1	The Threat of Longitudinal Cracking after Distal Radius
2	Fracture Treatment with Volar Locking Plate
3	
4	Nasa FUJIHARA, M.D. ^{1,2} , Yuki FUJIHARA, M.D. ^{1,2} , Helen HUETTEMAN, B.S. ² ,
5	Masahiro TATEBE, M.D., Ph.D. ³ , Hiromasa TANAKA, M.D. ⁴ , Hitoshi HIRATA, M.D.,
6	Ph.D. ¹
7	
8	1. Department of Hand Surgery, Nagoya University School of Medicine, 65
9	Tsurumaicho, Showaku, Nagoya city, Japan
10	2. Plastic Surgery Section, University of Michigan, Ann Arbor, MI
11	3. Hand and Microsurgery Center, Anjo Kosei Hospital, Higashi-Hirokute 28
12	Anjo-Chou, Anjo City, Aichi Prefecture, Japan
13	4. Shizuoka Saiseikai General Hospital, 1-1-1 Oshika, Suruga-ward, Shizuoka-city,
14	Japan
15	
16	Corresponding author
17	Yuki FUJIHARA, M.D.
18	Department of Hand Surgery, Nagoya University School of Medicine, 65 Tsurumaicho,
19	Showaku, Nagoya city, Japan
20	Plastic Surgery Section, University of Michigan, Ann Arbor, MI
21	Phone number: 734-834-8125
22	Fax number: 734-615-5724
23	E-mail address; yfujihar@med.umich.edu

Abstract

The purpose of this study was to examine the occurrence rate of longitudinal cracks 25and associated characteristics following volar locking plate fixation of the distal radius. 2627Using case records from Shizuoka Saiseikai General Hospital dated between March 2008 and March 2015, a total of 419 eligible adult patients were identified. Standard 2829anteroposterior postoperative radiographs were evaluated to classify longitudinal crack 30 occurrence. Documented variables were compared between patients with longitudinal cracking and those without. Univariate analyses were conducted among each plate 31group. There were 38 confirmed cases of cracking (Acu-Loc: n=25, Acu-Loc 2: n=11, 3233 VA-TCP: n=2). All cracks healed within 4 to 6 weeks after the operation. Plate type, along with patient age and sex were significantly associated with the occurrence of a 34longitudinal crack (p<0.05). Although no severe complications related to longitudinal 35 cracking were observed, associated risks for specific patient groups should be 36 37considered.

39 Introduction

Since the introduction of the volar locking plating system for distal radius fractures 40 (DRFs) in 2000 (16), indications for open reduction and internal fixation (ORIF) have 41 expanded (2, 4, 10). This treatment strategy imparts sufficient, stable fixation to 42maintain quality anatomic reduction, even for elderly patients (1, 11, 17-19). Added 43stability from ORIF can expedite patients' return to normal activities of daily living, 44especially when compared to the use of other conservative approaches that typically 4546 require long periods of immobilization or external hardware. 47However, several studies indicate various complications following volar locking plate 48fixation (6-8, 12, 13, 23). Previous research reports rates of complication ranging from 5.9% to 48%⁵. Such complications are predominately hardware-related, and most 49commonly involve screw penetration into the radiocarpal or distal radioulnar joint or 50tendon complications⁵. Fracture collapse and malunion are other frequent pitfalls of 51volar plate fixation, along with infection and nervous problems (carpal tunnel syndrome, 52median nerve injury, ulnar nerve injury, etc.). In addition to these major complications, 5354added complications may also arise. Locking screw loosening and breakage of the plate can cause severe consequences and often lead to revision surgery (3, 14, 15, 20, 24). 55One relatively uncharted risk of volar locking plates is the potential of a longitudinal 5657crack (LC) of the distal radius. Despite the increasing prevalence of LCs in our clinical experience, research on the topic remains sparse. Longitudinal cracking normally begins 58on the distal part of the diaphysis after ORIF of the wrist using a volar locking plate. 59One study from Sugun et al. (22) describes a significant correlation between cracking 60 and age group, yet further research on different plate types or surgeon factors is lacking. 61 62Using data from patients treated within a seven-year span for distal radius fractures at a

local hospital, we investigated the prevalence of LCs after application of a volar locking plate. The purpose of this study was to document the frequency of longitudinal cracking following volar locking plate insertion, specifically though review of all qualifying DRF cases in a single hospital. In addition, we aimed to evaluate associated patient and surgeon characteristics, predicting elderly, female patients to display the highest rates of LCs. We also hypothesized surgeries conducted by less experienced would result in more frequent cracking.

70

71 Patients & Methods

72 Cohort Selection

We performed a retrospective review using all applicable case data from Shizuoka 7374Saiseikai General Hospital collected between March 2008 and March 2015. To be considered for analysis, patients must have been diagnosed with a distal radius fracture, 7576 undergone ORIF with the use of a volar locking plate, and have been 18 years or older at the time of surgery. Patients exposed to other methods of treatment (external fixation, 7778K-wire fixation, or conservative non-operative care) were excluded. The following data were recorded: plate type, surgeon experience at the time of surgery, patient age, 79sex, fracture type, and postoperative complications from a LC. Fractures were 80 classified according to the AO/OTA classification system.²¹ 81 82 IRB approval was obtained to perform this retrospective chart and radiographic review. 83 84

85 Radiographic evaluation

86 Radiographic evaluation was conducted on immediate postoperative standard

87	anteroposterior radiographs by two certified hand surgeons. Follow-up X-rays between
88	four to six weeks after surgery were also examined for each patient. For those
89	classified as positive for LC, preoperative anteroposterior radiographs were evaluated to
90	determine if a longitudinal crack was present before fixation. In cases of disagreement,
91	an experienced hand and trauma surgeon was consulted. Two investigators reviewed
92	medical records and recorded data retrospectively. Both research team members
93	analysed each case independently and then compared results for consistency.
94	Statistical analysis
95	First, we examined the relationship between LC occurrence and specific case
96	characteristics (surgeon experience, patient age/sex, fracture type). To simplify our
97	analysis we modified both surgeon experience and fracture type into bivariate variables.
98	Surgeons were classified as either junior surgeons (less than three years of experience as
99	an orthopaedic surgeon) or senior surgeons (three or more years of experience in
100	orthopaedic surgery). Similarly, fractures were considered either comminuted (AO type
101	A3, C2, C3) or non-comminuted (all other fracture types).
102	Next, we conducted a univariate analysis to identify unadjusted differences between
103	patients with and without LC. Using chi-square tests for categorical variables and
104	Mann-Whitney's U tests for continuous variables, we determined statistical significance
105	between groups. Then, we performed a second univariate analysis for variables
106	identified as significant in our initial tests. We checked for significance with these
107	variables against plate type, again using chi-squared tests for categorical variables and a
108	Steel-Dwass test for continuous variables. Significance level in these analyses was set at
109	0.05.
110	

 $\mathbf{5}$

111 Results

112 A total of 419 consecutive eligible cases were discovered. LC occurred in 38 cases

113	(Figure 1).	. Table I	describes	associated	case charac	teristics	stratified	by the	presence of
-----	-------------	-----------	-----------	------------	-------------	-----------	------------	--------	-------------

- absence of a LC. Patients who experienced a LC were more likely to be female
- (p=0.009) and were significantly older than those who did not experience LC (p<0.001).

116 We found no significant differences between surgeon experience levels.

117 AO fracture types had the following incidences: A2 (n=148), A3 (n=78), B1 (n=5), B2

118 (n=15), B3 (n=16), C1 (n=86), C2 (n=40) and C3 (n=31). Frequencies of each plate type

119 are given in Table II. The Acu-Loc (Acumed, Hillsboro, OR, USA) was the predominant

120 plate chosen by surgeons, followed by VA-TCP (Synthes GmbH, Oberdorf, BL,

121 Switzerland), AcuLoc 2 (Acumed, Hillsboro, OR, USA), Aptus2.5 (Medartis, Basel, BS,

122 Switzerland), DRP (Synthes, Paoli, PA, USA) and others. Plate selection was at the

123 discretion of each surgeon. Table II also provides LC rates for specific plate types.

Acu-Loc and Acu-Loc 2 were most common with rates of 13.0% (n=25) and 27.5%

(n=11), respectively. Neither patient age nor gender was significantly associated with a
particular type of plate.

127 In six out of the 38 LC cases, cracking was present prior to plating (Table III). In all

six cases, postoperative radiographs consistently indicated worse fractures after the

volar locking plate. The mean follow-up period for patients was 3.1 months (range from

130 0 to 40 months). Although some patients endured an extended postoperative splinting

- 131 period, LCs caused no severe complications such as screw loosening or implant
- 132 dislocation. Secondary postoperative evaluation revealed all cracks healed within four

133 to six weeks after surgery.

134

 $\mathbf{6}$

135 Case presentation

Patient is a 71-year-old female who experienced a fall from standing height. She was
diagnosed with a left distal radius fracture, classified as AO type C3 (comminuted).
Three days after injury, ORIF with external fixation was performed. She had a
preoperative LC, which noticeably worsened postoperatively (Figure 2).

141

142 **Discussion**

143Volar plating techniques have become progressively more common as a treatment 144method for DRFs (2, 4, 10). Increased clinical practise can lead to improved awareness of previously unknown complications. Using data from over 400 patient cases at our 145146 hospital, we found LC occurred mainly in patients who received an Acu-Loc or 147Acu-Loc 2 plate. Previous research from Sugun and colleagues presents similar results. 148 They found patients who developed a LC displayed a higher mean age and were more 149likely to be female than those who did not. In certain cases, a preoperative LC was 150identified, and the crack appeared worse after volar plating. These findings provide evidence for an additional risk of volar locking plates and may be used to help uncover 151the mechanism behind the occurrence of longitudinal cracks. 152153Several reasons may explain the general knowledge gap on LCs. Because of an immense lack of previous research, surgeons may simply be overlooking longitudinal 154cracks in their patients. In addition, severe longitudinal cracking typically causes 155instability of the fixed site. Thus, LCs may be misclassified or overshadowed by other 156157complications such as loss of reduction, plate breakage or screw loosening, which lead 158to similar consequences(3,7,14,24). Finally, publication bias is likely present in the

literature involving distal radius fracture management, reporting positive outcomes
more often than negative (21). Despite these barriers, the dangers of this complication
should be considered to provide healthcare providers and patients with the most
comprehensive information about all treatment options (2).

The mechanics behind longitudinal cracking remain uncertain. One possibility is that 163164 LCs occurs preoperatively and are then widened or extended by the screw during 165fixation. Only six out of 38 patients (15.8%) with LC evaluated in our study showed 166 indications of cracking preoperatively. This data was obtained through the assessment of 167 plain radiographs. However, other forms of evaluation might have revealed a higher 168 percentage of patients with preoperative cracks that were unnoticeable through x-ray 169 assessment. Yet, this theory does not explain the observed high rate of LC in patients 170 who received an AcuLoc/AcuLoc 2 plate in comparison with other plate types. 171Table IV details the specifications of each plate type used. AcuLoc and AcuLoc 2 both 172incorporate major differences in comparison to other plate options. The diaphyseal 173screw is tapered and has a wider diameter. The screw hole angle is fixed and titled 10 174degrees. The tapered shaping may work as a wedge against the volar cortex (22). Additionally, tilted angle screw insertion may generate unintended force toward the 175176volar cortex. Further study is required to adequately detail the mechanism leading to a 177longitudinal crack. Plate specifics may help explain the increased observation of LCs, 178and mechanical adjustments may need to be considered. Although we did not evaluate patient bone density in this study, a relationship might 179

exist between bone density and risk of LC. In general, elderly, female patients exhibit
higher rates of fragility. Iki and colleagues report the estimated occurrence rate of
osteoporosis (distal radius) among Japanese women is 51.2% in aged 50-79 years (9).

Our results indicate a higher probability of being female and an older average age for
patients who developed or worsened a pre-existing LC from treatment. Therefore,
longitudinal fractures may be a greater risk for patients with weak bone strength, such
as the elderly and those suffering from osteoporosis.

Fortunately, no severe complications arose in the LC cases evaluated in our study. In 187 188 fact, all developed LCs healed within four to six weeks. Although revision is often 189 unnecessary, surgeons and patients should recognize the possibility of cracking when 190 choosing a treatment option. Further research is necessary to determine if screw shape 191 or insertion procedure play a significant role in predicting cracks. Increased LC 192frequencies from certain plate types should be taken into consideration during implant 193 development to produce the safest, most effective product for patients. Manufacturing 194 developments may improve outcomes not only for treatment of DRFs, but other fracture types as well. 195

196 The present study did have a few limitations. We collected data retrospectively and 197 were limited to plain radiographic evaluation. In addition, bone density data was not 198obtained. Our study included a wide variety of surgeons, which may have led to variations in technique. Yet, this allowed us to analyse surgeon experience as a potential 199 200explanatory variable because of this variety. Given the study's retrospective nature, we 201were not able to control the choice of implant. Rather, implants were chosen solely on 202surgeon preference and certain types were scarcely used. Possible future research could 203examine alternate patient, surgeon, and case factors or investigate potential long-term 204complications after longitudinal cracking.

This study discussed many possible associations of LCs in DRF patients. Not only did we document the LC rate for patients evaluated, but we also considered surgeon

207	experience, fracture type, and certain patient characteristics in our explanation. As a
208	result, we found significant associations between multiple variables and the
209	development of a crack. Although we were not able to evaluate bone density of our
210	patients, we suspect a strong relationship between osteoporosis and increased risk of
211	cracking. Our study provides insight to the meagrely researched dangers of longitudinal
212	cracks resulting from volar plate fixation, and it provides the opportunity for further
213	research to delve deeper not only into more specific patient characteristics, but
214	important surgeon and procedural characteristics as well.
215	
216	
217	Conclusion
218	LC occurred predominantly in elderly, female patients with an Acu-Loc or Acu-Loc 2
219	plate. Surgeon experience level did not affect LC rates. Although we observed no severe
220	complications following longitudinal cracks after volar plate fixation, manufactures and
221	healthcare providers should still be cognizant of the potential complication. Intervention
222	may not be necessary, but rare, severe implications may exist. Further study is required
223	to understand the mechanism of cracking and implement appropriate prevention
224	techniques.

Figure Legend

- **Figure 1**: LC occurrence after plate fixation
- 227 LCs sometimes occurred after ORIF of a DRF. The crack was detected mainly through
- the elliptic slot in the plate.
- Figure 2: Case 1 pre- and postoperative anteroposterior radiographs of distal radius.
- 230 A LC occurred before ORIF. Screw placement widened and extended the LC.
- Table I: Univariate analysis of the characteristics between LC and non-LC groups
- 232 Mean age and female rate were significantly higher in LC groups.
- **Table II**: Univariate analysis of the LC occurrence rate and characteristics in each plate
- 234 group
- 235 LC occurrence rate was significantly higher in AcuLoc/AcuLoc2groups. There were no
- significant differences for tested patient characteristics between plate groups.
- 237 **Table III**: The rate of preoperative LC occurrence
- 238 **Table IV**: The specifications of implants

Figure 1: LC occurrence after plate fixation. LCs sometimes occurred after ORIF of a DRF. The crack was detected mainly through the elliptic slot in the plate.

Figure 2: Case 1 pre- and postoperative anteroposterior radiographs. A LC occurred before ORIF. Screw placement widened and extended the LC.

				• •
	LC(+)	LC(-)	P value	test
Case number	38	381		
Female rate(%)	89.5	69.3	.009*	chi-square
Comminution rate(%)	36.8	35.3	.854	chi-square
Junior rate(%)	55.3	50.7	.588	chi-square
Patients' age	77.3	64.6	<.001*	Mann-Whitney's U

 Table I: Univariate analysis of the characteristics between LC and non-LC groups

 Mean age and female rate were significantly higher in LC groups

242

Table II: Univariate analysis of the LC occurrence rate and characteristics in each plate group

LC occurrence rate was significantly higher in AcuLoc/AcuLoc2groups. There were no significant differences for tested patient characteristics between plate groups.

	AcuLoc	AcuLoc 2	Aptus	ТСР	DRP	Others	Mean	P value	Test
Case number	192	40	35	125	17	10			
LC case number	25	11	0	2	0	0		<.001*	chi-square
LC rate(%)	13.0	27.5	0.0	1.6	0.0	0.0	9.1		
Female rate(%)	75.5	57.5	65.7	70.4	76.5	60.0	71.1	.237	chi-square
								P>0.10	
Patients' age	67.0±18.0	57.8±23.1	59.0±19.6	71.8±17.8	67.2±15.1	69.4±18.2	65.7±18.8	for each	S-D test
								couples	

LC: longitudinal crack, S-D: Steel-Dwass

243

244

Table III: The rate of preoperative LC occurrence

	AcuLoc	AcuLoc2	ТСР	Total
LC case number	25	11	2	38
Preop LC case number	2	3	1	6
Preop LC rate(%)	8.0	27.3	50.0	15.8

LC: longitudinal crack

LC: longitudinal crack

245

246

Dista	Diameter of	Shape of the	Locking screw	
Plate	the screw	locking screw	hole angle	
Acu-Loc	3.5mm	Tapered	Fixed and tilted	
Acu-Loc 2	3.5mm	Tapered	Fixed and tilted	
VA-TCP	2.7mm	straight	Fixed and vertical	
DRP	2.4mm	straight	Fixed and vertical	
APTUS	2.5mm	straight	Variable angle	

Table IV: The specifications of implants

249

l

250		
251		References
252	[1-24]	
253		
254		
255	1.	Arora, R., et al., A prospective randomized trial comparing nonoperative treatment with volar
256		locking plate fixation for displaced and unstable distal radial fractures in patients sixty-five
257		years of age and older. J Bone Joint Surg Am, 2011. 93(23):2146-53.
258	2.	Beharrie, A.W., P.K. Beredjiklian, D.J. Bozentka, Functional outcomes after open reduction
259		and internal fixation for treatment of displaced distal radius fractures in patients over 60 years
260		of age. J Orthop Trauma, 2004. 18(10):680-6.
261	3.	Bentohami, A., et al., Complications following volar locking plate fixation for distal radial
262		fractures: a systematic review. J Hand Surg Eur Vol, 2014. 39(7): 745-54.
263	4.	Chung, K.C., M.J. Shauver, and J.D. Birkmeyer, Trends in the United States in the treatment
264		of distal radial fractures in the elderly. J Bone Joint Surg Am, 2009. 91(8): 1868-73.
265	5.	De Baere, T., F. Lecouvet, and O. Barbier, Breakage of a volar locking plate after delayed
266		union of a distal radius fracture. Acta Orthop Belg, 2007. 73(6): 785-90.
267	6.	Egol, K., et al., Bridging external fixation and supplementary Kirschner-wire fixation versus
268		volar locked plating for unstable fractures of the distal radius: a randomised, prospective trial. J
269		Bone Joint Surg Br, 2008. 90(9): 1214-21.
270	7.	Foo, T.L., et al., Mechanical failure of the distal radius volar locking plate. J Orthop Surg
271		(Hong Kong), 2013. 21 (3): 332-6.
272	8.	Gradl, G., et al., Non-bridging external fixation employing multiplanar K-wires versus volar
273		locked plating for dorsally displaced fractures of the distal radius. Arch Orthop Trauma Surg,
274		2013. 133 (5): 595-602.
275	9.	Iki, M., et al., Bone mineral density of the spine, hip and distal forearm in representative
276		samples of the Japanese female population: Japanese Population-Based Osteoporosis (JPOS)
277		Study. Osteoporos Int, 2001. 12(7): 529-37.
278	10.	Jupiter, J.B., M. Marent-Huber, and L.C.P.S. Group, Operative management of distal radial
279		fractures with 2.4-millimeter locking plates. A multicenter prospective case series. J Bone Joint
280		Surg Am, 2009. 91 (1): 55-65.
281	11.	Jupiter, J.B., D. Ring, and P.P. Weitzel, Surgical treatment of redisplaced fractures of the distal
282		radius in patients older than 60 years. The Journal of Hand Surgery, 2002. 27(4): 714-723.
283	12.	Knight, D., et al., Locked volar plating for unstable distal radial fractures: clinical and
284		radiological outcomes. Injury, 2010. 41(2):184-9.
285	13.	McQueen MM Fracture of the Distal Radius and Ulna . In: Court-Brown CM, H.J.,

l

- 286 McQueen MM, Ricci WM, Tornetta III P, Rockwood 8th edition. chapter 32. 2015,
 287 pp1057-1120.
- Muller ME, N.S., Koch P, Schatzker J., The comprehensive classification of fractures of long
 bones. New York: Springer. 1990.
- 290 15. Obert, L., et al., *Plate fixation of distal radius fracture and related complications*. Eur J Orthop
 291 Surg Traumatol, 2015. 25(3): 457-64.
- 292 16. Orbay, J.L., *The treatment of unstable distal radius fractures with volar fixation*. Hand Surgery,
 293 2000. 5(2): 103-112.
- 17. Orbay, J.L., D.L. Fernandez, Volar fixation for dorsally displaced fractures of the distal
 radius: a preliminary report. J Hand Surg Am, 2002. 27(2): 205-15.
- 18. Orbay, J.L., D.L. Fernandez, Volar fixed-angle plate fixation for unstable distal radius
 fractures in the elderly patient. J Hand Surg Am, 2004. 29(1): 96-102.
- Ring, D. and J.B. Jupiter, *Treatment of osteoporotic distal radius fractures*. Osteoporos Int,
 2005. 16 Suppl 2: S80-4.
- 300 20. Sahu A, C.C., Mills SP, Batra S, Ravenscroft MJ., Reoperation for metalwork complications
 301 following the use of volar locking plates for distal radius fractures: a United Kingdom
 302 experience. Hand Surgery, 2011. 16(2): 113-118.
- 303 21. Sando, I.C., S. Malay, and K.C. Chung, Analysis of publication bias in the literature for distal
 304 radius fracture. J Hand Surg Am, 2013. 38(5): 927-934.
- 305 22. Sugun, T.S., et al., A new complication in volar locking plating of the distal radius: longitudinal
 306 fractures of the near cortex. Acta Orthop Traumatol Turc, 2016. 50(2): 147-52.
- 307 23. Tarallo, L., et al., Volar plate fixation for the treatment of distal radius fractures: analysis of
 308 adverse events. J Orthop Trauma, 2013. 27(12): 740-5.
- 309 24. Yukata, K., et al., Early breakage of a titanium volar locking plate for fixation of a distal radius
 310 fracture: case report. J Hand Surg Am, 2009. 34(5): 907-9.