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A CRE H New approaches to quantum correlations:
Majorana braiding dynamics and
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Modern quantum theory studies Evarious microscopic phenomena of intrinsic uniqueness. As a form of
probabilistic theory that relies on complex linear spaces, many physical quantities are manifested under the
form of different correlations. Hefe, we shall particularly focus on the idiosyncrasies of non-locality from
two different perspectives: topoloéical superconducting wires where fermion-like edge-mode pairs displays
exotic non-Abelian statistics [1,2] and general non-local correlations between binary degrees of freedom [3].
The first is recent object of interesi for the realization of fault-tolerant quantum computation [4,5], owing to
the reliability of topological states that do not couple to disturbances from the environment. The second
stumbles on older questions around quantum mechanics like EPR paradox [6-8] brought under new

questionings about the physical limits of nonlocality in recent years [9].
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Topological quantum computation & Majorana braiding dynamics

Quantum information processing has been lurking around since 80s as an idea of using quantum mechanics
to handle information like computers do. It has attracted more and more attention in recent years as efforts
towards its realization grew stronger and more visible results have piled up, with major companies also
taking part in this quest. Needless to say, the challenge of manipulating information on quantum level is far
from trivial and has always been bathed in skepticism even among leaders in the field. One obvious problem
arises from the fragility of quantum states to various sources of noise from the environment, leading to
parasitic decoherence that severely limits any attempt of computation. Similarly, the difficulties to achieve
precise control even on an isolated noiseless system pose another critical obstacle that must be overcome.
Different approaches to solve such matters exist, among them the idealization of topological quantum

computation.

Topological quantum computation relies on topology to give stability to a system and achieve fault-tolerance
[10]. It can be realized by using anyons, topological excitations on low-dimensional systems, to encode
and process information. In three space dimensions and above, particle exchange can be represented with a
permutation group, whose representation becomes simply =+1, corresponding to bosons and fermions.
However, in one or two space dimensions, particles must go around each other if they are exchanged, and
their path can no longer be ignored. This exchange is called braiding, which makes up the braiding group. In
general, the representation of the braiding group can assume any form. If the braising group is Abelian, its
representation reduces to a phase factor e», which is not physically relevant alone. Nonetheless, if the
braiding group is non-Abelian, we have non-Abelian anyons whose braiding representation becomes higher
dimensional, i.e. non-commuting matrices. This allows for state transitions upon particle exchange, which
can be a reliable and robust method for controlling quantum states and performing computations, making this

property the heart of topological information processing.

The simplest example of such non-Abelian anyons is the so-called Ising anyon. Essentially, two Ising anyons
taken together can add up to either a fermion or a boson (vacuum). It has been noticed that Majorana
fermions in condensed matter hetero-structures can behave exactly as Ising anyons, allowing their
application in topological quantum computers. Majorana fermions are fermions that are their own
antiparticle, following anti-commutation relations but squaring to 1. This algebraic structure reproduces the
same properties as an Ising anyon, and braiding Majorana fermions should have non-trivial results. Such
particles appear in condensed matter as zero-energy edge-modes in topological
superconductors, making them more often called Majorana bound states (MBS) or
Majorana zero modes (MZM). Theoretically, electrons and holes coalesce on edges
of semiconducting nanowires with strong spin-orbit interaction under Zeeman field,

made superconducting by proximity with a standard s-wave superconductor [11,12].

We follow Kitaev model [13] for quantum wires with free Majorana fermions on the

Fig. 1: Cruciform junction for

edges, under Hamiltonian
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braiding of Majorana fermions.

Orange links represent control gates.
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to simulate the dynamics of the system, where the first term gives on-site interaction with chemical potential
1o, and the second summation has a hopping term and a superconducting pairing term, respectively. We can
implement the exchange of two edge-mode by making a cross junction of two such wires and switching
central gates on/off to connect/disconnect edges (fig. 1). To realize a NOT-gate, for example, one only has to
exchange two edge modes belonging to different wires twice, and the overall state should change to an
orthogonal state. The procedure for such exchange can be seen explicitly in fig. 2, with T standing for each

gate operation time.
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Fig. 2: Exchange process of two Majorana bound states. Each central gate is shut/open with operation time 7. Central links are
shown present or cut according to the state of the gates in each given instant. (a) and (g) have the same gate state, but inner MBSs

have been exchanged.

Starting from a pair of MBSs and numerically calculating the time evolution steps of fig. 2 (i.e., by solving
the time-dependent Bogoliubov-de Gennes equation), we can assess the braiding conditions and its success
ratio. As a NOT-gate is expected to have orthogonal initial and final states, one only has to observe the
projection of the wavefunction on different bases. We set our chemical potential to p,= 0.7A and A, = 0.12,

and examine various wire length conditions (defined as

number of sites per half-wire). Figure 3 shows the

success rate under such conditions.

From this analysis, one can infer operation time

windows and possible wire lengths. For a

superconducting gap around 250 peV, gate operations

are limited to tens of nanoseconds at fastest. The slowest

possible operation depends on the coupling energy of

Majorana edge-modes, which is governed by wires

Fig. 3: Success rate of Majorana braiding. Each line accounts

th and depend terial, i f
length and depends on material. We estimate a length of ¢ gieee ot ire lengths, with 1= 0.7k and A, = 0.1 (inset,

micrometer order to be necessary for common icosagen A=2)

pnictogenide [14] semiconducting nanowires.
Information indistinguishability & quantum nonlocality

When we deal with quantum information, the underlying physical foundation for any discussion is the
information unit called quantum bit or qubit for short. As the name should make clear, qubits represent any

two-level system or two-value quantum degrees of freedom. As such, it does not have a single clear physical
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character. For instance, electron spins (fermionic) may serve as qubits as well as light polarization (bosonic),

or even non-local Majorana zero modes (anyonic).

Although the concept may sound relatively new, many physical aspects that have been investigated in the
past can be rephrased in information theory formalism without much change. As an example, the study of
quantum properties of a spin singlet state dates the dawn of quantum mechanics, and its non-triviality has
been pointed as a possible flaw in quantum theory early on, since their anti-correlation could be a margin for
superluminal information transmission [6], what is nowadays called “signaling.” The alternative advocated
by Einstein ef al. was to consider some sort of hidden variable that would account for each spin state even if
we have no possible access to such variable, hence defining each spin state by itself. But however far-fetched
a spin singlet may seem, it was later shown that such states, if complying with quantum theory, cannot accept
a hidden variable to determine their parts [7,8]. In other words, either quantum theory correctly describes
such states without accepting any other parameters, or quantum theory is wrong and other parameters may be
adopted in a different theory. This prohibition of hidden variables defines “non-locality,” indicating the
presence of correlations that can be arbitrarily space-separated without a common source. It has also been
shown that the quantum limits for the correlation calculated by Clauser-Horne-Shimony-Holt (CHSH)

inequality [8] is given by a V2 factor on the classical limit, what is now known as Tsirelson bound [15].

But in 1994, Popescu and Rohrlich showed that Tsirelson bound cannot be reproduced only by non-locality
and no-signaling axioms alone [9]. This has far reaching physical implications: is there any other
fundamental principle in nature that limits quantum correlations? Or could quantum theory be short of
complete and even “more non-locality” be actually possible? We address this problem by taking a new

perspective: information indistinguishability.

Usually in quantum mechanics, “indistinguishability” denotes the lack os possible discernment of identical
particles, which are generally fermions or bosons. For anyons, indistinguishability is not usually considered,
since they have a somewhat hard core and can be identified by their position in real space. Still, this
traditional notion of indistinguishability can have non-trivial consequences [16,17]. On the top of it,

: information indistinguishability is postulated as the
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) qubits. By treating qubits as “identical particles,” like
; electrons and photons they can be identified and rendered
55 '"-;_i distinguishable when out-of-bounds regarding one another,
b Y TPy LT ‘l'iiiﬁib . . . )
i i.e., when they are not interacting. On the other hand, qubit

coupling may leave once distinguishable qubits
indistinguishable. It b tood in t f lack of
Fig. 4: Lack of which-way information [17] indistinguishable. It can be understood in terms of lack o

ich- infa ti 17 fig. 4).
depicted on an arbitrary entangling gate. which-way information [17] (see fig. 4)

It is worth noticing that the words “distinguishable” and
“distinct” hold different meaning in information indistinguishability context. The later is used to indicate
when two qubits are physically unambiguously identifiable, like left/right quantum dots, superconducting

qubit and NV-center qubit pair, carbon and hydrogen nuclear spins in a chloroform molecule, or even an
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electron and a proton spin in a hydrogen atom. All these are distinct qubits, for there is at least one physical
property that uniquely define them. On the other hand, their information is said distinguishable only if we
can unambiguously assign this information to a distinct qubit. For instance, one may not be able to access an
electron’s qubit of a hydrogen atom in its ground state until a magnetic field or equivalent influence
overcomes spin-spin coupling and produces different responses (nuclear magnetic resonance and electron

spin resonance).

In order to examine entanglement between qubits we consider indistingnishable, we can learn from particle
indistinguishability. Sciara ef al. have discussed the universality of Schmidt decomposition for such systems
[18] by using a symmetric inner product of quantum states [17]. This product, if written for a projection of
two-particle states onto a single-particle, becomes

(€Y, 9) = (£lw)é) +nlEld) )
with # = +1 according to statistics. Looking at particle exchange as a particular case of symmetry (exchange
symmetry), we can write it in more general terms as

(&lv, 8) = (El¥)g) + (€El)#)

where the prime indicates a symmetry transformation (e.g., ¢ ° = ¢ and ¢ ° = n¢ for exchange
symmetry). Indistinguishability shall be regarded as a sort of symmetry to be dealt with this kind of inner
product.

To handle indistinguishability, we shall rethink how to represent qubits first. To define distinguishable qubits,
we need to grasp the physical background to which we can assign information. Hence, it is natural to rewrite
kets as
Jigp —— 7.4}
with the physical background reference r explicitly indicated. We can now further expand the generalized
symmetric product to exclude the background information, writing
(r1,ralre, ¥yrad) = (rifre, ¥)(ralrz, @) + (rilry, ') (ralra, ¢')

for the general symmetric product of two (distinguishable) qubits defined on each ones reference. Writing
each qubit bases as |, ¢) {Ir, 0 ,Jr, 1) }, we consider symmetries following ¢’ = ¢ + 1 mod 2, owing to its
relative ubiquity and possibility to represent time reversal as well as exchange symmetries. Also, we assume

that applying a symmetry transformation may contribute with a general phase factor to the transformed state.

It is possible to prove that, for indistinguishable bases spanning a subspace V, with an operator I1 being the
projector onto this indistinguishable subspace, there exist entanglement for states living in such space. For
this, we compute || IT - S ||, where S is the projector onto Schmidt bases, and notice that || [T - S || < 1, what
guarantees the two projectors to have the same rank [19]. Since Schmidt rank is a well known mark of
entanglement, as the rank equals to the number of indistinguishable bases, we may notice that
non-separability can be assured by indistinguishability. Tsirelson’s bound can be inferred by calculating the
maximum overlap of a projector on the indistinguishable subspace and an arbitrary observable, computing

the Hermitian inner product of operators I and joint observables 4 and B, each acting on a different qubit.

We can further generalize this result by taking together the “exclusivity principle” approach proposed by

Cabello [20]. On general probabilistic theories not restricted to quantum mechanics, one can define general
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bits (gbits). By considering two copies of a system and a joint sharp measurement on both copies, and
supposing such measurement to exist in compatible pairs of different bases, Cabello demonstrates that a V2
factor appears as a tight bound multiplier (compared with the classical case) for gbits correlations. The
justification of such assumption is nonetheless unclear. Using an information indistinguishability argument,
the measurement in question has its existence assured by the way which it is defined. Cabello’s measurement
compares results of measurements on both copies of the system, establishing a relative reference relation
between the observed gbits and rendering them indistinguishable. In such case, there ought to be at least two

(indistinguishable) bases on which these measurements are compatible, supporting Cabellos’s proof.
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