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Chapter 1

Introduction

1.1 Regenerative Medicine

The loss or failure of an organ or tissue is one of the most frequent, devastating, and
costly problems in human health care. The typical therapy is to get an artificial organ
or a transplant. Unfortunately, artificial organs and other implanted abiotic devices
often fail over time. Transplantation of organs to replace the incurable ones, such as
heart, liver, or kidney, is a highly successful therapy [3]. A successful transplant requires
a compatible and willing donor. However, the need for donor organs far exceeds the
supply. Each year, millions of patients die while waiting for the organ transplantations.
This donor scarcity problem has resulted in new technique which is to build artificial
organs by cells and organic materials, which is defined as tissue engineering [4]. Langer
and Vacanti defined this tissue engineering as “A new field, tissue engineering,
applies the principles of biology and engineering to the development of functional
substitutes for damaged tissue [3]."
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Figure 1.1 (a) Typical real tissues such as blood vessel. (b) Major approaches to build 3D artificial
tissue[5].
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The regenerative medicine is mainly carried out on the following aspects: cell
therapy for tissue and organs; activation of endogenous cells as an approach to
regenerative medicine; regeneration of tissue using biocompatible materials and cells.
The latter aspect is usually referred as tissue engineering, and is believed to be highly
promising for tissue regeneration. Generally, tissue engineering is considered as a sub-
discipline of regenerative medicine that intends to use cell-constructs to achieve tissue
repair and is aimed at delivering safe, effective and consistent therapies. However,
scientists are still in the early stages of understanding how this works [6]. Like in our
bodies, the tissues and organs are with complex three-dimensional (3D) shapes and
structures, as shown in Figure 1.1(a). Therefore, how to control the positions of cells
and form certain shapes by cells as the real tissues is a promised way to generate
artificial cell tissues [7].

Assembly of cells to form 3D shapes and structures offers a practical alternative to
natural tissue models. These systems provide an environment in which one or more cell
types can be encouraged to form tissues-like constructs. If an artificial organ is to
assemble and work properly, specific cells must be directed to specific locations at a
specific time, forming patterns of cells with a defined function [8]. This is a
fundamental feature of tissue and organ assembly in all living organisms. A specific 3D
multi-cellular structure is often critical for proper cellular function. The ability to build
such a structure would be useful for tissue engineering [9]. A common method to build
3D tissues from 2D cell structures as basic building blocks as shown in Figure 1.1(b).
One useful application would be for organ repair. Another useful purpose would be the
study of diseases whose progress is impacted by multi-cellular topology [10].

1.2 Tissue engineering

Generally, tissue engineering is considered as a sub-discipline of regenerative
medicine that intends to use cell-constructs to achieve tissue repair and is aimed at
delivering safe, effective and consistent therapies. Tissue engineering (TE) combines
biological and engineering expertise to provide artificially developed substitutes for
tissues and organs, hence studying the tissue formation process for generating
implantable artificial tissues and organs. [3, 4, 11, 12].

1.2.1 Background and current issues

Tissue engineering completely avoids the risks of immunological responses such as
rejections, as well as viral infections, by using autologous cells, as shown in Figure 1.2.
Traditionally, the basic concept of tissue engineering includes a scaffold that provides
an architecture on which seeded cells can organize and develop into the desired organ
or tissue prior to implantation [11]. Building an organ model using tissue engineering
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approaches relies on the fabrication of 3D polymeric scaffolds upon which cells can
proliferate and differentiate into a structurally and functionally appropriate target tissue
or organ. Cells within engineered tissues may be those that are stimulated to grow into
an implanted scaffold or cells that are pre-seeded within the scaffold [13].
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Figure 1.2 Concept of tissue engineering[ 14].

1.2.2 Extracellular Environment

What's more, tissues are not made up solely of cells. A substantial part of their
volume is extracellular space, which is largely filled by an intricate network of
macromolecules constituting the ECM. This matrix is composed of a variety of fibrous
proteins and polysaccharides that are secreted locally and assembled into an organized
meshwork in close association with the surface of the cell that produced them.
Therefore, the specific composition and distribution of the ECM constituents will vary
depending on the tissue source. Table 1.1 shows the major components of ECM and
their function, and location.

The ECM is more than an inert packing material or a nonspecific glue that holds
cells together; it often plays a key regulatory role in determining the shape and activities
of the cell. For example, enzymatic digestion of the ECM that surrounds cultured
cartilage cells or mammary gland epithelial cells causes a marked decrease in the
synthetic and secretory activities of the cells. Addition of extracellular matrix materials
back to the culture dish can restore the differentiated state of the cells and their ability
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to manufacture their usual cell products [15].

(%)

Figure 1.3 The extracellular matrix (ECM) of cartilage cells. (a) Scanning electron micrograph of a

portion of a colony of cartilage cells (chondrocytes) showing the extracellular materials secreted by the
cells. (b) The ECM of a single chondrocyte has been made visible by adding a suspension of red blood
cells (RBCs). The thickness of the ECM is evident by the clear space (arrowhead) that is not penetrated
by the RBCs[15]. The bar represents 10 um.
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Table 1.1 The major components of ECM and their function, and location [16].

Component Function Location

Collagen Tissue architecture, tensile strength, cell-matrix  Widely distributed
interaction, matrix—matrix interaction
Elastin Tissue architecture, elasticity Tissues requiring

elasticity (lung, blood

vessel, skin)
Proteoglycans  Cell-matrix interaction, matrix—matrix Widely distributed
interaction, cell proliferation, cell migration
Hyaluronan Cell-matrix interaction, matrix—matrix Widely distributed
interaction, cell proliferation, cell migration
Laminin Basement membrane component, cell migration Basement membranes
Fibronectin Tissue architecture, cell-matrix interaction, Widely distributed
matrix—matrix interaction, cell proliferation, cell
migration
Fibrinogen Cell proliferation, cell migration, hemostasis Blood, wound healing

1.2.3 Construction methods for artificial tissues

Currently, there are mainly two fundamental construction methods in tissue
engineering, which are Top-down approaches and Bottom-up approaches, as shown in
Figure 1.4. In top-down approaches, cells are seeded on a biodegradable polymeric
scaffold and grow according the shape of the scaffold to be a tissue. The cells are
expected to populate the scaffold and create the appropriate microarchitecture often
with the aid of perfusion, growth factors or mechanical stimulation [17]. However, even
the surface patterning or more biomimetic scaffolding are used, top-down approaches
often have difficulty recreating the intricate microstructural features of tissues [18],
because the current biomaterials and micro fabrication methods are with certain
limitation for creating intricate 3D biomimetic structures.

So far, many achievements have been obtained by conventional top-down
approaches. In 1997, Dr. Joseph Vacanti in US grew a human ear from cartilage cells
on the back of a mouse, which demonstrated the scaffold based 3D cell structures and
tissues [19]. This study evaluated the feasibility of growing tissue-engineered cartilage
in the shape of a human ear using chondrocytes seeded onto a synthetic biodegradable
polymer fashioned in the shape of a 3-year-old child's auricle. A polymer template was
formed in the shape of a human auricle using a nonwoven mesh of polyglycolic acid.
Each polyglycolic acid-polylactic acid template was seeded with chondrocytes isolated
from bovine articular cartilage and then implanted into subcutaneous pockets on the
dorsa of 10 athymic mice. The 3D structure was well maintained after removal of an
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external stent that had been applied for 4 weeks. Specimens harvested 12 weeks after
implantation and subjected to gross morphologic and histologic analysis demonstrated
new cartilage formation. The overall geometry of the experimental specimens closely
resembled the complex structure of the child's auricle. These findings demonstrated that
polyglycolic acid-polylactic acid constructs can be fabricated in a very intricate
configuration and seeded with chondrocytes to generate new cartilage that would be
useful in plastic and reconstructive surgery, as an artificial part used in tissue
engineering. However, the auricle is a simple structure and this method is difficult to
be used for building complex tissues.
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Figure 1.4 The traditional, top-down approach (right) involves seeding cells into full sized porous
scaffolds to form tissue constructs. This approach poses many limitations such as slow vascularization,
diffusion limitations, low cell density and non-uniform cell distribution. In contrast, the modular or
bottom-up approach (left) involves assembling small, non-diffusion limited, cell-laden modules to form

larger structures and has the potential to eliminate the shortcomings of the traditional approach[20].

In contrast to the traditional scaffold-based “top-down” approaches, “bottom-up”
tissue fabrication methods using micro scale units as building blocks, including cell
sheets and cell aggregates, are potentially powerful tools to reconstruct organomimetic
and uniformly dense microstructures [21, 22]. Bottom-up approaches aim to address
the challenge of recreating 3D biomimetic structures by designing structural features
on the microscale to build modular tissues that can be used as building blocks to create
larger tissues. These "building block" can be created in many ways, such as cell
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aggregation, cell embedded bio-scaffold, creation of cell sheets [7, 23, 24]. These
"building block" can be assembled into larger 3D tissues through microtechnology such
as fluidic system, rapid prototyping or electrical manipulation [25-27]. Therefore, the
bottom-up approaches are recommended for 3D cell structure assembly in tissues
engineering field.

One method for building artificial macroscopic three-dimensional (3D) tissue
architectures has been presented as shown in Figure 1.5. This is for rapid construction
of collagen gel-based micro-tissue units seeded complex "tissue-like" microstructure.
Seeded cell beads immediately stick to each other to assemble uniform and arbitrary
shaped macroscopic 3D tissues within a PDMS mold.
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Figure 1.5 Analyses of the reconstructed 3D tissue architectures. A) Cell viability of 30 h cultured 3D
tissue assessed using the live/dead assay kit. B—C) Microscopic views of the tissue section after
reconstruction for 24 h. The cell densities are uniform and tissue necrosis is not observed. D) Cell density
of the 3D tissue architecture at various regions measured from the tissue section. The cell density was

broadly comparable in all regions of the tissues after 24 h of reconstruction (6.5 x 10° £ 0.1 cells cm ~

*).[21]

Based on cell aggregation, large-scale cell pattern can be formed using PDMS mold
as shown in Figure 1.5. The monodisperse cell beads were molded into a 3D tissue
architecture. Size-controlled cell beads were prepared by culturing cells over the
surface of monodisperse collagen gel beads or collagen gel beads encapsulating another
cell type. Cell beads were stacked into the designed silicone mold to form 3D tissues.
During tissue formation, the medium diffused into the cavities between the cell beads,
supplying nutrients into the 3D constructs. The cells located on the surface of the beads
form cell—cell connections, then migrated and grew within the collagen gel beads and
finally formed the 3D tissues [21]. However, the low design flexibility of current mold
limited this method to form complex "tissue-like" structure in three-dimension. Another
limitation is that the multi-cellular tissue is difficult to build since it is impossible to
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address different type of cell beads at the proper position or layer in mold so far.

Figure 1.6 Cell sheet engineering for constructing 3D cell tissues. (a) Age- and risk-matched tissue-
engineered blood vessels (TEBVs) TEBV before implantation (4.2 mm internal diameter) being removed
from its temporary tubular support. (b)TEBYV, anastomosed as end-to-end interpositional femoral graft,

immediately after removal of the cross-clamps [28].

Stacking of cell layers, also referred to "Cell sheet engineering", has been developed
for regenerate many tissues. Cell sheet engineering allows for tissue regeneration by
either direct transplantation into host tissues or the creation of three-dimensional
structures such as tissue-engineered blood vessels (TEBVs) that serve as arterial bypass
grafts in long-term animal models via wrapping sheet around a Teflon-coated stainless-
steel temporary support tube. as shown in Figure 1.6 [28]. By avoiding the use of any
additional materials such as carrier substrates or permanent synthetic scaffolds, the
complications associated with traditional tissue engineering approaches such as host
inflammatory responses to implanted polymer materials, can be avoided. However, the
cell sheet engineering method is suitable to construct functional small-diameter
conduits, but not flexible enough for building complex 3D shape of tissues.

A new manufacturing technology called rapid prototyping (RP) was developed at
the Freiburg Materials Research Center to meet the demands for desktop fabrication of
scaffolds useful in tissue engineering [29, 30]. A key feature of this RP technology is
using a deposition system to lay down a material in a layer by layer manner in RP three
motorized axis. In spite of the increasing interest of tissue engineers in the use of RP,
there are several challenges that need to be addressed, namely the limited range of
materials, the optimal scaffold design, the bioactivity of the scaffold, as well as the
issues of cell seeding and vascularization [31].
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Figure 1.7 (a) Schematic representation of the coaxial needle system for the extrusion of alginate fibers.
(b) Photograph of the 3D fiber deposition system during scaffold production. (c—e) Optical micrographs
of printed structures with (c¢) squared, (d) hexagonal and (e) radial patterns of fibers. Scale bars: 500
mm.[27].

In Figure 1.7, hydrogel scaffolds with a designed physical model from Computer-
Aided-Design (CAD) data were generated by this RP process. Surface coating were
achieved by the deposition of a chitosan on the scaffold fiber and its subsequent cross-
linking with EDC and genipin, assured their structural stability in the culture medium
for a prolonged period of time. Preliminary culture tests and high level of albumin and
urea secretion prove the feasibility of this system as an attractive tool for testing the
toxicity of new drugs.

Direct printing of cell embedded microstructures and assembly them to large tissues
provides an alternative to scaffold-based tissue engineering, as shown in Figure 1.8.
Organ-printing technology using self-assembled tissue spheroids has been visualized
by building an intraorgan vascular tree based on using three basic types of tissue
spheroids: solid (non-lumenized) vascular tissue spheroids; mono-lumenized ascular
spheroids (cyst-like spheroids with one big lumen); and histotypical microvascularized
tissue spheroids [32].
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Figure 1.8 Bioprinting of segments of intraorgan branched vascular tree using solid vascular tissue
spheroids: (a) Kidney intraorgan vascular tree. (b) Bioprinted segment of vascular tree. (c) Physical
model of bio-assembly of tube-like vascular tissue construct using solid tissue spheroids. (d) Bio-
assembled ring-like vascular tissue constructs of tissue spheroids fabricated from human smooth muscle
cells. Tissue spheroids are labeled with green and red fluorescent stains in order to demonstrate absence
of cell mixing during tissue fusion process. (e-g) Sequential steps of morphological evolution of ring-

like vascular tissue construct during tissue fusion process [32].

Compared to 2D cell culture, three-dimensional (3D) cell culture has drawn much
attention in various applications, including tissue engineering, drug discovery, cancer
biology, regenerative medicine and basic life science research. There are a variety of
platforms used to facilitate the growth of three-dimensional (3D) cellular structures
such as nanoparticle facilitated magnetic levitation and gel matrices microwell. The
microwell array has been widely used for 3D cell aggregates such as spheroids[33]. By
immobilizing cells on micropatterned surfaces, cell shape, size and homogeneity can
be controlled. Also, the cell aggregates can be retrieved to generate nearly homogenous
cell aggregates for various research purposes. However, how to choose an optimal
material for fabricating microwell is one of the challenges that we faced.

In general, hydrogel materials that are employed for 3D cell culture present natural
binding sites cells can interact with, and that these interactions generate signaling
cascades which in turn promotes cell migration, differentiation and remodeling of the
gel matrix[34]. A. Khademhosseini introduced a novel microwell to culture hES cells
with controlled cluster sizes for maintenance and subsequent differentiation [35].
Jeffrey used soft lithography to fabricate microwells without the use of complicated
chemicals or expensive clean rooms [36], As shown in Figure 1.9 the cells can be
aggregated using hydrogel microwells. PDMS molds were fabricated by curing
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1.2 Tissue engineering

prepolymer on silicon masters patterned with SU-8 photoresist. To fabricate PEG
microwells, a PDMS mold containing protruding features was pressed onto a thick PEG
polymer layer followed by crosslinking with UV and removal of the mold. Acrylate
groups were used to anchor the photocrosslinkable PEG to the substrate. To generate
EBs, a high-density cell suspension was placed on the microwell arrays and allowed to
settle within the wells.

These papers proved that PEG microwells are possible to template ES cell aggregates
to generate large numbers of isolated EBs within an array. However, this approach has
drawbacks in that the mold will easily damage the gel structure during the cell retrieve
process due to the fragile property of gel.

40 um
“
o %
75 um e &
e e
L -
° ¢
100 pm
150 pm

Figure 1.9 Cells seeded in PEG microwells of different sizes: 40 mm (A), 75 mm (B), 100 mm (C), and
150 mm (D) were stained for viability after 10 d both within microwells and after cell aggregates were
harvested from the microwells (E, F, G, and H, respectively). Viability was measured using Molecular
Probes’ live-dead stain, where live cells metabolize calcein AM and fluoresce green while dead cells
uptake ethidium homodimer and fluoresce red. Columns 1 and 3 show light microscope images of cell

aggregates whereas columns 2 and 4 show fluorescent images. Scale bars correspond to 200 mm[36].

Multi-functional microfluidic devices show high potential to be used in tissue
engineering filed with many advantages, such as easy handling, closed environment
and high efficiency [37]. These devices are not only for testing regeneration process,
but also used to construct cell structures. One dielectrophoretic microfluidic device was
demonstrated for generating sphere shaped cell structures [38].

11
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Table 1.2 Summary of the construction methods for artificial tissues

Material and

Approach Advantages Disadvantages Ref.
method
) ) Difficult for complex
Biodegradable Directly 3D shape ) ) [19, 39-
Scaffold ) multi-cellular tissues
polymer formation ) o 41]
and cell differentiation
Low design flexibilit
Cell Cell beads, cell Scaffold-free, multi- dg N Y 021, 42]
: and shape ,
aggregation stimulation cellular structure p )
controllability
: 2D shaped cell units
Micro Hydrogel, Arbitrary shape, P
fabrication ) ] i needs further 3D [43-46]
photolithography microscale resolution
assembly
Cell sheets Scaffold-free, direct Low design flexibility,
and Cell layers transplantation, mass difficult for complex [47-49]
stacking products shapes
High design Difficult for thick
Cell Printing, position o .g ) g o
printing support flexibility, directly 3D structures, limited [50-53]
shape formation resolution
Cell
Random ated Microscale resolution, Low shape (54]
encapsulate
assembly P ) complex structures controllability
units
Directed 1 olat Microscale resolution, Special designed cell (55. 56]
cell plates ,
assembly P self-assembly plates

The summary of these methods is shown in Table 1.2. These undergoing issues,
such as fabrication of cell blocks, control of cell aggregation and assembly of
engineered tissue building blocks, involve many techniques in terms of observation,
micro manipulation, micro fabrication and microfluidic system. Therefore, those
techniques provide the promising ways to realize the bottom-up approach (3D cell
structure assembly) of tissue engineering.

1.3 Bio-assembly for tissue engineering
In order to greatly raise the level of basic technology for regenerative medicine by
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1.3 Bio-assembly for tissue engineering

constructing 3D cellular systems in in vitro environments, creating 3D tissues suitable
for medical applications, and elucidating the functions that make these cell systems act

as tissues, manipulation and immobilization of the cells are needed as shown in Figure
1.10.

Microtechnology is the technology with features near one micrometer (one
millionth of a meter, um). For the naked eye, an object larger than 100 um is visible.
Cells can vary between 1um and hundreds of micrometers in diameter. As the main
research object is the cells in tissue engineering, microscale technologies are needed in
this research field because this small scale is already beyond the limitation of our naked
eye and hands. Therefore, microtechnologies, such as micro fabrication,
micromanipulation and microfluidic devices, are used as promising means for
constructing 3D cellular structures in tissue engineering.

[ Hyper Bio Assembler for 3D Cellular Innovation ]

= Innovation of tissue engineering / life sciences  mw—

Creation of theories to construct 3D
tissue in vitro and clarify the
principles of functional expression

[ A01: Measurement & control
of cell characteristics
Separation and selection, and

functional expression control based on

~ cell characteristic measurement

o F

\ i A03: Analysis & evaluatio
of 3D cellular system

A02: 3D cellular system
assembly

3D cellular system assembly
using selected target cells

PP )

Clarification of functions of 3D cellular '(§ e lel
systems by applying measurement and b -
control technology

i ;
A9 -
€ > o

Sb‘Ft tissue Hard tissue

Figure 1.10 Research in a new field, the hyper bio assembler for 3D cellular innovation (Copyright (C)
Arai Laboratory, Osaka University, All Right Reserved.)

In order to construct 3D cell structures for tissue engineering, manipulation and
immobilization of the cells are needed. Most of the cell embedded components are also
fabricated in microscale. Besides, for controlling the growth of assembled cell
structures, devices with microscale features are also needed [57]. The fabrication,
manipulation and assembly process need a suitable micro scale environment. The
microfluidic system is one of the proper tools for example. However, for doing such
tasks under microscale, the fundamental observation equipment is needed, which is an
optical microscope (often referred to as the "light microscope"). Besides, a lot of
technologies developed with optical microscope are used in cell manipulation and 3D

13



Chapter 1 Introduction

assembly.

1.3.1 Optical microscope system

The optical microscope is a type of microscope which uses visible light and a
system of lenses to magnify images of small samples. Since the first development of
the compound microscope by Zaccharias Janssen in the end of 16" century, the design
was further improved by Anton Leeuwenhoek and Robert Hooke (Figure 1.11),
scientists have done huge jobs to improve the performance of the OM [58, 59].
Nowadays, the image from an optical microscope can be captured by cameras to
generate a micrograph rather than directly observed by eye. There are many variants of
the basic compound optical microscope design for specialized purposes up to now, such
as comparison microscope, confocal microscope, USB microscope, and digital
microscope, etc.

Figure 1.11 18th century microscopes from the Musée des Arts et Métiers, Paris.

These powerful equipment and tools under optical microscopes provide many
approaches which are able to be involved in the cell manipulation and 3D assembly for
tissue engineering.
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1.3 Bio-assembly for tissue engineering

1.3.2 Micromanipulation system

In microscale, the control of objects by our hands is impossible. Micromanipulation
system which based on microtechnology is developed to enhance the manipulation
ability for handling cells and small objects. For micromanipulation, special
requirements are added compared to macroscale manipulation such as gentle handling
to prevent damages to cells during manipulation, low complexity of the device because
of the limited space, and mechanisms to prevent adhesion of handled objects because
of surface forces [60]. Many micromanipulation systems are developed such as direct
manipulation, magnetic driven manipulation, and optical / electrical based
manipulation [61-64].

Recently, micro-robotic techniques aiming at the observation, measurement and
immobilization of micro-/nano-scale objects have been developed. Amicro-assembly
technique with a micro-robotic system has been applied in manufacturing and
biomedical research [65]. In particular, mechanical micro-gel assembly techniques with
optical or magnetic micro-robotic systems provide novel methods for bottom-up
assembly with higher controllability [66]. As one method of bottom-up assembly in
generating complex biological tissues, through direct contact between the mechanical
end-effector and the microstructure without the restriction of the operational
environment interfering (electrically or optically), micro-robotics can provide more
stable and flexible manipulation with a greater force [65]. For most micro-robotic
systems to be able to assemble a cellular 3D structure, the main issue is how to achieve
precise control and direct contact of the assembly units during manipulation. Due to the
uncertainties in the micro-world, with a confined working space under the microscope,
unpredictable dynamic effects strongly influence manipulation [66].

The 2D donuts (PEGDA by UV exposure) were prepared in the dish and monitored
by the vision feedback system. The outer diameter, inner diameter and thickness of the
fabricated donuts were 200 pm, 100 um and 70 pm, respectively. As shown in Figure
1.12(a) and Figure 1.12(b), the up-down micro-assembly with the mainmanipulator was
performed once the system finished the initialization. Figure 1.12(c) to Figure 1.12(f)
show the frequent switching of different coordinated manipulation strategies during
micro-assembly to adjust or compact the assembled donuts. As a result, the postures of
the assembled donuts were optimized and aligned as an array. After regulating the
expected 2D components on the main-manipulator, the secondary UV cross-linking was
utilized to connect the donuts as a whole microchannel.
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Figure 1.12 Micro-robot-team assembly of the vascular-like microchannel[67].

Soft lithography is a set of techniques for creating microstructures and
nanostructures based on printing, embossing and molding using elastomeric stamps
with the patterns of interest, which is a robust, reproducible, biocompatible and
inexpensive fabrication approach that enables patterning of both planar and non-planar
substrates [68]. The central component for soft lithography is a layer of PDMS, or
another polymer with similar characteristics, with embossed structures or bas-relief
structures on the surface.

As shown in Figure 1.13, the soft lithographic techniques that have been widely
explored include the microcontact printing, replica molding, microtransfer molding,
micromolding in capillaries, and the microfluidics [127]. Among them, microcontact
printing refers to the transformation of patterns from the surface of a topographically
patterned PDMS stamp to the surface of a substrate; the replica molding refers to
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1.3 Bio-assembly for tissue engineering

duplicating the shape, size and pattern of features on a master; micromolding in
capillaries refers to using a typographically patterned layer of PDMS in contact with a
surface to form a network of microchannels; microtransfer molding refers to patterning
materials in which a thin layer of a liquid prepolymer is applied to the patterned surface
of a PDMS stamp; microfluidics refers to a set of channels that have micron-scale
dimensions (typically between 5-500 um), and are used to manipulate fluids. And it
involves the techniques using the elastomeric polymers such as PDMS to fabricate
microfluidic channels and networks which are formed by placing a layer of PDMS with
channels embossed on the surface in contact with a glass (or polymer) surface that
forms the roof or floor of the channel [69].

a Replica moulding € Micromoulding in capillaries e Microfluidics

Micropatterned
layer of PDMS

Invert PDMS and
bond to slide

Microfluidic

1 Remove PDMS channels channels

>
\______....-- Polymer

Embossed layer

of polymer microstructures
b Microcontact printing d Microtransfer moulding
‘Ink’ Prepolymer
PDMS POMS
stamp stamp

Invert stamp; bring into

'”"ert stamp; bring into conract with substrate;
con’ract with substrate

cure polymer
ﬁ@ w
Peel away PDMS stamp Peel away PDMS stamp

Figure 1.13 The core techniques of soft lithography. The key stages of each of the following techniques
are shown: (a) replica moulding; (b) microcontact printing; (c) micromoulding in capillaries; (d)
microtransfer moulding; and (e) microfluidics. (f) A PDMS membrane with microfabricated holes

created by replica moulding from a master with circular posts. (g) A curved layer of micropatterned
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polyurethane created by bending a micropatterned layer of PDMS and then replica moulding against it;
(h) A microfluidic chemostat for the growth and culture of microbial cultures. The device incorporates

six reactors with an intricate network of plumbing, in a footprint that is approximately 5 cm*[69].

The contact between objects and manipulator is needed in the direct assembly and
the mentioned magnetic driven manipulation, which caused certain damage to the
biological objects. Non-contact manipulation overcomes this problem by applying
optical electrical based forces for the manipulation. The optical manipulation is often
referred to as the "optical tweezers". The detection of optical scattering and gradient
forces on microscale particles was first reported by Arthur Ashkin in 1970 [70]. Years
later, Ashkin and colleagues first reported that a tightly focused beam of light is capable
of holding microscopic particles stable in three dimensions [71]. Today, Optical
tweezers has been a comment scientific instrument in studying a variety of biological
problems [72-74], such as trapping cells and the moving cells to particular positions.
During the manipulation, there is no outer object contacting cells which reduces the
damage to low lever.

As shown in Figure 1.15. Yue Tao presented the fabrication and assembly of
microstructures inside a microfluidic device based on a photocrosslinkable resin and
optical tweezers. Microstructures of arbitrary shapes were fabricated by
photocrosslinkable resin inside a microfluidic channel. A novel cell cage was fabricated
and the long-term cultivation of a single yeast cell (w303) was demonstrated in the cage,
inside the microfluidic device[75].

YPD culture medium

Figure 1.14 . Images of the division of yeast cells during 12 hours culturing inside the cell cages[75].

Dielectrophoresis (DEP) is a phenomenon in which a force is exerted on a dielectric
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1.3 Bio-assembly for tissue engineering

particle when it is subjected to a non-uniform electric field [76-78]. This force does not
require the particle to be charged. It was also wildly used for the cell trapping,
movement or sorting, especially inside liquid environment which is also necessary for
cells. The drawback of DEP is that the strength of the force depends strongly on the
electrical properties of the medium and particles, the shape of particles and the
frequency of the electric field. Another problem is that it is difficult to change the shape
of electrodes after fabrication of the whole devices.

UV light
(A) Top view (B) Stem cells (©)

L, A

=1 pm

Figure 1.15 Formation of 3D ESC aggregates in the GeIMA hydrogel using DEP. (A) ITO-IDA electrodes
were arranged face-to-face and a microfluidic chamber was maintained between them using a polyester
film of 100 pum thickness. (B) The stem cells in the GeIMA prepolymer were introduced into the 100 um
height chamber and (C) localized by n-DEP forces to the low electric field regions within the ITO-IDA
electrodes. The GelMA prepolymer was then exposed to UV light, embedding the cells in a stable
microscale organization. (D) Aggregated ESCs within the GeIMA hydrogel were removed from the top
IDA electrode and cultured. (E) Phase-contrast images of the ESC patterning over time. The ESCs were
dielectrophoretically patterned within 15 s. (F) Phase-contrast images of ESC aggregates at different z-
axis stacks indicating the 3D structure of stem cells. Projection of stem cells along the z- and y-axes is

shown at the top of images. Scale bars: 50 um [79].

To overcome these drawbacks, a new concept called optoelectronic tweezers (OETs)
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3D Cell Assembly

Yue et al. used microfluidic to obtain Chen-Ta et al. used microfluidic to  Yukiko et al used collagen beads Masumi et al used microfluidic to
cell embedded microstructures for the construct on-chip centimetre-scale containing cells to form macroscopic generate alginate microfiber for
construction of vascular-like  kiver tissue via an enhanced field- 3D tissue using a molding approach. long-term preservation of liver

micrombes. (Labon aChip. 2014). induced dielectrophoresis (DEP).  (Adv. Biomaterial 2011) functions. (Biomaterial, 2012)
(Lab on a Chip, 2013)
Cell Characteristics Analysis & Evaluation of 3D Cellular System

'/ Center of
beating

Figure 1.16 Summarize of the conventional works on tissue engineering

[80] is proposed [81]. OETs use projected optical images to grab and corral tiny
particles, Light first creates 'virtual electrodes' on the substrate. Secondly, the image in
conjunction with an externally applied electrical bias creates the localized DEP traps in
the illuminated areas. It combines the advantages of optical tweezers and electrode-
based DEP and contributes to building cell structures for tissue engineering.

In summary, lots of applications related to new techniques for tissue engineering
has been well established recently as shown in Figure 1.16. In this figure, we divided
these researches into three categories: 3D bio-assembly, cell characteristics and analysis
& Evaluation of 3D cellular system. In this chapter, we have briefly introduced the
typical methods of 3D bio-assembly for artificial tissue or organ fabrication. From next
chapter, we will focus on the specific method we used and how we improve the method
for the new applications of in vitro 3D tissue formation.

1.4 Organization of the thesis
In chapter 1, we present the motivation and requirements of cell-laden structures

assembly for tissue engineering. 3D in vitro tissue models have been used in tissue
research as a compromise between 2D cultures of isolated cells and the artificial 3D
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tissue architecture. Constructing 3D cell models provide a potential alternative to in
vivo approaches for whole-organism, and 2D culture with its spatial limitations. Recent
advances in tissue engineering have relied upon development of methods to place
spatially selective biological components at specific three-dimensional (3D) locations.
There is similar interest in developing methods to assemble cells within bio-scaffolds
for fabrication of 3D cell structures. Current methods to assemble cells into two-
dimensional (2D) or 3D structures include non-spherical polymeric microparticle in situ
photo-polymerization, cell patterning on 2D surfaces by using dielectrophoresis
technique, 3D bio-printing, cell sheet engineering, and cell encapsulation units. Thus,
many fabrication methods have been developed to immobilize and culture cells in 3D
formats. However, the challenges for better mimicking the native tissue
microenvironment are still remained.

Chapter 1

Introduction
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Figure 1.17 Organization of the thesis. This thesis can be divided into three sections.
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In chapter 2, the background of electro-device basing on electrodeposition is
briefly introduced. The current applications in cell manipulation and assembly are also
reviewed. We introduce the basic fabrication methods for building micro-pattern
electrode devices. Various function integrated electro-devices are referred. Some of our
fabricated functional parts on electro-device are presented. The management of used
cell lines is introduced.

In chapter 3, a novel method for fabricating shape-controlled alginate-PLL
microcapsules to construct 3D cell structures based on electrodeposition method is
provided. Two-dimensional Ca-alginate cell-laden gel membranes were
electrodeposited onto a micro-patterned electrode and further detached from the
electrode. The PLL was coated onto the gel structures to form alginate-PLL complex as
an outer shell and sodium citric solution was utilized to melt the internal alginate to
achieve miniaturized 3D microcapsules (sphere, cuboid, and rod shape). By this
proposed method, rat liver cells (RLC-18) formed multi-cellular aggregates with high
cell-density after cultivation for 2 weeks.

In chapter 4, we present the fabrication of hepatic lobule-shaped microtissue
(HLSM) containing rat liver (RLC-18) cells. By using cell-microcapsule technology,
RLC-18 cells were encapsulated in the core region of poly-L-lysine-alginate
microcapsules. After 14 days of long-term cultivation, RLC-18 cells self-assembled
into HLSM, and the cells fully occupied the microcapsule. By monitoring the cell
number and albumin secretion during culture and characterizing the dimensions of the
fabricated tissue, we demonstrated that the HLSM showed higher hepatic function as
compared with normal cell spheroids. We also showcased the assembly of these
microtissues into a 3D four-layered hepatic lobule model by a facile micromanipulation
method. Our technology for fabricating 3D multilayer hepatic lobule-like, biofunctional
tissue enables the precise control of tissue shape in three dimensions. Furthermore,
these constructs can serve as tissue-engineered building blocks for larger organs and
cellular implants in clinical treatment.

In chapter 5, we propose a novel approach in the fabrication of cellular bio-paper
made of Ca-alginate hydrogel, embedded with liver cells (RLC-18) in order to mimic
liver lobule tissue. Ca-alginate sheets with hepatic lobule-shaped patterns were
deposited onto a micro-electrode device using electrodeposition. Viability of embedded
cells was ensured to exceed 80%. Cell morphology and bio-functionality were
monitored during the one-week culture period and results compared with those of
traditional 2D culture. In addition, we detached cell sheets from the electrode substrate
and stacked them into a 3D multi-layered hepatic lobule-like tissue.

In chapter 6, the summary of this thesis is presented and future works are prospected.
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Chapter 2

Electrodeposition method for assembly of
polysaccharide hydrogels as biocompatible
scaffolds and the applications for Alginate/poly-

L-lysine(PLL)/alginate microcapsules

2.1 Electroaddressing of biological components at

specific device addresses

As mentioned in chapter 1, current methods to assembly cells at specific addresses
spatially include; selective adhesion of cells onto patterned 2D microwells,
photolithographic polymerization to entrap cells within 3D hydrogel block (PEGDA or
GelMA), rapid prototyping (RP) methods that fabricates 3D cell-laden scaffold layer
by layer, and microfluidic technology that enable addressing or immobilization of cells
within specific channel. Thus, a variety of novel methods have been developed to
address and cultivate cells in array and microfluidic formats. Nevertheless, the search
continues for simpler, generic, less expensive and more benign methods for cell
addressing [82].

The electroaddressing technology plays a role as a powerful tool in the cell
manipulation and assembly, because it provides a programmable method for the
spatiotemporally controllable assembly of cell populations for 3D cell culture and for
hyper bio assembler. To our knowledge, chitosan was the first hydrogel-forming
polysaccharide to be electro-deposited [83]. An applied voltage was used to deposit a
thin layer onto a negative electrode when the electrode is immersed in a chitosan
solution. Additionally, the thickness of the deposited layer can be controlled by the
deposition conditions. Finally, once the deposited layer is neutralized, it can be retained
on the electrode surface even in the absence of an applied voltage
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Figure 2.1 Visualization and quantification of chitosan electrodeposition. (a)
Schematic diagram illustrating the mechanism of the electrodeposition of chitosan
hydrogel. (b) Schematic diagram of a microfluidic device structure. Sidewall electrodes
are defined by angled thermal evaporation by using a shadow mask. The glass slides
are placed side by side and sandwiched between two thin layers of solid PDMS to form
the microfluidic channel. Bright field microscopic images show the chitosan hydrogel
growth at the cathode surface with a constant 4 A m? current density at 85 s during
deposition using 0.5% (w/v) chitosan polyelectrolyte solution (c¢) with pH indicator
solution and (d) withoutpHindicator solution. (e)pHprofile of the area highlighted by
white dashed rectangle in (c). (f) Time-dependent gel thickness as a function of current
density varied from 1 to 10A m? (from bottom to top). Inset, a schematic diagram
illustrating the measured thickness in the middle of the gel[84].

Chitosan is produced from an N-deacetylation of chitin under alkaline conditions.
Chitin occurs mainly in the cuticles of arthropods, the endoskeletons of cephalopods,
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and fungi. With biodegradable and good biocompatibility, chitosan plays an important
role in cell regulation and tissue regeneration. Chitosan, as chitin, belongs to the family
of linear copolymers of (1—4)-2-amino-2-deoxy- 3 -D-glucan (GlcN) and (1—4)-2-
acetamido-2-deoxy- 3 -D-glucan (GlcNAc) [85]. The primary amines on chitosan’s
glucosamine residues can be protonated at low pH, making chitosan a water-soluble
cationic electrolyte. At pH higher than its pKa=6.3, the primary amines can be
deprotonated and the chitosan undergoes a sol—gel transition to form a stable hydrogel
network [84]. As shown in Figure 2.1, by creating a pH gradient, the pH-responsive
solubility of chitosan hydrogel was fabricated on the cathode electrode.

Stimuli-responsive polysaccharides, not only chitosan but also alginate, can be
induced by chemical reaction to undergo reversible sol—gel transition to generate soft
material structures on conductive surfaces [82]. Alginate is a biopolymer isolated from
brown seaweeds, which is composed of two monomers:f-D-mannuronate and R-L-
guluronate. Generally, alginate forms a physical gel by cooperative binding with
divalent cations such as Ca’>" or Ba?*. Many methods have been developed to generate
different alginate gel structures such as microfiber and matrixes using microfluidic
devices. Studies of alginate hydrogels for programmable 3D cell assembly also
indicated that it is appropriate for long-term culture and cell entrapment in vitro.

Unlike other techniques, the electrodeposition of alginate hydrogel provides a
programmable and biocompatible method for spatially selective cell entrapment and
3D cell culture. During the electrodeposition process, instead of directly adding the
Ca?" ions into the solution, Ca** ions are released via CaCO3 particles by reacting with
H". Conventionally, an electro-device basing on electroaddressing technology is a set
of two conductive electrodes as anode and cathode immersed inside the deposition
solution (generally contain alginate and carbon dioxide particles). A DC voltage was
then applied to the electrode to induce an electrolysis reaction. Thus, the alginate
hydrogel membrane will be fabricated on the anode electrode. This approach is
promising for electroaddressable biological component assembly for the Ca**-alginate
deposition provides a mechanism that can limit significant pH excursions away from
neutral condition [86].

However, fabrication of cell-laden hydrogel structures with arbitrary shape are in
needed for constructing 3D cell structures in tissue engineering, because these
structures can act as a basic unit to assembly complex 3D cell structures. In this chapter,
the fabrication and various conventional functional electro-device systems, for cell-
laden hydrogel structure fabrication system, will be described.

2.1.1 The mechanism of electrodeposition method.

The mechanism of the cation-crosslinked with alginate using electrodeposition
method is depicted in Figure 2.2 The two electrodes were firstly immersed into
deposition solution which normally contains alginate and CaCOs particles. A DC
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voltage was then applied to the electrode to induce an electrolysis reaction. As we
known, the electrolysis process splits water into its elements, namely hydrogen and
oxygen. It will reduce the amount of hydrogen ions and oxygen ions of solution
continuously, which just broke the balance system inside the deposition solution.
Because of that, hydrogen ions move toward the anode surface losing its electronic to
generate oxygen (4OH™- 4¢” = 2H20+0:2 1 ) and form an acidification environment at
the anode surface. (Presence of H") Then, Ca*>" will be released due to the protons
encounter and react with the suspended CaCOs particles at the anode. The alginate
hydrogel will be formed on the anode surface in the presence of Ca’*, because the
cations act as ionic bridges between L-guluronic acid residues on adjacent chain
segments [87].

(Ca* + 2Alg-COO" = Alg-COO" - Ca?* —00C-Alg)
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Figure 2.2 Schematic illustration of the mechanism for calcium alginate electrodeposition. (a) Water
electrolysis generates excess protons (H™ ions) at the anode surface. (b) The protons migrate away from
anode and release Ca”* ions from CaCOj; particles suspended in solution. (c) The released Ca®* ions
crosslink alginate chains, forming a gel. (d) Overall picture of electrodeposition of calcium alginate. The
proton concentration decreases with the distance away from the electrode surface. The highest
concentration of free calcium ions is associated with the dissolution front of the CaCOs particles (the

interface between dissolved and undissolved CaCO3) during the deposition[86].

In addition to the required functionalities and the quality goals, electrodeposition
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2.1 Electroaddressing of biological components at specific device addresses

method highly improves the uncontrollability of cation-crosslinked alginate gels due to
the conductive region that can be designed. Here we list the main advantages of
electrodeposition method for bio-assembler.
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Figure 2.3 The characteristic of electrodeposition method for tissue engineering

It shows the high potential of the microfluidic system to be used in the complex
tasks, such as fabrication, manipulation and assembly like a factory line in one chip.
Besides, it has high potential to be pushed towards portability, more low-cost and high
efficiency. Therefore, it is a promising way to perform the 3D cell structures assembly
inside multi-functional devices.

The parameters of the scaffold can significantly affect cell differentiation, amount
and rate of tissue formation, and intensity or duration of any transient or sustained
inflammatory response in vivo [88]. The scaffold based on electrodeposition method
can be arbitrary shapes, even highly complex structures. A number of general issues
may need to be considered for the choice of biomaterial and the design of scaffolds as
shown in Figure 2.3. The characteristic of electrodeposition method for tissue
engineering

€ Be 3D, highly porous, and biocompatible with a controlled degradation rate;

€ Have cytocompatibility with an appropriate surface for cell adhesion, proliferation,
migration, differentiation and axon outgrowth;
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€ Maintain proper mechanical properties (elasticity, strength, tenacity) that approach
those of the host tissue to protect the seeded or recruited cells and maintain its
structure under mechanical perturbations;

€ Provide a three-dimensional environment to maintain chondrocyte phenotype and
a surface chemistry and topography to which cells can anchor;

€ Be cost effective and and possible to scale up in number.

2.1.2 Applications of electrodeposition method in entrapment of
biological components

An integrated electro-device incorporates many of the necessary components and
functionality of a typical room-sized laboratory on to a small chip. This device is not
only with the scaling down of the size, but also reveals other significant advantages
including: minimized consumption of reagents, increased automation, and reduced
manufacturing costs. It integrates one or several laboratory functions on a single chip,
which has the dimension of only millimeters to a few square centimeters in size.
Actually, the integrated electro-device is a combined system rather than one
independent kind of technique, which can be considered as a complex system. Many
techniques mentioned above, not only the electrodeposition method but also like
microfluidic, micro aspiration and DEP, are always employed in one chip at the same
time. Figure 2.2 shows large integrated electro-systems. The electrodeposition method
has many advantages, such as low cost, faster analysis and response times, and it has
been used in biological field for manipulating cells and building cell structures [89].

As shown in Figure 2.2A calcium-alginate composite hydrogel biofilm entrapping
bacterial cells was fabricated on the gold electrodes inside the microfluidic system, with
3D control using electrical signals. The reported multi-strain cell co-assembly and
stratified cell assembly with controlled separation in pseudo-3D hydrogel structures
expands our toolbox towards understanding the distance-dependent interactions and
communication between the same or different species of cell colonies. The induced
protein expression and quorum-sensing behavior of the bacterial cells entrapped in the
pseudo-3D model bio-films, demonstrated in their microfluidic device [90]. It shows
the high potential of the electrodeposition method to be used in the complex tasks, such
as fabrication, manipulation and assembly like a factory line in one chip. Besides, it has
high potential to be pushed towards programmable, more low-cost and high efficiency.
Therefore, it is a promising way to perform the 3D cell structures assembly inside multi-
functional devices.

With different functions, there are many applications of the electro-devices for cell
structure construction and assembly. By controlling the PH gradient, the chitosan
hydrogel can be manipulated according certain direction or position. Enzyme can be
assembled to 2D microstructures inside the hydrogel.
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(@) Picture of the fluidic device (C) Top view of the device

(b) Magnified view of the gnified
channel area
edin (c)

Figure 2.4 Pictures of the fluidic device and micrographs of the electrodeposited calcium alginate
hydrogel. a) An overview of the fluidic device with built-in sidewall electrodes inside the channel and
plastic tubes connected as an inlet and outlet. b) A magnified view of the fluidic device with a cloudy-
white hydrogel deposited on one of the sidewall electrodes (anode). ¢) Top view of the fluidic device. d)
A magnified top view of the fluidic channel with the electrodeposited hydrogel on one of the electrodes.
e-¢' ) Optical (e) and fluorescence (¢’ ) micrographs of a calcium alginate hydrogel (side view)
deposited on an anodic electrode inside the fluidic channel. f - f ' ) Optical (f) and fluorescence (f ' )
micrographs of the calcium alginate hydrogel (top view) detached from the electrode and placed on a
glass slide. g - g’ ) Magnified optical (g) and fluorescence (g’ ) micrographs of a part of the hydrogel
[90].

A light-addressable electrolytic system used to perform an electrodeposition of
calcium alginate hydrogels using a digital micromirror device, as shown in Figure 2.5.
In this system, a patterned light illumination is projected onto a photoconductive
substrate serving as a photo-anode to electrolytically produce protons, which can lead
to a decreased pH gradient. The low pH generated at the anode can locally release
calcium ions from insoluble calcium carbonate (CaCO3) to cause gelation of calcium
alginate through sol-gel transition. This device performed an electrodeposition of
enzyme-entrapped chitosan membranes for multiplexed enzyme-based bioassay using
a DMD. The DMD provides spatio-temporal illumination pattern switching, which is
used to readily applicable to achieve flexible electrode patterning for the dynamical and
multiplexed electrodeposition of chitosan membranes. [91]. However, this method is
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not suitable for entrapment of biological cells for tissue engineering due to the low PH
value.

(a

. -
(b)

Figure 2.5 (a) Images of chitosan membranes with triangular and square shapes with different dimensions

ranging from 50 mto 300 m. (b) The images of multiplexed micropatterning of chitosan membranes
created by performing a light-addressed electrodeposition using two different illumination light patterns
in sequence. The rightmost image shows the fluorescence micrograph of an assembled 4 x 4 microarray

of chitosan membranes with a specific arrangement.[89].

In another method, the construction of multiple layers 3D cell-laden structures is
demonstrated. The cell manipulation and assembly are performed in this simple method,
as shown in Figure 2.6.

A tubular hydrogel structure consisting of two layers with different cell types was
fabricated as shown Figure 2.6A 300 mm diameter Pt wire was immersed deposition
solution containing HUVECs cells at 3.1 V vs. Pt for 30 s. Following the formation of
a tubular layer of HUVECs around the Pt wire electrode, the electrode was transferred
to alginate solution containing 3T3 cells (3 X 10° cells/mL). Then, a potential of 3.1
V vs. Pt was applied to the electrode to deposit a layer of 3T3 cells for 30 s. Thus, multi-
layers tubular hydrogel structures were constructed via electrodeposition using alginate
gels. This simple method is a promising approach for construction of multi-layer tubular
hydrogel structures for tissue engineering.[92]

Both 2D and 3D biomaterial-based culture platforms that are capable of mimicking
the in vivo microenvironment to recapitulate the physiological conditions are vital tools
in a wide range of cellular and clinical research. The 3D spheroid culture of embryonic
stem (ES) cells or hepatocellular carcinoma cells (HepG2) on micro-pattern electrode-
device was demonstrated. This device offered new opportunities to achieve active
control of 2D cellular patterns and 3D multi-cellular spheroids on demand, and may be
amenable toward the further construction of more complex cell structures [93].
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Figure 2.6 Tubular alginate gel containing cells. A single layer consisting of 3T3 cells or HUVECs (A),
and a two-layer structure consisting of HUVECs and 3T3 cells (B) were fabricated. These tubular
alginate gels were observed under an optical microscope (Al and BI). Cross-sections of the gels were
observed under a fluorescence microscope (AIl and BII). (AIll) Calcium alginate gel containing
HUVECs was cultured for 1 day. After alginate gel containing cells, effects of anodic electrodeposition
of calcium alginate on cell viability was investigated. Cells were harvested from calcium alginate gel
after dissolution of the gel in citric acid. Collected 3T3 cells were seeded onto a conventional culture
dishes (initial viable cell number, 1 x 107 cells). The cells with (C) or without (D) the electrodeposition
were cultured for 3 days and observed by phase contrast microscope, and their cell growth was

investigated using the trypan blue exclusion test (E) [92].

However, only spheroids can be constructed and the further assembly of these cell
units is difficulty in the above methods. It means that the complex and large 3D cell
structures are difficult to build in the current electro-device Therefore more functional
parts such as microelectrodes, micro-pattern and new method are needed in our research.
The device for constructing complex 3D cell structures should has the capabilities such
as arbitrary shape structure fabrication, manipulation.

2.2 Micro fabrication for building micro-patterning

electrode devices

2.2.1 Photolithography methods and equipment

This section describes the basic fabrication method for micro-patterning electrode
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devices. The manufacture of a micro-patterning electrode device starts with the design
of the pattern. Once this design is made, it is sent to a manufacturer of photomask to be
transferred on a glass medium or a plastic film. The micro-patterning is printed with
UV opaque ink (if the medium is a plastic film) or chromium (if the medium is a glass
plate).

After fabricating the mask, the micro-pattern is the next target. The manufacture of
micro-pattering mold is made by photolithography. This is the step when the drawings
of the micro-pattering on the photomask are transformed into real micro-pattering. As
shown in Figure 2.7, photoresist is spread on a flat surface (often a silicon wafer) with
the desired thickness. The photoresist, protected by the mask on which micro-pattern
are drawn, is partially exposed to UV light. Thus (in the case of a negative resin, SU-8
type) only the parts representing the non-pattern area are exposed to UV light and cured,
the other parts of the micro-pattern being protected by the opaque areas of the mask.
[94] Then, the photoresist is developed by a special solvent that etches the areas where
were not exposed to UV light.

Thus, we have obtained the substrate with micro-pattern resin. generally, to
fabricate the micro-pattern electrode device, there are several methods to achieve that.
including: (a) Using ITO (Indium tin oxide) glass slide as the substrate. ITO glass slide
is a kind of conductive and transparent material which is suitable for optical observation
and experiment research. After coated the micrp-pattern resin on ITO slide by
lithography, the slide will be immersed into etching solution to achieve the micro-
pattern electro-device by removing the conductive area partially. However, the etch rate
is hard to be controlled precisely. To achieve the micro-pattern as small as 10um is
barely possible (b) With the spattering machine (such as Canon E-200), we can fabricate
the micro-pattern as accurate as 1um with predefined shape. As shown in Figure 2.7.
The patterned surface is fabricated by deposition 250 A thick chromium and then 400
A thick gold films on micro-pattern photoresiste as described above. Following of
ultrasonic in ethanol for 10 min to obtain the electrode-device. However, this method
can fabricate electro-pattern precisely, the fabrication process is too complex and the
chromium layer is unstable during the electrolysis which leads to the corrosion of
electrode (c¢) To simplify the fabrication process and increase the repeatability of
electro-device, we choose FTO (Fluorine doped tin oxide) glass slide as the substrate
which is a kind of conductive glass similar to ITO but can withstand higher apply
voltage. Then micro-pattern photoresiste was fabricated on FTO slide. The accuracy of
pattern is dependent on the type of photoresiste that we chose. Compared with the
etching or spattering process, this method provides a simple and cheap approach for
fabrication of micro-pattern electro-device

About the fabrication equipment, the spin coating, mask fabrication machine, UV
or laser exposure machines and commonly used photoresist material are needed in the
fabrication procedure.
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Photoresist (layer Il )
Cr (layer 1)/Au (layer Il)

Silicon wafer substrate

Figure 2.7 Common used fabrication method for our micro-pattern electro devices. (a) The patterned
surface is fabricated by deposition 250 A thick chromium and then 400 A thick gold films on silicon
wafer. Pattering is achieved using photolithography technique in which a primer and the photoresist (such
as AZ5214E) is spin-coated onto the gold surface and is exposed to UV light (power: 19 mw/cm? time:
2s) through a specially designed mask. (b) A magnified top view of the pattern-electrode array at the

center of the chip.

Many fabrication approaches are reported for different kind of requirements, such
as high precision, repeatability, simple above. Based on their advantages and
disadvantages, it’s essential to choose a suitable methodology for the fabrication of the
experimental device.

2.3 Applications of micro-pattern electro-devices

2.3.1 Microelectrode integrated devices

As mentioned in the last chapter, electrodeposition is suitable for using as a non-
mold on-chip manipulation approach. In order to make electrolysis of water release
proton, the microelectrodes are needed. These electrodes are made by the conventional
photolithography techniques as described in the last section. The micro-pattern electro-
device integrated chips for electrodeposition applications are called microelectrode
integrated devices.

Figure 2.8 shows a typical microelectrode integrated device. This is a micro
fabricated device that the pattern of the logo consisted of assembled E. coli cells
expressing GFP, which were entrapped by the co-deposition with calcium alginate.
With alginate serving as an electrotemplated coupling between the cells and the
electrode, cell assembly onto specific locations in an arbitrary pattern could be easily
achieved with micropatterning. Such a device has potential for cell assembly was highly
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controllable and a lateral resolution down to tens of micrometers could be achieved.[90].
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Figure 2.8 Schematic diagram of the planar device with the UMD logo pattern. (a) Schematic diagram

of the planar device structure. The electrode and the photoresist passivation were defined by thermal
evaporation of chromium and gold and photolithography. The deposition solution was only in contacts
with the passivated circular region. The chromium and gold at the edge of the chip was used as an
electrical contact. (b) and (c) Magnified regional views of the selective passivated regions, marked with
black rectangles in (a) Fluorescence micrograph showing that the pattern of the logo consisted of

assembled E. coli cells expressing GFP [90].

In the microelectrode integrated device, it not only can achieve the manipulation
and patterning of cells by electrodeposition method or DEP technique, but also can run
several exposure tests on living organisms such as Caenorhabditis elegans (C. elegans)
simultaneously. Figure 2.9 shows a method to construct a microfluidic device with a
multi-valve system. In this research, A pair of electrodes was installed in the device and
the capacitance in-between the electrode was measured. When a C. elegans passed
through the electrodes, the capacitance was changed. The capacitance change was
proportional to the body volume of the worm, thus the body volume change by the
heavy metal exposure was measured in the device. Thirty worms were divided into
three groups and exposed to each solution. These results indicate that the
microelectrode integrated device also gives a promising approach for simultaneously
analyzing the effect of multiple stimuli on living organisms.
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Figure 2.9 Schematic diagrams of the proposed microfluidic device. (a) A schematic diagram of the

proposed microfluidic device, which has three chambers and a main channel. The chamber has two small

rooms; a blue rectangle in figurel(a). (b) A schematic diagram of the chamber. It has two small rooms

connected by the connection channel. The NMP valve comprises the gate and the loading channel. (c)The

component of our proposed device; two PDMS layers and one glass substrate. (d) The fabrication of our

proposed device; three layers are bonded by O2plasma treatment [95].
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Figure 2.10 Fabrication of micro-electrode device for the deposition of Ca-alginate hydrogel structures
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with varying shapes of micro-patterns in simple geometry for the demonstration.

The electrodeposition method is also called electroaddressing technique. Base on
this technique, the microelectrode device integrated with programmable design and
high throughput capability becomes a powerful tool for the 2D cell patterning
applications. Figure 2.10 shows one of the fabricated micro-electrodes device in our
research. we fabricated functional microelectrodes with different patterns in simple
geometry for cell entrapment. Figure 2.11 showed the results of immobilization of
RLC-18 liver cells onto the fabricated micro-patterns area based on the
electrodeposition method. RIC-18 cells were successfully entrapped within alginate
hydrogel structures which are transparent after electrodeposition for 30 seconds.

Figure 2.11 Fabrication of Ca-alginate gel structure embedded liver cells (RLC-18) based on
electrodeposition method. (a) The deposition solution containing alginate, CaCOs3 particles and RLC-18
cells was dropped onto the micro-pattern area first. (b-c) A DC power was applied to the electrode to
trigger the chemical reaction of electrodeposition. After 30 seconds, the non-cross-linked deposition

solution was removed by washing process using HEPS buffer solution for several times.

2.4 Alginate/poly-L-lysine (PLL)/alginate (APA)
microcapsules

The technique of Alginate /poly-L-lysine (PLL)/alginate (APA) microcapsules
fabrication has been well established for several decades. It was firstly proposed by
Franklin Lim and Anthony M. Sun in 1980 with the title of “Microencapsulated islets
as bioartificial endocrine pancreas” [96]. In their work, the APA microcapsules
encapsulated islets into rats with streptozotocin-induced diabetes corrected the diabetic
for 2 and 3 weeks. The encapsulated islets remained morphologically and functionally
intact throughout long-term culture studies lasting over 15 weeks. The results showed
the possible potential of APA microcapsules for further implantation and drug release
research. Later, since 1989, M.F.A. Goosen proposed several methods to study the
mechanism of the formation of APA microcapsules. For example, he proposed a method
to control the microcapsule membrane molecular weight cut-off to demonstrate how
the APA microcapsules can protest transplanted cells from destruction by the recipient’s
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immune system [97]. Since then, from 1990, the APA microcapsules technique has
attracted lots of attentions of researchers for the varying applications, such as drug
release, stem cells study and 3D cell culture system. The advantages of APA
microcapsules include: 1) The alginate-PLL -alginate complex semi-membrane prevent
the encapsulated islets from immune system. 2) The inner hollow structure of APA
microcapsules provides a suitable “aqueous-like” microenvironment for the
encapsulated cells after the transplantation. The PLL play an important role as
extracellular matrix for better mimicking the in vivo state. In this chapter, we will
briefly demonstrate the mechanism and typical proposed methods of APA
microcapsules. Figure 2.12 has been the showcase of the fabricated APA microcapsules
by our proposed method. The shape of the microcapsules can be controlled based on
electroreception method by altering the design of the micro-electrode patterns.

Figure 2.12 Shape-control production of APA microcapsules for tissue engineering
based on electrodeposition [98].
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2.4.1 Structure of alginate-poly-L-lysine capsules

The architecture of these APA microcapsules includes a central core of Ca**-cross-
linked alginate gel that can provide an aqueous microenvironment and a two-layer shell
consisting of a PLL inner layer and sodium alginate outer layer, as shown in Figure
2.13. The alginate-PLL semi-membrane permits passage of low molecular weight
substances, such as nutrients and oxygen, to the core and passage of metabolic products
from the core, while retaining the core material within the microcapsule. Sodium can
be substituted by poly-L-lysine (PLL) to form a complex alginate-PLL-alginate (APA).
The PLL-alginate layer can take three different structures by intramolecular hydrogen

Ca-alginate core Ca-alginate-PLL layer

PLL random coil formation

Alginate-PLL-Alginate PLL a-helical structure

(APA) capsule

PLL antiparallel -
sheet structure

Figure 2.13 (A) The core of the capsule is composed of a matrix of alginate and calcium in which the
islets are entrapped. The second layer is obtained after incubation of the calcium bead in sodium rich
solutions to form a sodium-alginate complex at the surface. Sodium can be substituted by poly-L-lysine
(PLL) to form a complex alginate-PLL-alginate (APA).The PLL-alginate layer can take three different
structures by intramolecular hydrogen binding, (i) random coil formation between alginate and PLL,
(i1) a-helicoidal structure between amide groups of PLL, and (iii) antiparallel B-sheet structure between

amide groups of PLL [1].

binding, random coil formation between alginate and PLL, a-helicoidal structure
between amide groups of PLL, and antiparallel B-sheet structure between amide groups
of PLL.
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2.4.2 Applications of APA microcapsules

By combining with micro-fabrication techniques (e. g., microfluidic and micro-
nozzle device), the hundred-micrometer-size APA microcapsules can be fabricated.
Therefore, the APA microcapsules proved a suitable platform for cell encapsulation
since the microscale capsules can promote the cell activity and maintain highly
differentiated functions [99]. The cell-encapsulated APA microcapsules have potentials
to be applied to tissue engineering, drug release and 3D cell culture system. In this
section, we will briefly showcase of the typical applications of APA microcapsules.

300 pum

Micro Nozzle)

Calcium alginate micro—fiber

200 um

Figure 2.14 Formation of alginate micro-fibers and micro-tubes. (a) Formation process of calcium
alginate micro-fibers. (b) The recovered calcium alginate micro-fibers. (¢) SEM photograph of cross

section of lyophilized alginate-PLL-alginate micro-tubes [99].

Shinji Sugiura’s group proposed a promising technique to fabricate cell-laden APA
micro-fibers by a micro-nozzle array as shown in Figure 2.14. The cells encapsulated
within the APA micro-fibers formed a cylindrical multi-cellular aggregate after long-
term culture. The proposed micro-nozzle array is capable of generating micro-fiber
shape or droplet alginate hydrogel structures. It provides an alternative way for alginate
gel formation compared with microfluidic technique. The cell-encapsulated tubular gels
have potentials to be applied to vascular tissue engineering and drug delivery [99]. The
fabrication details can be found in their report. The results showed that APA microfibers
with 120 um diameter were successfully fabricated by the nozzle device. Compared
with simply encapsulated within alginate hydrogel, the cells encapsulated within APA
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microcapsules showed higher cell activity and cell proliferation rate.

Unlike the demonstrated method above, Nurazhani Abdul Raof reported an easier
technique to generated an array of one-dimensional alginate gel microstrands and
aqueous microstrands through an SU-8 filter device by means of capillary action [100].

A drop of Microchannels €

alginate/cell in SU-8 filter
mixture T

Figure 2.15 Encapsulation of mouse ES cells in alginate hydrogel microstrands. (a) Schematics of the
formation of microstrands by adding one drop of cell-alginate solution onto the array of microfluidic SU-
8 filter device which is floating on the top of the CaCl solution. (b) Optical image of the array of alginate
hydrogel microstrands. Scale bar 4 40 mm. (c) Optical image of long, continuous microstrands. (d)
Fluorescent image of mouse ES cells in a microstrand stained by calcein AM/EthD-1 (green: live cells;
red: dead cells) [100].

As shown in Figure 2.15, the micro-fiber alginate hydrogel was generated by
placing a drop of alginate solution onto SU-8 filter. The diameter of the fabricated gel
fiber can be controlled by changing the size of the microchannels in SU-8 filter. Cells
were immobilized within the gel fiber during the cross-linked process. Later, the
solution was replaced by the PLL solution to coat the Alginate-PLL complex layer.
Finally, the inner alginate hydrogel was dissolved by sodium citric to form the APA
micro strands. For the evaluation of the fabricated APA micro strands, the
differentiation potential of mouse ES cells recovered from alginate/PLL aqueous micro
strands were assayed compared with the one recovered from alginate gel micro strands.
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The results showed that APA aqueous micro strands promoted compact ES cell
organization and induced high level of PDX-1 expression which is a transcription factor
essential for pancreatic development and insulin-producing PB—cell maturation.
Therefore, the ES cell in APA micro strands showed higher preference toward the
endoderm and mesoderm lineages.

Figure 2.16 Nissl-stained section of a PC12 cell-loaded microcapsule maintained for 2 weeks in vitro
followed by 4 weeks implantation in the denervated striatum of an animal which showed a significant
reduction in rotation asymmetry under apomorphine challenge. Notice the closely packed. Well-
preserved PC12 cells, scale bar, 200 pm. (B) A higher power micrograph shows the presence of a mitosis

(arrow), scale bar, 50 um [101].

Implantation of APA microcapsules containing varying cells also shows advantages
for drug release thanks to the semi-membrane property of Alginate-PLL complex shell
compared with other systems. Shelley R. Winn reported the implantation of dopamine-
secreting PC12 cells in the 6-hydroxydopamine unilaterally lesioned rat model.
Tyrosine hydroxylase immunopositive PC12 cells were observed 4 weeks post
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implantation in all animals exhibiting a reduction in turning behavior [101]. No viable
PC12 cells were seen in or around the broken capsules and no tumor formation occurred
in any of the implanted animals. The results indicated the beneficial of APA
microcapsules for cell implantation in vivo.
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Figure 2.17 (a) plots the pH reduction after mixing equal portions of TAP buffer with GDL (150 mM)
and TAP buffer containing CaCOj; nano-particles (7.5 mg/ml). plots the pH reduction after mixing equal
portions of TAP buffer with acetic acid (150 mM) and TAP buffer containing CaCO3 nano-particles (7.5
mg/ml). AsGDL is slow hydrolyzing acid, the combination of GDLand CaCOj nano-particles is gentle
gelation method for organisms. (b) Plot of the sodium alginate droplets encapsulating Chlamydomonas
produced by the same AFFD with respect to the flow rate ratio (QOF/QIF,QIF % 12 ml/min) (C.V. < 5%).
(c) Image of monodisperse sodium alginate droplets with Chlamydomonas in corn oil. (d) Diameter
distribution of sodium alginate droplets with Chlamydomonas shown in (b). Images of (¢) monodisperse
alginate gel beads with Chlamydomonas and (g) monodisperse microcages encapsulating
Chlamydomonas made from sodium alginate droplets shown in (b). (f) and (h) Diameter distribution of
alginate gel beads and microcages shown in (e) and (g), respectively. (S.D. is standard deviation and C. V.

is coefficient of variation.) [102].

Morimoto et al. presented a method for forming monodisperse semi-permeable
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2.4 Alginate/poly-L-lysine (PLL)/alginate (APA) microcapsules

microcapsules composed of an alginate-poly-L-lysine (PLL) membrane for the
observation of encapsulated cells as shown in Figure 2.17. They evaluated the main
parameters that effected the dimension of the fabricated APA microcapsules in a droplet
generation system such as the velocity of the fluid and the different kind of base
material components. They successfully observed the movement trajectory of the
encapsulated cells during long-term culture period while maintained the viability to
calculate the speed of the Chlamydomonas. What’s more, other researchers also point
out the potential of APA microcapsules for post-analysis of the encapsulated cells by
solubilizing the alginate-PLL. membrane using pronase E [103]. This will help the
researchers retrieve the encapsulated bio-components for further analysis.

Stem Cell Research Drug Release

100 ym

In APA microcapsules ond
f o . 9 §

100 i ) ROt ?

In alginate hydrogel on day 5
Raof etal imvestigated self-assembly behaviors and differentiation potentials ~ Bocharova etal integrated drug-releasing materials with signal-processing
of mouse ES cells cultured in microstrands of varying diameters. They noticed ~ biocomputing systems. Citrate produced in the system was used to trigger a
that ES cells collected from APA microstrands favored the differentiation  drug-mimicking release from algmate microspheres.(Journal of Materials
towards cell lneages of endoderm and mesoderm. (Lab on a chip, 2011) Chemistry, 2012)

3D Cell Culture Cell (Chlamydomonas) Observation

Day3 Day7 Day 14
150 um

290 um

Yue etal developed a novel microfabricated device that enables us to produce =~ Morimoto etal presented a method for forming monodisperse semi-

100 to 300 pum APA microcapsules with a narrow size distribution. The permeable microcapsules composed of an alginate-poly-L-lysme (PLL)
encapsulated cells had a higher growth rate and greater secretion activity membrane for the observation of encapsulated cells. (Lab on a chip, 2009)
of marker protein in the smaller microcapsules. (Biomed Microdevices, 2007)

Figure 2.18 Applications of APA (Alginate/poly-L-lysine(PLL)/alginate microcapsules.

In summary, we conclude the varying applications of APA microcapsules for Stem
cell research, drug release, 3D cell culture and cell implantation in vivo as shown in
Figure 2.18. Generally, different cell sources could be employed in cell encapsulation
technology, ranging from the islets of Langerhans, the most commonly used cell type,
to novel approaches using encapsulated stem cells and hepatocytes. However, there is
lack of an efficient method for shape-controlled formation of APA microcapsules due
to the mechanism of alginate hydrogel formation. As you may remember, the Ca-
alginate hydrogel is formed when alginate chain cross-linked with Calcium ions.
Therefore, it’s difficult to precisely control the shape of the fabricated alginate hydrogel
structure due to the diffusion of the calcium ions in aqueous state. So far, the common
methods for the generation of the APA microcapsules are based on the microfluidic
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Chapter 2 Shape-controlled high cell-density microcapsules by electrodeposition

technology or special micro-nozzle device. Thus, how to solve this issue is the main
challenge for the current objective.

2.5 Standard management of cell lines in the laboratory

C2C12 (Mouse myoblast cell line) NIH/3T3 (Mouse fibroblasts cell line) and RCL-
18 (Mouse liver cell line) cells were cultured for experiments inside Dulbecco's
Modified Eagle's Medium (DMEM, Sigma Aldrich) with 10% fetal bovine serum (FBS,
Sigma Aldrich) for 72 hours, inside an incubator (37 °C, 5% CQz). Prior to experiments,
Cells were collected and all culture medium was removed. Figure 2.19 shows the
morphology of the NIH/3T3 cells under 2D culture. Cells were stained green using Cell
Tracker Green CMFDA (Invitrogen, CA, USA) for fluorescence detection.

50um

Figure 2.19 The morphology of fibroblasts (NIH/3T3) under 2D culture. (a) In growth status which is
adhering on the substrate. (b) The fluorescent images of fibroblasts (NIH/3T3) located by Cell Tracker
Orange.

Regarding the management of the cell line, the original cell seeds are obtained from
companies or the medical department. We do the cell culture and sub-culture in our lab.
The cells grow on the surface of the culture dish, adhering firmly. The cells are spindle
shaped with the length about 100 um. Prior to the experiments or the sub-culture, we
need to detach the cells from the substrate by trypsin. The cells become round shape
with the diameter about 20 um. We use the cell in round shape during the experiments
such as on-chip immobilization, encapsulation and assembly.
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2.6 Summary

2.6 Summary

In this chapter, we introduced the typical methods for the immobilization of bio-
components onto specific address in situ. As one of the recently well-established new
method, electrodeposition of Ca-alginate hydrogel was presented in details. The
varying applications in cell manipulation and assembly based on electrodeposition
method were reviewed. We also showed the basic fabrication process for building
multi-functional microelectrode device which is the necessary experimental setup for
the electrodeposition method. We also showcased of the fabricated electrodeposition
device for the immobilization of RLC-18 cells onto the micro-patterns area with simple
geometry in our experiment.

On the other hand, we introduced the other technique for cell encapsulation using
Alginate-Poly-L-lysine-alginate (APA) microcapsules. The structure mechanism of
APA microcapsules and typical applications in terms of tissue engineering were briefly
presented.

Generally, electrodeposition method is a power tool for 2D cell patterning and
immobilization with programable shape-control ability. However, the method is so far
limited to the 2D substrate surface due to its mechanism. To further overcome this
limitation and apply this method for the 3D bio-assembly applications. Inducing the
APA microcapsules system is a possible and promising way to achieve shape-controlled
APA microcapsules since there is still lack of an efficient method to control the shape
of the APA microcapsules. Therefore, in the next chapter, we will describe the proposed
novel method for shape-controlled APA microcapsules fabrication based on
electrodeposition.
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Chapter 3
Shape-controlled high cell-density

microcapsules by electrodeposition

3.1 Motivation of 3D cell structure fabrication

Recent advances in tissue engineering have relied upon development of methods to
place spatially selective biological components at specific three-dimensional (3D)
locations [104-106]. There is similar interest in developing methods to assemble cells
within bio-scaffolds for fabrication of 3D cell structures. Current methods to assemble
cells into two-dimensional (2D) or 3D structures include non-spherical polymeric
microparticle in situ photo-polymerization [26, 107], cell patterning on 2D surfaces by
using dielectrophoresis technique [25, 79], 3D bio-printing [22, 27], cell sheet
engineering [48], and cell encapsulation units [108, 109]. Thus, many fabrication
methods have been developed to immobilize and culture cells in 3D formats.

The use of alginate-poly-L-lysine (PLL) microcapsules has shown great potential in
fabricating 3D cell structures with high cell density ever since Lim et al. first reported
this approach for fabrication of microencapsulated islets for implantation in 1980 [108].
Lately, cell-laden Ca-alginate fibers or droplets have been transformed into 3D
microcapsules to form tissue-like cell spheroids and cylindroids after long-term
cultivation [99, 110]. These microcapsules provide a soft and "liquid-like" platform that
mimics the embryonic microenvironment for self-assembly of cells [100]. Small
molecular weight substances like nutrient and oxygen molecules can pass through the
alginate-PLL membrane of microcapsules, while cells are blocked by the membrane
[96, 109]. However, because of the mechanism of Ca-induced alginate gel formation, it
is still difficult to precisely control the gelation process to produce alginate-PLL
microcapsules with specific shape. Therefore, despite the commonly used alginate
fibers or droplets generated microfluidic devices, there is still a lack of an efficient
approach to achieve shape-controlled alginate-PLL microcapsules for 3D cell structure
fabrication.
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Figure 3.1 A schematic drawing of the on-chip laser manipulation and fabrication systems[75].

For production of shape-controlled alginate-PLL.  microcapsules, the
electrodeposition method is a promising technique. Electrodeposition of Ca-alginate
hydrogels on specific device plays an important role in entrapment and immobilization
of biological components, such as cells and bacteria, for studying cell-cell signaling
and 3D cell culture [90, 106]. Cheng et al. demonstrated a novel approach for
fabrication of alginate gels inside a microfluidic system [86, 90]. In their work, a Ca-
alginate composite hydrogel biofilm entrapping bacterial cells was fabricated on gold
electrodes inside the microfluidic system, with its shape controlled by using electrical
signals. By electrodeposition, Ca-alginate gelation can be triggered by an electrical
signal, which enables us to fabricate an in-situ Ca-alginate gel membrane with
controllable size and shape on microelectrodes. Consequently, other researchers have
also focused on the fabrication of cell structures by depositing cell-laden alginate gel
on electrodes [92, 93]. Their results show that cell viability can be maintained during
culture, but cells did not spread because of the lack of cell adhesion molecules and
spaces within the Ca-alginate gel. Thus, promoting cell proliferation has become the
main challenge concerning the electrodeposition method for 3D cell structure
fabrication.

Therefore, we introduced a new approach to solve the issue of cell proliferation in
the electrodeposition method. Our approach particularly aims at the fabrication of
shape-controlled alginate-PLL microcapsules for 3D cell structures based on
electrodeposition. In this study, we applied the electrodeposition method to alginate-
PLL microcapsule fabrication by transforming the 2D gel membrane into 3D
microcapsules. A Ca-alginate gel membrane was formed on the micro-patterned
fluorine-doped tin oxide (FTO) electrode, thus forming a microfabricated conductive
array. The electrodeposition-based gel-membrane formation process was applied to cell
encapsulation into alginate-PLL microcapsules with liquid cores (sphere, cuboid, and
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rod), where cells were cultivated for 2 weeks.

3.2 Microelectrode system set up

3.2.1 System hardware setup in our lab

The microscope observation systems in our lab were shown in Figure 3.1. The main
equipment is an inverted microscope (IX-71, Olympus). X-Y stage and the height of
objective lens (Z-axis) were controlled for manipulating the objects. Several objective
lens were used, including oil immersion objective UPLFLN 100XOI2 (Olympus, for
laser manipulation and on-chip fabrication), and air objective 40X (Olympus, for on-
chip fabrication). The laser was scanned on X-Y coordinate by controlling the angle of
galvanometer mirror (LSA-10A-30, Harmonic Drive Systems). UV was illuminated by
the mercury lamp (USH-1030L, USHIO) and the exposure time was controlled by the
shutter (BSH-RIX, Sigmakoki). The microfluidic device was set on the stage. The
observation was performed by the CCD camera (XC-555, Sony).

3.2.2 Materials

Sodium alginate (A2033, Sigma-Aldrich, St Louis, MO), sodium citrate tribasic
dihydrate (S4641, Sigma-Aldrich, St Louis, MO), PLL hydrobromide (molecular
weight 30,000-70,000 Da, Sigma-Aldrich, St Louis, MO), fluorine-doped tin oxide
coated glass slide (surface resistivity ~7 Q/sq, 735140, Sigma-Aldrich, St Louis, MO),
and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, 346-01373, Wako
Pure Chemical Industries, Osaka, Japan) were used. Calcium carbonate (CaCO3, ¢ 0.97
um, #2300) was supplied by Sankyo Seifun Ltd (Japan). Photoresist (AZ 5214 E) was
purchased from AZ Electronic Materials (Germany) GmbH. Water used to prepare the
solution was deionized with a Millipore Direct-Q3 water purification system
(Millipore, Worcester, MA).

Deposition solution. The deposition solution was prepared by dissolving 1% (w/v)
sodium alginate in solution containing NaCl (126 mM), KCl (2.7 mM),
Na;HPO4-12H20 (8.1 mM), KH2PO4 (1.47 mM), and HEPES (21 mM). The pH was
adjusted to 7.3 by adding 0.5 M NaOH solution. CaCO3 (0.5%, w/v) was uniformly
dispersed in the solution by using a magnetic stirrer for 24 h.

HEPES buffer solution. The HEPES buffer solution was prepared by dissolving HEPES
(5 g/L) in a solution containing NaCl (8 g/L), KCI (0.37 g/L), NaxHPO4 (1.076 g/L),
and glucose (1 g/L). The pH was adjusted to 7.3 by adding 0.5 M NaOH solution.
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Figure 3.2 The principle of electrodeposition

Calcium chloride solution. To prepare 1.1% (w/v) calcium chloride solution, 0.55 g of
CaClz (anhydrous) was dissolved in 50 mL distilled water.

Sodium citrate solution. Sodium citrate tribasic dihydrate (1.62 g) was dissolved in 100
ml of 0.45% (w/v) NaCl solution to prepare 55 mM sodium citrate solution.

Cell viability test solution. The cell viability solution was prepared by mixing 0.8 pL
calcein AM (1 mg/mL, Wako Pure Chemical Industries), 2.8 puL propidium iodide (PI,
1 mg/mL, Wako Pure Chemical Industries), and 1 mL HEPES buffer solution.

3.2.3 Fabrication of 2D Ca-alginate gel membranes on the electrode
by using electrodeposition
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Figure 3.3 Fabrication procedure of microelectrode on FTO glass and Calcium induced cross-linked

alginate hydrogel.

The electrodeposition method is a powerful tool in cell manipulation and assembly
because it is a programmable method for the spatiotemporally controllable assembly of
cell populations for 3D cell culture and for studying cell-cell signaling [90, 92, 106].
Alginate and chitosan are commonly used hydrogel-forming polysaccharides for
electrodeposition [83, 106]. However, the pH change required to trigger the formation
of the chitosan hydrogel is lethal to cells, which makes chitosan unsuitable for cell
entrapment. Unlike chitosan, the electrodeposition of alginate hydrogel provides a
programmable and biocompatible method for spatially selective cell entrapment and
3D cell culture [93].

The procedure for fabricating Ca-alginate gel membranes is illustrated in Figure
3.3. A schematic illustration of the mechanism for calcium alginate electrodeposition is
shown in Figure 3.2. Briefly, deposition solution (500 puL) mixed with RLC-18 cells
(cell density, 5 x 10° cell/mL) was placed on the patterned electrode area. One copper
wire was immersed into the deposition solution (about 1 mm length) as a cathode while
the other copper wire was attached to the FTO surface as an anode. Both wires were
connected to a DC power supply. The distance between the copper wire (cathode) and
the FTO surface (anode) was approximately 5 mm. A DC voltage (4.5 V) was applied
to the FTO electrode for 15 s to trigger H" generation by the electrolysis of water and
form a pH gradient at the anode surface (2H20 — Oz + 4H" + 4¢”). Ca** was released
from CaCOs particles because of encountering protons at the anode 2H" + CaCO3; —
Ca’* + H20 + CO). Ca-alginate hydrogel membranes were formed on the bare
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Figure 3.4 Model for numerical simulation of electric field of microelectrodes.

patterned electrode area in the presence of Ca®*, because Ca" ions act as ionic bridges
between I-guluronic acid residues on adjacent chain segments (Ca*" + 2Alg-COO™ —
Alg-COO—Ca**—00C-Alg). After 15 s, the DC power supply was turned off, and the
FTO electrode was immediately immersed into the HEPES buffer solution in a 10-cm
petri dish to flush away the deposition solution.

3.2.4 Simulation for electric field of microelectrode

We constructed model for numerical simulation of electric field using COMSOL
Multiphysics software. The schematic of the design is shown in Figure 3.4. Here, we
tuned the insertion depth of cathode electrode (a copper wire that inserted into
deposition solution) to check its effect on electric field distribution. By altering the
parameter of insertion depth from short (I mm) (Figure 3.5a) to long (8 mm) (Figure
3.5b), the electric field distribution has significantly been changed.

The results in Figure 3.5 indicated the electric field on the center area is higher than
other areas since the center area is close to the cathode electrode. What’s more, the short
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Figure 3.5 The numerical simulation of electric field distribution over the microelectrode of Figure 3.4.
The results of electric field distribution independent to the insertion depth of cathode electrode which is
short (1 mm) (a) or long (8 mm) (b). The applied potential is 4.5 V. The unit is V/m.

insertion depth of electrode lead to a smooth electric potential gradient (electric field at
the center is 1.5 times than at the periphery) compared with the long insertion depth
which lead to a steeply electric potential gradient (electric field at the center is 3 times
than at the periphery). Therefore, in order to achieve a uniform electric field as much
as possible, the cathode electrode (inserted copper wire) should be as far away from the
anode (microelectrode of FTO glass) as possible. Thus, we choose the insertion depth
of less than 2 mm in our real experiment.
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3.2.5 Transformation of 2D gel structures to 3D microcapsules

In chapter 3.3.2, Ca-alginate gel structures have been fabricated onto the
microelectrode. However only fixed within the gel, cells may not be able to spread
during culture since there is possibly no adhere molecular inside the alginate gel [23].
Thus, the method transforming the 2D gel structures into 3D alginate-Poly-L-lysine
(PLL) microcapsules are used. By this microcapsule technique, living cells
encapsulated within the 3D alginate-PLL microcapsules can be promoted into 3D
microtissue with high cell density as shown in Figure 3.6.
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Figure 3.6 Procedure for fabricating shape-controlled alginate-poly-L-lysine (PLL) microcapsules
based on electrodeposition. (1) Briefly, patterned FTO electrodes were fabricated by the photolithograph
process, (2) and an alginate solution with CaCOj particles and cells was housed on FTO electrodes. (3)
Alginate gel membranes were formed on FTO electrodes by electrodeposition. Schematic illustration of
mechanism of calcium alginate electrodeposition. (3-1) An acid microenvironment formed by electrolysis
degrades CaCO; particles to release Ca?" ions (3-2), which cross-link with alginate to form the hydrogel
in situ (3-3). (4) The formed alginate gel membranes were detached by manual pipetting. (5) A semi-
permeable alginate-PLL complex membrane was formed by reacting the gel with PLL solution, (6) and
the microcapsules cores were liquefied by sodium citrate to form 3D alginate-PLL microcapsules. (7)

Finally, high cell-density cell structures were achieved after long-term cultivation.
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Figure 3.7 (a) A schematic drawing of strategies for fabricating gear-like tissue; (b) Corresponding
fabricating results in experiment. In this experiment, we showcased a gear-like structure design for the

demonstration.

The alginate-PLL encapsulation procedure used in this paper was a modification
of the conventional technique [26, 29, 30]. First, as we have described in the chapter
3.3.2, cell-laden gear-like gel structures have been fabricated onto the microelectrode
inside a 10 cm petri dish within HEPES buffer solution (Figure 3.7(b1)). To achieve 3D
alginate-PLL gear-like microcapsules, we detached the array of gel structures from the
microelectrodes by shaking the dish for 2 minutes. Due to fluid shear stress, the gel
structure can be separated from the surface of microelectrode automatically Figure
3.7(b2)). After the detachment process, these gel structures were transferred into a 10
ml plastic centrifuge tube for next step. In addition, there is totally no sticking issue
among the microelectrodes during the releasing process.
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Figure 3.8 The culture results of the fabricated six-tooth gear-like tissue using RLC-18 (rat liver) cells in
day 9.

Then, the gel structures were washed with 1.1 %( w/v) CaClz solutions twice since
the Ca?" ions can harden the gel structures by cross-linking with alginate secondly.
Follow by a treatment of'a 0.05 %( w/v) PLL solution (molecular weight 30,000—70,000,
Sigma-Aldrich) for 5 min, thus an alginate-PLL complex layer was formed around the
gel structures. This alginate-PLL complex layer is a semi-permeable membrane which
allows small molecular weight substances such as oxygen pass through while high
molecular weight substances such as proteins and cells are blocked. By this way, the
nutrient and oxygen can be transported into inner cells of the fabricated alginate-PLL
gel structures.

Then, the gel structures were washed with 1.1 %( w/v) CaClz solutions again to
remove the extra PLL solution. Follow by a treatment of 0.03 %( w/v) sodium alginate
solution for 4 min, alginate was reacted with PLL to form an outer PLL-alginate
complex layer. This step is necessary because the PLL may have poison effect when
directly contact with cells.

Then, the alginate-PLL-alginate gel structures were treat with 55 mM sodium citrate
solution for 6 min. This process can liquefy the inner alginate structures to finally
achieve 3D alginate-PLL-alginate microcapsules. The microcapsules were then washed
several times by HEPES buffer solution to remove the extra sodium citric and then
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transferred into 35 mm tissue culture dish for further cultivation at 37 °C in a humidified
5 % COz incubator (Figure 3.7(b3-b4)).

The current results of improved method are shown in Figure 3.8. The shape of six-
tooth gear-like tissue is achieved after 9-day culture. As the results, the outer and inner
diameters of the gear-like tissue are about 975 =25 B m and 32010 v m
respectively (N>5, measured by ImagelJ). We also increased initial cell density of the
deposition solution to reduce the incubation period. Therefore, the gear-like tissue can
be produced within one-week culture.

Figure 3.9 Fabrication results of 3D microtissue (RLC-18 Rat liver cells) with different shapes

So far, varying shapes of microtissues using RLC-18 rat liver cells have been
fabricated on microelectrode device successfully and the shape of microtissue can be
simply controlled by changing the design of microelectrode patterns as shown in Figure
3.9. Thus, the contribution of this work includes: 1) This work describes the technique
of electrodeposition in generating 3D microtissue as a product of shape control. 2)
Using the common electrodeposition approach, deposition of calcium alginate gel
structures has previously been restricted to a 2D surface; however, this work
demonstrates overcoming this limitation to fabricate 3D microtissue. 3) Compared with
other methods for fabrication of 3D tissue architecture [21, 111], micro-scale tissue can
be fabricated by our approach owing to the resolution of the electrodeposition method
(~200 pm). Additionally, these microstructures can be easily transferred by a 1-ml
pipette for further applications. Therefore, our method provides a suitable platform for
construction of 3D high cell-density structures using shape-controlled alginate-PLL
microcapsules. This platform has potential to stimulate new uses for
microencapsulation technology in various applications such as in tissue engineering.
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3.3 Evaluation of the morphology and cell viability of

the fabricated APA microcapsules

3.3.1 Shrinkage phenomenon of Alginate gel structures

Fabrication results of 3D hydrogel-PLL microcapsules are shown in Figure 3.10(a).
Sphere, cuboid, and rod microcapsules were observed from different angles (Figure
3.10(c—e)), which were confirmed by rotating the microcapsules. The black granules
remaining on the interior surface represent CaCOs particles.

The architecture of these alginate hydrogel-PLL microcapsules includes a central
core of Ca®*-cross-linked alginate gel that can provide an aqueous microenvironment
and a two-layer shell consisting of a PLL inner layer and sodium alginate outer layer,
as shown in Figure 3.10(b). The alginate-PLL semi-membrane permits passage of low
molecular weight substances, such as nutrients and oxygen, to the core and passage of
metabolic products from the core, while retaining the core material within the
microcapsule [109].

The success rate of transforming 2D alginate hydrogel membranes into 3D alginate
hydrogel-PLL microcapsules was relatively high (approximately 85%). However, if
bubbles were present in gel structures after electrodeposition, conversion to alginate-
PLL microcapsules may fail because the bubbles create holes in the gel structure.
Therefore, the applied voltage and deposition time should be maintained within an
optimum range to avoid bubble formation.

When performing the PLL coating and alginate coating steps, the chemical reactions
result in aggregation. Consequently, prior to the addition of the PLL or alginate
solution, the centrifuge tube was gently shaken to prevent aggregation.

In the present study, the average core diameter of the microspheres was
approximately 630 um, as shown in Figure 3.10(f). The average core length of the
microcube was approximately 500 um, as shown in Figure 3.10(g). The length of the
rod was approximately 1800 pm, while its width was approximately 240 pm (Figure
3.10(h)). Compared with the initial size of the micro-pattern, the size of microcapsules
was decreased to approximately half. This shrinkage of calcium alginate gels after gel
formation is a general phenomenon also observed in other studies [110].
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Figure 3.10 (a) Fabrication of 3D shape-controlled alginate-PLL microcapsules in sphere, cuboid, and
rod shapes (cell not loaded). (b) Diagram shows the structure of alginate-PLL capsules, which includes
an aqueous core loaded with cells and a two-layer shell consisting of a PLL inner layer and sodium
alginate outer layer. (c—) Bright field images of micro-patterned alginate hydrogel membranes formed
by electrodeposition and 3D microcapsules in sphere, cuboid, and rod shapes, respectively. (f~h) Size

distribution of micro-pattern, gel membrane, microcapsules and core in sphere, cuboid, and rod shapes,

To quantitatively analyze this shrinkage phenomenon and investigate the
relationship between sizes of 2D gel structures generated after electrodeposition and
those of 3D microcapsules, the following four parameters were measured for each
spherical, cubic, and rod microcapsules as shown in Figure 3.10(c—h):

a: size of micro-pattern on electrode

b: size of 2D gel membranes after electrodeposition
c: size of microcapsules

d: size of core

Parameter c represents the total size of microcapsule, while parameter d only
represents the size of core as shown in Figure 3.10(c—e). The edge area of gel structures
was not transformed into the microcapsule and consistently remained 2D (Figure
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3.10(a)). This phenomenon may be caused by the edge area of these 2D gel structures
after electrodeposition being too thin. After being coated with PLL and dissolution of
the alginate inside, these thin areas stick together.

Table 3.1 Parameter ratios dependent on the shape of alginate-PLL microcapsules

Alginate-PLL capsules

Ratio: b/a Ratio: d/b
Sphere 1.22£0.02x 0.49 + 0.03x
Cuboid 1.23 £ 0.05x 0.41 £0.02x
Rod 1.24 £ 0.03x 0.42 +0.02x*

Table 3.1 shows parameter ratios dependent on the shape of alginate-PLL
microcapsules. The b/a ratio is defined as the dimensional resolution, where parameters
a and b denote sizes of circular, square, and rectangular micro-patterns and
corresponding sizes of Ca-alginate hydrogels produced by these micro-patterns,
respectively. The d/b ratio is also defined as the dimensional resolution, where
parameter d denotes the core size of the circular, square, and rectangular shapes. The
d/b ratio shows a small range from 0.40x to 0.50x, which indicates that size of
microcapsules can be controlled using our method. Therefore, these results validate the
feasibility of our approach to fabricate shape-controlled alginate-PLL microcapsules.
Furthermore, it is noteworthy that prepared alginate-PLL microcapsules were strong
enough to be handled with tweezers.

3.3.2 Evaluation of cell viability

RLC-18 cells were successfully encapsulated within 3D microcapsules for long-term
culture to form structures with high cell-density (similar to that found in vivo: 108-10°
cells cm ). However, according to our culture results, after 9-day cultivation, there was
still much space that was unoccupied by cells [112]. Therefore, to reduce culture time,
we reduced the size of the micro-patterns and eventually achieved cell structures with

60



3.3 Evaluation of the morphology and cell viability of the fabricated APA microcapsules

250 pm

250 pm
nate

250 pm

100 .
(e) [ IWithout 20 mM HEPES
| [ With 20 mM HEPES

75 |

50

Cell Viability (%)
e

Figure 3.11 (a) Bright field and (b) fluorescent micrographs of RLC-18 cells entrapped in 2D
electrodeposited Ca-alginate gel membranes without addition of 20 mM HEPES to the deposition
solution. (c¢) Bright field and (d) fluorescent micrographs of RLC-18 cells entrapped in 2D
electrodeposited Ca-alginate gel membranes with addition of 20 mM HEPES. The photoresist layer also
shows red fluorescence. (e) Significantly increased percentage of live cells was observed after addition
of HEPES to the deposition solution (*, p < 0.05).

sizes less than 500 pm in diameters within 2 weeks (Figure 3.12(a)). Results of long-
term culture within the current microcapsules are shown in Figure 3.12(b-d). After 2-
week cultivation, 3D cell structures (sphere, cuboid, and rod) were fully occupied by
cells at high cell density.

During electrodeposition, an acid gradient is generated around the electrode that may
have a lethal effect on cells viability. Thus, cell viability was studied soon after
electrodeposition. Cell viability was found to be maintained at approximately 75% by
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Figure 3.12 (a) Size of micro-pattern electrode used for 3D cell structure fabrication. Cell encapsulation
and growth in alginate-PLL microcapsules with different geometries for 2 weeks to form 3D high cell-
density structures. Cell growth in 200-um diameter microcapsules with rod shape (b). Cell growth in 400
pm-diameter microcapsules with sphere shape (c). Cell growth in 340-um length microcapsules with
cuboid shape (d).

adding 20 mM HEPES to the deposition solution (Figure 3.11). Compared with other
groups, for example, Cheng et al. [113] reported more than 80% cell viability after
immobilization and culturing of myeloma cells by using electrodeposition of calcium
alginate gel. However, cancer cells are not sensitive to changes in pH compared to
normal cells [114]. Shi et al.[82] reported the electroaddressing of Escherichia coli cells
by deposition with Ca-alginate hydrogels. Here, we successfully maintained cell
viability by co-deposition with a normal cell line (RLC-18 cells) through the
electrodeposition process. Therefore, we confirm the feasibility of the current method
for immobilizing normal cells without compromising cell viability under physiological
conditions.

Figure 3.13 shows cell viability in 17-day cultured 3D cell structures assessed using
the live/dead assay kit; the viability was approximately 96%. No necrotic area, caused
by high cell-density due to cell proliferation and tissue contraction, was found in the
central tissue because the microcapsule size was optimal for nutrient transportation.
These results also indicate that presence of residual CaCOs; particles within
microcapsules has not caused serious toxic effect on encapsulated cells. However,
direct contact with CaCO3; may cause cell inflammation. To remove the possible side
effects of residual CaCOs, nano-CaCOs may go through the PLL-alginate semi-
membrane instead of being entrapped within the microcapsules. Furthermore, since our
system allows precise control over the size of 3D microcapsules, it is possible to
fabricate cell structures that respond to varying cell lines.

Figure 3.14 shows fabricated microelectrodes used in this study. In total, there are
42 predefined microelectrodes on the FTO glass slide, including 20 circular, 10 square,
and 12 rectangular patterned microelectrodes. The throughput of the approach
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Figure 3.13 (a) Bright field image of 3D high cell-density structure in sphere, cuboid, and rod
shapes. (b—d) Cell viability of 17-day cultured 3D tissue as assessed by using the live/dead assay
kit.

described in this paper for cell encapsulation can be increased by increasing number of
microelectrodes since deposition time of electrodeposition process is independent to
the number of microelectrodes. Cell-encapsulated 3D microcapsules can potentially be
applied to tissue engineering. It has been reported that hepatocyte cylindroids have high
cell activity and maintain highly differentiated functions [115]. Shape-controlled
microcapsules of 100-um size have various advantages, including high nutrient and
oxygen transport and high cell activity. The technique describe in this paper for
fabrication of shape-controlled 3D cell structures will be useful for application to tissue
engineering and cell transplantation.

The present method requires only generally regarded safe chemicals and can be
performed without sophisticated techniques. The electrodeposition method presented
here for fabrication of 3D cell structures is simple, as demonstrated by the following
points: (1) The electrodeposition technique is now reasonably well established, and
electrodeposition of gel structures on 2D electrodes has been well characterized in
related studies [84, 116]. (2) The detachment process of gel structures from 2D surfaces
can be easily achieved by pipetting or shaking as discussed. (3) The gel structures are
strong enough to maintain their morphology without any defect while going through all
processes. (4) The gel structures or microcapsules can be transferred simply by a 1-ml
pipette. (5) Failures are mainly caused by bubble interference, which can be avoided by
using a suitable DC potential during electrodeposition. Because of its simplicity, this
method based on electrodeposition is applicable to the construction of shape-controlled
microtissue.
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Figure 3.14 (a) Images of fabricated microelectrodes used in current experiment with twenty circular, ten
squares and twelve rectangle patterns. (Black area is the conductive area of microelectrode and white

area is covered by the photoresist material).

3.4 Summary

In summary, we applied the electrodeposition method to produce 3D high cell-
density shape-controlled microcapsules. Achievements of our approach include
generation of 3D alginate-PLL microcapsules with specific shape by electrodeposition,
successfully encapsulation of living cells, rat liver cell RLC-18, into these
microcapsules (sphere, cuboid, and rod shape), and generation of structures with high
cell-density by 2 weeks of culture. This method enabled formation of precise micro-
scale tissues during tissue formation. Use of this method to achieve specific 3D cell
structures will create new opportunities for application of microcapsule technology to
tissue engineering.
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Three-dimensional Hepatic Lobule-Like Tissue

Constructs by Cell-microcapsule Technology

4.1 Motivation of hepatic lobule-Like tissue constructs

In vitro biofabrication of multicellular aggregates has been used in tissue research
as a compromise between conventional two-dimensional (2D) cultures and the
complexity of artificial organs for pharmacological assays [117] and toxicological
studies [118]. Until now, the cell-containing modules used to build three-dimensional
(3D) cell models have taken the form of cell spheroids [119], cell microfibers [120],
and cell sheets [121]. Among the various methods used to generated cell-containing
modules, the fabrication of alginate-poly-L-lysine (PLL)-alginate (APA) microcapsules
as one of the typical cell microcapsules was first established in 1980 by F. Lim and has
been widely used for cell entrapment and drug delivery for over 30 years [1, 108, 110,
122-124]. The architecture of the APA microcapsules includes a central core of
dissolved Ca**-cross-linked alginate gel that can provide an aqueous microenvironment
and an alginate-PLL complex shell that acts like a semi-membrane. This semi-
membrane permits the passage of low molecular weight substances, such as glucose
and oxygen, to the core and passage of metabolic products from the core, while
retaining the microencapsulated islets or drugs within the microcapsule. Thus, the APA
microcapsules provide a soft and “liquid-like” system platform in which the cells can
be promoted into high-cell density aggregation after long-term culture. In addition, the
PLL-alginate complex shell can further be dissolved by treatment with 1.6% sodium
citrate solution to recover the encapsulated cells or to release the drugs [100]. However,
because of the gelation mechanism of the calcium-alginate hydrogel (calcium ions
cross-link with alginate), it is difficult to prepare APA microcapsules with a specific
shape and size [125]. This disadvantage limits the utilization of the APA microcapsules
for further applications in tissue engineering as a bio-scaffold.
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Electrodeposition method has recently been established [86, 90, 116]. It is used to
deposit a calcium-alginate gel film at specific electrode addresses with a pre-designed
shape and size. Many research groups have performed work to immobilize cells,
bacteria, and other bio-components within the alginate gel for cell-cell signaling and
cell culture studies based on the electrodeposition method [82, 92]. The mechanism of
electrodeposition is used to release calcium ions from the region of the micro-electrode
surface via electrolysis (H" is released from the anode and reacts with CaCOs3 particles
to release calcium ions). Thus, these calcium ions can immediately react with alginate
around the electrode to form an alginate hydrogel film. Simultaneously, the bio-
components are immobilized within the gel film for further applications. The
advantages of the electrodeposition method include: 1) high bio-component
immobilization resolution (~20 um) [90] and 2) the use of simple equipment to apply
potentials. Despite these advantages, the major challenges related to 3D cell model
fabrication based on electrodeposition remain. Few of these approaches have been
adopted in 3D cell tissue constructs for the following reasons: 1) most fabrication is
restricted to a 2D surface as a biofilm because of the principle of electrodeposition, 2)
there is an acid area generated around the electrode (H' ions released), which may affect
the viability of immobilized cells, and 3) cells embedded within the calcium-alginate
film have a low proliferation rate due to a lack of extracellular matrix (ECM) and room.

Thus, it is crucial to establish a new approach for the coupling of APA microcapsule
modules and deposited shape-controlled alginate hydrogels in a combination format.
From this perspective, we proposed a novel method to fabricate 3D multilayer hepatic
lobule-like tissue based on electrodeposition and microcapsule techniques. The design
of a micro-electrode device, which was previously used for preparing microtissue in
sphere, cuboid, and rod shapes [98], was modified to obtain suitable dimensions for
preparing hepatic lobule-shaped microtissue (HLSM). The micro-pattern electrode was
fabricated by photolithography. The arrayed micro-pattern electrode is capable of
simultaneous formation of alginate gel film in situ with a hepatic lobule shape based on
the electrodeposition method. These cell-containing gel films were further detached
from the substrate and treated with PLL and sodium citrate solution to form 3D
microcapsules. Cells encapsulated within the microcapsules eventually fully occupied
all spaces to achieve HLSM in two weeks.

In addition to the fabrication details of the HLSM, which can be found in our
previous report [126], the current work is novel because the morphology, growth, and
functionality of the RLC-18 hepatic lobule-shaped microtissue (HLSM) was compared
to that of RLC-18 cell spheroids, which are commonly used cell models. In addition,
3D 4-layerd hepatic lobule-like tissue was further assembled by establishing a simple
micro-manipulation system. This study aims to clarify that the bio-function of the
HLSM with similar shape to native tissue may differ from the normal cell spheroid
quantitatively. In addition, our method is capable of providing a suitable platform for
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Figure 4.1 Microcapsules-based procedure for fabrication of the multilayer 3D hepatic lobule-like tissue.
Phase 1: Fabrication of the HLSM to mimic the shape of hepatic lobules with bio-function. Phase 2:
Assembly of the single HLSM into 3D hepatic lobule-like tissue for future in vitro applications of

artificial liver fabrication.

3D cell model fabrication for future in vitro applications for artificial liver fabrication.
The whole research map was shown in Figure 4.1.

The contributions of this work include: (1) the combined method of cell
microcapsule technology for generating 3D microtissue to mimic the shape of the
hepatic lobule, (2) microtissue with a hepatic lobule shape and spheroids were
compared quantitatively based on albumin secretion and cell number during long-term
culture, and (3) a simple micro-manipulator system was established to assemble the
single microtissue into 3D multilayer hepatic lobule-like tissue. Therefore, we believe
our method provides a suitable platform for constructing a 3D cell model by cell
microcapsule technology. This platform has the potential to stimulate new uses for
microencapsulation technology in various applications such as in tissue engineering.

In the previous chapter, shape controlled microtissues were fabricated on
microelectrode device. In this chapter, we improved upon the previous method and then
fabricated 3D multilayered hepatic lobule model with HLSM as basic building block.
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In order to define the shapes of gel structures, a microelectrode device with separated
patterning and fabrication areas was fabricated. Size control for microtissue was
demonstrated. These hepatic lobule microtissue can be further assembled into more
complex 3D structures and could become functional components of artificial liver.

4.2 Integrated microelectrode devices

4.2.1 Electrodeposition method

The general mechanism of calcium alginate electrodeposition for cell entrapment is
shown in Figure 4.2. First, the electrical signal triggers H" generation by the electrolysis
of water to form a pH gradient at the anode surface. The reaction can be described as:

2H20—O0x+4H +4e
Second, Ca’’ ions are released via CaCO3 particles by reacting with H". The
reactions can be described as:

2H"+CaCO3—Ca*+H20+CO»

Third, the released calcium ions interact with the G block of the alginate to form
the “egg-box” junction and cross-link the polymer chain. The reactions can be
described as:

Ca?*+2Alg-COO —Alg-COO-Ca’*-00C-Alg

Alginate solution with Calcium
carbonate particles and cell
culture solution with 3T3 cells

F 4

3T3 cells embedded in alginate hydrogel

Figure 4.2 A schematic drawing of entrapment of 3T3 cells as an example inside alginate hydrogel

68



4.2 Integrated microelectrode devices

structures.

For electrodeposition, the deposition solution was prepared by dissolving 1% w/v
alginate sodium (80 - 120 cP, Wako) in PBS buffer, and 0.5% w/v CaCO3 (310034,
Sigma-Aldrich) was uniformly dispersed in the solution using magnetic stirrer for 24h.

4.2.2 Fabrication of micro-patterned electrode

Microelectrodes are key elements in cell entrapment for electrodeposition. Firstly,
we chose fluorine-doped tin oxide (FTO) as a conductive material because it is
transparent. The glass was coated with thin ITO and was used to fabricate
microelectrodes. The thickness of the ITO layer is 150 nm. The fabrication method was
based on photolithography. The photoresist AZ (5214-E, Clariant (Japan) K.K.) was
used as the protective layer.

The photolithographic technique was used to construct the electro-device in this
experiment, as previously described [98]. Briefly, fluorine-doped tin oxide (FTO) glass
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Figure 4.3 (a) Images of fabricated microelectrodes used in current experiment with twenty patterns for
the HLSM and spheroids on each FTO glass slide. (Black area is the conductive area of microelectrode

and white area is covered by the photoresist material).
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Figure 4.4 (a) Experimental setup of electro-device for depositing of Calcium alginate hydrogel.

slides (2.5 cm % 5 cm) were washed with isopropyl alcohol and Milli-Q water using an
ultrasonic cleaner. The photoresist (AZ 5214E) was coated on the surface of FTO glass
with 1.4 pm thickness.

The patterned-electrode was fabricated using a micro pattern generator (uPG 101,
Heidelberg, German) based on our AutoCAD design of micro-electrodes. In the present
work, micro-patterns of hepatic lobule and circular shapes were prepared as shown in
Figure 4.3 to fabricate the HLSM and cell spheroids for comparison. The outer diameter
of the hepatic lobule pattern was 1.8334 mm and the inner diameter was 0.4 mm. The
diameter of the circular pattern was 1 mm. To quantitatively analyze the morphology,
growth, and functionality of the RLC-18 HLSM compared with those of the cell
spheroid, the designed micro-electrodes for HLSM and the spheroid had the same initial
area of 1.651 mm?.

4.2.3 Experimental setup for electrodeposition

To fabricate the HLSM and spheroids, the FTO glass slide with micro-electrodes
was first set up horizontally. A copper wire (No. 359-835, RS Components Ltd, German)
from the anode of a DC power supply was connected to the FTO conductive surface by
tape. The pre-prepared RLC-18 cell suspension was centrifuged and washed with PBS
once to remove the DMEM, which may interfere with the electrodeposition reaction.
Then, the cell suspension was centrifuged again, mixed with 700 ul deposition solution,
and evenly dispersed by gently pipetting. Thus, 500 pul of 700 pl deposition solution
was taken and dropped onto the micro-electrode area like a hemispheroid. The other
copper wire from the cathode of the DC power supply was inserted into the
“hemispheroid” from the central top and was fixed by tape. The inserted length of the
wire was as short as possible (around 1 mm).

The experimental setup is shown in Figure 4.4. It is noteworthy that the
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concentration of insoluble CaCOs inside the deposition solution slightly changed
because of natural settling. In our experiment, the deposition solution was stirred again
and heated in a 37 °C water bath for 30 min. Then, 700 pl of deposition solution from
the upper solution was immediately taken to perform electrodeposition, as described.
The deposition solution could be stored for up to 14 days at room temperature (20 to
25°C) [127].

The FTO glass slide was recycled because the AZ photoresist layer can be easily
removed by alcohol washing. However, the chemical reaction may permanently change
the property of the surface of the micro-electrode via oxidation. Therefore, it is better
to change the address of the micro-electrode on the FTO slide for each experiment.

4.3 Fabrication of the RLC-18 HL.SM and spheroid

4.3.1 Material and solution preparation

We used sodium alginate (Medium viscosity, A2033), sodium citrate tribasic
dihydrate (S4641), poly-L-lysine hydrobromide (molecular weight 30,000—70,000),
fluorine doped tin oxide coated glass slide (surface resistivity ~7 )/sq, 735140) (Sigma-
Aldrich) and HEPES (346-01373) (Wako Pure Chemical Industries). Calcium
carbonate (CaCOs3) (0.97 um, #2300) were kindly supplied from Sankyo-seifun Ltd
(Japan). Photoresist (AZ5214-E) was purchased from AZ electronic material GmbH.
Cell Counting Kit-8 (CCKS8) was purchased from Dojindo Ltd (Japan). Rat albumin
enzyme-linked immunosorbent assay (ELISA) Quantitation kit (ERA3201-1) was
purchased from Assaypro Inc (USA). The water used to prepare the solution was
deionized with a Millipore Direct-Q3 water purification system (Millipore, Worcester,
MA).

Deposition solution

The deposition solution was prepared by dissolving 1% w/v alginate sodium in
solution containing NaCl (126 mM), KCI1 (2.7 mM), Na:HPO4-12H20 (8.1 mM),
KH2PO4 (1.47 mM) and HEPES (21 mM).The pH was adjusted to 7.3 by adding 0.5M
NaOH solution. CaCO3 (0.5% w/v) was uniformly dispersed in the solution using a
magnetic stirrer for 24h.

HEPES buffer solution

The HEPES buffer solution was prepared by dissolving HEPES (5g/L) in solution
containing NaCl (8 g/L), KCI1 (0.37 g/L), Na2HPO4 (1.076 g/L) and glucose (1 g/L). pH
was adjusted to 7.3 by adding 0.5M NaOH solution.
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Calcium chloride solution

To prepare 1.1% calcium chloride solution, 0.55 g of CaCl: (anhydrous) was
dissolved in 50 ml of distilled water.

PLL solution

Poly-L-lysine hydrobromide (25 mg) was dissolved in 50 ml of 0.9% w/v NaCl
solution (0.05% PLL solution).

Sodium citrate solution

Sodium citrate tribasic dihydrate (1.62 g) was dissolved in 100 ml of 0.45% w/v
NaCl solution (55mM sodium citrate solution).

Cell viability test solution

The cell viability solution was a mixture of 0.8 pL calcein AM (1 mg/mL, Wako),
2.8 uL propidium iodide (PI) (1 mg/mL, Wako) and 1 mL HEPES buffer solution.

4.3.2 Fabrication protocols

For the fabrication process, a DC voltage (4.5 V) was applied to the FTO electrode
for 15 s to generate the calcium-alginate hydrogel film embedded with RLC-18 cells
on the region of micro-electrode based on the mechanism of electrodeposition [106].
Briefly, H" is generated by the electrolysis of water formed in an acidic
microenvironment at the anode surface (2H20—QO2+4H +4¢"). Ca?’ is released from
CaCO; particles due to the proton encounter at the anode (2H'+CaCO; —
Ca?"+H20+CO2). The calcium alginate hydrogel films are formed when calcium ions
cross-link with alginate immediately (Ca*"+2Alg-COO —Alg-COO™-Ca**--00C-Alg).
After 15 s, the DC power supply was turned off and the FTO electrode was immediately
immersed into the HEPES buffer solution inside a 10 cm petri dish. By gently shaking
the dish, the extra unsolidified deposition solution was removed. After 2~3 min shaking
until the gel film could be clearly seen, the HEPES buffer solution was changed to fresh
solution. Then, the gel films were detached from the FTO surface by gently pipetting.
After the detachment, the FTO glass and most of the HEPES buffer solution in the dish
were retrieved. A sufficient amount (~10 ml) of 1.1% CacCl: solution was added to the
dish to harden the detached gel structures. This process takes approximately 2 min
while shaking the dish gently. Thus, these hardened gel structures were transferred into
a 10 ml centrifuge tube with a 1 ml pipette for further processing.

After transferring these gel structures to the 10 ml plastic centrifuge tube, the
structures were washed with 1.1% (w/v) CaClz solutions once again. Then, the
supernatant was removed by an aspirator. PLL solution (1 ml, 0.05% (w/v)) was added
to react with the Ca-alginate gel structures for 5 min. Then, the PLL solution was
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removed and 2 ml 1.1% CaClz solution was added to wash the structures. Then, the
supernatant was removed. HEPES buffer (2 ml) and 2 ml of 0.03% w/v alginate solution
were added to the tube for 4 min. Then, the supernatant was removed. Sodium citrate
solution (2 ml, 55 mM) was added to dissolve the inner alginate for 6 min. Finally, the
gel structures were washed with HEPES buffer solution twice and transferred to a

culture dish for long-term cultivation at 37 °C in a humidified 5% CO: incubator.

4.4 Evaluation of the RLC-18 HLSM and spheroid

4.4.1 Characterization of the RLC-18 HLSM and spheroids

Table 4.1 Characterization of the HLSM and spheroids measured by different

methods
HLSM Spheroid Measurement methods

Area of Measured by AutoCAD

micro- 1.651 mm? 1.651 mm? (Area calculation function based
electrode on DXF file of design)
975 4+ 25 um
(Outer)
Diameter 840 + 30 um Mea;t};)red b.y IlrpageJ based on
320+ 10 um optical images
(Inner)
Measured by confocal laser
Height 300 =22 pm 400+ 16 um  scanning microscope using FITC-
labeled PLL [126]

Area (Top 0.350 £ 0.02 0.550 + 0.02 Measured by ImageJ

. 5 3 (Area calculation function based
view) mm mm L

on 2D optical images)
Volume 0.11 mm’ 0.15 mm’ Calculated by the volume
equation (1-2)
Surface 1.99 mm? 1.50 mm2 Calculated by the surface area
area equation (3-4)

Table 4.1 shows the characterization results of the HLSM and spheroid measured

by different methods. The initial design for the micro-electrode area of the HLSM and
spheroids was 1.651 mm? measured by AutoCAD. The outer and inner diameters of the
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HLSM were approximate 975 + 25 um and 320 + 10 pm, respectively, as shown in
Figure 4.5A. The diameter of the spheroid was approximately 840 + 30 um.

After transforming the 2D gel film into 3D microcapsules (described above), the
base area (top view) was calculated to be 0.350 £ 0.02 mm? in the HLSM and 0.550 +
0.02 mm? in the spheroid. Compared with the initial area (1.651 mm?) of the micro-
pattern, the base area of microcapsules was decreased by approximately a quarter
because the deposited alginate gel shrank after reacting with calcium ions, a common
phenomenon [110].

The height of the HLSM was approximately 300 + 22 pm (N = 8) measured by
confocal microscope using a FITC-labeled PLL-alginate shell for laser scanning, as
shown in Figure 4.5B. This result can also be verified by the optical image shown in
Figure 4.5A. The height of the spheroid was approximately 400 + 16 um (N = 10)
measured by the same method. The difference in the height can be attributed to the
different shape of the structures when they were transformed from 2D gel film into 3D
microcapsules.

The volume of the HLSM and spheroid were 0.11 mm?® and 0.15 mm?, respectively,
calculated by the volume equation shown below:

| side view
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(red area)

Confocal image: Side view
3D view
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Figure 4.5 (a). Fabrication results for the HLSM after two weeks of culture. (A) Optical images of the
HLSM with tissue-like cell density. The outer and inner diameters were approximately 975 + 25 pm and
320 + 10 pum, respectively (N>5, measured by ImagelJ). (B) The confocal images show the 3D view of
the HLSM. The height was approximately 302 + 22 um (N>8). (C) The fluorescence image shows the
cell viability of the HLSM. The red area (dead cells) occupied approximately 6% of the whole area within
the HLSM, indicating that viability was at least over 90% (By measuring the red (dead cells) and green

(live cells) fluorescent areas in each image by ImagelJ, N>5).
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HLSM: V=S-H (1)

Spheroids: V =-nSH (2)

where S and H are the base area and the height, respectively.

The surface area of the HLSM and spheroid were 1.99 mm? and 1.50 mm?,
respectively, calculated by the surface area equation shown below:

HLSM: S=25S+C-H 3)

1
aPbP+aPcP+pPcP =

Spheroids: S =4mn( 3 )P 4)

where C is the perimeter of HLSM including the inner part and outer part. (a = b)
are a pair of equal semi-axes and c is a distinct third semi-axis of the spheroid
(ellipsoids). p =1.6075 yields a relative error of at most 1.061% for this approximate
formula.

The culture results of RLC-18 HLSM and spheroids on days 1, 4, 6, 8, 10, 12, 14,
and 16 are shown in Figure 4.6. Initially, the distributed cells began to form many small
aggregates on day 6. After continuous culture, the cell aggregates had a trend of fully
occupying the inner surface of the alginate-PLL membrane and eventually occupied all
the room within the microcapsules on day 14. Interestingly, after 14 days the alginate-
PLL shell could not further maintain the cells within the HLSM. The cells would break
though the membrane and continue to grow outside as a cluster. However, this
phenomenon mostly occurred in spheroids on day 20 (data not shown). This result may
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Figure 4.6 . Cell culture results for the HLSM and spheroids on days 1, 4, 6, 8, 10, 12, 14, and 16. The
initial cell density in deposition solution was around 1 x 107 cells/ml. Scale bar represents 250 pm. The
cell densities of the HLSM and spheroid were approximately 1.3 x 108 cells/cm? and 1.08 x 108 cells/cm®
on day 14. Beyond day 14, the cell may break through the Alginate-PLL complex shell to form the cell

cluster outside as indicated by red mark.

also verify our calculation results of the structure volume shown in Table 1, because
the spheroids had a larger volume (0.15 mm?®) than the HLSM (0.11 mm?®) for cells to
further occupy beyond day 16.

4.4.2 Cell number counting and viability assay

We used a Cell Counting Kit-8 (CCKS8) to determine the cell number in the
fabricated microtissue. This kit allows for sensitive colorimetric assays for the
determination of the number of viable cells in cell proliferation. The detection
sensitivity of CCK-8 is higher than other tetrazolium salts such as MTT, XTT, MTS, or
WST-1, according to the technical manual. Following the protocol, we first prepared
standard samples that contained known numbers of viable cells to create a calibration
curve. The procedure for cell counting included: 1) Inoculation of individual
microtissue of the HLSM or spheroid (100 pl/well) in a 96-well plate. 2) Adding 10 ul
of the CCK-8 solution to each well of the plate. 3) Incubating the plate for 3 h in the

76



4.4 Evaluation of the RLC-18 HLSM and spheroid

A B
25 18000 -® Hepatic lobule shape
16000 l }
- — Spheroid
i 2 14000 4 e
2.0 5 #
a3 = 4 L
3 g
2 12000
o K
8 15 B 10000 .l
8 3
8 — 8000
= o~
£ 10 @ & |
: 2 ’
g 6000
-
£ 000
05 L 3
= 2000
o 0
0 5 10 15 20 25 30 35 4 6 8 10 12 14 16
Cell number (x 103 Cells) Incubation period (days)

Figure 4.7 (A) The calibration curve of a linear fitting model (f(x) = p1*x, pl = 0.006497) shows the
relationship between the RLC-18 cell numbers and absorbance (OD) using the CCK8 assay. (B) Change
in the cell numbers of the RLC-18 HLSM and spheroids during the incubation period.

incubator. 4) Measuring absorbance immediately at 450 nm using a microplate reader
(Infinite F50 plate readers, TECAN) to determine the cell number of each microtissue.

In order to confirm if the presented method is suitable for use in biological
applications, cell viability of the fabricated microtissue was checked on day 14. The
fabricated structures were washed once with HEPES buffer solution and then immersed
into the cell viability test solution for 30 min in an incubator. Then, the structures were
washed with HEPES buffer solution again. A fluorescent microscope was used to
observe the samples.

Figure 4.5C shows the fluorescence results for cell viability within the HLSM on
day 14. By separating the RGB image, it is shown that the red area (dead cells) occupied
approximately 6% of the whole area. The cell spheroids have also been measured in
previous work and showed similar results to the HLSM [98]. This result indicates that
our method can be used to fabricate the microtissue while also maintaining viability
after long-term culture. Because we used the normal mammalian cell line, we believe
this method is also capable of encapsulating other bio-components such as cancer cells
and bacteria while maintaining their viability during long-term culture.

Figure 4.7A shows the calibration curve of a linear fitting model to indicate the
relationship between the RLC-18 cell numbers and absorbance (OD) using the CCK8
assay. Based on the calibration curve, the cell number was determined by measuring
the OD value. Figure 4.7B shows the changes in cell numbers per structure of the
HLSM and spheroid.

Figure 4.7B shows that the cell numbers in HLSM and spheroids on day 14 of
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culture increased to approximately 9 and 11 times the initial cell numbers (~1500
cells/structure), respectively. Consequently, the cell numbers per structure in HLSM
and spheroids reached approximately 1.42 x 10* and 1.62 x 10* cells/structure,
respectively. Hence, the cell density of the HLSM and spheroids can be calculated using
the relationship between volume and cell number. The cell density was approximately
1.3 x 108 cells/cm? and 1.08 x 108 cells/cm?® for the HLSM and spheroids, respectively,
indicating that the fabricated microtissue had a high cell-density. Interestingly, the cell
numbers in the spheroid on day 14 of culture were 1.4-fold higher than that in the
HLSM on day 14. This result was consistent with the following finding: the volume in
the spheroid was larger than that of HLSM, even though we used the micro-electrode
with exactly the same area for both designs (Table 4.1). Therefore, the spheroid with
larger volume may provide more room for cell proliferation.

4.4.3 Albumin secretion and urea synthesis

A rat albumin ELISA quantitation kit was used to measure albumin levels during
the culture period (at 4, 6, 8, 10, 12, 14, and 16 days). Before the assay, the fabricated
microtissue was washed with PBS and fresh medium was added; after 24 h, this medium
was withdrawn and aliquots were temporarily stored at -20 °C. There were two groups
of the HLSM and two groups of the spheroids, which consisted of 19 HLSMs and 26
spheroids from four independent cell preparations. The levels of albumin measured at
each time point were normalized to each microtissue or the cell number. The urea level
in the medium was determined using the urea assay kit (DIUR-100). The levels of urea
measured at each time point were normalized to each microtissue or the cell number.

Figure 4.8A shows that the albumin-secretion activities per HLSM structure were
almost the same as those of the spheroid before day 10; however, starting on day 12,
the activities of the HLSM were significantly higher than those of the spheroids, with
a maximum of 1.6-fold the activity on day 14 (p = 0.0059; n = 4). According to the
culture results shown in Figure 4.6, the cells were beginning to fully occupy the
microcapsules from day 12.
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Figure 4.8 Albumin secretion per structure (A) and per cells (B) of the RLC-18 HLSM and spheroids.
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Figure 4.9 Urea synthesis per structure (A) and per cells (B) of the RLC-18 HLSM and spheroids. The
data represent the mean + standard derivation of at least three experiments from four independent cell

preparations. * p < 0.05; ** p <0.01.

Figure 4.8B shows the albumin secretion per cell of the RLC-18 HLSM and
spheroids. First, there was a declining trend in albumin secretion in both structures.
Second, cells cultured within HLSM showed significantly higher activity as compared
with cells cultured within spheroids at days 12, 14, and 16 (p = 0.0251, 0.0015, and
0.0105; n = 4, respectively) and showed ~1.8-fold higher activity as compared with
cells cultured within spheroids on day 14. This result indicated that the albumin
secretion of the HLSM was higher than that of the spheroids both per structure and per
cell.

Figure 4.9A shows urea secretion per structure into the medium. The HLSM
showed significantly higher urea-synthesis levels as compared with the cell spheroids
from day 4 until the end of the experiment (day 16). Figure 4.9B shows the urea
secretion per cell of the HLSM and spheroids. A significant decrease in urea synthesis
was observed between days 4 and 8 for all cultures. Cells cultured within HLSM
showed significantly higher urea syntheses than cells cultured within spheroids at days
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Figure 4.10 (a) Experimental setup of the micro-manipulator system for 3D multilayer hepatic lobule-
like tissue assembly.

12, 14, and 16 (p = 0.000528, 0.00606, and 0.010689; n = 4, respectively). These results
clearly demonstrated the effectiveness of the PLL-alginate microcapsule system and
the HLSM formed in preserving in vitro hepatocyte functions.

4.5 Assembly of four-layered hepatic lobule-like tissue

by micromanipulator

To demonstrate the feasibility of the current method for 3D-cell-model fabrication,
a simple micromanipulator system was built to assemble the HLSM into a 3D
multilayer hepatic lobule-like tissue to mimic the native tissue as shown in Figure 4.11.
The assembly technique used in this study was a modified method [128]. Briefly, the
glass micropipette was defined (G-1000; Narashige International Inc., East Meadow,
NY, USA), heated, and pulled in micrometer dimensions (P-2000; Sutter Instrument,
Novato, CA, USA) as a main manipulator. The main manipulator orientation can be
adjusted along the X-, Y-, and Z-axes prior to assembly. The main manipulator first
moves downward to contact the microcapsules in the central position. Air is manually
injected into the solution through a 1-mL pipette to create bubbles, which lead to a
regular rising movement that is utilized to assemble the four-layered hepatic lobule-like
tissue fabricated in an open environment.
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A Glass micro-pipette

Multi-layered hepatic lobule model

Hepatic lobule shape

250 pm

Figure 4.11 (A) Concept for assembly of multilayer HLSM with repetitive single-step contact
micromanipulator. The glass micropipette moves downward to contact the microtissue in the center
position (the central vein of the HLSM). Air is manually injected into the solution through a pipette to
create bubbles near this microtissue (not shown in figure). These bubbles lead to a regular rising
movement of the microtissue, which is utilized to load the microtissue onto the main manipulator. This
one-step pick-up procedure was repeated to assemble the multilayer HLSM. (B) Bright image of
assembled four-layered HLSM. (C) Cell viability of the four-layered HLSM assessed by live/dead assay.

The four-layered hepatic lobule-like tissue was manually assembled by a repetitive
one-step micromanipulator. The optical and fluorescence images are shown in Figure
4.11B and Figure 4.11C, and the experimental setup is shown in Figure 4.10. The movie
of the assembly process can be found in the supplementary information. It took a total
of 10 min to assemble the 3D four-layered tissue, which exhibited cell viability >80%.
The cell density was 1.2 X 10® cells/cm® (calculated using the relationship between
volume and cell number at day of 16). Unlike other assembly methods [2], ours was
sufficiently repeatable and can be used to easily assemble many single micromodules
into a 3D cell model. For example, Huaping Wang’s group develops a versatile method
that engineers permeable 3D microtissues into tissue specific microscopic architectures.
The customized, arbitrarily shaped hollow micromodules are prepared by
photocopolymerizing poly (ethylene glycol) diacrylate (PEGDA) with acryloyl-PEG-
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Figure 4.12 . (A) Schematic of the sequential pickup of micromodules based on microbubble injection.
(B) Selective pickup of cell-laden micromodules with the hexagonal structure from the DMEM solution.
(C) Schematic of the self-alignment of picked-up micromodules based on hydrophilic and hydrophobic
interactions. Driven by surface tension during the interaction, the micromodules self-rotate and self-
translate into an integrated geometry. (D) Optical images of the picked-up micromodules before and
after self-alignment. The micromodules with different postures in the DMEM solution assumed a
uniform posture when immersed in mineral oil. (E) Fluorescence image demonstrating the assembly
results of 3D microstructures with different tissue-specific morphologies after the release from the
holder. The micromodules were fabricated from the PEGDA prepolymer solution with 5 mM RGDS and
0.2% (v/v) fluorescent microspheres. Scale bars: 200 um in (B), 300 um in (D), and 300 um in (E) [2].

Arg-Gly-Asp-Ser (RGDS). These micromodules are spatially reorganized and self-
aligned by a facile assembly process based on hydrodynamic interactions, forming an
integrated geometry with tissue-specific morphology and a vessel-mimetic lumen. The
RGD linkages create cell-adhesive structures in the PEGDA hydrogel, greatly
increasing the long-term cell viability in 3D microtissue cultures [2, 129]. However,
compared with our proposed methods, the cells encapsulated within the RGD-modified
PEGDA hydrogels seems to only grow on the outer surface of the fabricated micro-
structures. Thus, how to further promote the formation of 3D microtissue by removing
the PEGDA scaffold might be the main challenge for them.
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4.6 Discussion

In this study, we demonstrated a new method for forming 3D multilayer hepatic
lobule-like tissue using PLL-alginate microcapsules that closely mimic the in vivo
structure of the hepatic lobule. Hepatocytes are anchorage-dependent cells that are
notoriously difficult to maintain in vitro [130]. To preserve hepatic functions in vitro,
various methods for culturing hepatocytes have been proposed, including
dielectrophoresis-based liver cell patterning [111], cylindrical multicellular aggregation
[115], stacking of cell sheets [131], 3D cell culture [132], and sandwich co-cultures
with 3T3 fibroblasts [133]. These studies demonstrated the significance of cell-matrix
and cell-cell interactions. Unlike previous studies, this study demonstrated the
following three advantages: 1) successful adaption of electrodeposition to generate 3D-
cell-tissue constructs, 2) incorporation of PLL in the alginate hydrogel as an ECM to
promote cell adhesion and proliferation, and 3) morphological and functional
characterization of the 3D hepatic lobule-like tissue construct developed in this study
as compared with the RLC-18 cell spheroid that had been commonly utilized as a 3D
tissue-like model.

Yamazaki et al. reported that spheroids cultured in the microwell chip with a bottom
surface made of honeycomb film showed an enhanced proliferation rate, because the
oxygen permeability of the honeycomb film is higher than that of other materials [134].
Therefore, limited oxygen may be an important factor that limits the functionality of
and proliferation rate in microtissues. However, in their work, the albumin-secretion
activities per cell of HepG2 spheroids in both chips were almost the same. This result
indicated that beyond the external factors, the shape of the microtissue is essential. The
possible key parameter that enhances cell functionality involves controlling cell
orientation to form a microtissue that has a maximum transfer efficiency of oxygen and
nutrients. Therefore, the purpose of measuring albumin secretion by the HLSM and
spheroid in this work included: 1) to quantitatively examine the functionality of the
HLSM, which has a similar shape to our native tissue as compared with the normal cell
spheroid; and 2) to demonstrate that the 3D cell model assembled by a single functional
HLSM is also biofunctional.

Quantitative analysis illustrated that the characteristic morphology of the
microtissue contributed to enhanced hepatocyte viability and functionality. Albumin
secretion and urea synthesis were significantly upregulated in the HLSM. A possible
explanation is that in the HLSM, the central “vein” provides a hollow structure that
supports efficient mass transfer of oxygen, nutrients, and waste, contributing to the
sustained proliferation of cells and functionality of the HLSM. Additionally, the surface
area of the HLSM was 1.99 mm? larger than that of the spheroid, which was 1.50 mm?
(Table 4.1). This result indicated that the HLSM had more surface area for enhancing
the nutrient- and waste-exchange rates with culture medium. In Figure 4.8 A, the amount
of albumin secreted by the "structure" was low, but began to increase gradually. By
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contrast, in Figure 4.8B, the amount of albumin secreted by the "cells" was high, and
then began decreasing. The possible explanations for this phenomenon are as follows.
Albumin secretion and cell proliferation are considered unrelated processes and
generally move in the opposite direction [135]. The results shown in Figure 4.7b and
Figure 4.8B support this theory. In Figure 4.8B, at 4 days the growth of cells in sparse
culture can fully access to the culture medium, where the cells exhibited the highest
albumin-secretion activities. From days 6 to 12, when the cells in the microcapsules
occupied all the available substrate (the inner PLL surface) and began to form multiple
large cell aggregates, the cell activities decreased. Usually, peak albumin secretion
coincides with cell confluence, which is also characterized by decreased cell
proliferation. As shown in Figure 4.8A, the albumin secretion reached its peak on day
14, accompanied by decreased cell proliferation according to data in Figure 4.7A.
However, from day 12 to 16, cells reached confluence and stopped growing, while
albumin increased again. The possible reason is that some cells broke through the PLL
membrane at day 16, as shown in Figure 4.6. The cells outside the microcapsules
increased the contact surface with culture medium. This may lead to the increased
albumin secretion. During the culture periods, the hepatocytes showed appreciable
levels of urea synthesis, which were stable and did not change when expressed per
structure (Figure 4.9A). However, when expressed per cell, the levels gradually and
progressively declined in both types of structure (Figure 4.9B). We believe that the
possible reason for this behavior is similar to that already described above for the
albumin secretion. This result is consistent with a report that the 3D hepatocytes micro-
organoids are critical for preserving hepatocyte function [130]. Although the urea
production in our case appears lower than the conventional works that cultured
hepatocytes on a modified alginate scaffold [136, 137]. The possible reason is that the
urea production from 2D culture may be higher than that from 3D dense culture [130].

The reason why we stop culture the fabricated APA microcapsules both in HLSM
and spheroid shapes is that as shown in Fig. S11, at the day of 18, the encapsulated cells
broke through the alginate-PLL complex membrane and attached to the bottom surface
of the culture dish for 2D proliferation. Therefore, we could not further culture them
for the quantitative analysis although the albumin secretion is still increasing.

Generally, cell spheroids with a diameter >300 um do not allow survival of inner-
core cells, which usually die by necrosis. However, we did not observe central necrosis
occurring in our case according to live/dead assay results following culture. A possible
explanation is that unlike conventional cell spheroids cultured in a liquid-drop system
or other surface-treatment methods in which the cells grow from the inside to the
outside naturally, cells within microcapsules grow from the outside (the PLL inner
surface) to the inside. We believe that this might help to avoid the central necrosis
phenomenon.
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Figure 4.13 (A) Fabrication result of the HLSM without cells. (B) Micromanipulator attached to the
center of the HLSM for loading. (C) Micromanipulator contacts with the pillar. (D) Transferring the
HLSM onto the pillar.

As shown in Figure 4.11, a four-layered hepatic lobule model was constructed to
demonstrate the feasibility of the proposed method for 3D multilayered tissue
constructs in tissue engineering applications. The biofunctionality was confirmed by
comparing the HLSM with normal cell spheroids. In future, we plan to build
polydimethylsiloxane (PDMS) with pillars to better investigate the functional and
histological characteristics of the assembled 3D multilayered tissue. We intend to load
the HLSM onto the pillar that is made of a titanium wire, using a one-step
micromanipulator. The preliminary experimental results can be found in Figure 4.13.
By means of such pillar as a substrate, “sandwich” hepatic cord-like tissue co-cultured
with 3T3 feeder cells for long-term preservation of liver-specific functions will be
assembled and evaluated, comparing them with monocultures of hepatocytes in 3-
dimension. The other challenge of the current method for cellular implantation is how
to merge the multilayered cell structures. One possible solution to this issue would be
to stabilize the multilayered hepatic lobule model by a secondary crosslinking step
simply by immersing it into alginate solution, in a fashion similar to that of the
assembled multilayered PEG structure [138]. As another option, alginate-PLL
membrane-free transplantation of the hepatic lobule mode would be possible after
chemically dissolving the alginate-PLL membrane [100], that would enhance the
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supply of oxygen and nutrients and merge cells together for syngeneic transplantation.
However, without the alginate-PLL membrane, the tissue shape may not be maintained.

Therefore, the purpose of building the micromanipulation system was to
demonstrate the feasibility of the current method for fabricating a 3D cell model, such
as a hepatic lobule-like tissue, by using the single HLSM as a building block. Compared
with other commonly used cell-containing hydrogels, such as alginate hydrogel [139],
poly(ethylene glycol) diacrylate [140], and collagen [21], the microcapsules fabricated
by the electrodeposition and microcapsule techniques have advantages, including: 1)
high cell density similar to our native tissue, 2) biofunctional 3D cultures, and 3) shape-
control capability based on the design of the microelectrode. Therefore, this constitutes
a promising technique for fabricating complex 3D cell models using varying
microcapsules to encapsulate different cell lines for further applications in tissue
engineering.

4.7 Summary

In summary, this paper presented the fabrication of HLSM as a building block for 3D
multilayer hepatic lobule-like tissue constructs. RLC-18 cells were successfully
encapsulated within the HLSM and compared with cell spheroids, exhibiting improved
cell functionality over 12 days. A repetitive one-step micromanipulator system was
established to fabricate four-layered hepatic lobule-like tissue from the HLSM. Our
technology to fabricate a complex 3D cell model with biofunctionality enabled precise
control of cellular alignment and orientation in three dimensions. Our findings may
significantly impact the development of in vitro 3D models for broader applications,
including those involving tissue engineering, cell transport, and drug delivery.
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hydrogel sheets

5.1 Motivation of cell sheet fabrication

Various liver tissue engineering approaches currently under development, with
applications ranging from artificial liver organ transplantation to cell-based therapies,
rely on the ability to encapsulate hepatocytes in three-dimensional (3D) scaffolds.
Hydrogels are attractive scaffolds for 3D cell culture and tissue engineering due to their
tissue-like water content, injectability, and tunable properties. Extensive efforts have
been made to allow the control of various hydrogel formations, such as
thermoresponsive gel, photo-crosslinkable gel and chemical-crosslinkable gel; this
control could facilitate drug release [141], cell assembly In vitro [142, 143], tissue
formation [26, 144, 145] and subsequent transplantation [146].

A hydrogel made from an acidic polysaccharide of sodium alginate, which can
ionically cross-linked with multivalent cations (e.g., Ca**, Fe*"), is widely used to
entrap and immobilize cells [106], as well as bacterial [90] and other bio-components.
The “cell containing alginate hydrogel modules” take the form of cell droplets [119,
147-149], cell microfibers [130, 150] and cell sheets [82, 93]. Challenges remain
concerning the application of this hydrogel in tissue engineering; first, cell proliferation
rate is slow within the gel due to a lack of cell adhesion molecules, although some
researchers have indicated that the incorporation of RGD peptides can help cell
adhesion [151]. Second, it is difficult to control the formation of a complex alginate
hydrogel structure due to the diffusion of the multivalent cations in solution.
Microfluidic technology and specialized devices with nozzle arrays are the common
method to generate these structures [99, 100, 152].
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Figure 5.1 (A) The structure of the hepatic lobule as the functional units of the liver (left), and the two-
dimensional microarchitecture of the hepatic lobule (right). (B) We developed a micro-patterned
electrode device using a photolithography technique. Two kinds of hepatic lobule patterns were designed
with different outer diameters (1.5 mm and 2.0 mm). A DC voltage was applied to the device to trigger
the electrodeposition process. The cross section (a) shows the changes before and after the
electrodeposition process. The alginate solution goes through the gelation process to form an alginate
hydrogel structure on an FTO layer based on the principle of electrodeposition. (C) The fabricated

alginate cell sheets are further detached and stacked to form multi-layered hepatic lobule tissue.

Recently, electrodeposition has been well established [90, 153, 154]. This method is
widely utilized to deposit alginate or chitosan gel film onto a specific area of 2D
substrate for cell-cell signal studies [89, 93]. The mechanism of electrodeposition is
used to release calcium ions from the region of the micro-electrode surface via
electrolysis (H' is released from the anode and reacts with CaCOs particles to release
calcium ions). Thus, these calcium ions can immediately react with alginate around the
electrode to form an alginate hydrogel film. Simultaneously, bio-components are
immobilized within the gel film for use in further applications [154]. The advantages
of electrodeposition include the fact that the complex patterns to a resolution of <100
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um can be achieved [90]. Thus, this method successfully overcomes the shape control
limitations of alginate gel. In our previous report [145], we demonstrated that issues
with cell proliferation within alginate gel can be solved through an improved
electrodeposition method which produces high cell-density microtissue. However,
some challenges remain, limiting the use of electrodeposition in further applications of
tissue engineering. Generally, the method restricts placement of fabricated alginate
sheets to a 2D electrode. This limitation raises the question of whether the fabricated
cell sheet could be detached and assembled for 3D tissue formation. In addition, the
detached alginate sheets can curl themselves due to their flexibility and insufficiently
cross-linked Ca-alginate structure [90], making them unsuitable building blocks for 3D
stacking assembly. As a result, it is necessary to fabricate the gel sheet on a flat surface.

In the current study, we propose a method to fabricate Ca-alginate cell sheets for
hepatic lobule tissue constructs based on the electrodeposition method. The centimeter-
scale cell sheets were produced with pre-designed hepatic lobule patterns. After a one-
day culture, we successfully detached the sheets from the 2D electrode substrate
without any structural defect and stacked them into 3D multilayer hepatic lobule tissue
within a PDMS mold. Cell proliferation and functionality of the fabricated Ca-alginate
cell sheet were quantitatively compared to that of regular 2D culture. This study aims
to clarify that alginate cell sheets created by electrodeposition can potentially be utilized
for 3D tissue constructs. A research map is shown in Figure 5.1.

This work is potentially significant for a number of reasons. First, we demonstrate
that alginate sheet fabrication with hepatic lobule patterns using electrodeposition can
be potentially utilized for 3D tissue constructs. Second, an easy method is proposed to
detach the sheet from a flat surface without any defect. We also show that the detached
sheets can be transferred simply using a 1-ml pipette, then stacked into a multi-layered
tissue. We believe our method provides a suitable platform for constructing a 3D cell
model by stacking alginate cell sheets using electrodeposition. This platform has the
potential to uncover new uses for electrodeposition in various applications such as in
cell-ECM interactions, structure—function relationships, tissue morphogenesis, and
modular tissue reconstructions.

5.2 Material and methods

5.2.1 Materials and solution preparation

We used sodium alginate (Medium viscosity, A2033), fluorine doped tin oxide
coated glass slide (surface resistivity ~7 Q/sq, 735140) (Sigma-Aldrich) and HEPES
(346-01373) (Wako Pure Chemical Industries). Calcium carbonate (CaCO3) (0.97 um,
#2300) were kindly supplied from Sankyo-seifun Ltd (Japan). Photoresist (AZ5214-E)
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were purchased from AZ electronic material GmbH. Cell Counting Kit-8 (CCKS8) was
purchased from Dojindo Ltd (Japan). Rat albumin enzyme-linked immunosorbent assay
(ELISA) Quantitation kit (ERA3201-1) was purchased from Assaypro Inc (USA). The
water used to prepare the solution was deionized with a Millipore Direct-Q3 water
purification system (Millipore, Worcester, MA).

The deposition solution was prepared by dissolving 1% w/v alginate sodium in
solution containing NaCl (126 mM), KCI1 (2.7 mM), NaxHPO4-12H20 (8.1 mM),
KH2PO4 (1.47 mM) and HEPES (21 mM). The pH was adjusted to 7.3 by adding 0.5M
NaOH solution. CaCOs (0.5% w/v) was uniformly dispersed in the solution using
magnetic stirrer for 24h.

The HEPES buffer solution was prepared by dissolving HEPES (5g/L) in solution
containing NaCl (8 g/L), KC1(0.37 g/L), Na2HPO4 (1.076 g/L) and glucose (1 g/L). pH
was adjusted to 7.3 by adding 0.5M NaOH solution.

To prepare 1.1% calcium chloride solution, 0.55 g of CaClz (anhydrous) is dissolved
in 50 ml of distilled water.

The cell viability solution was a mixture of 0.8 puL calcein AM (1 mg/mL, Wako),
2.8 uL propidium iodide (PI) (1 mg/mL, Wako) and 1 mL HEPES buffer solution.

5.2.2 Fabrication of micro-patterned electrode

The photolithographic technique was used to construct the electro-device in this
experiment. Briefly, fluorine-doped tin oxide (FTO) glass slides (2.5 cm x 5 cm) were
washed with isopropyl alcohol and Milli-Q water using an ultrasonic cleaner. The
photoresist (AZ 5214E) was coated onto the surface of FTO glass with 1.4-um
thickness.

The micro-patterns were designed to mimic liver lobule morphology as shown in
Figure 5.1A. The length of the sheet is 1.2 cm and the width is 0.95 cm. There are two
types of hepatic lobule pattern utilized in the current work: one with a diameter of 1.5
mm and the other of 2 mm. The hepatic lobule is a building block of the liver consisting
of a portal triad, hepatocytes arranged in linear cords between a capillary network
(hepatic sinusoid), and a central vein. The peculiarity of liver sinusoids consists in the
fact that blood infuses the liver lobule unidirectionally, entering the portal area and
ending its pathway in the central vein. When compared with liver histology, the circular
hole of the micro-pattern mimics the central vein. Around the central vein, eight
ellipsoidal holes represent hepatic sinusoids as communication paths between the portal
vessels and central vein. The other area on the alginate sheet embedded with hepatic
cells mimics the hepatic cord. The patterned-electrode was fabricated using a laser
writing device (WPG 101, Heidelberg, German) based on our AutoCAD design of
micro-electrodes.
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5.2.3 Electrodeposition of Ca-alginate gel sheet

To fabricate the Ca-alginate gel sheet with hepatic lobule patterns using the
electrodeposition method, the following steps were performed:

1) The prepared RLC-18 cells were centrifuged and washed with HEPES buffer
twice to fully remove the culture medium since the DMEM may interfere with the
electrodeposition chemical reaction and generate bubbles. Then, 700 pl deposition
solution was mixed with the centrifuged RLC-18 cells by gently pipetting.

2) 500 pl deposition solution was taken from the mixed 700 pl cell deposition
solution to be placed onto the electrode area, as shown in figure 1B.

3) A DC power supply was connected to the device using two copper wires. One
copper wire was immersed into the deposition solution as a cathode at a depth of about
1 mm. The other copper wire was attached to the surface of the FTO glass as an anode.

4) A DC voltage was applied to the FTO electrode to trigger electrolysis and start
the electro-deposition process. The Ca-alginate gel sheet was deposited onto the
patterned electrode area based on the electrodeposition principle as shown in Fig. 2A.

5) After 15 s, the DC power supply was turned off immediately and extra non-cross-
linked alginate solution was removed by a pipette. Then, the FTO glass was transferred
into HEPES solution for washing.

6) The FTO glass was gently shaken for several minutes until the boundary of the
hepatic lobule pattern on the gel sheet could be clearly identified under an optical
microscope.

Before the experiment, the deposition solution was stirred again to evenly disperse
the CaCOs particles and heated to 37 °C. In the meantime, 1 ml of the pre-prepared
RLC-18 cell suspension (cell concentration: 107 cells/ml) was centrifuged and washed
with phosphate-buffered saline (PBS) twice to remove the DMEM, which might have
interfered with the electrodeposition reaction. The cell suspension was then centrifuged
again, mixed with 700 pL of the heated deposition solution, and evenly dispersed by
gently pipetting. Finally, 500 puL of the 700 puL deposition solution was dropped onto
the microelectrode area as shown in Figure 5.2B.
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Principle of electrodeposition
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Figure 5.2 (A) The principle of electrodeposition. (B) The experimental setup before electrodeposition;
A DC power supply was utilized to trigger the electrodeposition process by attaching the anode to the
FTO glass and immersing the cathode into the deposition solution (Red wire). (C) The Ca-alginate gel
sheet was deposited onto the micro-electrode area corresponding to the design. (D) The effect of the
applied voltage on the stability of the gel sheet structure. A lower voltage leads to an unstable gel sheet
generation due to the insufficient cross-link of Ca-alginate chain (Left image); A higher voltage leads
to a thick gel sheet generation without the hepatic lobule pattern due to the diffusion of Ca?* ions (Right

image).

A DC voltage of 4.63 v was applied for 15 s to trigger the electrodeposition process.
The concept of the electrodeposition principle is shown in Figure 5.2A. Briefly, H' is
generated by the electrolysis of water formed in an acidic microenvironment at the
anode surface (2H20—Ox+4H"+4¢"). Ca** is released from CaCO3 particles as they
encounter protons at the anode (2H*+CaCO3 — Ca*'+H20+COz). The calcium alginate
hydrogel films are formed when calcium ions cross-link with alginate immediately
(Ca**+2Alg-COO —Alg-COO-Ca?’-00C-Alg). Therefore, the shape of the gel sheet
can be altered by changing the design of the micro-electrode.
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Figure 5.2C shows the fabricated Ca-alginate gel sheet after washing with HEPES
solution for 2 min.  In Figure 5.2D, we show cases where a lower voltage was used,
which leads to unstable gel sheet generation due to insufficient cross-linking of Ca-
alginate chains; and cases where a higher voltage was used which leads to generation
of a thick gel sheet without the hepatic lobule pattern due to the diffusion of Ca®"ions.

5.2.4 Detachment of the fabricated gel sheet from the substrate

The detachment method process is shown in Figure 5.3A. After washing (see ‘5)’
above), 1.1% CaClz solution was dropped onto the gel sheet for 15 min; Ca*" ions
harden the gel structure by cross-linking with alginate chains. The CaCl2 solution was
then removed and the FTO glass immersed in HEPES solution or DMEM solution (the
latter if using cells) at 37 °C in a humidified 5% COz incubator. After 24 h, the gel sheet
detached from the FTO glass substrate automatically.

Figure 5.3A shows the detachment procedure of the fabricated gel sheet from the
FTO glass substrate. As described in the previous section, the gel sheet was fabricated
onto the micro-electrode (Figure 5.3AIl). Then, 1.1% CaClz solution was dropped onto
the gel sheet to harden the gel structure (Figure 5.3AIIl). After 15 min, the CaCl:
solution was removed and the FTO glass with the gel sheet was immersed in the culture
medium for further incubation. After 24 h, the gel sheet can be easily detached from
the FTO glass by shaking (Figure 5.3 AIIII). Without the 24-h incubation, it is difficult
to detach the gel sheet without any defect either by shaking or pipetting. The fabricated
gel sheet will strongly adhere to the FTO glass after CaClz treatment due to surface
tension.

In fact, we have tried several methods to detach the fabricated gel sheets, including:

1) As we described above, treating the fabricated gel sheet with CaClz and culturing
within DMEM for 24 h. Then, the gel sheet can be detached simply and easily by
shaking the dish. This is the recommended method.

2) Detaching the gel sheet soon after electrodeposition without CaClz treatment.
The gel sheet can be detached simply by shaking. However, the detached gel sheet will
curl itself automatically with or without the later CaClz treatment.

3) Treating the fabricated gel sheet with CaCl> and starting the detachment
immediately. The gel sheet can be detached by gently pipetting. The video of this
detachment process can be found in the supplementary material. This method requires
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more than 2 min to detach one gel sheet. In addition, pipetting may bring damage to the
gel sheet, which leads to a structure defect.

4) Treating the fabricated gel sheet with CaClz and then immersing the sheets into
cell viability test solution for 30 min. The gel sheet can be easily detached by shaking.
A possible reason is that the Calcein-AM and PI are capable of weakening the Calcium-
alginate chain. However, the PI may have a poisonous effect on cells.

Another possible solution to the detachment issue is to treat the FTO glass with
oxygen plasma to make the surface hydrophilic. However, after Oz plasma treatment,
we found that the dropped deposition solution spread all over the FTO surface instead
of remaining within the micro-electrode area.

The fabricated gel sheet before and after detachment is shown in Figure 5.3B and
Figure 5.3C, respectively. Fluorescence beads were utilized to replace the liver cell to
demonstrate the fabricated hepatic lobule patterns. To eliminate the effect of
fluorescence beads on the results of electrodeposition in relation to the measurements
and errors, carboxylate microspheres with small diameter (0.5 wm) were prepared to
replace cells. According to our experimental data, we found that the fluorescence beads
have no effect on the Ca-alginate electrodeposition. The hepatic lobule pattern with a
1.5 mm diameter was imaged using fluorescence microscopy before and after
detachment (Fig 5.3BII and 5.3CII respectively). The results corresponding to the 1.5
mm diameter were measured to be 1567 = 133 um in diameter (n > 10). The hepatic
lobule pattern with 2 mm diameter was imaged using fluorescence microscopy before
and after the detachment (Fig. 5.3BIII and Fig. 5.3CIII respectively). The results
corresponding to the 2 mm diameter were measured to be 2028 + 61 pum in diameter
(n>4). The shape and size of the fabricated hepatic lobule pattern were as same as the
initial electrode design as shown in Fig. 5.3A. Therefore, the proposed method has the
advantage of allowing fabrication of the flat Ca-alginate gel sheet with a precise
predesigned micro-pattern and flat surface. Compared with the common alginate gel
containing cell module, e.g., alginate droplet [147], alginate fiber [150] and Ca-alginate
3D printing system [155], the current study proposes an alternative way to fabricate 2D
alginate gel sheet for 3D complex tissue constructs in the tissue engineering field.
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Figure 5.3 (A) The principle of electrodeposition. (B) The experimental setup before electrodeposition;

A DC power supply was utilized to trigger the electrodeposition process by attaching the anode to the
FTO glass and immersing the cathode into the deposition solution (Red wire). (C) The Ca-alginate gel
sheet was deposited onto the micro-electrode area corresponding to the design. (D) The effect of the
applied voltage on the stability of the gel sheet structure. A lower voltage leads to an unstable gel sheet
generation due to the insufficient cross-link of Ca-alginate chain (Left image); A higher voltage leads
to a thick gel sheet generation without the hepatic lobule pattern due to the diffusion of Ca?* ions (Right

image).

5.3 Evaluation of the fabricated Ca-alginate gel sheets

5.3.1 Viability assay for RLC-18 cells within alginate sheets

In order to confirm whether the presented method is suitable for use in biological
applications, cell viability of the fabricated alginate sheet was checked soon after
electrodeposition and on day 4 of the culture period. The fabricated structures were
washed once with HEPES buffer solution and then immersed into the cell viability test
solution for 30 min in an incubator. Then, the structures were washed with HEPES
buffer solution again. A fluorescence microscope was used to observe the samples. Cell
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Figure 5.4 (A) Cell viability soon after electrodeposition on FTO glass was ascertained using light and
fluorescence microscopy. Viability was measured to be 80 % by counting the number of live and dead
cells. (B) The confocal images show the 3D view of the gel sheet. The height was approximately 302
+ 22 pm (N>3). (note that the patterns used here are old versions) (C) Cell viability was checked after
Ca?" treatment (time O of the culture), Day 1, Day 4 and Day 10. There is no significant change in cell
viability during Day 0, Day 1 and Day 4. Cell viability of Day 10 was significantly upregulated

compared with the one of Day 4.

viability was measured by calculating the viable and dead cells in each frame.

Figure 5.4A shows the optical and fluorescence microscopy images of cell viability
soon after the electrodeposition process. RLC-18 cells were entrapped within the Ca-
alginate hydrogel and assayed using the live/dead kit. By calculating the number of live
and dead cells (green and red respectively), the cell viability was measured to be ~80%.

96



5.3 Evaluation of the fabricated Ca-alginate gel sheets

(A) (B)

Figure 5.5 (a) Optical image of the hepatic lobule pattern (1.5 mm diameter) after CaCl, treatment. (b)
Cell viability was checked under fluorescence mode using Calcein-AM and PI kit soon after the CaCl,

treatment. (AZ photoresist material also showed red color under 561 nm wavelength UV light)

(A) (B)

Figure 5.6 (a) Optical image of the RIC-18 cell morphology within Ca-alginate sheet cultured for 10-
days. (b) Cell viability was checked under fluorescence mode using Calcein-AM and PI kit.

Figure 5.4B shows the 3D image of the fabricated alginate sheet under 3D laser
confocal microscope. The RLC-18 cells were replaced by fluorescent beads for laser
scanning. The thickness of the alginate sheet was approximately 302 + 22 pm (N>3).

Figure 5.4C shows the cell viability after Ca®" treatment (time 0 of the culture), Day
1, Day 4 and Day 10. There is no significant change in cell viability during Day 0, Day
1 and Day 4. Cell viability of Day 10 was significantly upregulated compared with the
one of Day 4. The possible reason is that the cells within alginate hydrogel kept
proliferating and started to form cell aggregates during the culture period. On the other
hand, most of cells were maintained to be alive thanks to the bio-combability of the
alginate hydrogel. Optical and fluorescence images of the RIC-18 cell morphology
within Ca-alginate sheet after CaClz treatment and cultured for 10-days were shown in
Figure 5.5 and Figure 5.6 respectively.
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Figure 5.7 (A) The calibration curve of a linear-fitting model [f(x) = (p]l x x) — 0.0057; p1 = 0.0025]
shows the relationship between the RLC-18 cell number and absorbance (OD) using the CCKS8 assay.
(B) Change in the cell number of the alginate cell sheet and 2D culture group during the incubation

period (note that one dish only contained one alginate sheet).

5.3.2 Cell number counting

Cell Counting Kit-8 (CCKS8) was utilized to measure the cell number of fabricated
alginate sheets and a 2D culture control group. CCK8 is sensitive in the detection of
viable cells similar to other tetrazolium salts such as MTT and MTS.

We also have constructed the calibration curve based on the relationship between
the known cell number and absorbance value. The procedure for cell counting involved:
1) Incubation of individual sheet or diluted cell suspension of 2D culture (100 pl/well)
in a 96-well plate. 2) Adding 10 pl of the CCK8 solution to each well of the plate. 3)
Incubating the plate for 3 h in the incubator. 4) Immediately measuring absorbance at
450 nm using a microplate reader (Infinite F50 plate readers, TECAN) to determine the
cell number of each microtissue.

Figure 5.7 AFigure 5.9 shows the calibration curve of a linear-fitting model generated
by the known cell number. Figure 5.7B shows the cell number of alginate sheet and 2D
culture groups during the incubation period (day 1, 2, 3, 4 and 5).

RLC-18 cells within the alginate sheets had an initial cell number of ~6x10* cells
and finally reached ~25x10* cells on day 5, a four-fold increase. On the other hand, the
RLC-18 2D culture group increased from an initial ~5x10* cells to ~133x10* cells on
day 5 — a 25-fold increase.
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Figure 5.8 Albumin secretion per dish (A) and per 100 cells (B) of the alginate sheet and 2D culture.
Data represent the mean + standard derivation of at least three experiments from four independent cell

preparations. *p < 0.05; **p < 0.01 (note that one dish only contained one alginate sheet).

From the results, we believe the cells entered the logarithmic phase from day 3,
resulting in an increase in cell proliferation. However, on day 3, cell proliferation rate
within the alginate sheets is still slow even after entering the logarithmic phase. Other
researchers also found this phenomenon, indicating the lack of adherence molecules
inside the hydrogel as a major reason [92]. Recently, this issue was countered by
incorporation of RGD peptides [156] and microcapsule technique to promote cell
proliferation [126].

5.3.3 Albumin secretion assay

A rat albumin ELISA quantitation kit was used to measure albumin levels during the
culture period (at 1, 2, 3, 4 and 5 days). Before the assay, the fabricated alginate sheets
were washed with PBS and fresh medium was added; after 24 h, this medium was
withdrawn and aliquots were temporarily stored at -20 °C. The levels of albumin
measured at each time point were normalized to each dish or the cell number.

The purposes of measuring the albumin secretion here include the fact that albumin
is considered an important feature of well-differentiated hepatocytes, and that cells
cultured within alginate sheets may have an advantage over conventional 2D culture in
terms of bio-functionality.

Figure 5.8 A shows the albumin secretion per dish of the alginate sheets and 2D
culture. Albumin secretion showed an increasing trend during 5-days culture because
the cell number is increasing. Initially, albumin secretion from alginate sheets was
almost the same as that seen in 2D culture, but from day 3, the albumin secretion of the
latter was significantly higher than that of the alginate sheets, and was 2.6 times higher
on day 5 (p = 0.01616, n = 4). A possible explanation of this phenomenon is that cell
proliferation in 2D culture was higher than that of the Ca-alginate, as shown in Figure
5.7B.
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Figure 5.8B shows the albumin secretion per 100 cells of the RLC-18 alginate sheets
and 2D culture. The cells within the alginate gel showed a significantly higher albumin
activity than cells cultured in 2D shapes and reached a maximum value at day 3. This
result indicates that the cells growing in 3D culture dramatically increase their activity
and regain biofunctionality. Usually, peak albumin secretion coincides with cell
confluence, which is also characterized by decreased cell proliferation. The peak
albumin secretion in Figure 5.8B also suggests that the cells entered the logarithmic
phase of proliferation on day 3. During the culture periods, the hepatocytes showed
appreciable levels of albumin secretion ~6-12 pg/10? cells compared with that of 0-6
pg/10? cells under 2D culture. This result is consistent with a report that the 3D
hepatocytes micro-organoids are critical for preserving hepatocyte function and other
three-dimensional systems [21, 130].

5.4 Assembly of 2-layered hepatic lobule-like tissue

The ability to generate 3D multilayered cellular hydrogel structures is critical to the
engineering of spatially complex liver tissues. Thus, we performed a simple experiment
to demonstrate that reliable handling and assembly techniques, including cell sheet
detachment, transfer and stacking, were applied in our method. We used a modified
method here based on W. Lee’s work [121]. Briefly, the detached cell sheets were
collected using a modified pipette in a randomly folded configuration. The folded cell
sheet spontaneously unfolded when released into the PDMS mold. The transferred cell
sheets sank to the bottom of the PDMS mold when aspirating the surrounding medium.
The transfer and stacking steps were repeated to assemble multi-layered hepatic lobule
tissue. The dimension of the PDMS mold was designed to fit the size of the fabricated
cell sheet to maximize the alignment resolution.

Figure 5.9 shows the results of cell sheets embedded with hepatic cells before
assembly. On day 1, the deposited alginate gel structures were imaged and incubated.
On day 3, before detachment, the cells started to adhere onto the bare area of the FTO
glass surface. After detachment, hepatic lobule patterns were preserved without any
defect while embedded with RLC-18 liver cells. Here, we used a high initial cell density
(107 cells/ml in deposition solution) to address the cell proliferation issue within the
alginate gel. On day 4, we collected the cell sheet and further transferred them into the
PDMS mold for assembly layer by layer. By day 6, the hepatic cells merged together
to mimic the hepatic cord while the ellipsoidal holes could still be clearly identified.
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Figure 5.9 Hepatic lobule patterns of cell sheets on FTO glass was observed under a light microscope
on day 1. Hepatic lobule patterns with 1.5 mm and 2 mm diameters were observed before and after
detachment on day 3. The fluorescence microscopy image shows cell viability within the cell sheet on
day 4; the detached cell sheets were stacked into the PDMS mold to form a 2-layered hepatic lobule
model. Light microscopy images show the 1% and 2" layer of assembled 2-layered hepatic lobule model

on day 5 and day 6. Scale bars: 250 um.

Figure 5.10 shows the additional experiment for confirmation of the hepatic lobule
patterns alignment after the stacked assembly. Alginate sheets containing liver cells
were assembled into a pre-defined PDMS mode layer by layer to form a 2-layered
hepatic lobule structure as we mentioned above. The optical and fluorescence images
of 15 layer and 2™ layer were obtained by only adjusting the Z position of the
microscope respectively. The results show that the patterns were aligned during
stacking to form an uninterrupted central vein. The alignment error is less than 200 pm.
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1st layer

2nd [ayer

Figure 5.10 Alginate sheet containing liver cells was assembled into a pre-defined PDMS mode layer
by layer to form a 2-layered hepatic lobule structure. The optical and fluorescence images of 1% layer
and 2" layer under microscope show that the patterns were aligned during stacking to form an
uninterrupted central vein. The circular dash line indicates the inner edge of the alginate cell sheet. The

alignment error is less than 200 um.

Therefore, the proposed method provides a suitable and easy approach for bio-
fabrication of multilayered hepatic lobule tissue in vitro.

The purpose of assembling the alginate sheets into a multi-layered structure was to
demonstrate the feasibility of the method in fabricating a 3D cell model such as the
hepatic lobule-like tissue by using alginate cell sheets as building blocks. When
compared to similar work , our method differs from that used by Je-kyun Park’s group
[121] with respect to the improved electrodeposition method used for the fabrication of
precise and shape-controlled micro-patterns; and from that used by Tomokazu Matue’s
group [93] with respect to the movability of the detached flat cell sheet for further 3D
tissue formation. In addition, our method shows advantages of micro-level high
resolution and simplicity compared with commonly utilized 3D alginate cell-containing
fiber printing techniques for 3D tissue reconstruction [129, 155]. Although the current
fabricated structure only mimics the morphology of the hepatic lobule tissue because it
cannot be perfused. However, the holes in the sheets are useful in ensuring proper
exchange of oxygen, nutrients, and catabolites between cells and culture medium; thus,
we believe, the construct may offer considerable benefits in terms of survival and
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functional performance. Therefore, the proposed technique has the potential for the
design of three-dimensional lobule-like constructs by stacking varying deposited
alginate sheets with complex micro-patterns and different cell lines for further
applications in tissue engineering.

5.5 Summary

In summary, this paper presents a method for the fabrication of Ca-alginate cell
sheets as building blocks for mimicking the morphology of hepatic lobule tissue. The
alginate RLC-18 cell sheets with hepatic lobule micro-patterns were first deposited onto
an electrode surface based on the electrodeposition method. After a one-day culture, the
RLC-18 cells sheets were detached from 2D substrate and further assembled into a pre-
designed PDMS mold. The fabricated cell sheets can be easily transferred by a 1 ml
pipette and stacked layer by layer to form 3D hepatic lobule tissue. The developed
method provides a new “bottom-up” paradigm to build 3D macroscopic liver tissue
similar to that in vivo. The assembled hepatic lobule structure holds great promise to
be improved further as in vitro models of liver organs and promote the novel
applications of electrodeposition methods in tissue engineering.
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Chapter 6

Conclusions and Future Works

3D cell structure assembly provides a promising way to build artificial tissues.
Based on reviewing the current problems and needs for tissue engineering, especially
the current construction methods and the microtechnologies, the motivation of
assembly 3D cellular structures was pointed out. 3D cellular structures provide a similar
environment for cells as in the real tissues, which enhance the cell proliferation and
cell-cell interaction during building artificial tissues. Brief reviews on
microtechnologies for tissue engineering are highlighted. The main issues for
fabricating cell-laden alginate hydrogel structures are pointed out, and our methods
were proposed.

We introduced a new approach to solve the issue of cell proliferation in the
electrodeposition method. Our approach particularly aims at the fabrication of shape-
controlled alginate-PLL microcapsules for 3D cell structures based on electrodeposition.
In this study, we applied the electrodeposition method to alginate-PLL microcapsule
fabrication by transforming the 2D gel membrane into 3D microcapsules. A Ca-alginate
gel membrane was formed on the micro-patterned fluorine-doped tin oxide (FTO)
electrode, thus forming a microfabricated conductive array. The electrodeposition-
based gel-membrane formation process was applied to cell encapsulation into alginate-
PLL microcapsules with liquid cores (sphere, cuboid, and rod), where cells were
cultivated for 2 weeks.

we proposed a novel method to fabricate 3D multilayer hepatic lobule-like tissue
based on electrodeposition and microcapsule techniques. The design of a micro-
electrode device, which was previously used for preparing microtissue in sphere, cuboid,
and rod shapes, was modified to obtain suitable dimensions for preparing hepatic
lobule-shaped microtissue (HLSM). The micro-pattern electrode was fabricated by
photolithography. The arrayed micro-pattern electrode is capable of simultaneous
formation of alginate gel film in situ with a hepatic lobule shape based on the
electrodeposition method. These cell-containing gel films were further detached from
the substrate and treated with PLL and sodium citrate solution to form 3D
microcapsules. Cells encapsulated within the microcapsules eventually fully occupied
all spaces to achieve HLSM in two weeks.
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A method to fabricate Ca-alginate cell sheets for hepatic lobule tissue constructs
based on the electrodeposition method was proposed. The centimeter-scale cell sheets
were produced with pre-designed hepatic lobule patterns. After a one-day culture, we
successfully detached the sheets from the 2D electrode substrate without any structural
defect and stacked them into 3D multilayer hepatic lobule tissue within a PDMS mold.
Cell proliferation and functionality of the fabricated Ca-alginate cell sheet were
quantitatively compared to that of regular 2D culture. This study aims to clarify that
alginate cell sheets created by electrodeposition can potentially be utilized for 3D tissue
constructs.

This is a very interesting and challenging research to apply the sodium citrate in our
current approaches which can dissolve the inner alginate core through the alginate-PLL
shell and create a liquid microenvironment in which cell can be promoted into real
tissue-like structures. With these tissue-like unites with controllable shapes, the basic
on-chip fabrication, assembly, manipulation and assembly approaches give us many
possibilities on constructing complex 3D cell structures as shown in Figure 6.1 and we
believe we can realize an artificial tissue in the future with the scientists’ continuous
work. It will help us to finally develop the functional artificial organs and to deal with
the incurable organ lost disease better.
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Figure 6.1 Future work and conclusion of the current work for the in vitro mimicking of the hepatic

lobule tissue. The proposed platform is a useful tool for the evaluation of 3D cellular system and have
potentials for the applications of drug test, liver function analysis, cell reprogramming and

transplantation.
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Supplementary

Figure S1. The 1% version of electrode device for electrodeposition of Ca-alginate
hydrogel structures.

Figure S2. The fabricated micro well gel structures for 3D cell culture in deferent
geometry.
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Figure S3. The fabrication of micro-patterns made of SU-8 based on the
photolithography technique.

Figure S4. The failure case of APA microcapsules without sufficient time for dissolving
process using sodium citrate.
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Figure S5. The results of fabricated APA microcapsules based on electrodeposition
method.

Figure S6. The fabricated APA microcapsules become transparent due to the loss of
CaCls particles.

Figure S7. The fabrication results of APA microcapsules in donuts shape.
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Fugure S8. The culture results of APA microcapsules encapsulated liver cells in two
weeks.

Figure S9. The optical and fluorescent images of gear-shape micro-tissue. The cells
broke through the alginate-PLL complex semi-membrane to form a cluster with central
necroes.

Figure S10. The tentative experiment for assembly of multilayered APA microcapsules
onto a pillar.
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Figure. S11. The culture results of APA microcapsules in spheroid shape containing
RLC-18 cells at the day of 18 (A) and 20 (B). The encapsulated cells broke through the
alginate-PLL complex membrane and attached to the bottom surface of the culture dish.
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Figure S12. We design the hepatic lobule model based on the modified version of the
gear-like microtissue. Originally, we have two types of designs (8-tooths gear and 6-
tooths gear) for mimicking the morphology of the hepatic lobule structure. However,
8-tooth gear microcapsules are not stable and easily to be damaged during fabrication
process. Therefore, we chose the 6-tooths gear design as the current utilized shape.
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Figure S13. we plan to build polydimethylsiloxane (PDMS) with pillars to better
investigate the functional and histological characteristics of the assembled 3D
multilayered tissue. We intend to load the HLSM onto the pillar that is made of a
titanium wire, using a one-step micromanipulator. By means of such pillar as a substrate,
“sandwich” hepatic cord-like tissue co-cultured with 3T3 feeder cells for long-term
preservation of liver-specific functions will be assembled and evaluated, comparing
them with monocultures of hepatocytes in 3-dimension.
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Figure S14. The rough data for the quantitative analysis of albumin secretion and cell
proliferation for the HLSM and spheroids group.
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Figure S15. The two-tailed student’s t test was used to determine statistical differences
between groups. A p < 0.05 was considered statistically significant.
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Standard Albumin curve
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Figure S16. The rough data for the quantitative analysis of the albumin secretion and
cell number of the fabricated cell sheets.
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Figure S17. The two-tailed student’s t test was used to determine statistical differences
between groups. A p < 0.05 was considered statistically significant for Chapter 5.
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