore, we
have mod kG = thickmod kG k. Applying Corollary 14.5, we are done. �

Recall that the p-rank of a finite group G is by definition,

rp(G) := sup{r | (Z/p)r ⊆ G}.
Quillen [Qui] showed that the dimension of the cohomology ring H∗(G; k) is equal to the
p-rank of G. Thus, the p-rank is an invariant of stable equivalences:

Corollary 14.11. Let k, l, G,H be as in Theorem 14.10. Assume that there is a stable
equivalence between kG and lH, then rp(G) = rq(H).

Remark 14.12. Let G and H be a p-group and k a field of characteristic p.

(1) By [Lin, Corollary 3.6], if there exists a stable equivalence between kG and kH, then
|G| = |H|.
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(2) By [Lin, Corollary 3.2], if there exists a stable equivalence of Morita type between kG
and kH, then G ∼= H.

15. A necessary condition for singular equivalences

Recall that commutative Noetherian rings R and S are said to be singularly equivalent
if their singularity categories are equivalent as triangulated categories. The only known
examples of singular equivalences are the following:

Example 15.1. (1) If R ∼= S, then Dsg(R) ∼= Dsg(S).
(2) If R and S are regular, then Dsg(R) ∼= 0 ∼= Dsg(S).
(3) (Knörrer’s periodicity [Yos, Chapter 12]) Let k be an algebraically closed field of

characteristic 0. Set R := k[[x0, x1, ..., xd]]/(f) and S := k[[x0, x1, ..., xd, u, v]]/(f+uv).
Then Dsg(R) ∼= Dsg(S).

Remark 15.2. All of these singular equivalences, the singular loci SingR and SingS
are homeomorphic. In fact, the cases (1) and (2) are clear. Consider the case of R :=
k[[x0, x1, ..., xd]]/(f) and S := k[[x0, x1, ..., xd, u, v]]/(f + uv). Then

SingS = V(∂f/∂x0, . . . ∂f/∂xd, u, v)

∼= Spec(S/(∂f/∂x0, . . . , ∂f/∂xd, u, v))

∼= Spec(k[[x0, x1, ..., xd, u, v]]/(f + uv, ∂f/∂x0, . . . ,Df/Dxd, u, v))

∼= Spec(k[[x0, x1, ..., xd]]/(f, ∂f/∂x0, . . . , ∂f/∂xd)

∼= V(∂f/∂x0, . . . ∂f/∂xd) = SingR.

Here, the first and the last equalities are known as the Jacobian criterion.

Let me give some definitions appearing in the statement of the main theorem of this
section.

Definition 15.3. Let (R,m, k) be a commutative Noetherian local ring.

(1) We say that an ideal I of R is quasi-decomposable if there is an R-regular sequence
x of I such that I/(x) is decomposable as an R-module.

(2) A local ring R is said to be complete intersection if there is a regular local ring

S and an S-regular sequence x such that the completion R̂ of R is isomorphic
to S/(x). We say that R is a hypersurface if we can take x to be an S-regular
sequence of length 1.

(3) A local ring R is said to be locally a hypersurface on the punctured spectrum if Rp

is a hypersurface for every non-maximal prime ideal p.

The following theorem is the main result of this section.

Theorem 15.4. Let R and S be commutative Noetherian local rings that are locally hy-
persurfaces on the punctured spectra. Assume that R and S are either

(a) complete intersection rings, or
(b) Cohen-Macaulay rings with quasi-decomposable maximal ideal.

If R and S are singularly equivalent, then SingR and SingS are homeomorphic.

For a ring R satisfying the condition (b) in Theorem 15.4, Nasseh-Takahashi [NT, The-
orem B] shows that (SingR, SSuppR) is a classifying support data for Dsg(R). Therefore,



81

the statement of Theorem 15.4 follows from Theorem 13.11. Therefore, the problem is the
case of (a).

For a ring R satisfying the condition (a) in Theorem 15.4, Takahashi [Tak10] classified
thick subcategories of Dsg(R) containing the residue field k of R by using the singular
locus SingR and the singular support SSuppR. We would like to apply Theorem 13.11
also for this case. The problem is that whether the condition “containing the residue field
k” is preserved by stable equivalences. As we will show later, this condition is actually
preserved by singular equivalences for local complete intersection rings. To do this, we
discuss replacing the residue field k with some categorically defined object.

First of all, let us recall the notion of a test module.

Definition 15.5. Let R be a Noetherian ring. We say that a finitely generated R-module
T is a test module if for any finitely generated R-module M ,

TorRn (T,M) = 0 for n≫ 0⇒ pdRM <∞.
Example 15.6. For a Noetherian local ring (R,m, k), the syzygy Ωnk of its residue field
is a test module for each n.

For commutative Noetherian rings admitting dualizing complexes (e.g., Gorenstein
rings), there is another characterization for test modules:

Theorem 15.7. [CDT, Theorem 3.2] Let R be a commutative Noetherian ring admitting
a dualizing complex. Then, test modules are nothing but finitely generated R-modules T
satisfying the following condition: for any finitely generated R-module M ,

ExtnR(T,M) = 0 for n≫ 0⇒ RM <∞.
Motivated by this theorem, we introduce the following notion.

Definition 15.8. Let T be a triangulated category. We say that T ∈ T is a test object if
for any object M of T ,

HomT (T,M [n]) = 0 for n≫ 0⇒M = 0.

Denote by T(T ) the full subcategory of T consisting of test objects.

The following lemma shows that we can consider the notion of a test object is a gener-
alization of the notion of a test module.

Lemma 15.9. Let R be a Gorenstein ring. Then one has

T(CM(R)) = {T ∈ CM(R) | T is a test module}.
Proof. By Theorem 15.7, we have only to show

T(CM(R)) = {T ∈ CM(R) | all N ∈ modR with Ext≫0
R (M,N) = 0 satisfy RN <∞}.

Fix a maximal Cohen-Macaulay R-module T and a finitely generated R-module M .
Since R is Gorenstein and T is maximal Cohen-Macaulay, one has Ext1R(T,R) = 0. There-
fore, we get isomorphisms

ExtiR(T,M) ∼= Exti+1
R (T,ΩRM) ∼= Exti+2

R (T,Ω2
RM) ∼= · · ·

for any positive integer i. Therefore, we get isomorphisms

HomR(T,Ω
d
RM [d+ n]) ∼= Extd+nR (T,ΩdRM) ∼= ExtnR(T,M)

for n > 0. Here, d denotes the dimension of R. Thus, we are done since ΩdRM is free if
and only if M has finite injective dimension. �
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Let us recall several classes of subcategories of modules.

Definition 15.10. (1) An additive subcategory X of modR is called resolving if it satis-
fies the following conditions:
(i) X is closed under extensions: for an exact sequence 0 → L → M → N → 0 in

modR, if L and N belong to X , then so does M .
(ii) X is closed under kernels of epimorphisms: for an exact sequence 0→ L→M →

N → 0 in modR, if M and N belong to X , then so does L.
(iii) X contains all projective R-modules.
For a finitely generated R-module M , denote by resR(M) the smallest resolving sub-
category of modR containing M .

(2) A non-empty additive subcategory X of modR is called thick if X satisfies 2-out-of-3
property: for an exact sequence 0→ L→M → N → 0 inmodR, if 2-out-of {L,M,N}
belong to X , then so does the third. For a finitely generated R-module M , denote by
thickR(M) the smallest thick subcategory of modR containing M .

Lemma 15.11. Let T be a triangulated category and T an object of T . If thickT (T )
contains a test object of T , then T is also a test object.

Proof. Take an object M ∈ T with HomT (T,M [n]) = 0 for n≫ 0. Set

X := {N ∈ T | HomT (N,M [n]) = 0 for n≫ 0}.
Then one can easily verify that X is a thick subcategory of T . By assumption, X contains
a test object as X contains T . Thus, M must be zero and hence T is a test object. �

The next proposition plays a key role to prove our main theorem.

Proposition 15.12. Let (R,m, k) be a d-dimensional local complete intersection ring and
T a finitely generated R-module. Then the following are equivalent:

(1) T is a test module.
(2) ΩdRk ∈ resR(T ).
(3) k ∈ thickR(T ⊕R).
(4) k ∈ thickDb(modR)(T ⊕R).
(5) k ∈ thickDsg(R)(T ).

(6) ΩdRk ∈ thickCM(R)(Ω
dT ).

Proof. Notice resR(Ω
i
RT ) ⊆ resR(T ), thickR(T ⊕R) = thickR(Ω

i
RT ⊕R), thickDb(modR)(T ⊕

R) = thickDb(modR)(Ω
i
RT ⊕R), thickDsg(R)(T ) = thickDsg

(R)(ΩiRT ) and T is a test module
if and only if so is ΩRT . Hence we may assume that T is maximal Cohen-Macaulay. Then
we have

resR(T ) ⊆ thickR(T ⊕R) = thickDb(modR)(T ⊕R) ∩modR.

Here, the first inclusion directly follows from the definition, and the second equality is

given by [KS, Theorem 1]. Moreover, the composition functor Db(modR) → Dsg(R)
∼=−→

CM(R) sends k to ΩdRk[d], and the inverse image of thickCM(R)(T ) is thickDb(modR)(T ⊕R).
Therefore, the implications (2) ⇒ (3) ⇔ (4) ⇔ (5) ⇔ (6) hold true. Furthermore, by
using Lemma 15.9 and Lemma 15.11, the implication (5)⇒ (1) follows.

Thus, it remains to show the implication (1) ⇒ (2). Assume that T is a test module.
Recall that the complexity cxR(M) of a finitely generated R-module M is the dimension
of the support variety VR(M) associated to M ; see [AvrBuc] for details. By [CDT, Propo-
sition 2.7], T has maximal complexity, namely cxR(T ) = codim(R) =: c. Thanks to the
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prime avoidance lemma, we can take an R-regular sequence x of length d from m \ m2.
Set R = R/(x) and T = T/(x). Then R is an Artinian complete intersection ring and
cxR(T ) = cxR(T ) = c = codimR = codim(R). Moreover, one has

VR(T ) = Acka = VR(k),

where ka denotes the algebraic closure of k. This follows from the fact that VR(T ) and
VR(k) are c-dimensional closed subvarieties of the c-dimensional affine space Acka . Hence,
by [CI, Theorem 5.6], k belongs to thickDb(modR)(T ). As a result, we get

k ∈ thickDb(modR)(T ) ∩mod(R) ⊆ thickDb(modR)(T ⊕R) ∩mod(R) = thickR(T ⊕R).
Again, the second equality uses [KS, Theorem 1]. Since thickR(T ⊕ R) = resR(T ) by

[DT14, Corollary 4.16], we deduce ΩdRk ∈ resR(T ) by using [Tak10, Lemma 5.8]. �

Gathering [Tak10, Theorem 6.7], [NT, Theorem B], Lemma 15.9 and Proposition 15.12,
we obtain the following proposition.

Proposition 15.13. Let R be a Noetherian local ring.

(1) If R satisfies the condition (a) in Theorem 15.4, then (SingR, SSuppR) is a classifying
support data for Dsg(R) with respect to T(Dsg(R)).

(2) If R satisfies the condition (b) in Theorem 15.4, then (SingR, SSuppR) is a classifying
support data for Dsg(R).

Now, the proof of Theorem 15.4 has almost been done.

Proof of Theorem 15.4. Use Proposition 15.13 and Theorem 13.11. Here, let me remark
that test objects are preserved by singular equivalences. �

Remark 15.14. For a hypersurface ring R, the triangulated category Dsg(R) becomes
a pseudo tensor triangulated category (i.e., tensor triangulated category without unit).
It is shown by Yu implicitly in the paper [Yu] that for two hypersurfaces R and S, if a
singular equivalence between R and S preserves tensor products, then SingR and SingS
are homeomorphic. Indeed, SingR is reconstructed from Dsg(R) by using its pseudo tensor
triangulated structure.

Since Theorem 15.4 gives a necessary condition for singular equivalences, we can gener-
ate many pairs of rings which are not singularly equivalent. Let us start with the following
lemma.

Lemma 15.15. Let R be a local complete intersection ring with only an isolated singularity
and r > 1 an integer. Then the ring R[[u]]/(ur) is a local complete intersection ring which
is locally a hypersurface on the punctured spectrum, and Sing(R[[u]]/(ur)) is homeomorphic
to SpecR.

Proof. Of course T := R[[u]]/(ur) is a local complete intersection ring.

The natural inclusion R → T induces a homeomorphism f : SpecT
∼=−→ SpecR. Then

one can easily check that P = (f(P ), u)T for any P ∈ SpecT and TP ∼= Rf(P )[[u]]/(u
r).

Therefore, T is locally a hypersurface on the punctured spectrum and Sing T = SpecT . �

Corollary 15.16. Let R and S be local complete intersection rings which have only iso-
lated singularities. Assume that SpecR and SpecS are not homeomorphic. Then for any
integers r, s > 1, one has

Dsg(R[[u]]/(u
r)) 6∼= Dsg(S[[v]]/(v

s)).
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In particular, Dsg(R ∗R) 6∼= Dsg(S ∗ S). Here R ∗R denotes the trivial extension ring of a
commutative ring R.

Proof. From the above lemma, we obtain

(1) R[[u]]/(ur) and S[[v]]/(vs) satisfies the condition (a) in Theorem 15.4,
(2) SingR[[u]]/(ur) ∼= SpecR and SingS[[u]]/(vr) ∼= SpecS are not homeomorphic.

Thus, we conclude Dsg(R[[u]]/(u
r)) 6∼= Dsg(S[[v]]/(v

s)) by Theorem 15.4.
The second statement follows from an isomorphism R ∗R ∼= R[[u]]/(u2). �

The following corollary says that a Knörrer-type equivalence fails over a non-regular
ring.

Corollary 15.17. Let S be a regular local ring. Assume that S/(f) has an isolated
singularity. Then one has

Dsg(S[[u]]/(f, u
2)) 6∼= Dsg(S[[u, v, w]]/(f + vw, u2)).

Proof. SingS[[u]]/(f, u2) ∼= SpecS/(f) and SingS[[u, v, w]]/(f+vw, u2) ∼= SpecS[[v, w]]/(f+
vw) have different dimensions and hence are not homeomorphic. �

For the last of this part, we will show that singular equivalence localizes.

Lemma 15.18. Let R be a d-dimensional Gorenstein local ring and p a prime ideal of R.
Then a full subcategory Xp := {M ∈ Dsg(R) | Mp

∼= 0 in Dsg(Rp)} is thick and there is a
triangle equivalence

Dsg(R)/Xp
∼= Dsg(Rp).

Proof. By using the triangle equivalence Dsg(R) ∼= CM(R), we may show the triangle
equivalence

CM(R)/Xp
∼= CM(Rp),

where Xp := {M ∈ CM(R) |Mp
∼= 0 in CM(Rp)}.

Note that the localization functor Lp : CM(R) → CM(Rp),M 7→ Mp is triangulated.
Since Xp = KerLp, Xp is a thick subcategory of CM(R) and Lp induces a triangulated

functor Lp : CM(R)/Xp → CM(Rp). Thus, we have only to verify that Lp is dense and
fully faithful.

(i): Lp is dense.

Let U be an Rp-module. Take a finite free presentation Rnp
δ−→ Rmp → U → 0 of U .

Then δ can be viewed as an m× n-matrix (αij) with entries in Rp. Write αij = aij/s for
some aij ∈ R and s ∈ R \ p. Then the cokernel M := Cok((aij) : R

n → Rm) is a finitely
generated R-module and Mp

∼= U . Since Mp is a maximal Cohen-Macaulay Rp-module,
we obtain isomorphisms

(Ω−d
R ΩdRM)p ∼= Ω−d

Rp
ΩdRp

Mp
∼=Mp

∼= U

in CM(Rp). This shows that the functor Lp is dense.

(ii): Lp is faithful.
Let α : M → N be a morphism in CM(R)/Xp. Then α is given by a fraction f/s

of morphisms f : M → Z and s : N → Z in CM(R) such that the mapping cone C(s)
of s belongs to Xp. Assume Lp(α) = Lp(s)

−1Lp(f) = (sp)
−1fp = 0. Then fp = 0 in

HomRp
(Mp, Zp). From the isomorphism HomR(M,Z)p ∼= HomRp

(Mp, Zp), there is a ∈ R\p
such that af = 0 in HomR(M,Z). Since a : Zp → Zp is isomorphism, the mapping cone
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of the morphism a : Z → Z in CM(R) belongs to Xp. Thus, α = f/s = (af)/(as) = 0 in

CM(R)/Xp. This shows that Lp is faithful.

(iii): Lp is full.
Let g :Mp → Np be a morphism in CM(Rp) whereM,N ∈ CM(R). By the isomorphism

HomR(M,N)p ∼= HomRp
(Mp, Np), there is a morphism f :M → N in CM(R) and a ∈ R\p

such that g = fp/a. Since the mapping cone of a : N → N is in Xp, we obtain a morphism

f/a :M → N in CM(R)/Xp and Lp(f/a) = fp/a = g. This shows that Lp is full. �

Corollary 15.19. Let R and S be complete intersection rings which are locally hyper-
surfaces on the punctured spectra. If R and S are singularly equivalent, then there is a
homeomorphism ϕ : SingR → SingS such that Rp and Sϕ(p) are singularly equivalent for
any p ∈ SingR.

Proof. As in Lemma 15.18, we may consider the category CM(R).
Let F : CM(R) → CM(S) be a triangle equivalence. Take a homeomorphism ϕ :

SingR→ SingS given in Proposition 13.10 and Theorem 13.11. Then by construction, it
satisfies

{ϕ(p)} =
⋃

M∈CM(R), Supp
R
(M)⊆V(p)

Supp
S
F (M)

for each p ∈ SingR. Moreover, the following diagram is commutative:

ThT(CM(R))(CM(R))
F̃−−−−→ ThT(CM(S))(CM(S))

fSupp
R

y
yfSuppS

Nesc(SingR) −−−−→
ϕ̃

Nesc(SingS),

where the map F̃ and ϕ̃ are defined by F̃ (X ) := {N ∈ T ′ | ∃M ∈ X such that N ∼= F (M)}
and ϕ̃(W ) := ϕ(W ), respectively.

Let p be an element of SingR. Set Wp := {q ∈ SingR | q 6⊆ p} which is a specialization-
closed subset of SingR. We establish two claims.

Claim 3. gSupp
R
(Wp) = Xp.

Proof of Claim 1. Let M ∈ Xp. Since Mp = 0 in CM(Rp), one has p 6∈ Supp
R
(M). Thus,

Supp
R
(M) ⊆Wp and hence M ∈ gSupp

R
(Wp).

Next, take M ∈ gSupp
R
(Wp). Then Supp

R
(M) ⊆ Wp means that p does not belong to

Supp
R
(M). Therefore, Mp = 0 in CM(Rp) and hence M ∈ Xp. �

Claim 4. ϕ(Wp) =Wϕ(p) := {q ∈ SingS | q 6⊆ ϕ(p)}.
Proof of Claim 2. One can easily check that ϕ is order isomorphism with respect to the
inclusion relations. Since SingR \Wp has a unique maximal element p, ϕ(SingR \Wp) =
SingS \ ϕ(Wp) also has a unique maximal element ϕ(p). This shows ϕ(Wp) =Wϕ(p). �

From the above two claims, we obtain

F̃ (Xp) = F̃ (gSupp
R
(Wp)) = gSupp

S
(ϕ̃(Wp)) = gSupp

S
(Wϕ(p)) = Xϕ(p),

where the second equality comes from the above commutative diagram and the last equality
is shown by the same proof as Claim 1. Consequently, the triangle equivalence F induces
triangle equivalences:

CM(Rp) ∼= CM(R)/Xp
∼= CM(S)/Xϕ(p) ∼= CM(Sϕ(p)).
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Part 4. Classification of dense subcategories

16. introduction

The content of this part is based on the authors paper [Mat17a]. In this part, we discuss
classifying dense subcategories.

Let A be an additive category and X an additive subcategory of A. We say that X
is additively closed if it is closed under taking direct summands, and that X is dense if
any object in A is a direct summand of some object of X . We can easily show that X is
additively closed if and only if X = addX and that X is dense if and only if A = addX .
Here, addX denotes the smallest additive subcategory of A which is closed under taking
direct summands and contains X . Therefore, for any additive subcategory X of A, X is a
dense subcategory of addX and addX is an additively closed subcategory of A. For this
reason, to classify additive subcategories, it suffices to classify additively closed ones and
dense ones. Thomason classified dense triangulated subcategories:

Theorem 16.1. [Tho, Theorem 2.1] Let T be an essentially small triangulated category.
Then there is a one-to-one correspondence

{dense triangulated subcategories of T }
f // {subgroups of K0(T )},
g

oo

where f and g are given by f(X ) := 〈[X] | X ∈ X〉 and g(H) := {X ∈ T | [X] ∈ H},
respectively, and K0(T ) stands for the Grothendieck group of T .

Motivated by this theorem, we discuss classifying dense resolving and dense coresolv-
ing subcategories of exact categories. The notion of a resolving subcategory has been
introduced by Auslander and Bridger [AusBri] and that of a coresolving subcategory is its
dual notion. Resolving and coresolving subcategories have been widely studied so far, for
example, see [AR, DT, KS, Tak11]. The main theorem of this part is the following.

Theorem 16.2 (Proposition 17.5, Theorem 17.7). Let E be an essentially small exact
category with either a generator or a cogenerator G.
(1) The following subcategories of E are the same:

(i) dense G-resolving subcategories
(ii) dense G-coresolving subcategories
(iii) dense G-2-out-of-3 subcategories

(2) There is a one-to-one correspondence
where f and g are given by f(X ) := 〈[X] | X ∈ X〉 and g(H) := {X ∈ E | [X] ∈ H},

respectively, and K0(E) stands for the Grothendieck group of E.
Here, the notion of a G-resolving (resp. G-coresolving) subcategory is a slight general-

ization of that of a resolving (resp. coresolving) subcategory. Indeed, they coincide when
G consists of the projective (resp. injective) objects. In addition, G-2-out-of-3 subcategory
is a subcategory which is both G-resolving and G-coresolving. The precise definitions of
these subcategories will be given in Definition 17.3.

17. Classification of dense resolving subcategories

In this section, we show our main result. Throughout this part, let A be an abelian
category, E an exact category, and T a triangulated category.
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We begin with recalling several notions, which are key notions of this part.

Definition 17.1. Let G be a family of objects of E . We call G a generator (resp. a
cogenerator) of E if for any object A ∈ E , there is a short exact sequence

A′ G։ A (resp. A G։ A′)

in E with G ∈ G.

Example 17.2. (1) Clearly, E is both a generator and a cogenerator of E
(2) If E has enough projective (resp. injective) objects, then the subcategory proj E (resp.

inj E) consisting of projective (resp. injective) objects is a generator (resp. a cogener-
ator) of E .

Next we give the definitions of G-resolving and G-coresolving subcategories.

Definition 17.3. Let X be a subcategory of E and G a family of objects of E .
(1) We say that X is a G-resolving subcategory of E if the following three conditions are

satisfied:
(i) X is closed under extensions: for a short exact sequence X  Y ։ Z in E , if X

and Z are in X , then so is Y .
(ii) X is closed under kernels of admissible epimorphisms: for a short exact sequence

X  Y ։ Z in E , if Y and Z are in X , then so is X.
(iii) X contains G.
If E has enough projective objects, we shall call X simply resolving if it is proj E-
resolving.

(2) We say that X is a G-coresolving subcategory of E if the following three conditions are
satisfied:
(i) X is closed under extensions: for a short exact sequence X  Y ։ Z in E , if X

and Z are in X , then so is Y .
(ii) X is closed under cokernels of admissible monomorphisms: for a short exact

sequence X  Y ։ Z in E , if X and Y are in X , then so is Z.
(iii) X contains G.

(3) We say that X is a G-2-out-of-3 subcategory of E if the following conditions are satisfied:
(i) X satisfies 2-out-of-3 property: for a short exact sequence X  Y ։ Z in E , if

2 out of {X,Y, Z} belong to X , then so is the third.
(ii) X contains G.

Remark 17.4. Unlike the definition due to Auslander and Bridger [AusBri], we do not
assume that resolving subcategories are closed under direct summands. Therefore, our
definition is rather close to the definitions in [AR].

The following proposition shows that dense G-resolving, dense G-coresolving, and dense
G-2-out-of-3 subcategories are the same thing.

Proposition 17.5. Let X be a dense subcategory of E.Then X is closed under coker-
nels of admissible monomorphisms if and only if it is closed under kernels of admissible
epimorphisms.

Proof. We have only to show the ‘if’ part. The ‘only if’ part is proved by the dual
argument.
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Let X
f
 Y

g
։ Z be a short exact sequence in E with X,Y ∈ X . Since X is dense, we

can take Z ′ ∈ E with Z ⊕ Z ′ ∈ X . Consider a short exact sequence

X ⊕ Z

(
f 0
0 idZ
0 0

)

 Y ⊕ Z ⊕ Z ′

(
g 0 0
0 0 idZ′

)

։ Z ⊕ Z ′.

ThenX⊕Z is an object of X because X is closed under kernels of admissible epimorphisms.
From the split short exact sequence Z  X ⊕Z ։ X, we obtain Z ∈ X since X is closed
under kernels of admissible epimorphisms. �

Now we recall the definition of the Grothendieck group of an exact category.

Definition 17.6. Let E be an exact category. Let F be the free abelian group generated
by the isomorphism classes of objects of E . Let I be the subgroup of F generated by the
elements of the form [A] − [B] + [C] where A  B ։ C are short exact sequences in
E . Then we define the Grothendieck group of E , denoted by K0(E), as the quotient group
F/I.

The following theorem is our main result of this part.

Theorem 17.7. Let E be an essentially small exact category with either a generator or a
cogenerator G. Then there are one-to-one correspondences among the following sets:

(1) {dense G-resolving subcategories of E},
(2) {dense G-coresolving subcategories of E},
(3) {dense G-2-out-of-3 subcategories of E}, and
(4) {subgroups of K0(E) containing the image of G}.

One-to-one correspondences among (1), (2) and (3) have been already shown in Propo-
sition 17.5. Thus, it suffice to show the bijection between (1) and (4). Moreover, we will
show this bijection only in the case that G is a generator because in the cogenerator case,
it can be shown by the dual argument. The following lemma is essential in the proof of
our theorem.

Lemma 17.8. Let G be a generator of E and X a dense G-resolving subcategory of E.
Then for an object A in E, A ∈ X if and only if [A] ∈ 〈[X] | X ∈ X〉.
Proof. Define an equivalence relation ∼ on the isomorphism classes E/∼= of objects of E , as
follows: A ∼ A′ if there are X,X ′ ∈ X such that A⊕X ∼= A′ ⊕X ′. Set 〈E〉X := (E/∼=)/∼
and denote by 〈A〉 the class of A. Then 〈E〉X is an abelian group with 〈A〉 + 〈B〉 :=
〈A ⊕ B〉. Indeed, obviously, + is well-defined, commutative, associative, and 〈0〉 is an
identity element. Since X is dense, for any A ∈ E , there is A′ ∈ E such that A⊕ A′ ∈ X ,
and hence 〈A〉+ 〈A′〉 = 〈A⊕A′〉 = 〈0〉. Therefore, 〈A′〉 is an inverse element of 〈A〉.

Let A
f
 B

g
։ C be a short exact sequence in E . Taking A′, C ′ ∈ E with A⊕A′, C⊕C ′ ∈

X and considering a short exact sequence

A⊕A′

(
f 0
0 idA′

0 0

)

 B ⊕A′ ⊕ C ′

(
g 0 0
0 0 idC′

)

։ C ⊕ C ′.

we have B ⊕A′ ⊕C ′ ∈ X . This shows 〈B〉 − 〈A〉 − 〈C〉 = 〈B ⊕A′ ⊕C ′〉 = 〈0〉. Therefore,
there is a group homomorphism

ϕ : K0(E)→ 〈E〉X , [A] 7→ 〈A〉.
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Note that 〈[X] | X ∈ X〉 is contained in Kerϕ.
From the definition of the Grothendieck group, any element of K0(E) is denoted by

[A]− [B]. Moreover, since there is a short exact sequence

B′ G։ B

in E with G ∈ G, [A] − [B] = [A ⊕ B′] − [G]. Thus, any element of K0(E) is denoted by
[A]− [G] with G ∈ G.

Let [A]− [G] with G ∈ G be an element of Kerϕ. Since X contains G, [A] ∈ Kerϕ. This
means 〈A〉 = 〈0〉 and there are X,X ′ ∈ X such that A ⊕X ∼= X ′. Considering the split
short exact sequence

A A⊕X ։ X,

we obtain A ∈ X since X is closed under kernels of epimorphisms. Thus, A ∈ X if and
only if [A] ∈ 〈[X] | X ∈ X〉. �

Proof of Theorem 17.7. By Lemma 17.5, the set (2) is nothing but the set (1). Therefore,
we show that there is a one-to-one correspondence between the sets (1) and (3).

For a dense G-resolving subcategory X , define
f(X ) := 〈[X] | X ∈ X〉,

and for a subgroup H of K0(E) containing the image of G, define
g(H) := {A ∈ E | [A] ∈ H}.

We show that f and g give mutually inverse bijections between (1) and (3).
First note that g(H) := {A ∈ E | [A] ∈ H} is a dense G-resolving subcategory of E for

a subgroup H of K0(E) containing the image of G. Indeed, for any object A ∈ E , take a
short exact sequence A′ G։ A in E with G ∈ G. Then [A⊕A′] = [A]+[A′] = [G] ∈ H,
and hence A⊕A′ ∈ g(H). Thus g(H) is dense. Obviously, g(H) contains G. Furthermore,
for any short exact sequence A  B ։ C, the relation [A] − [B] + [C] = 0 implies that
g(H) is G-resolving. Besides, f(X ) is clearly a subgroup of K0(E) containing the image of
G. As a result, f and g are well-defined maps between the sets (1) and (3)

LetH be a subgroup of K0(E) containing the image of G. Then the inclusion fg(H) ⊂ H
is trivial. For any [A]− [G] ∈ H with G ∈ G, [A] = ([A]− [G])+[G] ∈ H implies A ∈ g(H),
and thus [A]− [G] ∈ fg(H). Therefore, fg(H) = H.

Let X be a dense resolving subcategory of E containing G. Then the inclusion X ⊂
gf(X ) is trivial. Conversely, for any A ∈ gf(X ), since [A] ∈ f(X ) = 〈[X] | X ∈ X〉, we
have A ∈ X by Lemma 17.8. Therefore, gf(X ) = X . Consequently, f and g are mutually
inverse bijections between (1) and (3). �

18. Relations with dense triangulated subcategories

In this section, we consider some combinations of Theorem 16.1 and Theorem 17.7. Let
us start with the definition of the Grothendieck group for a triangulated category.

Definition 18.1. Let T be a triangulated category. Let F be the free abelian group
generated by the isomorphism classes of objects of T . Let I be the subgroup generated by
the elements of the form [A]− [B] + [C] where A→ B → C → A[1] are exact triangles in
T . Then we define the Grothendieck group of T , denoted by K0(T ), as the quotient group
F/I.
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First, we discuss dense subcategories of exact categories and their derived categories.
Please refer to [Buh, Nee90] for the definition of the derived category of an exact category.

Lemma 18.2. [Wei, Lemma 9.2.4] Let E be an essentially small exact category. Then the
canonical functor E → Db(E) induces an isomorphism ϕ : K0(E)→ K0(D

b(E)).
Combining Theorem 16.1, Theorem 17.7 and this lemma, we have the following corollary.

Corollary 18.3. Let E be an essentially small exact category with either a generator or
a cogenerator G. Then there are one-to-one correspondences among the following sets:

(1) {dense G-resolving subcategories of E},
(2) {dense triangulated subcategories of Db(E) containing G}, and
(3) {subgroups of K0(E) containing the image of G}.

Taking G = proj E in this corollary gives the dense version of the following theorem due
to Krause and Stevenson:

Theorem 18.4. [KS, Theorem 1] Let E be an exact category with enough projective objects.
Then there is one-to-one correspondence between

(1) {thick subcategories of E containing proj E} and
(2) {thick triangulated subcategories of Db(E) containing proj E}.

Next, we give a more concrete corollary.
Let S be an Iwanaga-Gorenstein ring (i.e. S is Noetherian on both sides and S is of

finite injective dimension as a left S-module and a right S-module). Let us give several
remarks about Iwanaga-Gorenstein rings (cf. [Buc, Yos]).

Remark 18.5. (1) [Buc, Lemma 4.4.2] We say that a finitely generated left S-module X
is maximal Cohen-Macaulay if ExtiS(X,S) = 0 for all integers i > 0. CM(S) denotes
the subcategory of modS consisting of maximal Cohen-Macaulay S-modules. Then it
is a Frobenius category, and hence, its stable category CM(S) is triangulated.

(2) Natural inclusions CM(S) →֒ modS →֒ Db(modS) induce isomorphisms

K0(CM(S)) ∼= K0(modS) ∼= K0(D
b(modS)).

Here, the first isomorphism is shown in [Yos, Lemma 13.2] and the second isomorphism
is by Lemma 18.2

(3) [Buc, Theorem 4.4.1] Composition of the natural inclusion CM(S) →֒ Db(modS) and
the quotient functor Db(modS) → Dsg(S) := Db(modS)/Kb(proj(modS)) induces a
triangle equivalence

CM(S) ∼= Dsg(S).

Corollary 18.6. Let S be an Iwanaga-Gorenstein ring. Then there are one-to-one corre-
spondences among the following sets:

(1) {dense resolving subcategories of CM(S)},
(2) {dense resolving subcategories of modS},
(3) {dense triangulated subcategories of Db(modS) containing proj(modS)},
(4) {dense triangulated subcategories of CM(S) ∼= Dsg(S)},
(5) {subgroups of K0(modS) containing the image of proj(modS)}, and
(6) {subgroups of K0(CM(S))}.
Proof. One-to-one correspondences among (1), (2), (3), and (5) follow from the above
remarks and Corollary 18.3. The bijection between (4) and (6) follows from Thomason’s
result, Theorem 16.1. Thus, we show the one-to-one correspondence between (5) and (6).
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The localization sequence

Db(proj(modS))→ Db(modS)→ Dsg(S)

yields the exact sequence

K0(D
b(proj(modS)))→ K0(D

b(modS))→ K0(Dsg(S))→ 0.

The equivalence Dsg(S) ∼= CM(S) and Lemma 18.2 turns this sequence into the exact
sequence

K0(proj(modS))→ K0(modS)→ K0(CM(S))→ 0.

Then, the equivalence is clear. �

In the last two corollaries, we constructed a triangulated category Db(E) from an given
exact category E and discussed their dense subcategories. Next, we consider the opposite
direction. More precisely, we construct an abelian category from a given triangulated
category, and then we discuss their dense subcategories.

Let us recall the definition and some basic properties of t-structures; for details, see
[GM].

Definition 18.7. (1) A t-structure on T is a pair (T 60, T >0) of subcategories in T sat-
isfying the following conditions:
(i) HomT (T 6−1, T >0) = 0.
(ii) For any object X ∈ T , there exists an exact triangle X ′ → X → X ′′ → X ′[1] in
T with X ′ ∈ T 6−1 and X ′′ ∈ T >0.

(iii) T 6−1 ⊂ T 60 and T >0 ⊂ T >−1.
Here, T 6−n := T 60[n] and T >−n := T >0[n]. Moreover, the intersection T 60 ∩ T >0
has the structure of an abelian category and we call it the heart of the t-structure.

(2) A t-structure (T 60, T >0) on T is called bounded if T =
⋃
i,j∈Z T 6i ∩ T >j .

Example 18.8. Let A be an abelian category and put

Db(A)60 := {X ∈ Db(A) | Hi(X) = 0 (∀i > 0)},

Db(A)>0 := {X ∈ Db(A) | Hi(X) = 0 (∀i < 0)}.
Then (Db(A)60,Db(A)>0) defines a bounded t-structure on Db(A) and its heart is A.

The next proposition is a variant of Lemma 18.2.

Proposition 18.9. [Nee01] Let (T 60, T >0) be a bounded t-structure on T with heart A.
Then the inclusion functor induces an isomorphism K0(A) ∼= K0(T ).

From this proposition and Theorem 17.7, we have the following corollary.

Corollary 18.10. Let T be an essentially small triangulated category, (T 60, T >0) a
bounded t-structure on T with heart A, and either a generator or a cogenerator G of
A. Then there are one-to-one correspondences among the following sets:

(1) {dense G-resolving subcategories of A},
(2) {dense triangulated subcategories of T containing G}, and
(3) {subgroups of K0(T ) containing the image of G}.
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19. Examples

In this section, we give some examples of module categories which have only finitely many
dense resolving subcategories.

Let us start with the following remark.

Remark 19.1. Let L be an abelian group. Then there are only finitely many subgroups
of L if and only if L is a finite group. Indeed, ‘if part’ is clear. Suppose that there are
only finitely many subgroups of L. Then L is an Noetherian Z-module and in particular,
finitely generated. Therefore, there is an isomorphism

L ∼= Z⊕r ⊕
n⊕

i=1

(Z/nZ)⊕mi ,

where r, n and mi are non-negative integers. We obtain r = 0 due to our assumption as Z
has infinitely many subgroups. For this reason, L is isomorphic to a finite direct sum of
finite abelian groups, and thus is a finite group.

From this remark and Theorem 17.7, for a left Noetherian ring A, the following two
conditions are equivalent:

(1) There are only finitely many dense resolving subcategories of modA.
(2) K0(modA)/〈[P ] | P ∈ proj(modA)〉 is a finite group.

19.1. The case of finite dimensional algebras

First we consider the case of finite dimensional algebras. Let A be a basic finite dimensional
algebra over a field k with a complete set {e1, . . . , en} of primitive orthogonal idempotents.
Denote Si := Aei/ radA(Aei) by the simple A-module corresponds to ei. Then by [ASS,
Theorem 3.5], {[S1], . . . , [Sn]} forms a free basis of the Grothendieck group K0(modA),
and hence there is an isomorphism of abelian groups:

K0(modA) ∼= Z⊕n.

The Cartan matrix of A is an n×n-matrix CA := (dimk eiAej)i,j=1,...,n. Then the above
isomorphism induces the following isomorphism (see [ASS, Proposition 3.8]).

K0(modA)/〈[P ] | P ∈ proj(modA)〉 ∼= Cok(Z⊕n CA−−→ Z⊕n).

Therefore if CA has elementary divisors (m1, · · · ,mr, 0, · · · , 0), then we obtain a decom-
position:

K0(modA)/〈[P ] | P ∈ proj(modA)〉 ∼= Z⊕n−r ⊕ Z/(m1)⊕ · · · ⊕ Z/(mr),

where m1, . . . ,mr are not zero. Furthermore, one has

detCA =

{
0 (r < n)

m1 ·m2 · · ·mn (r = n).

As a result, the abelian group K0(modA)/〈[P ] | P ∈ proj(modA)〉 is a finite group if and
only if the determinant of CA is not zero.

From this argument, we have the following corollary.
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Corollary 19.2. Let A be a basic finite dimensional algebra over a field k. Then modA
has only finitely many dense resolving subcategories if and only if its Cartan matrix has
non-zero determinant. This is the case, the number of dense resolving subcategories is
d(m1) · · · d(mn). Here, (m1, . . . ,mn) are elementary divisors of CA and d(l) denotes the
number of divisors of l.

Remark 19.3. For the case of gentle algebras, Holm [Hol] gives a characterization of
algebras with non-zero Cartan determinant detCA.

19.2. The case of simple singularities

Next we consider the case of simple singularities. Let k be an algebraically closed field
of characteristic 0. We say that a commutative Noetherian local ring R := k[[x, y, z]]/(f)
has a simple (surface) singularity if f is one of the following form:

(An) x2 + yn+1 + z2 (n > 1),

(Dn) x2y + yn−1 + z2 (n > 4),

(E6) x3 + y4 + z2,

(E7) x3 + xy3 + z2,

(E8) x3 + y5 + z2.

In this case, the Grothendieck group of modR is given as follows (see [Yos, Proposition
13.10]):

K0(modR) #{ dense resolv. subcat. of modR}
(An) Z⊕ Z/(n+ 1)Z the number of divisors of n+ 1

(Dn) (n = even) Z⊕ (Z/2Z)⊕2 5
(Dn) (n = odd) Z⊕ Z/4Z 3

(E6) Z⊕ Z/3Z 2
(E7) Z⊕ Z/2Z 2
(E8) Z 1

Here, Z appearing in K0(modR) is generated by [R]. Owing to Theorem 17.7, there are
only finitely many dense resolving subcategories of modR. Hence the following natural
question arises.

Question 19.4. Let R be a Gorenstein local ring of dimension two. Then does the
condition #{dense resolving subcategories of modR} < ∞ imply that R has a simple
singularity?

Remark 19.5. 1-dimensional simple singularities may have infinitely many dense resolv-
ing subcategories (see [Yos, Proposition 13.10]).

Let R be a Noetherian normal local domain with residue field k. Denote by Cl(R) the
divisor class group of R. Then there is a surjective homomorphism

u =

(
rk

c1

)
: K0(modR)→ Z⊕ Cl(R),

where rk is the rank function and c1 is the first Chern class. Moreover, u([R]) = t(1, 0)
and the kernel of u is the subgroup of K0(modR) generated by modules of codimension at
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least 2; see [Bour]. In particular, if R is a 2-dimensional Noetherian normal local domain
with residue field k, we obtain a short exact sequence

0→ 〈[k]〉 → K0(modR)

(
rk
c1

)

−−−→ Z⊕ Cl(R)→ 0

of abelian groups. This sequence induces the following short exact sequence since rk(R) = 1
and c1(R) = 0:

0→ 〈[k], [R]〉/〈[R]〉 → K0(modR)/〈[R]〉 c1→ Cl(R)→ 0.

Therefore, we have an isomorphism

Cl(R) ∼= K0(modR)/〈[k], [R]〉
and the following result is deduced from Theorem 17.7.

Theorem 19.6. Let R be a Noetherian normal local domain of dimension two. Then
there is a one-to-one correspondence

{
dense resolving subcategories of modR

containing k

}
f // {subgroups of Cl(R)}
g

oo

where f and g are given by f(X ) := 〈c1(X) | X ∈ X〉 and g(H) := {X ∈ modR | c1(X) ∈
H} respectively.

The following answers Question 19.4 for domains.

Corollary 19.7. Let R be a 2-dimensional complete non-regular Gorenstein normal local
domain with algebraically closed residue field k of characteristic 0. Then the following are
equivalent:

(1) R has a simple singularity.
(2) There are only finitely many dense resolving subcategories of modR.
(3) There are only finitely many dense resolving subcategories of modR containing k.

Proof. (1)⇒ (2): If R has a simple singularity, then K0(modR)/〈[R]〉 is a finite group; see
[Yos, Proposition 13.10]. Thus, Theorem 17.7 shows that modR has only finitely many
dense resolving subcategories.

(2)⇒ (3): This implication is trivial.
(3) ⇒ (1): From Theorem 19.6, Cl(R) has finitely many subgroups. Therefore, Cl(R)

is a finite group, and thus by [DITV, Corollary 3.3] we have ΩCM(R) = addG for some
module G, where ΩCM(R) stands for the category of first syzygies of maximal Cohen-
Macaulay R-modules. Now, since R is Gorenstein, CM(R) = ΩCM(R) has only finitely
many indecomposable objects up to isomorphism. Consequently, R has a simple singularity
from [Yos, Theorem 8.10]. �

Example 19.8. Let R be a 2-dimensional simple singularity of type (A1). Namely, R =
k[[x, y, z]]/(x2+ y2+ z2). Then the indecomposable maximal Cohen-Macaulay R-modules
are R and the ideal I = (x+

√
−1y, z) up to isomorphism. Thus, every maximal Cohen-

Macaulay module is of the form R⊕n ⊕ I⊕m. Then the dense resolving subcategories of
modR are:

• modR, and
• {M ∈ modR | Ω2M ∼= R⊕n ⊕ I⊕2m for some m,n ∈ Z>0}.
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Proof. Set G := K0(modR) and let H be the subgroup generated by [R].
First note that there is a non-split short exact sequence 0 → I → R⊕2 → I → 0,

see [Yos, Chapter 10]. Therefore, [R] and [I] satisfy 2[R] = 2[I] in G. Moreover, the
isomorphism G ∼= K0(CM(R)) shows that G and H are only subgroups of G containing
[R].

Using the notation of Theorem 17.7, we know that g(G) = modR. It thus suffices to
show that g(H) = X . Let M be an object of X . From the exact sequence 0 → Ω2M →
R⊕n1 → R⊕n0 →M → 0, one has

[M ] ≡ [Ω2M ] ≡ 0 mod H.

This shows that M ∈ g(H). Next, take M 6∈ X . Then Ω2M ∼= R⊕n ⊕ I⊕(2m+1) for some
n,m ∈ Z>0. Using the similar argument, one has

[M ] ≡ [Ω2M ] ≡ (2m+ 1)[I] ≡ [I] mod H.

Hence if [M ] is in H, then so is [I]. This gives a contradiction to G 6= H. Therefore, [M ]
cannot be in H. Thus, we are done. �
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