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Abstract. We introduce the notion of a complete collection of spherical ob-

jects in a triangulated category D . We then show that the subgroup of the

autoequivalence group Auteq(D) generated by the spherical twists along spher-

ical objects in an essential and null-triangular collection admitting a complete

partition of type (m1, . . . ,mα) is isomorphic to Zm1 ∗ · · · ∗ Zmα .
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1. Introduction

Dehn twists and spherical twists. Inspired by Kontsevich’s homological mirror

symmetry conjecture [Kon], Seidel and Thomas [ST] introduced spherical objects

of triangulated categories and special kinds of autoequivalences of triangulated

categories called spherical twists along spherical objects. They can be thought of

as an algebraic analogue of Dehn twists along simple closed curves in a surface, or

more generally, along Lagrangian spheres in a symplectic manifold.

As its origin implies, spherical twists share many properties with Dehn twists.

For a simple closed curve c on a compact oriented surface S, τc will denote the
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Dehn twist along c. We will also use the same symbol τc to denote its isotopy

class considered as an element of the mapping class group π0(Diff+(S, ∂S)). For

a pair of simple closed curves c1, c2, we denote by i(c1, c2) the minimum of the

geometric intersection number between the isotopy classes of c1 and c2. It is then

well-known that if i(c1, c2) = 0 then τc1 and τc2 commute, i.e., τc1τc2 = τc2τc1 , and

if i(c1, c2) = 1 then τc1 and τc2 satisfy the braid relation, i.e., τc1τc2τc1 = τc2τc1τc2 .

Seidel and Thomas [ST] showed that similar properties hold for spherical twists by

interpreting the dimension of the morphism space between two spherical objects as

the intersection number (Proposition 4.1).

A result for i(c1, c2) ≥ 2 is also classical and rediscovered by several authors, for

example, by Ishida [Ish, Theorem 1.2]. It says that if i(c1, c2) ≥ 2 then there are

no relations between τc1 and τc2 , i.e., the subgroup of the mapping class group gen-

erated by τc1 and τc2 is isomorphic to the free group of rank 2. The corresponding

result for spherical twists was obtained by Keating [Kea, Theorem 1.2] by adopting

Ishida’s proof in the categorical setting.

Freeness criterion for Dehn twists. In general, it is difficult to describe what

the subgroup generated by Dehn twists along more than two simple closed curves.

Even for the case i(c1, c2) = 1, τc1 and τc2 can have more relations other than the

braid relation. However, it was noticed by Humphries [Hum, Theorem 2.1] that

there are special sorts of collections of simple closed curves such that the subgroup

generated by the Dehn twists along simple closed curves in the collection can be

completely described.

Consider a collection C = {c1, . . . , cm} of essential simple closed curves on a

compact oriented surface S. Humphries [Hum] introduced the notion of a complete

partition for a partition C1, . . . , Cα of C (Definition 2.1). Then he showed that if a

collection C = {c1, . . . , cm} has a complete partition and c1, . . . , cm do not bound

a disk, then the subgroup of the mapping class group generated by τc1 , . . . , τcm

is isomorphic to Zm1 ∗ · · · ∗ Zmα where ∗ denotes the free product and mµ is the

number of elements in Cµ (Theorem 2.2).

There is a related result for spherical twists by Licata [Lic, Theorem 1.1]. For

the homotopy categories of projective modules over the zigzag algebras associated

to complete graphs with specific gradings, he showed that the subgroup generated

by the spherical twists along the indecomposable projective modules is isomorphic

to the free group of rank n where n is the number of vertices of the complete graph

one started with.

Freeness criterion for spherical twists. In this paper, we will prove a theorem

for spherical twists which can be considered as a categorical analogue of Humphries’
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theorem. For the proof, we shall translate and reformulate Humphries’ argument

into our categorical setting.

Let us state our main theorem precisely. Let D be an enhanced triangulated cat-

egory with a dg enhancement A . The notion of a complete partition for collections

of simple closed curves is directly translated into that for collections of spherical

objects (Definition 4.2). As additional assumptions, we will introduce the notions

of an essential and a null-triangular collection of spherical objects (Definition 4.3).

Due to a technical difficulty, we will also impose a formality assumption on a collec-

tion {E1, . . . , Em} of spherical objects throughout the paper, more precisely, that

the dg algebra HomA (E1 ⊕ · · · ⊕ Em) is formal. Our main theorem then can be

stated as follows.

Theorem (Theorem 4.4). Let D be an enhanced triangulated category with a

dg enhancement A . Let C = {E1, . . . , Em} be an essential and null-triangular

collection of d>1-spherical objects of D . Assume that the collection C admits

a complete partition of type (m1, . . . ,mα). We also assume that the dg algebra

EndA (E1 ⊕ · · · ⊕ Em) is formal. Then the subgroup of Auteq(D) generated by the

spherical twists TE1
, . . . , TEm is isomorphic to Zm1 ∗ · · · ∗ Zmα .

Convention. All categories considered in this paper are assumed to be small

and categories and functors are assumed to be k-linear for a fixed algebraically

closed field k. The composition of two morphisms φ ∈ HomA (E1, E2) and ψ ∈
HomA (E2, E3) will be denoted by ψ ◦ φ ∈ HomA (E1, E3). Gradings for dg cate-

gories or graded vector spaces are Z-gradings. The shift functor of a triangulated

category is denoted by [1] and its p times iteration by [p]. For a graded vector

space V , we also denote its grading shift by V [p]. In particular, we can write

V =
⊕

p∈Z V
p[−p] where V p is the degree p part of V regarded as a graded vector

space concentrated in degree 0.

Acknowledgements. The author thanks his advisor Hiroshi Ohta for his continuous

encouragement and stimulating conversations, and Osamu Iyama for pointing out

many errors in earlier drafts of this paper. He is also grateful to Kotaro Kawatani,

Shigeyuki Kondō, Fumihiko Sanda, Atsushi Takahashi, Ryo Takahashi and Shin-

tarou Yanagida for many invaluable comments.

2. Freeness criterion for Dehn twists

In this section, we briefly review Humphries’ freeness criterion for Dehn twists

[Hum]. This will serve as a guideline for our categorical analogue of his result.
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Let S be a compact oriented surface, with or without boundary and C =

{c1, . . . , cm} be a collection of pairwise non-isotopic essential simple closed curves

on S. By a partition of C, we mean disjoint subsets C1, . . . , Cα of C such that

∪αµ=1Cµ = C.

Definition 2.1. A partition C1, . . . , Cα of C is a complete partition if the following

two conditions are satisfied:

(P1) i(ci, cj) = 0 if ci, cj ∈ Cµ with i 6= j for some µ;

(P2) i(ci, cj) ≥ 2 if ci ∈ Cµ, cj ∈ Cν with µ 6= ν.

Let C1, . . . , Cα be a complete partition of a collection C and mµ be the number of

elements in Cµ. Renumbering the labels if necessary, we can assumem1 ≤ · · · ≤ mα.

In this case, we say that the complete partition C1, . . . , Cα is of type (m1, . . . ,mα).

Theorem 2.2 (Humphries [Hum]). Let C = {c1, . . . , cm} be a collection of essential

simple closed curves. Assume that the collection C admits a complete partition

of type (m1, . . . ,mα), and that no component of S \ ∪mi=1ci is a disk. Then the

subgroup of π0(Diff+(S, ∂S)) generated by the Dehn twists τc1 , . . . , τcm is isomorphic

to Zm1 ∗ · · · ∗ Zmα .

Remark 2.3. The assumption that no component of S \∪mi=1ci is a disk is necessary

especially for m ≥ 3. It excludes cases such as C = {c1, c2, c3 = τc2c1} which is

often a complete collection but does not satisfy the theorem as τc3 ' τc2τc1τ−1
c2 .

Here we shall illustrate the main idea of Humphries’ proof via a simple example.

This will help the reader to understand the idea of the categorical proof of our main

theorem developed in later sections.

Consider the surface S with genus one and two boundary components. Let c1

and c2 be curves in S depicted as the red and blue curves in the left hand side of

Figure 1. As i(c1, c2) = 2, the collection C = {c1, c2} is a complete collection with

a complete partition C1 = {c1}, C2 = {c2}.

c1

c1

c2

c2

d
(1)
1

d
(2)
1

d
(1)
2

d
(2)
2

Figure 1
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Now, since S \ ∪2
i=1ci consists of two annuli, we can draw two arcs d

(1)
i and d

(2)
i

on S, for each i, which start and end at the punctures and traverse ci exactly once

(see the right hand side of Figure 1). Using these arcs, we define

sk(c) = min{i(c, d(1)
k ), i(c, d

(2)
k )}. (2.1)

for a simple closed curve c.

The main ingredient in Humphries’ proof is a set of inequalities involving the

intersection numbers i and sk’s. Let us write τi = τci for simplicity. For a given

k = 1, 2, the inequalities can be written as

sk(τpj c) = sk(c) (2.2)

for all j 6= k and p ∈ Z, and

sk(τpk c) ≥ i(ck, cj)sj(c)− sk(c) (2.3)

for all j 6= k and p ∈ Z \ {0}.
Humphries’ proof is completed by a ping-pong argument. First, define two sets

Ωi (i = 1, 2) by

Ωi = {c | si(c) > sj(c) for all j 6= i} .

Note that they are disjoint and non-empty since ci ∈ Ωi. Moreover, using the

inequalities (2.2), (2.3) and the completeness assumption, one can easily show that

if c ∈ Ωi then τpj (j 6= i, p ∈ Z \ {0}) sends c into Ωj . Now suppose there exists a

non-trivial relation τp11 τ q12 · · · τ
pl
1 τ

ql
2 ' id. Then τ q12 · · · τ

pl
1 τ

ql
2 c1 ' c1. On the other

hand, the above argument shows that τ q12 · · · τ
pl
1 τ

ql
2 c1 ∈ Ω2 while c1 ∈ Ω1 which is

a contradiction (see Figure 2).

Outline. Let us explain the outline of the rest of this paper. In Section 3, we

briefly recall necessary notions from category theory such as dg categories and A∞
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categories. In Section 4, after a quick review of the theory of spherical objects and

twists, we start to formulate the main theorem, a freeness criterion for spherical

twists. It will be done by adjusting Humphries’ notion of complete collections to

our categorical setting. We also give a categorical interpretation of the no disk

assumption in Theorem 2.2. The proof of our main theorem is given in Sections 5

and 6. Section 5 is devoted to the construction of objects which play the role of the

arcs d
(j)
1 , d

(j)
2 in Humphries’ proof. More precisely, for a collection {E1, . . . , Em} of

spherical objects, we will construct a collection {S1, . . . , Sm} which, in some sense,

can be considered as being orthogonal to the original collection. In Section 6, we

first define some numbers ι and σk’s which correspond to the intersection numbers

i and sk’s in Humphries’ argument. The collection {S1, . . . , Sm} constructed in

Section 5 will be used in the definition of the numbers σk’s. After that, we state

and prove a set of inequalities which have the same form as the inequalities (2.2) and

(2.3). Finally, in Section 7, we follow Humphries’ ping-pong argument to complete

the proof of the main theorem.

3. Preliminaries

Dg categories. Let us recall some notations and terminologies which we will use

later. For details, we refer to [Kel] and [AL, Sections 2, 3 and 4].

A category (A , dA ) is called a dg category if every morphism space HomA (E,F )

is a dg k-module with the differential dA of degree 1 and the composition map

HomA (E1, E2)⊗HomA (E2, E3)→ HomA (E1, E3) is a morphism of dg k-modules.

For a dg category A , the homotopy category H0(A ) of A has the same set of

objects as that of A and the morphism spaces are given by HomH0(A )(E,F ) =

H0(HomA (E,F ), dA ).

A dg functor between two dg categories A and B is a functor F : A → B

such that the maps FE,F : HomA (E,F ) → HomB(FE,FF ) are morphisms of

dg k-modules compatible with the composition maps and the units. A dg functor

F : A → B induces a functor H0(F ) : H0(A ) → H0(B) between homotopy

categories. We call a dg functor F : A → B quasi-fully faithful if the induced

functor H0(F ) is fully faithful, and quasi-essentially surjective if H0(F ) is essen-

tially surjective. A dg functor F : A → B is called a quasi-equivalence if it is

quasi-fully faithful and quasi-essentially surjective.

For a pair of dg functors F ,G : A → B, there is also the notion of dg natural

transformations from F to G which, together with dg functors from A to B, form

the dg category dgFun(A ,B) of dg functors. For details, see for instance [Kel].
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Dg modules. Given two dg categories A and B, denote by dgFun(A ,B) the dg

category of dg functors from A to B. Let dgMod(k) be the dg category of dg

k-modules. The dg category of (left) dg A -modules is defined by dgMod(A ) =

dgFun(A op,dgMod(k)). The homotopy category H0(dgMod(A )) has a natural

structure of a triangulated category.

Let Ac(A ) be the full dg subcategory of dgMod(A ) consisting of acyclic dg

A -modules. Its homotopy category H0(Ac(A )) is a localizing subcategory of

H0(dgMod(A )). The derived category D(A ) of A is defined to be the Verdier

quotient H0(dgMod(A ))/H0(Ac(A )). Note that D(A ) is closed under countable

direct sums because H0(dgMod(A )) is closed under countable direct sums and

H0(Ac(A )) is localizing [BN, Lemma 1.5].

For an object F of a dg category A , hFA (−) = HomA (−, F ) can naturally be

regarded as a dg A -module. We call a dg A -module isomorphic to hFA repre-

sentable. The dg functor hA : A → dgMod(A ) which sends F to hFA is called

the Yoneda dg functor. In a similar way to the classical proof of the Yoneda

lemma, one can show, for an object F ∈ Ob A and a dg A -module M , that

HomdgMod(A )(h
F
A ,M) ∼= M(F ) as dg k-modules. In particular, the dg Yoneda

functor hA is quasi-fully faithful.

A dg category A is said to be pretriangulated if the essential image of the

functor H0(hA ) : H0(A ) → H0(dgMod(A )) is a full triangulated subcategory

of H0(dgMod(A )). Whenever A is pretriangulated dg category, we equip its ho-

motopy category H0(A ) with the structure of a triangulated category inherited

from that of H0(dgMod(A )).

Enhancements. Let D be a k-linear triangulated category. A dg enhancement

[BK] of D is a pair (A , ε) of a pretriangulated dg category A and an equivalence

ε : H0(A ) → D of triangulated categories. If a k-linear triangulated category D

admits a dg enhancement (A , ε), we say D is an enhanced triangulated category.

Although it is not standard, we will consider enhanced triangulated categories up

to quasi-equivalences of dg enhancements (cf. [AL, Section 4.1]). In other words,

we regard an enhanced triangulated category as an isomorphism class of the objects

of the homotopy category Ho(dgCat) of dg categories [Tab].

For example, the derived category D(A ) of a dg category A is an enhanced

triangulated category. We can choose a dg enhancement for D(A ) as follows. A dg

A -module is called free if it is isomorphic to a direct sum of shifts of representable

dg A -modules. Moreover, a dg A -module M is called semi-free if it admits a

filtration 0 = F0 ⊂ F1 ⊂ · · · ⊂ M such that every quotient Fi+1/Fi is free. Let
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SF(A ) be the full subcategory of dgMod(A ) consisting of semi-free dg A -modules.

Then D(A ) ' H0(SF(A )) [Dri, Section C.8].

For an enhanced triangulated category D , we can define functorial cones in

D . Consider two exact functors F ,F ′ : D → D and a natural transformation

ν : F → F ′. Assume that they lift to dg functors F̃ , F̃ ′ : A → A and a dg

natural transformation ν̃ : F̃ → F̃ ′. Then, as the dg category dgFun(A ,A ) is

pretriangulated and thus has functorial cones, we have a dg functor Cone(ν̃) : A →
A which gives rise to the exact functor Cone(ν) : D → D . In particular, the cone

fits into the exact triangle

F
ν→ F ′ → Cone(ν)→ F [1].

Homotopy colimits. Since the derived category D(A ) of a dg category A is

a triangulated category with countable direct sums, we can define the homotopy

colimit [BN] hocolimE(n) ∈ ObD(A ) of a sequence of morphisms

E(0) φ
(0)

→ E(1) φ
(1)

→ · · · φ
(n−1)

→ E(n) φ
(n)

→ · · · (3.1)

in D(A ). It is defined by the exact triangle

∞⊕
n=0

E(n) id−σ→
∞⊕
n=0

E(n) → hocolimE(n) →
∞⊕
n=0

E(n)[1]

where the nth component of the morphism σ is given by the morphism φ(n).

If a dg A -module F is compact, i.e., if the functor HomD(A )(F,−) commutes

with arbitrary direct sums, we have

HomD(A )(F,hocolimE
(n)
i ) ∼= colim HomD(A )(F,E

(n)
i )

where the colimit in the right hand side is taken with respect to the sequence of

morphisms

HomD(A )(F,E
(0))→ HomD(A )(F,E

(1))→ · · · → HomD(A )(F,E
(n))→ · · ·

obtained by applying the functor HomD(A )(F,−) to the sequence (3.1).

A∞ categories. In the rest of this section, we recall the notion of A∞ categories

introduced by Fukaya [Fuk]. For details, see for exmaple [FOOO] or [Sei, Chapter

I].

An A∞ category (A ,mA ) consists of a set Ob A of objects, a graded k-vector

space HomA (E,F ) for every pair of objects E,F ∈ Ob A and a set of linear maps

{mn
A }n≥1

mn
A : HomA (E0, E1)⊗ · · · ⊗HomA (En−1, En)→ HomA (E0, En)
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of degree 2− n satisfying the A∞ relations

∑
j+k=n+1

k−1∑
i=0

(−1)†imk
A (φ1, . . . , φi,m

j
A (φi+1, . . . , φi+j), φi+j+1, . . . , φn) = 0 (3.2)

for all n ≥ 1 where †i = deg φ1 + · · · deg φi + i. An A∞ category A is called

strictly unital if there is a morphism eE ∈ Hom0
A (E,E) for each E ∈ Ob A

such that m2
A (eE , φ) = (−1)deg φm2

A (φ, eF ) = φ for all φ ∈ HomA (E,F ) and

mn
A (· · · , eE , · · · ) = 0 for every n 6= 2.

The first three of the A∞ relations (3.2) give m1
Am

1
A = 0, the Leibniz rule with

respect to m1
A and m2

A , and the associativity of m2
A up to a homotopy given by m1

A

and m3
A . In particular, the morphism space HomA (E,F ) becomes a dg k-module

with the differential m1
A . Thus we can associate to A∞ category the cohomology

category H0(A ) whose objects are the same as that of A and HomH0(A )(E,F ) =

H0(HomA (E,F ),m1
A ). If A is strictly unital then its cohomology category H0(A )

is a category in the classical sense.

An A∞ category A is called minimal if m1
A = 0. Note that a strictly unital

A∞ category A with mn
A = 0 for every n ≥ 3 can be regarded as a dg category

by defining the differential by dA (φ) = (−1)deg φm1
A (φ) and the composition by

ψ ◦ φ = (−1)deg φ(degψ+1)m2
A (φ, ψ).

An A∞ functor F : A → B between two A∞ categories A and B consists of a

map F : Ob A → Ob B and a set of linear maps {Fn}n≥1

Fn : HomA (E0, E1)⊗ · · · ⊗HomA (En−1, En)→ HomB(FE0,FEn)

of degree 1− n satisfying the A∞ relations∑
l≥1

∑
i1+···+il=n

ml
B(F i1(φ1, . . . , φi1), . . . ,F il(φn−il+1, . . . , φn))

=
∑

j+k=n+1

k−1∑
i=0

(−1)†iF k(φ1, . . . , φi,m
j
A (φi+1, . . . , φi+j), φi+j+1, . . . , φn)

(3.3)

for all n ≥ 1. An A∞ functor F : A → B between strictly unital A∞ cate-

gories A and B is called strictly unital if F 1(eE) = eFE for all E ∈ Ob A and

Fn(· · · , eE , · · · ) = 0 for every n ≥ 2.

The A∞ relation (3.3) for n = 1 says that the map F 1 : HomA (E,F ) →
HomB(FE,FF ) is a morphism of dg k-modules. In particular, an A∞ functor

F : A → B induces a functor H0(F ) : H0(A ) → H0(B) between cohomology

categories. It is a functor in the classical sense if F is strictly unital. We call an

A∞ functor F : A → B quasi-isomorphism if the induced functor H0(F ) is an

isomorphism of categories.
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Twisted complexes. The additive enlargement of an A∞ category A is the A∞

category ΣA whose objects are formal expressions E = E1[p1]⊕· · ·⊕En[pn] where

Ei ∈ Ob A and pi ∈ Z, whose morphism spaces are given by linearly extending

Homr
ΣA (E[p], F [q]) = Homr−p+q

A (E,F ), and whose A∞ products {mn
ΣA }n≥1 are

naturally induced from those of A .

A twisted complex over an A∞ category A is a pair (E, δE) of an object E ∈
Ob ΣA and a morphism δE ∈ Hom1

ΣA (E,E) satisfying

∞∑
n=1

mn
ΣA (δE , . . . , δE) = 0. (3.4)

In what follows, we will only consider one-sided twisted complexes, i.e., a twisted

complex (E, δE) which admits a decomposition E = E1 ⊕ · · · ⊕ En where Ei ∈
Ob ΣA such that the corresponding decomposition δijE ∈ Hom1

ΣA (Ei, Ej) of δE

vanishes for every i ≥ j. Note that the equation (3.4) makes sense for a one-sided

twisted complex (E, δE) as the summation in the equation is finite in such a case.

The A∞ category Tw A of twisted complexes over A has twisted complexes over

A as its objects and the morphism spaces are given by HomTw A ((E, δE), (F, δF )) =

HomΣA (E,F ). The A∞ products {mn
Tw A }n≥1of Tw A are defined as follows

mn
Tw A (φ1, . . . , φn) =

∑
i0,...,in≥0

mn+i0+···+in
ΣA (

i0︷ ︸︸ ︷
δE0 , . . . , δE0 , φ1,

δE1 , . . . , δE1︸ ︷︷ ︸
i1

, φ2, . . . , φn, δEn , . . . , δEn︸ ︷︷ ︸
in

)

where φi ∈ HomTw A ((Ei−1, δEi−1), (Ei, δEi)).

It is known that the cohomology category H0(Tw A ) has a natural structure

of a triangulated category (cf. [Sei, Proposition 3.29]). In particular, for a closed

morphism φ ∈ Hom0
Tw A ((E, δE), (F, δF )), the mapping cone Cone(φ) of φ is a

twisted complex given by

Cone(φ) =

(
E[1]⊕ F,

(
−δE φ

0 δF

))
.

Together with naturally defined morphisms F → Cone(φ) and Cone(φ) → E[1],

this gives an exact triangle in H0(Tw A ).

4. Freeness criterion for spherical twists

To state the main theorem precisely, we begin by recalling the definitions and

basic properties of a spherical object and the twist along it.

Let D be an enhanced triangulated category. For E,F ∈ Ob D , we write

Homp
D(E,F ) = HomD(E,F [p]) and denote by Hom•D(E,F ) the graded k-vector
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spaces

Hom•D(E,F ) =
⊕
p∈Z

Homp
D(E,F )[−p].

Thus the degree p part of Hom•D(E,F ) is Homp
D(E,F ).

An object E ∈ Ob D is said to be d-spherical (d > 0) if it satisfies the following

two conditions:

(Sd) Homp
D(E,E) ∼= k if and only if p = 0, d, and vanishes otherwise;

(CYd) there is a functorial isomorphism Hom•D(E,−) ∼= Hom•D(−, E[d])∨.

Here (−)∨ is the graded k-dual. Whenever a spherical object E is considered, we

always assume that E is of finite type, i.e., dim Hom•D(E,F ) = dim Hom•D(F,E) <

∞ for every F ∈ Ob D .

Let E ∈ Ob D be an object of finite type. The exact functor E ⊗Hom•D(E,−) :

D → D is well-defined and has a canonical dg lift [AL, Section 2.2]. Then taking

the cone of the natural transformation E ⊗ Hom•D(E,−) → IdD induced by the

evaluation morphism, we obtain the twist functor TE : D → D associated to E

which fits into the exact triangle

E ⊗Hom•D(E,−)→ IdD → TE → E ⊗Hom•D(E,−)[1].

It was proved by Seidel and Thomas [ST, Proposition 2.10] that if E ∈ Ob D is a

d-spherical object then the associated twist functor TE is an exact autoequivalence

of D . In this case, we call TE ∈ Auteq(D) the spherical twist along E.

The following is one of the fundamental results for spherical twists which reveals

the similarity between Dehn twists and spherical twists [ST, Propositions 2.12 and

2.13].

Proposition 4.1 (Seidel-Thomas [ST]). Let E1, E2 ∈ Ob D be spherical objects.

(1) dim Hom•D(E1, E2) = 0 then TE1TE2
∼= TE2TE1 ;

(2) dim Hom•D(E1, E2) = 1 then TE1
TE2

TE1
∼= TE2

TE1
TE2

.

The notion of a complete partition for a collection of spherical objects can be

directly translated from that for a collection of simple closed curves. We also

introduce several definitions which will be used in the formulation of the main

theorem.

Definition 4.2. Let C = {E1, . . . , Em} be a collection of d-spherical objects of D .

A complete partition of C is a partition C1, . . . , Cα of C satisfying the following

properties:

(P1) dim Hom•D(Ei, Ej) = 0 if Ei, Ej ∈ Cµ with i 6= j for some µ;

(P2) dim Hom•D(Ei, Ej) ≥ 2 if Ei ∈ Cµ, Ej ∈ Cν with µ 6= ν.
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Let C1, . . . , Cα be a complete partition of a collection C and mµ be the number of

elements in Cµ. Rearranging the labels if necessary, we can assume m1 ≤ · · · ≤ mα.

In this case, we say that the complete partition C1, . . . , Cα is of type (m1, . . . ,mα).

Definition 4.3. A collection C = {E1, . . . , Em} of d-spherical objects of D is called

(E) essential if Ei 6∼= Ej in D up to shifts for every i 6= j;

(N) null-triangular if the composition map Hom•D(Ei, Ej) ⊗ Hom•D(Ej , Ek) →
Hom•D(Ei, Ek) vanishes for every i 6= j 6= k 6= i.

The following is the main theorem of this paper.

Theorem 4.4. Let D be an enhanced triangulated category with a dg enhancement

A . Let C = {E1, . . . , Em} be an essential and null-triangular collection of d>1-

spherical objects of D . Assume that the collection C admits a complete partition of

type (m1, . . . ,mα). We also assume that the dg algebra EndA (E1⊕· · ·⊕Em) is for-

mal. Then the subgroup of Auteq(D) generated by the spherical twists TE1 , . . . , TEm

is isomorphic to Zm1 ∗ · · · ∗ Zmα .

Remark 4.5. See Definition A.2 for the definition of the formality. The formality

assumption extremely simplifies calculations in the proofs of Propositions 5.1 and

6.1. However, it seems it is a somewhat superfluous assumption and can be removed

or relaxed in the future.

Remark 4.6. The condition that the collection C is null-triangular can be consid-

ered as a counterpart of the no disk assumption in Theorem 2.2. It excludes coun-

terexamples like C = {E1, E2, E3 = TE2
E1} in which case we happen to have an

unwanted relation TE3
∼= TE2

TE1
T−1
E2

[ST, Lemma 2.11]. Indeed, applying Lemma

B.1 to the 3-periodic long exact sequence

· · · → Hom•D(E1, E2)⊗Hom•D(E2, E1)→ Hom•D(E1, E1)→ Hom•D(E1, E3)→ · · ·

we obtain dim Hom•D(E1, E3) = (dim Hom•D(E1, E2))2. On the other hand, from

another 3-periodic long exact sequence

· · · → Hom•D(E3, E2)⊗Hom•D(E2, E1)
µ→ Hom•D(E3, E1)→ Hom•D(E3, E3)→ · · ·

we have

dim Imµ =
1

2
((dim Hom•D(E1, E2))2 + dim Hom•D(E3, E1)− 2)

= (dim Hom•D(E1, E2))2 − 1.

In particular, if dim Hom•D(E1, E2) ≥ 2, the composition map µ does not vanish.

Hence the collection C = {E1, E2, E3 = TE2
E1} cannot be both complete and

null-triangular.
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5. Orthogonal collection

The first step towards the proof of Theorem 4.4 is to find appropriate counter-

parts of sk’s defined by the equation (2.1), which played an essential role in the

proof of Theorem 2.2, in our categorical setting. For that, we first have to con-

struct a set of objects S1, . . . , Sm from given spherical objects E1, . . . , Em which

has similar properties with the arcs d
(j)
1 , d

(j)
2 constructed from the curves c1, c2 in

Section 2. Note that a similar construction was already appeared in an algebraic

context [Ric, Section 5].

Without loss of generality, we assume that D = H0(A ) for a pretriangulated dg

category A . Fix a collection C = {E1, . . . , Em} of spherical objects of D . Compos-

ing the exact functor H0(hA ) : D = H0(A ) → H0(dgMod(A )) with the quotient

functor H0(dgMod(A )) → D(A ), we obtain an exact functor Y : D → D(A ).

Abusing notation, we will always use the same symbol E to denote the image of

E ∈ Ob D under the functor Y which is an object of D(A ). Note that, since every

E ∈ Ob D regarded as an object of D(A ) via Y is h-projective and the functor

H0(hA ) is fully faithful, we have HomD(A )(E,F ) ∼= HomH0(dgMod(A ))(E,F ) ∼=
HomD(E,F ) for every F ∈ Ob D .

Proposition 5.1. Let C = {E1, . . . , Em} be an essential collection of d-spherical

objects of D . Moreover, assume that EndA (E1 ⊕ · · · ⊕ Em) is formal. Then there

exists a collection {S1, . . . , Sm} of objects of D(A ) such that

dim Homp
D(A )(Ej , Si) = δijδp0

for all i, j = 1, . . . ,m and p ∈ Z.

Remark 5.2. Note that S1, . . . , Sm are objects of the derived category D(A ) rather

than the category D in which the spherical objects E1, . . . , Em live. It is because

the category D is, in general, too small to carry a collection orthogonal to a given

collection. More precisely, it stem from the fact that the category D does not

always have countable direct sums.

Remark 5.3. As is mentioned in Remark 4.5, it seems the formality assumption

is unnecessary, or can be replaced by another reasonable assumption. Indeed the

proposition is still valid under some other formulations. For instance, one can drop

the formality assumption and impose a new assumption that Homp
D(Ei, Ej) = 0

for every p ≤ 0 and i 6= j as in [Ric, Section 5].

In order to prove Proposition 5.1, we need the following two technical lemmas.
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Lemma 5.4. Let (A ,mA ) be a minimal A∞ category and E1, . . . , Em be objects

of A such that

mk
A : HomA (Ei1 , Ei2)⊗ · · · ⊗HomA (Eik−1

, Eik)→ HomA (Ei1 , Eik)

vanish for all i1, . . . , ik and k ≥ 3. Consider an object Z ∈ Ob ΣA which is a direct

sum of shifts of E1, . . . , Em and a twisted complex (X, δX) ∈ Ob Tw A such that

the underlying object of X is X1 ⊕ · · · ⊕Xn where each Xi is a direct sum of shifts

of E1, . . . , Em and the differential δX can be decomposed as δijX ∈ Hom1
ΣA (Xi, Xj)

with i < j. Let φ ∈ Hom0
Tw A ((Z, 0), (X, δX)) be a closed morphism homotopic to

a morphism given by (φ1, 0, . . . , 0) for some morphism φ1 ∈ Hom0
ΣA (Z,X1).

Now, for some k = 1, . . . ,m and p ∈ Z, assume that for every closed morphism

β ∈ Homp
Tw A ((Ek, 0), (X, δX)) there exist morphisms η ∈ Homp

ΣA (Ek, Z) and

ξ ∈ Homp−1
Tw A ((Ek, 0), (X, δX)) such that β = m2

Tw A (η, φ) + m1
Tw A (ξ). Then

every closed morphism in Homp
Tw A ((Ek, 0), (Z[1]⊕X, δCone(φ))) is homotopic to a

closed morphism (α, 0) where α ∈ Homp+1
ΣA (Ek, Z).

Proof. By the assumption, we can assume from the beginning that the morphism

φ ∈ Hom0
Tw A ((Z, 0), (X, δX)) has the unique component given by a morphism

φ1 ∈ Hom0
ΣA (Z,X1).

Every morphism in Homp
Tw A ((Ek, 0), (Z[1] ⊕ X, δCone(φ))) can be written as

(α, β) where α ∈ Homp+1
ΣA (Ek, Z) and β ∈ Homp

ΣA (Ek, X). Let us write the com-

ponent of β to Xi by βi ∈ Homp
ΣA (Ek, Xi). Then the condition for this morphism

to be closed is

0 = m2
ΣA (α, φ1),

0 =

i−1∑
j=1

m2
ΣA (βj , δjiX) + (terms involving higher mk

A ’s)

=

i−1∑
j=1

m2
ΣA (βj , δjiX)

(5.1)

for all i = 2, . . . , n. Note that the condition can be divided in this way because φ

is given by a morphism in Hom0
ΣA (Z,X1) and the differential δX does not contain

a component to X1.

The bottom condition in (5.1) shows that β ∈ Homp
Tw A ((Ek, 0), (X, δX)) is

closed. Therefore by the assumption, there exist morphisms η ∈ Homp
ΣA (Ek, Z)

and ξ ∈ Homp−1
Tw A ((Ek, 0), (X, δX)) such that

β = m2
Tw A (η, φ) +m1

Tw A (ξ).
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Then for the morphism (η, ξ) ∈ Homp−1
Tw A ((Ek, 0), (Z[1]⊕X, δCone(φ))) we have

m1
Tw A (η, ξ) = (0,m2

Tw A (η, φ) +m1
Tw A (ξ)) = (0, β).

Hence the morphism (α, β) is homotopic to the morphism (α, 0). �

Lemma 5.5. Let (A ,mA ) be a minimal A∞ category. Consider objects E,Z ∈
Ob ΣA and (X, δX) ∈ Ob Tw A . Let φ ∈ Hom0

Tw A ((Z, 0), (X, δX)) and ε ∈
Homp

Tw A ((E, 0), (X, δX)) be closed morphisms.

Assume that the morphism (0, ε) ∈ Homp
Tw A ((E, 0), (Z[1] ⊕ X, δCone(φ))) is

homotopic to a morphism (α, 0) for some α ∈ Homp+1
ΣA (Ek, Z). Then there ex-

ist morphisms η ∈ Homp
ΣA (E,Z) and ξ ∈ Homp−1

Tw A ((E, 0), (X, δX)) such that

ε = m2
Tw A (η, φ) +m1

Tw A (ξ).

Proof. By the assumption, there is a morphism (η, ξ) ∈ Homp−1
Tw A ((E, 0), (Z[1] ⊕

X, δCone(φ))) where η ∈ Homp
ΣA (E,Z) and ξ ∈ Homp−1

Tw A ((E, 0), (Y, δY )), such that

−α = m1
ΣA (η) = 0,

ε = m2
Tw A (η, φ) +m1

Tw A (ξ).

In particular, the bottom condition completes the proof. �

Proof of Proposition 5.1. For each i, we shall construct an object Si ∈ ObD(A )

as the homotopy colimit of a sequence

E
(0)
i

φ
(0)
i→ E

(1)
i

φ
(1)
i→ · · ·

φ
(n−1)
i→ E

(n)
i

φ
(n)
i→ · · · . (5.2)

In Steps 1 and 2 below, we will inductively construct the sequence (5.2) and then

prove the equality dim Homp
D(A )(Ej , Si) = δijδp0 in Step 3.

Step 1. First of all, let E
(0)
i = Ei and

Z
(0)
i = Ei ⊗Hom•◦(Ei, E

(0)
i )⊕

⊕
j 6=i

Ej ⊗Hom•D(Ej , E
(0)
i )

where Hom•◦(Ei, E
(0)
i ) = Homd

D(Ei, E
(0)
i )[−d]. We then define an object E

(1)
i and

a morphism φ
(0)
i : E

(0)
i → E

(1)
i by taking the cone of the evaluation morphism

Z
(0)
i → E

(0)
i so that they fit into the exact triangle

Z
(0)
i → E

(0)
i

φ
(0)
i→ E

(1)
i → Z

(0)
i [1].

By definition, the map the map Homp
D(Ej , φ

(0)
i ) is zero unless j = i and p = 0.

Moreover, by the essentialness, the map Hom0
D(Ei, φ

(0)
i ) has a one-dimensional

image which is spanned by φ
(0)
i ◦ idEi (see Lemma B.3 (2)).

Step 2. Suppose we have constructed a sequence

E
(0)
i

φ
(0)
i→ E

(1)
i

φ
(1)
i→ · · ·

φ
(n−1)
i→ E

(n)
i
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where, for each l = 1, . . . , n, the object E
(l)
i is defined as the cone of the evaluation

morphism Z
(l−1)
i → E

(l−1)
i from the object of the form

Z
(l−1)
i = Ei ⊗Hom•◦(Ei, E

(l−1)
i )⊕

⊕
j 6=i

Ej ⊗Hom•D(Ej , E
(l−1)
i ).

Here Hom•◦(Ei, E
(l−1)
i ) = Hom0

◦(Ei, E
(l−1)
i ) ⊕

⊕
p 6=0 Homp

D(Ei, E
(l−1)
i )[−p] where

Hom0
◦(Ei, E

(l−1)
i ) is a subspace of Hom0

D(Ei, E
(l−1)
i ) defined inductively. Each ob-

ject E
(l)
i thus fits into the exact triangle

Z
(l−1)
i → E

(l−1)
i

φ
(l−1)
i→ E

(l)
i → Z

(l−1)
i [1].

We impose the following additional induction hypothesis:

(I
(n)
1 ) the map Homp

D(Ej , φ
(l−1)
i ) : Homp

D(Ej , E
(l−1)
i ) → Homp

D(Ej , E
(l)
i ) is zero

unless j = i and p = 0, for every l = 1, . . . , n;

(I
(n)
2 ) the map Hom0

D(Ei, φ
(l−1)
i ) : Hom0

D(Ei, E
(l−1)
i ) → Hom0

D(Ei, E
(l)
i ) has a

one-dimensional image which is spanned by φ
(l−1)
i ◦ · · ·◦φ(0)

i ◦ idEi for every

l = 1, . . . , n;

(I
(n)
3 ) the object E

(l)
i can be represented as a twisted complex whose underlying

object is

Z
(l−1)
i [1]⊕ · · · ⊕ Z(0)

i [1]⊕ E(0)
i

and the differential is of the form

0 ∗ 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
...

. . . ∗
0 · · · · · · · · · 0


.

Consider the object

Y
(n)
i = Ei ⊗Hom•6=0

D (Ei, E
(n)
i )⊕

⊕
j 6=i

Ej ⊗Hom•D(Ej , E
(n)
i )

where Hom•6=0
D (Ei, E

(n)
i ) =

⊕
p 6=0 Homp

D(Ei, E
(n)
i )[−p].

Claim 5.a. Under the induction hypotheses (I
(n)
1 ), (I

(n)
2 ) and (I

(n)
3 ), the composition

map µ
(n)
i : Hom0

D(Ei, Y
(n)
i )→ Hom0

D(Ei, E
(n)
i ), i.e., the map from

Homd
D(Ei, Ei)⊗Hom−dD (Ei, E

(n)
i )⊕

⊕
j 6=i,p∈Z

Hom−pD (Ei, Ej)⊗Homp
D(Ej , E

(n)
i )

to Hom0
D(Ei, E

(n)
i ) given by the composition of morphisms, does not contain the

morphism φ
(n−1)
i ◦ · · · ◦ φ(0)

i ◦ idEi .
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Proof. In order to prove the claim, we should know what the compositions of mor-

phisms are. In general, it is not so easy to compute the compositions of morphisms

explicitly in a triangulated category because of the homotopy information lurking

in it. Thus, instead of computing the compositions of morphisms directly in our

triangulated category D = H0(A ), we will compute them in an A∞ category Tw Ã

quasi-isomorphic to the dg category A .

Let us make it more precise. First, by perturbing the dg structure of the dg

category A as in Appendix A, one can construct a minimal strictly unital A∞

category Ã with the same objects as those of A which is quasi-isomorphic to A .

Furthermore, by the assumption that EndA (E1⊕· · ·⊕Em) is formal, one sees that

the A∞ products

mk
Ã

: HomÃ (Ei0 , Ei1)⊗ · · · ⊗HomÃ (Eik−1
, Eik)→ HomÃ (Ei0 , Eik) (5.3)

vanish for all i0, . . . , ik and k ≥ 3 .

By the induction hypotheses (I
(n)
1 ) and (I

(n)
3 ) for l = n and Lemma 5.4, we see

that a morphism in Homp
D(Ej , E

(n)
i ) can be represented as a morphism

(φ, 0, . . . , 0) : (Ej , 0)→ (Z
(n−1)
i [1]⊕ · · · ⊕ Z(0)

i [1]⊕ E(0)
i , δ

E
(n)
i

) (5.4)

between twisted complexes. Then one sees that the composition, i.e., m2
Tw Ã

, of a

morphism ψ ∈ Hom−pD (Ei, Ej) with the morphism (5.4) in Homp
D(Ej , E

(n)
i ) can be

represented as a morphism between twisted complexes of the form

(∗, 0, . . . , 0) : (Ei, 0)→ (Z
(n−1)
i [1]⊕ · · · ⊕ Z(0)

i [1]⊕ E(0)
i , δ

E
(n)
i

) (5.5)

between twisted complexes. Indeed, as the higher A∞ products (5.3) vanish, the

composition of those two morphisms is

m2
Tw Ã

(ψ, (φ, 0, . . . , 0)) = (m2
ΣÃ

(ψ, φ), 0, . . . , 0) + (terms involving higher mk
Ã

’s)

= (m2
ΣÃ

(ψ, φ), 0, . . . , 0).

A similar argument shows that the composition of a morphism in Homd
D(Ei, Ei)

with a morphism in Hom−dD (Ei, E
(n)
i ) can be represented as a morphism also of

the form (5.5). This implies that every morphism in the image of the map µ
(n)
i is

represented by a morphism of the form (5.5).

By definition, the morphism φ
(n−1)
i ◦ · · · ◦ φ(0)

i ◦ idEi ∈ Hom0
D(Ei, E

(n)
i ) is repre-

sented by the morphism

(0, . . . , 0, idEi) : (Ei, 0)→ (Z
(n−1)
i [1]⊕ · · · ⊕ Z(0)

i [1]⊕ E(0)
i , δ

E
(n)
i

)

between twisted complexes but, by the induction hypothesis (I
(n)
2 ) for l = n and

Lemma 5.5, any morphisms of the form (5.5) cannot be homotopic to φ
(n−1)
i ◦
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· · · ◦ φ(0)
i ◦ idEi . This shows that the image of the map µ

(n)
i does not contain the

morphism φ
(n−1)
i ◦ · · · ◦ φ(0)

i ◦ idEi . �

Consider a map from Hom0
Tw Ã

((Ei, 0), (Z
(n−1)
i [1]⊕· · ·⊕Z(0)

i [1]⊕E(0)
i , δ

E
(n)
i

)) to

Hom0
Tw Ã

((Ei, 0), (Z
(n−2)
i [1]⊕· · ·⊕Z(0)

i [1]⊕E(0)
i , δ

E
(n−1)
i

)) which sends (α1, . . . , αn)

to (α2, . . . , αn). Denote by K
(n)
i the kernel of this map. We define Hom0

◦(Ei, E
(n)
i )

to be a subspace of Hom0(Ei, E
(n)
i ) whose elements consist of morphisms which can

be represented by closed morphisms in K
(n)
i . Note that Hom0

◦(Ei, E
(n)
i ) is a direct

complement of the one-dimensional subspace spanned by φ
(n−1)
i ◦ · · · ◦ φ(0)

i ◦ idEi

in Hom0
D(Ei, E

(n)
i ) and contains the image of the map µ

(n)
i .

Now we define

Z
(n)
i = Ei ⊗Hom•◦(Ei, E

(n)
i )⊕

⊕
j 6=i

Ej ⊗Hom•D(Ej , E
(n)
i )

= Ei ⊗Hom0
◦(Ei, E

(n)
i )⊕ Y (n)

i

where Hom•◦(Ei, E
(n)
i ) = Hom0

◦(Ei, E
(n)
i ) ⊕

⊕
p 6=0 Homp

D(Ei, E
(n)
i )[−p]. An object

E
(n+1)
i and a morphism φ

(n)
i : E

(n)
i → E

(n+1)
i are then obtained by taking the cone

of the evaluation morphism Z
(n)
i → E

(n)
i thus fitting into the exact triangle

Z
(n)
i → E

(n)
i

φ
(n)
i→ E

(n+1)
i → Z

(n)
i [1].

Claim 5.b. Under the induction hypotheses (I
(n)
1 ), (I

(n)
2 ) and (I

(n)
3 ), the objects

Z
(n)
i , E

(n+1)
i and the morphism φ

(n)
i defined above satisfy the conditions (I

(n+1)
1 ),

(I
(n+1)
2 ) and (I

(n+1)
3 ).

Proof. The condition (I
(n+1)
1 ) is by definition. The condition (I

(n+1)
2 ) holds since

Ker Hom0
D(Ei, φ

(n)
i ) = Hom0

◦(Ei, E
(n)
i ) + Imµ

(n)
i = Hom0

◦(Ei, E
(n)
i )

and hence the map Hom0
D(Ei, φ

(n)
i ) has a one-dimensional image which is spanned

by φ
(n)
i ◦ · · · ◦ φ(0)

i ◦ idEi . The condition (I
(n+1)
3 ) follows from Lemma 5.4. �

Step 3. For every i, define an object Si ∈ ObD(A ) to be the homotopy col-

imit of the sequence (5.2) constructed in Step 2. Since each Ei ∈ ObD(A ) is a

representable, in particular compact, dg A -module, we have an isomorphism

Homp
D(A )(Ej , Si) = Homp

D(A )(Ej ,hocolimE
(n)
i )

∼= colim Homp
D(A )(Ej , E

(n)
i )

∼= colim Homp
D(Ej , E

(n)
i )

as remarked in Section 3.
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By the condition (I
(n)
1 ), the maps in the sequence

Homp
D(Ej , E

(0)
i )→ Homp

D(Ej , E
(1)
i )→ · · · → Homp

D(Ej , E
(n)
i )→ · · ·

obtained by applying the functor Homp
D(Ej ,−) to the sequence (5.2) are all zeros

unless j = i and p = 0. This shows that

Homp
D(A )(Ej , Si)

∼= colim Homp
D(Ej , E

(n)
i ) = 0

for all the cases except the case j = i and p = 0.

For the case j = i and p = 0, we consider the sequence

Hom0
D(Ei, E

(0)
i )→ Hom0

D(Ei, E
(1)
i )→ · · · → Hom0

D(Ei, E
(n)
i )→ · · ·

obtained by applying the functor Hom0
D(Ei,−) to the sequence (5.2). Then by the

condition (I
(n)
2 ), we see that

Hom0
D(A )(Ei, Si)

∼= colim Hom0
D(Ei, E

(n)
i ) ∼= Hom0

D(Ei, E
(0)
i )

and therefore dim Hom0
D(A )(Ei, Si) = 1. �

6. Geometric inequalities

Let us define some categorically defined numbers ι and σk’s which corresponds

to the intersection numbers i and sk’s in Section 2 respectively.

Again let C = {E1, . . . , Em} be an essential collection of d-spherical objects of

an enhanced triangulated category D = H0(A ) such that EndA (E1 ⊕ · · · ⊕ Em)

is formal. By comparing Proposition 4.1 with the corresponding result for Dehn

twists, we find that the number ι should be defined as

ι(E,F ) = dim Hom•D(E,F )

for E,F ∈ Ob D . On the other hand, we have constructed in Proposition 5.1

a collection {S1, . . . , Sm} of objects in D(A ) orthogonal to the collection C =

{E1, . . . , Em}. It enables us to define the number σk, in a way similar to the

definition of sk, as

σk(F ) = dim Hom•D(A )(F, Sk)

for F ∈ Ob D and k = 1, . . . ,m. In the rest of this section, we will show that they

satisfy inequalities of the same form as (2.2) and (2.3).

For notational simplicity, let us denote by Tk = TEk the spherical twist along Ek.

Moreover, we define ΩC to be the set of objects in the smallest triangulated category

of D containing E1, . . . , Em. For example, every object obtained by iteratively

applying T1, . . . , Tm to Ei is contained in ΩC .
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Proposition 6.1. Let C = {E1, . . . , Em} be an essential and null-triangular collec-

tion of d-spherical objects of D . Assume also that EndA (E1⊕ · · · ⊕Em) is formal.

Then for any F ∈ ΩC and k = 1, . . . ,m, the following inequalities hold:

(1) σk(T pj F ) = σk(F ) for all j 6= k and p ∈ Z;

(2) σk(T pkF ) ≥ ι(Ek, Ej)σj(F )− σk(F ) for all j 6= k and p ∈ Z \ {0}.

Remark 6.2. Observe that the number σk(F ) might be infinite for some F ∈ Ob D .

However, by Proposition 5.1, it is finite for the objects in ΩC , hence the inequalities

in the statement make sense.

Also note that the proposition asserts that the inequalities hold for any choice

of a collection {S1, . . . , Sm} obtained in Proposition 5.1.

Proof of Proposition 6.1. (1) By the definition of the twist functor, we have an

exact triangle

Ej ⊗Hom•D(Ej , F )→ F → TjF → Ej ⊗Hom•D(Ej , F )[1].

Applying the functor HomD(A )(−, Sk) to this triangle, we obtain a 3-periodic long

exact sequence

· · · → Hom•(TjF, Sk)→ Hom•(F, Sk)→ Hom•(Ej ⊗Hom•D(Ej , F ), Sk)→ · · ·
(6.1)

of k-vector spaces.

Then, as j 6= k, we have Hom•D(A )(Ej ⊗ Hom•D(Ej , F ), Sk) = 0 by Proposition

5.1. From the long exact sequence (6.1), we get an isomorphism

Hom•D(A )(TjF, Sk) ∼= Hom•D(A )(F, Sk)

and hence σk(TjF ) = σk(F ). It then follows inductively that σk(T pj F ) = σk(F ) for

every p ∈ Z.

(2) In Step 1, we describe the iterated twist T pkF in terms of a certain twisted

complex CpkF following [Kea, Definition 7.1]. Using this expression, we prove the

inequality (6.6). Then, in Step 2, we complete the proof by showing the inequality

(6.7).

Step 1. Note that we only need to show the assertion for p ∈ Z>0 by symmetry.

Let us perturb the dg structure of the dg category S = SF(A ), as in Step 2 in the

proof of Proposition 5.1 (also see Appendix A), to obtain a minimal strictly unital

A∞ category S̃ with the same objects as those of S which is quasi-isomorphic to

S and whose A∞ products

mk
S̃

: Hom
S̃

(Ei0 , Ei1)⊗ · · · ⊗Hom
S̃

(Eik−1
, Eik)→ Hom

S̃
(Ei0 , Eik) (6.2)

vanish for all i0, . . . , ik and k ≥ 3.
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Consider an indecomposable object F ∈ ΩC which is not isomorphic to Ek up

to shifts. For every p ∈ Z>0, we can define a twisted complex CpkF so that T pkF

fits into the exact triangle

CpkF
ε→ F → T pkF → CpkF [1]. (6.3)

According to [Kea, Definition 7.1], the twisted complex CpkF can be explicitly

written as

(Ek ⊗ (Homd
S̃

(Ek, Ek))⊗(p−1) ⊗Hom
S̃

(Ek, F )[p− 1])

⊕(Ek ⊗ (Homd
S̃

(Ek, Ek))⊗(p−2) ⊗Hom
S̃

(Ek, F )[p− 2])

· · ·

⊕(Ek ⊗Homd
S̃

(Ek, Ek)⊗Hom
S̃

(Ek, F )[1])

⊕(Ek ⊗Hom
S̃

(Ek, F ))

with the differential acting on Ek ⊗ (Homd
S̃

(Ek, Ek))⊗l ⊗Hom
S̃

(Ek, F )[l] by

− ev ⊗ id⊗l ±
∑
s≥2

idEk ⊗ id⊗(l−1−s) ⊗ms
S̃
. (6.4)

Moreover, the morphism ε : CpkF → F in the exact triangle (6.3) is given by a mor-

phism t(0, . . . , 0, ev) between twisted complexes where ev : Ek⊗Hom
S̃

(Ek, F )→ F

is the evaluation morphism.

In our case, the terms involving ms
S̃

(s ≥ 3) in (6.4) vanish by the formality

assumption, and the term involving m2
S̃

in (6.4) vanishes since F is not isomorphic

to Ek up to shifts (see Lemma B.2). Therefore, fixing a basis xk of Homd
S̃

(Ek, Ek),

we can simply write CpkF as

(Ek ⊗Hom
S̃

(Ek, F )[(p− 1)(1− d)])

⊕(Ek ⊗Hom
S̃

(Ek, F )[(p− 2)(1− d)])

· · ·

⊕(Ek ⊗Hom
S̃

(Ek, F )[1− d])

⊕(Ek ⊗Hom
S̃

(Ek, F ))

with the differential 

0 −xk ⊗ id 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
...

. . . −xk ⊗ id

0 · · · · · · · · · 0


.
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Moreover, by defining another twisted complex BpkF to be

Ek[(p− 1)(1− d)]⊕ Ek[(p− 2)(1− d)]⊕ · · · ⊕ Ek[1− d]⊕ Ek

with the differential 

0 −xk 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
...

. . . −xk
0 · · · · · · · · · 0


,

we can also write CpkF as BpkF ⊗Hom
S̃

(Ek, F ).

Now, applying the functor HomD(A )(−, Sk) to the exact triangle (6.3), we obtain

a 3-periodic long exact sequence

· · · → Hom•(T pkF, Sk)→ Hom•(F, Sk)
η
(k)

T
p
k
F

→ Hom•(CpkF, Sk)→ · · · (6.5)

of k-vector spaces. Then applying Lemma B.1 to the long exact sequence (6.5), we

get

σk(T pkF ) = dim Hom•D(A )(C
p
kF, Sk) + 2 dim Ker η

(k)

TpkF
− σk(F ).

Claim 6.a. For every p ∈ Z>0 and an indecomposable object F ∈ ΩC which is not

isomorphic to Ek up to shifts, we have the following inequalities:

(1) dim Hom•D(A )(C
p
kF, Sk) ≥ ι(Ek, F );

(2) dim Ker η
(k)

TpkF
= dim Ker ρ

(k)
F where ρ

(k)
F = η

(k)
TkF

.

To prove Claim 6.a, we first show the following claim.

Claim 6.b. Every closed and non-exact morphism in Hom0
Tw S̃

(Ek, Sk) does not

factor through morphisms in Hom
S̃

(Ek, Ej) (j 6= k).

Proof. Assume that there is a closed and non-exact morphism in Hom0
Tw S̃

(Ek, Sk)

which factors through a morphism in Hom
S̃

(Ek, Ej) (j 6= k). Then it implies

that, for some i, the morphism φ
(i−1)
k ◦ · · · ◦ φ(0)

k ◦ idEk ∈ Hom0
S̃

(Ek, E
(i)
k ) factors

through a morphism in Hom
S̃

(Ek, Ej) (j 6= k). In particular, it implies that

φ
(i−1)
k ◦ · · · ◦ φ(0)

k ◦ idEk is exact. This contradicts the construction in the proof of

Proposition 5.1. �

Proof of Claim 6.a. (1) Since CpkF = BpkF ⊗Hom
S̃

(Ek, F ), we have

dim Hom•D(A )(C
p
kF, Sk) = dim Hom•D(A )(B

p
kF, Sk) · ι(Ek, F ).

Thus the inequality follows if we show that Hom0
D(A )(B

p
kF, Sk) 6= 0.
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For every l = 1, . . . , p− 1, there is an exact triangle

Ek[l(1− d)− 1]→ BlkF → Bl+1
k F → Ek[l(1− d)].

Applying HomD(A )(−, Sk) to this triangle, we obtain an exact sequence

· · · → Hom0(Bl+1
k F, Sk)→ Hom0(BlkF, Sk)→ Hom1(Ek[l(1− d)], Sk)→ · · · .

By Proposition 5.1, we have Hom1
D(A )(Ek[l(1 − d)], Sk) = 0 and hence the map

Hom0
D(A )(B

l+1
k F, Sk) → Hom0

D(A )(B
l
kF, Sk) is surjective. Therefore we obtain a

sequence of surjective maps

Hom0(BpkF, Sk)→ Hom0(Bp−1
k F, Sk)→ · · · → Hom0(B1

kF, Sk) = Hom0(Ek, Sk).

Again by Proposition 5.1, Hom0
D(A )(Ek, Sk) 6= 0. Thus Hom0

D(A )(B
p
kF, Sk) 6= 0 as

desired.

(2) Let φ ∈ Hom
Tw S̃

(F, Sk) be a closed morphism such that m2
Tw S̃

(ev, φ)

becomes exact, where ev : Ek ⊗ Hom
S̃

(Ek, F ) → F is the evaluation morphism.

Then there exists a morphism ψ0 ∈ Hom
Tw S̃

(Ek ⊗ Hom
S̃

(Ek, F ), Sk) such that

m1
Tw S̃

(ψ0) = m2
Tw S̃

(ev, φ).

Recall that ε ∈ Hom
Tw S̃

(CpkF, F ) is a morphism given by t(0, . . . , 0, ev). Since

the higher A∞ products (6.2) vanish, we have

m2
Tw S̃

(ε, φ) =


0
...

0

m2
Tw S̃

(ev, φ)

 .

On the other hand, the closed morphism m2
Tw S̃

(xk ⊗ id, ψ0) ∈ Hom
Tw S̃

(Ek ⊗
Hom

S̃
(Ek, F ), Sk) is an exact morphism by Claim 6.b. Thus we find a morphism

ψ1 ∈ Hom
Tw S̃

(Ek ⊗ Hom
S̃

(Ek, F ), Sk) such that m1
Tw S̃

(ψ1) = m2
Tw S̃

(xk ⊗
id, ψ0). Repeating this process, we obtain a sequence of morphisms ψ1, . . . , ψp−1 ∈
Hom

Tw S̃
(Ek ⊗ Hom

S̃
(Ek, F ), Sk) satisfying m1

Tw S̃
(ψi) = m2

Tw S̃
(xk ⊗ id, ψi−1)

for all i = 1, . . . , p− 1. Therefore if we define a morphism ψ ∈ Hom
Tw S̃

(CpkF, Sk)
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by t(ψp−1, . . . , ψ1, ψ0), it satisfies

m1
Tw S̃

(ψ) =


m1

Tw S̃
(ψp−1)−m2

Tw S̃
(xk ⊗ id, ψp−2)

...

m1
Tw S̃

(ψ1)−m2
Tw S̃

(xk ⊗ id, ψ0)

m1
Tw S̃

(ψ0)



=


0
...

0

m2
Tw S̃

(ev, φ)

 = m2
Tw S̃

(ε, φ).

In particular, m2
Tw S̃

(ε, φ) is exact. �

Consequently, we have

σk(T pkF ) ≥ ι(Ek, F ) + 2 dim Ker ρ
(k)
F − σk(F ) (6.6)

for every indecomposable object F ∈ ΩC not isomorphic to a shift of Ek and

p ∈ Z>0. Note that the inequality (6.6) is also true for a shift of Ek and thus for

every object in ΩC .

Step 2. It is left to prove the inequality

ι(Ek, F ) + 2 dim Ker ρ
(k)
F ≥ ι(Ek, Ej)σj(F ) (6.7)

holds for every F ∈ ΩC and j 6= k. In the rest of the proof, we fix j 6= k.

Consider an object F ∈ ΩC . We will regard it as a twisted complex over S̃

whose underlying object is a finite direct sum of shifts of E1, . . . , Em. Moreover,

fixing a direct sum decomposition of the underlying object of F , we will write it as

F =

m⊕
i=1

ri⊕
r=1

Ei,r

where ri ∈ Z≥0 and each Ei,r is a shift of Ei. By ιi,r ∈ Hom0
ΣS̃

(Ei,r, F ) and πi,r ∈
Hom0

ΣS̃
(F,Ei,r), we denote the inclusion and the projection morphism respectively.

The differential of this twisted complex will be denoted by δF ∈ Hom1
ΣS̃

(F, F )

and the component of δF from Ei,r to Ei′,r′ by δF |Ei,r→Ei′,r′ ∈ Hom1
S̃

(Ei,r, Ei′,r′).

Similarly, we will denote the component of α ∈ Hom
Tw S̃

(F, Sl) from Ei,r by

α|Ei,r→Sl ∈ Hom
Tw S̃

(Ei,r, Sl) and the component of φ ∈ Hom
Tw S̃

(El, F ) to Ei,r

by φ|El→Ei,r ∈ Hom
S̃

(El, Ei,r).

Claim 6.c. Any closed morphism α ∈ Hom
Tw S̃

(F, Sl) such that every component

αi,r = α|Ei,r→Sl ∈ Hom
Tw S̃

(Ei,r, Sl) is exact is an exact morphism.
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Proof. For each i and r, choose a morphism ψ
(1)
i,r ∈ Hom

Tw S̃
(Ei,r, Sl) such that

m1
Tw S̃

(ψ
(1)
i,r ) = αi,r. Let ψ(1) ∈ Hom

Tw S̃
(F, Sl) be the morphism whose compo-

nents are given by ψ
(1)
i,r . Then every component of m1

Tw S̃
(ψ(1)) = m2

ΣS̃
(δF , ψ

(1))

is again exact. Indeed, in m2
ΣS̃

(δF , ψ
(1)), the terms of the form m2

ΣS̃
(idEi , ψ

(1)
i,r )

up to a constant cancel out because of the closedness of the morphism φ and the

other terms are exact by Claim 6.b.

Let β(1) = α−m1
Tw S̃

(ψ(1)) and β
(1)
i,r = β(1)|Ei,r→Sl ∈ Hom

Tw S̃
(Ei,r, Sl). Take

a morphism ψ
(2)
i,r ∈ Hom

Tw S̃
(Ei,r, Sl) so that m1

Tw S̃
(ψ

(2)
i,r ) = β

(1)
i,r for each i and

r. Then, for the morphism ψ(2) ∈ Hom
Tw S̃

(F, Sl) whose components are given by

ψ
(2)
i,r , one sees that every component of m1

Tw S̃
(ψ(2)) is exact in exactly the same

way as before.

We perform the same processes successively. Then we obtain a sequence of

morphisms ψ(1), . . . , ψ(n) ∈ Hom
Tw S̃

(F, Sl) such that

m1
Tw S̃

(ψ(s+1)|Ei,r→Sl) = (α−m1
Tw S̃

(ψ(1))− · · · −m1
Tw S̃

(ψ(s)))|Ei,r→Sl

for every i, r and s = 1, . . . , n−1. Since F is a finite direct sum and δF is one-sided,

this process must stop. Namely, for a sufficiently large n, we have

α−m1
Tw S̃

(ψ(1))− · · · −m1
Tw S̃

(ψ(n)) = 0.

This shows that the morphism α ∈ Hom
Tw S̃

(F, Sl) is exact. �

Fix a basis xi ∈ Homd
S̃

(Ei, Ei) for each i = 1, . . . ,m. For a direct summand Ei,r

of F , we consider the following condition:

(H) there exist c1, . . . , cri ∈ k such that the morphism

ξ =

ri∑
s=1

csm
2
ΣS̃

(xi, ιi,s) ∈ Hom
Tw S̃

(Ei, F )

satisfies m1
Tw S̃

(ξ) = m2
ΣS̃

(xi, ιi,r).

If a direct summand Ei,r satisfies the condition (H), we fix a morphism ξ in the

condition (H). Let us denote it by ξHi,r ∈ Hom
Tw S̃

(Ei, F ).

Claim 6.d. For a direct summand Ei,r which does not satisfy the condition (H),

there exists a closed morphism α ∈ Hom
Tw S̃

(F, Si) such that the component

α|Ei,r→Si ∈ Hom
Tw S̃

(Ei,r, Si) is closed and non-exact.

Proof. Fix a closed and non-exact morphism α0 ∈ Hom0
Tw S̃

(Ei, Si). If there is no

direct summand Ei,s in F such that δF |Ei,s→Ei,r = idEi up to a constant, we put

α′ = m2
ΣS̃

(πi,r, α
0). Then every component of m1

Tw S̃
(α′) is exact by Claim 6.b,

and as in the proof of Claim 6.c, we find a morphism ψ ∈ Hom
Tw S̃

(F, Si) such
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that m1
Tw S̃

(α′) = m1
Tw S̃

(ψ) and ψ|Ei,r→Si = 0. Then α = α′ − ψ satisfies the

desired properties.

In general, there is a zigzag of identity morphisms in F

Ei,r
A1← E⊕s1i

B1→ E
⊕s′1
i

A2← E⊕s2i
B2→ · · · An← E⊕sni

Bn→ E
⊕s′n
i

where each Ei is one of Ei,1, . . . , Ei,ri , Al is an sl × s′l−1 matrix (s′0 = 1) and Bl is

an sl × s′l matrix. Entries of the matrices are regarded as constant multiples of the

identity morphism idEi . Now since Ei,r does not satisfy the condition (H), there is

no solution of the system of linear equations

(
v1 v2 · · · vn

)

A1 B1 0 · · · 0

0 A2 B2
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 An Bn

 =
(

1 0 · · · 0
)
.

This in particular implies that

rk


A1 B1 0 · · · 0

0 A2 B2
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 An Bn

 = rk


0 B1 0 · · · 0

0 A2 B2
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 An Bn

 .

Thus there are w1, . . . , wn satisfying B1w1 = A1, A2w1 +B2w2 = 0, . . . , Anwn−1 +

Bnwn = 0. Joining the morphism α0 ∈ Hom0
Tw S̃

(Ei, Si) to E⊕sli according to wl,

we obtain a morphism β ∈ Hom
Tw S̃

(F, Si). Then, for α′ = m2
ΣS̃

(πi,r, α
0) − β,

every component of m1
ΣS̃

(α′) is exact. As before, there exists a morphism ψ ∈
Hom

Tw S̃
(F, Si) such that m1

Tw S̃
(α′) = m1

Tw S̃
(ψ) and ψ|Ei,r→Si = 0. Then

define α = α′ − ψ. �

Let σ = σj(F ) = dim Hom•D(A )(F, Sj). For every direct summand Ej,r which

does not satisfy the condition (H), collect all the closed and non-exact morphisms

α
(1)
r , . . . , α

(sr)
r ∈ Hom

Tw S̃
(F, Sj) constructed as in the proof of Claim 6.d. Assume

that there is a morphism β ∈ Hom
Tw S̃

(F, Sj) such that

m1
Tw S̃

(β) =

rj∑
r=1

sr∑
s=1

c(s)r α(s)
r

for some c
(1)
1 , . . . , c

(s1)
1 , . . . , c

(1)
rj , . . . , c

(srj )
rj ∈ k. Let us fix a basis of the solu-

tion space of the linear equation
∑rj
r=1

∑sr
s=1 b

(s)
r c

(s)
r = 0. Then, for each ele-

ment (b
(1)
1 , . . . , b

(s1)
1 , . . . , b

(1)
rj , . . . , b

(srj )
rj ) in the basis, we assign the closed morphism∑rj

r=1

∑sr
s=1 b

(s)
r α

(s)
r . In this way, we can extract s1 + · · ·+srj −1 closed morphisms
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from the s1 + · · · + srj closed morphisms α
(1)
1 , . . . , α

(s1)
1 , . . . , α

(1)
rj , . . . , α

(srj )
rj . Per-

forming the same procedure to the new closed morphisms inductively, we eventually

obtain closed morphisms α1, . . . , ασ ∈ Hom
Tw S̃

(F, Sj) such that their classes form

a basis of Hom•D(A )(F, Sj), and if all the closed and non-exact components of αµ

are aµ,lα
0 ∈ Hom

Tw S̃
(Ej,sµ,l , Sj) for aµ,l ∈ k, α0 ∈ Hom0

Tw S̃
(Ej , Sj) a closed and

non-exact morphism and l = 1, . . . , nµ then

ι̂µ =

nµ∑
l=1

aµ,lιj,sµ,l ∈ Hom
Tw S̃

(Ej , F )

satisfies m1
Tw S̃

(m2
ΣS̃

(xj , ι̂µ)) = 0. In what follows, we will fix such morphisms

ι̂1, . . . , ι̂σ and regard them as a basis of Hom•D(A )(F, Sj).

To an element φ1⊗ ι̂1 + · · ·+φσ⊗ ι̂σ ∈ Hom•D(Ek, Ej)⊗Hom•D(A )(F, Sj), we as-

sociate φ = m2
ΣS̃

(φ1, ι̂1)+ · · ·+m2
ΣS̃

(φσ, ι̂σ) ∈ Hom
Tw S̃

(Ek, F ). As the collection

C = {E1, . . . , Em} is null-triangular, there exist direct summands Ek,s1 , . . . , Ek,sn

such that

m1
Tw S̃

(φ) =

n∑
l=1

m2
ΣS̃

(m1
Tw S̃

(φ)|Ek→Ek,sl , ιk,sl) (6.8)

and each term is non-zero. We also allow n = 0 in which case the morphism φ is

closed. Note that each m1
Tw S̃

(φ)|Ek→Ek,sl in the equation (6.8) is a multiple of

xk ∈ Homd
S̃

(Ek, Ek) a fixed basis.

Without loss of generality, we assume that Ek,1, . . . , Ek,q does not satisfy the

condition (H) while Ek,q+1, . . . , Ek,rk satisfy the condition (H). For an element

φ1⊗ ι̂1 + · · ·+φσ ⊗ ι̂σ ∈ Hom•D(Ek, Ej)⊗Hom•D(A )(F, Sj) such that the morphism

φ as in the previous paragraph satisfies m1
Tw S̃

(φ)|Ek→Ek,l = alxk for l = 1, . . . , q,

assign (a1, . . . , aq) ∈ kq. This assignment defines a linear map γ : Hom•D(Ek, Ej)⊗
Hom•D(A )(F, Sj)→ kq.

For (a1, . . . , aq) ∈ kq, consider the following condition:

(I) there exist c1, . . . , crk ∈ k such that the morphism

ξ =

rk∑
s=1

csm
2
ΣS̃

(xk, ιk,s) ∈ Hom
Tw S̃

(Ek, F )

satisfies m1
Tw S̃

(ξ) =
∑q
l=1 alm

2
ΣS̃

(xi, ιk,l).

Let I be a subspace of kq whose elements consist of all those elements (a1, . . . , aq) ∈
kq satisfying the condition (I). Fix a basis v1, . . . , vu of I. Moreover, for each vl,

we also fix a morphism ξ in the condition (I) and denote it by ξIvl . Then for

(a1, . . . , aq) ∈ I, we define a morphism ξIa1,...,aq ∈ Hom
Tw S̃

(Ek, F ) as a linear
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combination of ξIv1 , . . . , ξ
I
vu so that

m1
Tw S̃

(ξIa1,...,aq ) =

q∑
l=1

alm
2
ΣS̃

(xk, ιk,l).

Recall that, for each of Ek,q+1, . . . , Ek,rk , say Ek,l, we also have fixed a morphism

ξHk,l ∈ Hom
Tw S̃

(Ek, F ) satisfying

m1
Tw S̃

(ξHk,l) = m2
ΣS̃

(xi, ιk,l).

We define a linear map γ : Hom•D(Ek, Ej) ⊗ Hom•D(A )(F, Sj) → kq/I as the

composition of the linear map γ : Hom•D(Ek, Ej) ⊗ Hom•D(A )(F, Sj) → kq and

the projection map kq → kq/I. Let V = Ker γ. For an element φ1 ⊗ ι̂1 + · · · +
φσ ⊗ ι̂σ ∈ V , we can make the morphism φ = m2

ΣS̃
(φ1, ι̂1) + · · · + m2

ΣS̃
(φσ, ι̂σ) ∈

Hom
Tw S̃

(Ek, F ) closed as follows. First of all, suppose γ(φ1⊗ ι̂1 + · · ·+φσ⊗ ι̂σ) =

(a1, . . . , aq) ∈ I and m1
Tw S̃

(φ)|Ek→Ek,l = blxk for l = q + 1, . . . , rk, i.e.,

m1
Tw S̃

(φ) =

q∑
l=1

alm
2
ΣS̃

(xk, ιk,l) +

rk∑
l=q+1

blm
2
ΣS̃

(xk, ιk,l).

Then one sees that

φ− ξIa1,...,aq −
rk∑

l=q+1

blξ
H
k,l ∈ Hom

Tw S̃
(Ek, F ) (6.9)

is a closed morphism. Then sending φ1 ⊗ ι̂1 + · · ·+ φσ ⊗ ι̂σ ∈ V to the class of the

closed morphism (6.9), we obtain a linear map λ : V → Hom•D(A )(Ek, F ). Note

that the linear map λ depends on the choices of the morphisms ξHk,l’s and ξIa1,...,aq ’s

we have fixed.

Now, relabeling if necessary, we assume that e1, . . . , ew form a basis of kq/I

where e1, . . . , eq is the class of the standard basis of kq. For the direct sum-

mands Ek,1, . . . , Ek,w, let us fix morphisms αk,1, . . . , αk,w ∈ Hom•D(A )(F, Sk) con-

structed in Claim 6.d. For l = 1, . . . , w, if there is no closed and non-exact

morphism ε ∈ Hom
Tw S̃

(Ek, F ) such that ε|Ek→Ek,l = idEk , the morphism αk,l

is contained in Ker ρ
(k)
F . Otherwise, we fix a closed and non-exact morphism

εk,l ∈ Hom
Tw S̃

(Ek, F ) such that εk,l|Ek→Ek,l = idEk . We will also denote its

class by the same symbol εk,l ∈ Hom•D(A )(Ek, F ). Let W be a subspace of

Hom•D(A )(Ek, F ) spanned by all such morphisms. Then we have W ∩ Imλ = 0.

As above we can define a linear map δ : kq/I → W ⊕ Ker ρ
(k)
F by sending

[a1, . . . , aw, 0, . . . , 0] ∈ kq/I to an element inW⊕Ker ρ
(k)
F according to the algorithm

given above. We then define a linear map κ1 : Hom•D(Ek, Ej)⊗Hom•D(A )(F, Sj)→
W ⊕Ker ρ

(k)
F by κ1 = δ ◦ γ. Then Kerκ1 = V and thus we have

codimV = dim Imκ1 ≤ dimW + dim Ker ρ
(k)
F .
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Moreover, since W ∩ Imλ = 0, it follows that

ι(Ek, Ej)σj(F )− dim Kerλ = dimV + codimV − dim Kerλ

= dim Imλ+ codimV

≤ dim Imλ+ dimW + dim Ker ρ
(k)
F

≤ ι(Ek, F ) + dim Ker ρ
(k)
F .

(6.10)

Finally, we shall show that dim Kerλ ≤ dim Ker ρ
(k)
F . For an element φ1 ⊗

ι̂1 + · · · + φσ ⊗ ι̂σ ∈ Kerλ, there is a morphism ψ ∈ Hom
Tw S̃

(Ek, F ) such that

m1
Tw S̃

(ψ) = λ(φ1 ⊗ ι̂1 + · · · + φσ ⊗ ι̂σ). We can take such a morphism ψ so that

it satisfies ψ|Ek→Ek,l = 0 for all l = q + 1, . . . , rk using morphisms ηHk,q+1, . . . , η
H
k,rk

obtained by replacing xk in the definition of ξHk,q+1, . . . , ξ
H
k,rk

by idEk . Similarly,

we can even assume that such a morphism ψ satisfies ψ|Ek→Ek,l = 0 for all l =

w+1, . . . , rk using morphisms ηIa1,...,aq obtained by replacing xk in the definition of

ξIa1,...,aq by idEk . For such a morphism ψ, suppose ψ|Ek→Ek,l = al for l = 1, . . . , w.

We then assign to ψ an element [a1, . . . , aw, 0, . . . , 0] ∈ kq/I. As before, we see

that the morphism a1αk,1 + · · · + awαk,w is contained in Ker ρ
(k)
F and such an

assignment gives us a linear map κ2 : Kerλ → Ker ρ
(k)
F which is injective. This

shows that dim Kerλ ≤ dim Ker ρ
(k)
F .

Combining this with the inequality (6.10), we conclude the inequality (6.7). �

7. Ping-pong argument

Let C = {E1, . . . , Em} be an essential collection of d-spherical objects of D such

that EndA (E1 ⊕ · · · ⊕ Em) is formal, and C1, . . . , Cα be a partition of C. For

µ = 1, . . . , α and F ∈ Ob D , define

σ̂µ(F ) = max {σk(F ) |Ek ∈ Cµ } .

Clearly, by Proposition 5.1, σ̂µ(Ej) = 0 if Ej 6∈ Cµ and σ̂µ(Ej) = 1 if Ej ∈ Cµ.

Now we define subsets Ω1, . . . ,Ωα of the set Ω = ΩC by

Ωµ = {F ∈ Ω | σ̂µ(F ) > σ̂ν(F ) for all ν 6= µ} .

Note that Ωµ ∩ Ων = ∅ for every µ 6= ν and each Ωµ is non-empty since Cµ ⊂ Ωµ.

The following lemma allows us to apply the ping-pong lemma. The proof is a

direct translation of that of Humphries [Hum, Section 2].

Proposition 7.1. Let C = {E1, . . . , Em} be an essential null-triangular collection

of d-spherical objects of D such that EndA (E1 ⊕ · · · ⊕ Em) is formal. Suppose

that C1, . . . , Cα is a complete partition of C. Let Gµ be the subgroup of Auteq(D)
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generated by the spherical twists along the objects in Cµ. Then, for all F ∈ Ων and

T ∈ Gµ \ {IdD} with µ 6= ν, we have TF ∈ Ωµ.

Proof. Without lose of generality, we can assume that Cµ = {E1, . . . , En}. As

dim Hom•D(Ei, Ej) = 0 for every distinct pair of i, j = 1, . . . , n, the spherical twists

T1, . . . , Tn commute with each other by Proposition 4.1. Thus every element T ∈ Gµ
can be uniquely written as T = T p11 · · ·T pnn for some p1, . . . , pn ∈ Z. Now let

F ∈ Ων with ν 6= µ and T = T p11 · · ·T pnn ∈ Gµ \ {IdD}. Since T 6= IdD , at least one

of p1, . . . , pn, say pi0 , is non-zero. Take j0 so that Ej0 ∈ Cν and σ̂ν(F ) = σj0(F ).

Then, applying Proposition 6.1, we see that

σ̂µ(TF ) = max{σ1(TF ), . . . , σn(TF )}

= max{σ1(T p11 F ), . . . , σn(T pnl F )}

≥ σi0(T
pi0
i0

F )

≥ ι(Ei0 , Ej0)σj0(F )− σi0(F )

≥ 2σ̂ν(F )− σ̂µ(F )

> σ̂ν(F ) = σ̂ν(TF )

where the assumption that the partition C1, . . . , Cα is complete is used in the fifth

line and that F ∈ Ων is used in the sixth line. On the other hand, as F ∈ Ων , we

have σ̂µ(TF ) > σ̂ν(F ) > σ̂λ(F ) = σ̂λ(TF ) for every λ 6= µ, ν. Consequently, we

have shown that σ̂µ(TF ) > σ̂λ(TF ) for all λ 6= µ which means that TF ∈ Ωµ. �

Lemma 7.2. Let C = {E1, . . . , Em} be an essential null-triangular collection of

d>1-spherical objects of D such that EndA (E1 ⊕ · · · ⊕ Em) is formal. Then

(1) every spherical twist Ti has an infinite order;

(2) Ti 6∼= Tj for every i 6= j.

Proof. (1) Follows immediately from TiEi ∼= Ei[1− d] and d > 1.

(2) If ι(Ei, Ej) = 0 then TiEi ∼= Ei[1 − d] while TjEi = Ei. Since d > 1, this

shows that Ti 6∼= Tj .

If ι(Ei, Ej) > 0, assume by contrary that Ti ∼= Tj . Then, by Proposition 6.1,

0 = σi(Ej) = σi(TjEj) = σi(TiEj) ≥ ι(Ei, Ej)− σi(Ej) = ι(Ei, Ej) > 0

which is impossible. �

Proof of Theorem 4.4. By Lemma 7.2, the subgroup Gµ of Auteq(D) generated by

the spherical twists along the objects in Cµ is isomorphic to Zmµ . The assertion

thus follows by combining Proposition 7.1 with Lemma B.4 known as the ping-pong

lemma. �
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8. Example

We can construct a trivial example as follows. First we fix numbers d > 1,

m > 0 and m1, . . . ,mα > 0 with m1 + · · ·+mα = m. We then define a minimal dg

category A whose objects consist of

{E1, . . . , Em} = {E(1)
1 , . . . , E(1)

m1
, . . . , E

(α)
1 , . . . , E(α)

mα}

by requiring that the morphism spaces satisfy the following conditions:

(Sd) Homp
A (E

(µ)
i , E

(µ)
i ) ∼= k if and only if p = 0, d and vanishes otherwise;

(P1) HomA (E
(µ)
i , E

(µ)
j ) = 0 for every i 6= j and µ;

(P2) HomA (E
(µ)
i , E

(ν)
j ) is two dimensional, with a basis φ

(µν)
ij and ψ

(µν)
ij , for

every i, j and µ 6= ν;

(CYd) deg φ
(νµ)
ji = d − deg φ

(µν)
ij , degψ

(νµ)
ji = d − degψ

(µν)
ij and ψ

(νµ)
ji ◦ φ(µν)

ij =

φ
(νµ)
ji ◦ ψ(µν)

ij = 0, φ
(νµ)
ji ◦ φ(µν)

ij = ψ
(νµ)
ji ◦ ψ(µν)

ij = x
(µ)
i where x

(µ)
i is a fixed

basis of Homd
A (E

(µ)
i , E

(µ)
i );

(N) φ
(νλ)
jk ◦ φ(µν)

ij = ψ
(νλ)
jk ◦ φ(µν)

ij = φ
(νλ)
jk ◦ ψ(µν)

ij = ψ
(νλ)
jk ◦ ψ(µν)

ij = 0 for every

µ 6= ν 6= λ 6= µ.

Let D = H0(TwπA ) where TwπA denotes the split-closure of the dg category

Tw A of twisted complexes over A (cf. [Sei, Section 4c]). Then, by the con-

struction, the collection C = {E1, . . . , Em} of d-spherical objects in D is essential,

null-triangular and admits a complete partition C1 = {E(1)
1 , . . . , E

(1)
m1}, . . . , Cα =

{E(α)
1 , . . . , E

(α)
mα}. Therefore, by Theorem 4.4, we conclude that the subgroup of

Auteq(D) generated by the spherical twists along the spherical objects in C is

isomorphic to Zm1 ∗ · · · ∗ Zmα .

Let E = E1 ⊕ · · · ⊕ Em and A = EndA (E) = End•D(E). We shall regard

the graded algebra A as a dg algebra with the zero differential. Then, from the

dg functor F = HomA (E,−) : TwπA → dgMod(A), we obtain the exact func-

tor H0(F ) : D → H0(dgMod(A)). Furthermore, composing it with the quotient

functor H0(dgMod(A))→ D(A), we get an exact functor from D to D(A) which in-

duces an exact equivalence between D and the perfect derived category Dper(A) (cf.

[HK, Theorem 1.11]). Note that, in this situation, each spherical object Ei ∈ Ob D

corresponds to the projective A-module Pi = HomA (E,Ei) ∈ ObDper(A).

Appendix A. Formality

In this appendix, we discuss the formality of A∞ algebras. The facts presented

here will be used in Sections 5 and 6.

Let (A,m) be an A∞ algebra. Its cohomology H•(A) can be regarded as a

cochain complex with the zero differential. We denote it by (H•(A), 0). Now let
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us take cochain maps f1 : (H•(A), 0) → (A,m1) and g1 : (A,m1) → (H•(A), 0)

such that g1 ◦ f1 = idH•(A) and f1 ◦ g1 − idA = m1 ◦ h1 + h1 ◦ m1 for a linear

map h1 : A → A of degree −1. Then for every n ≥ 1, we can define linear maps

m̃n : (H•(A))⊗n → H•(A) of degree 2−n and fn : (H•(A))⊗n → A of degree 1−n
recursively by setting m̃1 = 0 and

fn(a1, . . . , an) =
∑
l≥2

∑
i1+···+il=n

h1(ml(f i1(a1, . . . , ai1), . . . , f il(an−il+1, . . . , an))),

m̃n(a1, . . . , an) =
∑
l≥2

∑
i1+···+il=n

g1(ml(f i1(a1, . . . , ai1), . . . , f il(an−il+1, . . . , an)))

for every n ≥ 2. These maps satisfy the relevant A∞ relations. In particular,

{m̃n}n≥1 defines a minimal A∞ structure on the cohomology H•(A) and {fn}n≥1

gives a quasi-isomorphism between the A∞ algebras (H•(A), m̃) and (A,m). To

summarize, we have the following.

Theorem A.1 (Kadeishvili [Kad]). Let (A,m) be an A∞ algebra. Then there exist

a minimal A∞ structure m̃ on the cohomology H•(A) and a quasi-isomorphism

f : (H•(A), m̃)→ (A,m) of A∞ algebras.

Definition A.2. An A∞ algebra (H•(A), m̃) in Theorem A.1 is called a minimal

model of the A∞ algebra A. An A∞ algebra A is called formal if its minimal model

(H•(A), m̃) can be chosen to satisfy m̃n = 0 for every n 6= 2.

The same idea applies to A∞ categories. Let (A ,m) be an A∞ category. For

every pair of objects E and F , we take cochain maps F 1 : (HomH•(A )(E,F ), 0)→
(HomA (E,F ),m1) and G 1 : (HomA (E,F ),m1)→ (HomH•(A )(E,F ), 0) such that

G 1 ◦ F 1 = id and F 1 ◦ G 1 − id = m1 ◦H 1 + H 1 ◦ m1 for a linear map H 1 :

HomA (E,F ) → HomA (E,F ) of degree −1. Then, as before, one can transfer the

A∞ structure m on A to a minimal A∞ structure m̃ on the cohomology category

H•(A ) so that they are quasi-isomorphic via an A∞ functor F : H•(A ) → A

extending F 1 (cf. [Sei, Section 1i]).

We use the above argument in the following situation. Consider an enhanced

triangulated category D with a dg enhancement A and a collection {E1, . . . , Em} of

objects of D . In what follows, we will regard the dg category A as an A∞ category

with an A∞ structure m such that mn = 0 for all n ≥ 3. Assume that the dg algebra

A = EndA (E1⊕ · · · ⊕Em) is formal. Then by the definition of the formality, there

are cochain maps f1 : (H•(A), 0) → (A,m1) and g1 : (A,m1) → (H•(A), 0) such

that g1 ◦ f1 = idH•(A) and f1 ◦ g1 − idA = m1 ◦ h1 + h1 ◦ m1 for a linear map

h1 : A → A of degree −1, and such that the minimal A∞ structure m̃ on the

cohomology H•(A) transferred by these maps satisfies m̃n = 0 for every n 6= 2.
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Now for each pair of objects E,F ∈ Ob D = Ob A , let us take cochain maps

F 1 : (HomH•(A )(E,F ), 0) → (HomA (E,F ),m1) and G 1 : (HomA (E,F ),m1) →
(HomH•(A )(E,F ), 0) such that G 1◦F 1 = id and F 1◦G 1−id = m1◦H 1+H 1◦m1

for a linear map H 1 : HomA (E,F ) → HomA (E,F ) of degree −1 which extend

the above maps f1, g1 and h1. Then the transferred minimal A∞ structure m̃ on

the cohomology category H•(A ) has the property that the A∞ products

m̃n : HomH•(A )(Ei0 , Ei1)⊗ · · · ⊗HomH•(A )(Ein−1 , Ein)→ HomH•(A )(Ei0 , Ein)

vanish for all i0, . . . , in and n ≥ 3. Moreover, since the A∞ categories (H•(A ), m̃)

and (A ,m) are quasi-isomorphic, we have an equivalence D ' H0(H•(A ), m̃) of

triangulated categories.

Appendix B. Elementary lemmas

Lemma B.1. For a 3-periodic long exact sequence

· · · → V3
ξ→ V1

φ→ V2
ψ→ V3

ξ→ V1 → · · ·

of k-vector spaces, we have dimV1 + dimV2 = dimV3 + 2 dim Imφ.

Proof. Successively applying the rank-nullity theorem, we get

dimV1 + dimV2 = dim Imφ+ dim Kerφ+ dim Imψ + dim Kerψ

= dim Im ξ + dim Imψ + 2 dim Imφ

= dimV3 − dim Ker ξ + dim Imψ + 2 dim Imφ

= dimV3 + 2 dim Imφ.

This completes the proof. �

Lemma B.2. Let E be a d-spherical object and F be an indecomposable object of D .

Assume that the composition maps Homd
D(E,E)⊗ Hom•D(E,F )→ Hom•+dD (E,F )

or Hom•D(F,E)⊗Homd
D(E,E)→ Hom•+dD (F,E) does not vanish. Then E ∼= F in

D up to shifts.

Proof. The proof below can be found in [Kea, Corollary 4.9].

We shall only show the assertion under the assumption that the composition map

Homd
D(E,E)⊗Hom•D(E,F )→ Hom•+dD (E,F ) does not vanish. By the assumption,

there is a morphism φ ∈ Homp
D(E,F ) such that φ ◦ x 6= 0 where x is a basis of

Homd
D(E,E). By the condition (CYd), we find a morphism ψ ∈ Hom−pD (F,E) such

that ψ ◦ φ ◦ x = x or equivalently (ψ ◦ φ− idE) ◦ x = 0. As the zero morphism 0 ∈
Hom0

D(E,E) is the only morphism which is killed by x, it follows that ψ ◦φ = idE .

Since F is indecomposable, the assertion follows. �
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Lemma B.3. Let C = {E1, . . . , Em} be a collection of d-spherical objects of D .

Then the following are equivalent:

(1) the collection C is essential, i.e., if i 6= j then Ei 6∼= Ej in D up to shifts;

(2) the composition map Hom•D(Ei, Ej)⊗Hom•D(Ej , Ei)→ Hom•D(Ei, Ei) does

not hit the identity morphism idEi for every i 6= j;

(3) the composition maps Homd
D(Ei, Ei) ⊗ Hom•D(Ei, Ej) → Hom•+dD (Ei, Ej)

and Hom•D(Ei, Ej)⊗Homd
D(Ej , Ej)→ Hom•+dD (Ei, Ej) vanish for all i 6= j.

Proof. This is also due to [Kea, Section 4.4].

(2)⇒ (1). Easy.

(3)⇒ (2). Easy.

(1)⇒ (3). Apply Lemma B.2. �

Lemma B.4 (Ping-pong Lemma). Let G be a group generated by its non-trivial

subgroups G1, . . . , Gα and acting on a set Ω. Assume that the order of at least one

of Gµ is greater than 2 and that there are disjoint non-empty subsets Ω1, . . . ,Ωα of

Ω such that gΩν ⊂ Ωµ for every g ∈ Gµ \ {1} with µ 6= ν. Then G = G1 ∗ · · · ∗Gα.

Proof. We give the following classical proof for the sake of completeness (cf. [LS,

Proposition 12.2]).

Relabeling if necessary, we can assume the order of G1 is greater than 2. Take two

distinct elements g1, g2 ∈ G1 \ {1}. As g−1
2 g1 ∈ G1 \ {1}, we have g−1

2 g1Ωµ ⊂ Ω1

for any µ 6= 1 and hence g−1
2 g1Ωµ ∩ Ωµ = ∅. This in particular means that

g1Ωµ ∩ g2Ωµ = ∅. Thus we have shown that gΩµ ( Ω1 for every g ∈ G1 \ {1} and

µ 6= 1.

Now assume gh = 1 for some g ∈ G1 \ {1} and h ∈ G \ {1} which is a freely

reduced word whose first and last word does not lie in G1. One can see that every

relation of G, if there exists, can always be brought into this form. Then the above

argument shows that Ω1 = ghΩ1 ( Ω1 which is a contradiction. �
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