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Abstract

In this thesis, we describe various analytic properties of the Riemann zeta-
function and some multiple zeta-functions, and mean square values of the Barnes
double zeta-functions and Hurwitz multiple zeta-functions.

Firstly, we discuss the theory of multiple zeta-functions from the historical as-
pect, and introduce some kinds of multiple zeta-functions.

Secondly, we obtain asymptotic formulas for mean square values of the Barnes
double zeta-function ζ2(s, α; v, w) =

∑∞
m=0

∑∞
n=0(α + vm + wn)−s with respect to

Im(s) as Im(s) → +∞. Furthermore, we consider asymptotic formulas for mean
square values of the Hurwitz multiple zeta-function ζr(s, α) =

∑∞
m1=0 · · ·

∑∞
mr=0(α+

m1 + · · · +mr)
−s with respect to Im(s), in Re(s) ≥ r − 1/2. Also, we found that

the straight line σ = r − 1/2 is an analogue of the critical line for ζr(s, α).
Thirdly, we describe approximate functional equations for the Hurwitz and Lerch

zeta-functions. The approximate functional equation is one of the asymptotic for-
mulas for approximating the zeta-function by a finite sum. In 2003, R. Garunkštis,
A. Laurinčikas, and J. Steuding (in [7]) proved the Riemann-Siegel type of the ap-
proximate functional equation for the Lerch zeta-function. We prove another type
of approximate functional equations for the Hurwitz and Lerch zeta-functions. Fur-
thermore, we consider the approximate functional equations for the Barnes double
zeta-function ζ2(s, α; v, w).
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1 Introduction to zeta-functions and multiple zeta-

functions

In this section, we introduce the basic properties of the Riemann zeta-function and Dirich-
let L-functions, and the precedent results on mean value theorems. Also, we will introduce
several analytic properties of the Euler-Zagier type, and the other types of multiple zeta-
functions and L-functions.

1.1 The Riemann zeta-function and Dirichlet L-functions

Let s = σ+it with σ, t ∈ R. The Riemann zeta-function ζ(s) is one of the most important
function in analytic number theory, which is defined by

ζ(s) =
∞∑
n=1

1

ns
= 1 +

1

2s
+

1

3s
+ · · ·+ 1

ns
+ · · · . (1.1)

Also, ζ(s) can be written by the Euler product

ζ(s) =
∏

p:prime

(
1− 1

ps

)−1

(σ > 1) (1.2)

where p runs through all primes. From this representation, ζ(s) has a deep connection
with prime numbers. Also, since the right hand-side of (1.1) is absolutely convergence for
σ > 1, ζ(s) is a regular function defined by σ > 1. When s → 1 + 0, since (1.1) diverges
and (1.2), we prove that prime numbers exist infinitely. In addition, Euler proved a more
precise result ∑

p≤x

1

p
∼ log log x (x→ ∞).

On the other hand as an analytic property, ζ(s) has the contour integral representation

ζ(s) =
1

(e2πis − 1)Γ(s)

∫
C

zs−1

ez − 1
dz, (1.3)

where Γ(s) is the Gamma function defined by

Γ(s) =

∫ ∞

0

e−tts−1dt (Re(s) > 0),

and C is the contour integral path that comes from +∞ to ε ; then goes along the circle
of radius ε counter clockwise, and finally goes from ε to +∞, as the following figure:

Re
O
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By the contour integral representation (1.3), ζ(s) can be analytically continued to a
meromorphic function on C, and its only pole is a simple pole at s = 1 with residue 1.
Also ζ(s) satisfies the functional equation

π−s/2Γ
(s
2

)
ζ(s) = π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s). (1.4)

Furthermore, let π(x) denote the number of prime numbers not exceeding x . It is known
that

π(x) ∼ x

log x
(x→ ∞), (1.5)

which is called the prime number theorem, as an important property associated with
prime numbers and ζ(s). This theorem was predicted by Legendre and Gauss, proved by
Hadamard and de la Vallée Poussin in 1896. The key point of the proof of (1.5) is the
fact that

ζ(1 + it) ̸= 0 (t ∈ R). (1.6)

Also, the region where ζ(σ + it) does not have zeros is an important study theme, which
is called the zero-free region. As an improvement of (1.6), de la Vallée Poussin proved
that there exists a constant A > 0 such that ζ(σ + it) ̸= 0 in the region

σ ≥ 1− A

log (|t|+ 1)
,

and furthermore in 1958, Vinogradov and Korobov prove a more precise result. The
ultimate conjecture for the zero-free region is σ > 1/2, which is now called the Riemann
hypothesis. In other words, the real part of any zeros of ζ(s) in the critical region 0 ≤
σ ≤ 1 is 1/2.

As an extension on the prime number theorem, Dirichlet attempted to study the prime
number distribution in arithmetic progressions, by using the series

L(s, χ) =
∞∑
n=1

χ(n)

ns
,

which is now called Dirichlet L-function, and χ is a Dirichlet character. We call χ is a
Dirichlet character of modulo q when a mapping χ : Z → C satisfies all of the following
conditions;

(i) m ≡ n (mod q) ⇒ χ(m) = χ(n),

(ii) χ(mn) = χ(m)χ(n), especially χ(1) = 1,

(iii) gcd(n, q) > 1 ⇒ χ(n) = 0.

The function L(s, χ) is known to have many properties similar to ζ(s); an Euler product

L(s, χ) =
∏

p:prime

(
1− χ(p)

ps

)−1

(σ > 1)
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and can be holomorphically continued to C, and satisfies a functional equation similar
to (1.4). Dirichlet proved that prime numbers are included infinitely in any arithmetic
progression where the first term and the common difference are relatively prime, by using
L(s, χ). Furthermore let

πk,q(x) = #{p : prime | p ≤ x, p ≡ k (mod q)},

Dirichlet proved similar to the prime number theorem

πk,q(x) ∼
1

φ(q)

x

log x
,

where φ(q) is the Euler totient function. Now, this is called Dirichlet’s prime number
theorem.

1.2 Mean values of the Riemann zeta-function

The order of |ζ(σ+ it)| with respect to t is an extremely important problem in the deeper
theory of ζ(s). For example, the simplest result is ζ(σ + it) = O(1) (σ > 1), and also,

ζ(σ + it) = O(|t|1/2−σ) (σ < 0)

by using the functional equation (1.4) and the Stirling formula for Γ(s). In particular, the
order of |ζ(1/2 + it)| is the most important, and some results are listed here: The first,

ζ

(
1

2
+ it

)
= O(t1/4+ε)

was proved by the Phragmen-Lindelöf convexity principle. Hardy-Littlewood improved
to

ζ

(
1

2
+ it

)
= O(t1/6+ε).

A precision tool for obtaining such evaluations is an approximate expression of ζ(s) by
a finite sum, which is proved by Hardy-Littlewood, and an expression of the form is as
follows: Suppose that 0 ≤ σ ≤ 1, x ≥ 1, y ≥ 1 and 2πxy = |t|, then

ζ(s) =
∑
n≤x

1

ns
+X(s)

∑
n≤y

1

n1−s
+O(x−σ) +O(|t|1/2−σyσ−1), (1.7)

where X(s) = 2Γ(1 − s) sin (πs/2)(2π)s−1. This is called the approximate functional
equation, and the details will be described in Section 3.1.
In 1988, ζ(1/2 + it) = O(t9/56+ε) was proved by Bombieri and Iwaniec, after which many
mathematicians gradually improved, and now ζ(1/2 + it) = O(t32/205+ε) has been proved
by Huxley in 2005. Furthermore in 2017,

ζ

(
1

2
+ it

)
= O(t13/84+ε)
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was proved by Bourgain (in see [6]). What is considered to be true is called the Lindelöf
hypothesis, which is the following conjecture;

ζ(σ + it) = O(tε)

(
|t| ≥ 2,

1

2
≤ σ ≤ 1

)
, (1.8)

would hold for any ε > 0 and arbitrary σ (1/2 ≤ σ ≤ 1). However, it is almost impossible
to solve the Lindelöf hypothesis by the current technology.

It is difficult to consider the order of |ζ(σ+ it)|, so an attempt was made to study the
order of the mean values of |ζ(σ + it)| as a compromise. In particular, the study of the
order of mean squre value ∫ T

2

|ζ(σ + it)|2dt

has been a main stream, and for example we can show∫ T

2

|ζ(σ + it)|2dt ∼ ζ(2σ)T

(
σ >

1

2

)
. (1.9)

However, the reason for studying the mean value is not only because it is easy to calculate
but also because it can be expected that the prediction on the mean values of higher order
powers leads to an equivalent of the Lindelöf hypothesis. Therefore, studying the mean
values is extremely important in studying the zeta-function. The result supporting this
is the following theorem.

Theorem 1.1 (Theorem 13.2 in Titchmarsh[27]). The fact that, for any k ∈ N and any
ε > 0, ∫ T

2

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2k dt = O(T 1+ε) (1.10)

is equivalent to the Lindelöf hypothesis (1.8).

On the other hand, (1.9) can be regarded as follows. The asymptotic formula∫ T

2

|ζ(σ + it)|2dt = ζ(2σ)T +O(T 2−2σ) (T → ∞)

has been known as a classical result in the critical strip 1/2 < σ < 1 (see Ivić [10], (8.112)).
It is known that (1.10) holds in the case only k = 1 and k = 2. In the case k = 1 that is
the mean square value ∫ T

2

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2 dt ∼ T log T

was proved by Hardy and Littlewood in 1918. In the case k = 2, that is mean value of
the fourth power ∫ T

2

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣4 dt ∼ 1

2π2
T log4 T (1.11)

was proved by Ingham in 1928. His method was to use an analogue of approximate
functional equation (1.7) for ζ(s)2. In the case k ≥ 3, The same method only produces a
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formula with a too large error term, so it cannot be used for the study of the mean value
theorems. Also, Heath-Brown obtained the result on the mean value of 12th power∫ T

2

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣12 dt = O(T 2+ε) (1.12)

by using the Halász-Montgomery inequality (see Chapter8 in Ivić [10]). However, the
result (1.12) is not sufficient for the case k = 6 in (1.10).

A convenient tool is the Montgomery-Vaughan inequality. The Montgomery-Vaughan
inequality is ∫ T

0

∣∣∣∣∣∑
n≤N

ann
it

∣∣∣∣∣
2

dt = T
∑
n≤N

|an|2 +O

(∑
n≤N

n|an|2
)

for any complex numbers a1, . . . , aN . Ramachandra used this inequality to give a slightly
more precise result ∫ T

2

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣4 dt = 1

2π2
T log4 T +O(T log3 T )

than (1.11) (see in Chapter4 in Ivić [10]). Heath-Brown (in 1979) also improved to∫ T

2

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣4 dt = 4∑
j=0

ajT logj T + E2(T ),

where aj(0 ≤ j ≤ 4) is a constant with a4 = 1/2π2 and E2(T ) is an error term satisfying
E2(T ) = O(T 7/8+ε). Further, this error has been improved to E2(T ) = O(T 2/3+ε) by
Zavorotnyi.

On the other hand, the situation which has been deepest studied is the case k = 1
that is the mean square values. In 1920’s, the result of the form∫ T

2

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2 dt = T log T + (2γ − 1− log 2π)T + E(T )

was obtained. E(T ) = O(T 1/2+ε) was indicated by Ingham. After that, in 1934 Titch-
marsh improved to E(T ) = O(T 5/12+ε), further Balasubramanian to E(T ) = O(T 1/3+ε)
in 1978, Huxley proved E(T ) = O(T 72/227+ε) in 1994.
As another approach, Atkinson [1] gave a formula that precisely represents E(T ) in 1949
(See in [1]). Although it was not considered important for many years, this formula is
very useful, because the results of the mean values of 12th power and other results can be
obtained relatively easily. Also, an analogue of E(T ) in 1/2 < σ < 1 is Eσ which satisfies∫ T

2

|ζ (σ + it)|2 dt = ζ(2σ)T + (2π)2σ−1 ζ(2− 2σ)

2− 2σ
T 2−2σ + Eσ(T ).

In 1989, Matsumoto [14] proved an analogue of the Atkinson formula for Eσ in 1/2 < σ <
3/4. Also in 1993, Matsumoto and Meurman [19] proved a similar formula in 3/4 < σ < 1.
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1.3 Various multiple zeta-functions and L-functions

In 1950, Tornheim [28] studied the values

∞∑
m=1

∞∑
n=1

1

msnt(m+ n)u
(1.13)

where s, t, u ∈ Z is in the region of absolute convergence. Also independently, Mordell
[25] considered case s = t = u in (1.13) and multiple series

∞∑
m1=1

· · ·
∞∑

mr=1

1

m1 · · ·mr(m1 + · · ·+mr + a)
(a > −r). (1.14)

On the other hand, Apostol and Vu [2] treated the series of the form

∞∑
m=1

∑
m<n

1

msnt(m+ n)u
. (1.15)

Furthermore, Matsumoto [15], [17] has introduced the multiple zeta-functions

ζMT,r(s1, . . . , sr; sr+1) =
∞∑

m1=1

· · ·
∞∑

mr=1

1

ms1
1 · · ·msr

r (m1 + · · ·+mr)sr+1
(1.16)

and

ζAV,r(s1, . . . , sr; sr+1) =
∑

· · ·
∑

1≤m1<···<mr<∞

1

ms1
1 · · ·msr

r (m1 + · · ·+mr)sr+1
(1.17)

which generalize (1.13) and (1.15) respectively. (1.16) is called the Mordell-Tornheim
type, and (1.17) is called the Apostol-Vu type. Matsumoto [16] proved the meromorphic
continuation to Cr+1 of these multiple zeta-functions by using the Mellin-Barnes integral
formula

(1 + λ)−s =
1

2πi

∫
(c)

Γ(s+ z)Γ(−z)
Γ(s)

λzdz (1.18)

where s, λ ∈ C with σ = Re(s) > 0, | arg λ| < π, λ ̸= 0 and c ∈ R with −σ < c < 0,
and the path (c) of integration is the vertical line Re(z) = c. By using the Mellin-Barnes
formula, we find that (1.16) has the recursive structure as

ζMT,r → ζMT,r−1 → · · · → ζMT,2 → ζ

(here A→ B means that A can be expressed as an integral involving B) and we can prove
meromorphic continuation by tracing the above recursive sequence in reverse. Also, in
the case of Apostol-Vu type (1.17), Matsumoto introduced an auxiliary function

ζ̂AV,j,r(s1, . . . , sj; sj+1, . . . , sr; sr+1) =
∑

· · ·
∑

1≤m1<···<mr<∞

1

ms1
1 · · ·msr

r (m1 + · · ·+mj)sr+1
.

The Mellin-Barnes integral formula implies the recursive sequence

ζAV,r = ζ̂AV,r,r → ζ̂AV,r,r−1 → · · · → ζ̂AV,1,r
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along which goes the proof of meromorphic continuation to Cr+1.
In [29], Maoxiang Wu introduced the χ-analogue of (1.16) and (1.17). Let χ1, . . . , χr

be Dirichlet characters of the same modulus q (q ≥ 2), and define

LMT,r(s1, . . . , sr; sr+1;χ1, . . . , χr)

=
∞∑

m1=1

· · ·
∞∑

mr=1

χ1(m1) · · ·χr(mr)

ms1
1 · · ·msr

r (m1 + · · ·+mr)sr+1
(1.19)

LAV,r(s1, . . . , sr; sr+1;χ1, . . . , χr)

=
∑

· · ·
∑

1≤m1<···<mr<∞

χ1(m1) · · ·χr(mr)

ms1
1 · · ·msr

r (m1 + · · ·+mr)sr+1
. (1.20)

Wu proved the meromorphic continuation to Cr+1, and studied the distribution of possible
singularities of (1.19) and (1.20).
Furthermore, in 2016 the author [22] considered the following analogue of the Mordell-
Tornheim multiple zeta-function;

ζ̂MT,j,r(s1, . . . , sj; sj+1, . . . , sr+1)

=
∞∑

m1=1

· · ·
∞∑

mr=1

1

ms1
1 · · ·msj

j (m1 + · · ·+mj)sj+1 · · · (m1 + · · ·+mr)sr+1
(1.21)

and the Mordell-Tornheim multiple L-function;

L̂MT,j,r(s1, . . . , sj; sj+1, . . . , sr+1;χ1, . . . , χr)

=
∞∑

m1=1

· · ·
∞∑

mr=1

χ1(m1) · · ·χr(mr)

ms1
1 · · ·msj

j (m1 + · · ·+mj)sj+1 · · · (m1 + · · ·+mr)sr+1
(1.22)

where χ1, χ2 · · · , χr are Diriclet characters of the same modulus q (≥ 2). By using the
Mellin-Barnes integral formula (1.18), series (1.21), (1.22) has the recursive structures

ζ̂MT,j,r −→ ζ̂MT,j,r−1 −→ ζ̂MT,j,r−2 −→ · · · −→ ζ̂MT,j,j+1 −→ ζ̂MT,j,j = ζMT,j,

L̂MT,j,r −→ L̂MT,j,r−1 −→ L̂MT,j,r−2 −→ · · · −→ L̂MT,j,j+1 −→ L̂MT,j,j = LMT,j

respectively, and we can prove the following two theorems:

Theorem 1.2. For 1 ≤ j ≤ r, we have

(i) the function ζ̂MT,j,r(s1, . . . , sj; sj+1, . . . , sr+1) can be continued meromorphically to
the whole Cr+1-space,

(ii) in the case j = r − 1, the possible singularities of ζ̂MT,r−1,r are located only on the
subsets of Cr+1 defined by one of the following equations;

sr+1 = 1,

sj + sr + sr+1 = 1− ℓ (1 ≤ j ≤ r − 1, ℓ ≥ −1),

sj1 + sj2 + sr + sr+1 = 2− ℓ (1 ≤ j1 < j2 ≤ r − 1, ℓ ≥ −1),
...

sj1 + · · ·+ sjr−2 + sr + sr+1 = r − 2− ℓ (1 ≤ j1 < · · · < jr−2 ≤ r − 1, ℓ ≥ −1),

s1 + · · ·+ sr−1 + sr + sr+1 = r − 1− d (d = −1, 0, 1, 3, 5, 7, 9, . . .).
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Also, in the cases 1 ≤ j ≤ r − 2, possible singularities of ζ̂MT,j,r are located only on
the subsets of Cr+1 defined by one of the following equations;

sr+1 = 1,

sr + sr+1 = 1− d (d = −1, 0, 1, 3, 5, 7, 9, . . .),

sr−1 + sr + sr+1 = 3− ℓ (ℓ ∈ N0),

sr−2 + sr−1 + sr + sr+1 = 4− ℓ (ℓ ∈ N0),
...

sj+2 + sj+3 + · · ·+ sr + sr+1 = r − j − ℓ (ℓ ∈ N0),

sk1 + sj+1 + · · ·+ sr + sr+1 = 1− ℓ′ (1 ≤ k1 ≤ j, ℓ′ ≧ −(r − j)),

sk1 + sk2 + sj+1 + · · ·+ sr + sr+1 = 2− ℓ′ (1 ≤ k1 < k2 ≤ j, ℓ′ ≧ −(r − j)),
...

sk1 + · · ·+ skj−1
+ sj+1 + · · ·+ sr + sr+1 = j − 1− ℓ′

(1 ≤ k1 < · · · < kj−1 ≤ j, ℓ′ ≧ −(r − j)),

s1 + · · ·+ sj + sj+1 + · · ·+ sr + sr+1 = j − ℓ′ (ℓ′ ≧ −(r − j)).

(iii) each of these singularities can be canceled by the corresponding linear factor, and

(iv) ζ̂MT,j,r is of polynomial order with respect to |Im(sr+1)| .

Theorem 1.3. For 1 ≤ j ≤ r, we have

(i) the function L̂MT,j,r(s1, . . . , sj; sj+1, . . . , sr+1;χ1, . . . χr) can be continued meromor-
phically to the Cr+1-space.

(ii) If none of the characters χ1, . . . , χr are principal, then L̂MT,j,r is entire. If χt1 , . . . , χtk

(1 ≤ t1 < · · · < tk ≤ j) and χr−d1 , . . . , χr−dh (1 ≤ d1 < · · · < dh ≤ r− j) are princi-
pal character and other characters are non-principal, in the case of j = r − 1, then
possible singularities are located only on the subsets of Cr+1 defined by one of the
following equation;

stu(1) + sr + sr+1 = 1− ℓ (1 ≤ u(1) ≤ k, ℓ ≥ −δr),
stu(1) + stu(2) + sr + sr+1 = 2− ℓ (1 ≤ u(1) < u(2) ≤ k, ℓ ≥ −δr),

... (1.23)

stu(1) + · · ·+ stu(k−1)
+ sr + sr+1 = k − 1− ℓ

(1 ≤ u(1) < · · · < u(k − 1) ≤ k, ℓ ≥ −δr),
st1 + · · ·+ stk + sr + sr+1 = k − ℓ (ℓ ≧ −δr),

where

δr =

{
1 (χr is principal),

0 (χr is non principal),
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also in the cases of 1 ≤ j ≤ r− 2, then possible singularities are located only on the
subsets of Cr+1 defined by one of the following equation;

sr−d1+1 + sr−d1+2 + · · ·+ sr+1 = d1 + 1− ℓ0 (ℓ0 ∈ N0),
...

sr−dh+1 + sr−dh+2 + · · ·+ sr+1 = dh + 1− ℓ0 (ℓ0 ∈ N0),

stu(1) + sj+1 + · · ·+ sr + sr+1 = 1− ℓ′ (1 ≤ u(1) ≤ k, ℓ′ ≥ −∆j),

stu(1) + stu(2) + sj+1 + · · ·+ sr + sr+1 = 2− ℓ′

(1 ≤ u(1) < u(2) ≤ k, ℓ′ ≥ −∆j), (1.24)
...

su(1) + · · ·+ su(j−1) + sj+1 + · · ·+ sr + sr+1 = j − 1− ℓ′

(1 ≤ u(1) < · · · < u(j − 1) ≤ k, ℓ′ ≥ −∆j),

s1 + · · ·+ sj + sj+1 + · · ·+ sr + sr+1 = j − ℓ′ (ℓ′ ≥ −∆j),

where ∆j = δr + δr−1 + · · ·+ δr−j. Moreover, if χr is principal character, then

sr+1 = 1

is a possible singularity in addition to the above possible singularities (1.23) and
(1.24).

(iii) each of these singularities can be canceled by the corresponding linear factor, and

(iv) L̂MT,j,r is of polynomial order with respect to |Im(sr+1)|.

11



2 Mean values of the Barnes double zeta-functions

and the Hurwitz multiple zeta-functions

In the study of order estimation of the Riemann zeta-function, solving Lindelöf hypothesis
is an important theme. As one of the relevant matters, asymptotic behavior of mean
values has been studied. Furthermore, the theory of the mean values is also noted in
the double zeta-functions, and the mean values of the Euler-Zagier type of double zeta-
function and Mordell-Tornheim type of double zeta-function were studied. In this section,
we prove asymptotic formulas for mean square values of the Barnes double zeta-function
with respect to Im(s) as Im(s) → +∞.

2.1 Introduction and the statement of results

The Barnes double zeta-function was first introduced by Barnes [3] in the course of de-
veloping his theory of double gamma functions, and the double series of the form as

ζ2(s, α; v, w) =
∞∑

m=0

∞∑
n=0

1

(α + vm+ wn)s
(2.1)

was introduced and studied in [4]. As a subsequent research, multiple series of similar
form as (2.1) was introduced in connection with the theory of multiple gamma functions
by Barnes [5].

Let r be a positive integer, s = σ + it a complex variable, α a real parameter, and
wj (j = 1, . . . , r) complex parameters which are located on one of the complex half-
plane divided by a straight line through the origin. The Barnes multiple zeta-function
ζr(s, α;w1, . . . , wr) is defined by

ζr(s, α;w1, . . . , wr) =
∞∑

m1=0

· · ·
∞∑

mr=0

1

(α + w1m1 + · · ·+ wrmr)s
(2.2)

where the series on the right-hand side is absolutely convergent for Re(s) > r, and is
continued meromorphically to the complex s-plane, and its only singularities are the
simple poles located at s = j (j = 1, 2, . . . , r).

In this section, we focus on the case r = 2 and (w1, w2) = (v, w) for any v, w > 0 of
(2.2), which is the Barnes double zeta-function (2.1), and study the asymptotic behavior
of ∫ T

1

|ζ2(σ + it, α; v, w)|2dt

as T → +∞.
Let

ζ
[2]
2 (s1, s2, α; v, w) =

∑
m1,n1,m2,n2≥0

vm1+wn1=vm2+wn2

1

(α+ vm1 + wn1)s1(α + vm2 + wn2)s2
,

which is absolutely convergent for Re(s1 + s2) > 2. If v, w are linearly independent over
Q, then vm1 +wn1 = vm2 +wn2 is equivalent to (m1, n1) = (m2, n2), and hence we have

ζ
[2]
2 (s1, s2, α; v, w) = ζ2(s1 + s2, α; v, w).

12



Theorem 2.1. For s = σ + it ∈ C with σ > 2, we have∫ T

1

|ζ2(s, α; v, w)|2dt = ζ
[2]
2 (σ, σ, α; v, w)T +O(1)

as T → +∞ .

Theorem 2.2. For s = σ + it ∈ C with 3/2 < σ ≤ 2, we have∫ T

1

|ζ2(s, α; v, w)|2dt

= ζ
[2]
2 (σ, σ, α; v, w)T +

{
O(T 4−2σ log T ) (3/2 < σ ≤ 7/4)

O(T 1/2) (7/4 < σ ≤ 2)

as T → +∞.

Remark 1. We mention here some recent results on mean values of double zeta-functions.
Matsumoto-Tsumura [21] treated the Euler double zeta-function

ζ2(s1, s2) =
∞∑

m=1

∞∑
n=1

1

ms1(m1 + n1)s2

and gave some formulas which imply∫ T

2

|ζ2(σ1 + it1, σ2 + it2)|2dt2 ∼ ζ
[2]
2 (σ1 + it1, 2σ2)T (T → ∞) (2.3)

in some subsets in a region for σ1+σ2 > 3/2, see [21] for the details. Here, ζ
[2]
2 (σ1+it1, 2σ2)

is defined by

ζ
[2]
2 (s1, s2) =

∞∑
k=2

∣∣∣∣∣
k−1∑
m=1

1

ms1

∣∣∣∣∣
2

1

ks2

which is absolutely convergent for Re(s2) > 1/2 and Re(s1 + s2) > 3/2. Ikeda-Matsuoka-
Nagata [9] extended the region of results of Matsumoto-Tsumura [21], and further they
gave some asymptotic formulas which imply∫ T

2

|ζ2(σ1 + it1, σ2 + it2)|2dt2 ≍ T log T (T → ∞)

on the polygonal line {(σ1, σ2) |σ1 + σ2 = 3/2 and σ2 > 1/2} ∪ {(σ1, σ2) |σ1 ≥ 1 and σ2 =
1/2}. Also, they gave similar results on∫ T

2

|ζ2(σ + it, s2)|2dt,
∫ T

2

|ζ2(σ1 + it, σ2 + it)|2dt,

13



see [9] for the details. On the other hand, for the Mordell-Tornheim double zeta-function

ζMT,2(s1, s2; s3) =
∞∑

m=1

∞∑
n=1

1

ms1ns2(m+ n)s3
,

Okamoto-Onozuka [26] obtained some results on the mean square values which imply∫ T

2

|ζMT,2(s1, s2;σ + it)|2dt ∼ ζ
[2]
MT,2(s1, s2; 2σ)T (T → ∞) (2.4)

in some subset in the region for σ1 + σ2 + σ > 3/2, here ζ
[2]
MT,2(s1, s2; 2σ) is defined by

ζ
[2]
MT,2(s1, s2; s) =

∞∑
k=2

∣∣∣∣∣
k−1∑
m=1

1

ms1(k −m)s2

∣∣∣∣∣
2

1

ks
,

which is absolutely convergent for 2Re(s1)+Re(s) > 1, 2Re(s2)+Re(s) > 1 and 2Re(s1)+
2Re(s2)+Re(s) > 3. Theorem 2.1 and Theorem 2.2 are the results corresponding to (2.3),
(2.4) for the Barnes double zeta-function of the (2.1) version.

2.2 Proof of Theorem 2.1

In this section, we give a proof of Theorem 2.1.

Proof of Theorem 2.1. Let σ+it ∈ C with σ > 2. We first calculate |ζ2(s, α; v, w)|2.
We have

|ζ2(s, α; v, w)|2 = ζ2(s, α; v, w)ζ2(s, α; v, w)

=
∞∑

m1=0

∞∑
n1=0

1

(α + vm1 + wn1)σ+it

∞∑
m2=0

∞∑
n2=0

1

(α + vm2 + wn2)σ−it

=
∑

m1,n1,m2,n2≥0
vm1+wn1=vm2+wn2

1

(α + vm1 + wn1)σ(α + vm2 + wn2)σ

+
∑

m1,n1,m2,n2≥0

vm1+wn1 ̸=vm2+wn2

1

(α + vm1 + wn1)σ(α + vm2 + wn2)σ

(
α+ vm2 + wn2

α+ vm1 + wn1

)it

= ζ
[2]
2 (σ, σ, α; v, w)

+
∑

m1,n1,m2,n2≥0

vm1+wn1 ̸=vm2+wn2

1

(α + vm1 + wn1)σ(α + vm2 + wn2)σ

(
α+ vm2 + wn2

α+ vm1 + wn1

)it

.

Hence we have∫ T

1

|ζ2(s, α; v, w)|2dt = ζ
[2]
2 (σ, σ, α; v, w)(T − 1)

+
∑

m1,n1,m2,n2≥0

vm1+wn1 ̸=vm2+wn2

1

(α + vm1 + wn1)σ(α + vm2 + wn2)σ

×e
iT log{(α+vm2+wn2)/(α+vm1+wn1)} − ei log{(α+vm2+wn2)/(α+vm1+wn1)}

i log{(α + vm2 + wn2)/(α + vm1 + wn1)}
.
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The second term on the right-hand side is

≪
∑

m1,n1,m2,n2≥0
vm1+wn1<vm2+wn2

1

(α + vm1 + wn1)σ(α + vm2 + wn2)σ

× 1

log{(α + vm2 + wn2)/(α+ vm1 + wn1)}

=

 ∑
m1,n1,m2,n2≥0

α+vm1+wn1<α+vm2+wn2<2(α+vm1+wn1)

+
∑

m1,n1,m2,n2≥0

α+vm2+wn2≥2(α+vm1+wn1)


1

(α + vm1 + wn1)σ(α + vm2 + wn2)σ log{(α + vm2 + wn2)/(α + vm1 + wn1)}
.

We denote the right-hand side by V1 + V2. Then we have

V2 ≪
∑

m1,n1,m2,n2≥0

α+vm2+wn2≥2(α+vm1+wn1)

1

(α + vm1 + wn1)σ(α + vm2 + wn2)σ

≤
∑
m1≥0

∑
n1≥0

1

(α + vm1 + wn1)σ

∑
m2≥0

∑
n2≥0

1

(α + vm2 + wn2)σ
= O(1).

Next we consider the order of V1. The range of n2 satisfying the inequalities α + vm1 +
wn1 < α + vm2 + wn2 < 2(α + vm1 + wn1) of the condition on the sum V1 is

v

w
(m1 −m2) + n1 < n2 <

α

w
+
v

w
(2m1 −m2) + 2n1.

Let ε = ε(m1,m2, n1), δ = δ(m1,m2, n1) be the quantities satisfying 0 ≤ ε, δ < 1 and
(v/w)(m1 − m2) + n1 + ε ∈ Z and α/w + (v/w)(2m1 − m2) + 2n1 − δ ∈ Z. Then
K = α/w + (v/w)m1 + n1 − ε− δ is an integer, and n2 can be rewritten as

n2 =
v

w
(m1 −m2) + n1 + ε+ k (for some k = 0, 1, 2, . . . , K).

Since K ≍ α + vm1 + wn1 ≍ 1 +m1 + n1, we have

log
α + vm2 + wn2

α + vm1 + wn1

= log

(
1 +

wε+ wk

α + vm1 + wn1

)
≍ wε+ wk

α + vm1 + wn1

,

and hence

V1 ≪
∑
m1≥0

∑
n1≥0

∑
0≤m2≪K

∑
0≤k≤K

1

(α + vm1 + wn1)σ

× 1

(α + vm1 + wn1 + wk + wε)σ
× α + vm1 + wn1

wk + wε

≪
∑
m1≥0

∑
n1≥0

∑
0≤m2≪K

logK

(α + vm1 + wn1)2σ−1

≪
∑
m1≥0

∑
n1≥0

log (α + vm1 + wn1)

(α + vm1 + wn1)2σ−2

≪
∞∑

m=0

∞∑
n=0

log (2 +m+ n)

(1 +m+ n)2σ−2
≪ 1,

15



provided that σ > 2. Therefore the proof of Theorem 2.1 is complete.

2.3 The approximation theorem

Let σ1 > 0, x ≥ 1 and C > 1. Suppose s = σ + it ∈ C with σ ≥ σ1 and |t| ≤ 2πx/C.
Then

ζ(s) =
∑

1≤n≤x

1

ns
− x1−s

1− s
+O(x−σ) (x→ ∞). (2.5)

This asymptotic formula has been proved by Hardy and Littlewood (see Theorem 4.11 in
Titchmarsh [27]). Here we prove an analogue of (2.5) for the case of the Barnes double
zeta-functions as follows.

Theorem 2.3. Let 1 < σ1 < σ2, x ≥ 1 and C > 1. Suppose s = σ + it ∈ C with
σ1 < σ < σ2 and |t| ≤ 2πx/C. Then

ζ2(s, α; v, w) =
∑

0≤m≤x

∑
0≤n≤x

1

(α + vm+ wn)s

+
(α + vx)2−s + (α + wx)2−s − (α + vx+ wx)2−s

vw(s− 1)(s− 2)
+O(x1−σ) (2.6)

as x→ ∞.

Lemma 2.4 (Lemma 4.10 in [27]). Let f(ξ) be a real function with a continuous and
steadily decreasing derivative f ′(ξ) in (a, b), and let f ′(b) = c, f ′(a) = d. Let g(ξ) be a
real positive decreasing function with a continuous derivative g′(ξ), satisfying that |g′(ξ)|
is steadily decreasing. Then

∑
a<n≤b

g(n)e2πif(n) =
∑
ν∈Z

c−ε<ν<d+ε

∫ b

a

g(ξ)e2πi(f(ξ)−νξ)dξ

+O(g(a) log(d− c+ 2)) +O(|g′(a)|) (2.7)

for an arbitrary ε ∈ (0, 1).

Proof of Theorem 2.3. Let N ∈ N be sufficiently large. Then we have

∞∑
m=0

∞∑
n=0

1

(α + vm+ wn)s

=

(
N∑

m=0

N∑
n=0

+
N∑

m=0

∞∑
n=N+1

+
∞∑

m=N+1

N∑
n=0

+
∞∑

m=N+1

∞∑
n=N+1

)
1

(α+ vm+ wn)s
.

We denote the second, the third and the fourth term on the right-hand side by A1, A2

and A3, respectively. By the Euler-Maclaurin summation formula (see Equation (2.1.2)
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in [27]), we have for any a, b ∈ Z with 0 < a < b,

b∑
m=a+1

1

(α + vm+ wn)s
=

(α+ vb+ wn)1−s − (α+ va+ wn)1−s

v(1− s)

−vs
∫ b

a

x− [x]− 1/2

(α + vx+ wn)s+1
dx+

1

2

{
(α + vb+ wn)−s − (α + va+ wn)−s

}
,

b∑
n=a+1

1

(α + vm+ wn)s
=

(α + vm+ wb)1−s − (α+ vm+ wa)1−s

w(1− s)

−ws
∫ b

a

x− [x]− 1/2

(α+ vm+ wx)s+1
dx+

1

2

{
(α + vm+ wb)−s − (α + vn+ wa)−s

}
.

If we take a = N and let b→ ∞, we have

∞∑
n=N+1

1

(α + vm+ wn)s

=
1

w(s− 1)
· 1

(α + vm+ wN)s−1

−ws
∫ ∞

N

x− [x]− 1/2

(α + vm+ wx)s+1
dx− 1

2
· 1

(α+ vm+ wN)s

=
1

w(s− 1)
· 1

(α + vm+ wN)s−1
− 1

2
· 1

(α + vm+ wN)s
+O

(
N−σ

)
,

for σ > 1, uniformly in m = 0, 1, . . .. Therefore we have

A1 =
N∑

m=0

∞∑
n=N+1

1

(α + vm+ wn)s

=
N∑

m=0

{
1

w(s− 1)
· 1

(α + vm+ wN)s−1
− 1

2
· 1

(α + vm+ wN)s
+O

(
N−σ

)}

=
1

w(s− 1)

N∑
m=1

1

(α+ vm+ wN)s−1
− 1

2

N∑
m=1

1

(α+ vm+ wN)s

+
1

w(s− 1)
· 1

(α + wN)s−1
− 1

2
· 1

(α + wN)s
+O(N1−σ).

Applying again the formula (2.1.2) in [27] to the first term and the second term on the
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right-hand side of the above, we obtain

A1 =
1

vw(s− 1)(s− 2)

{
1

(α + wN)s−2
− 1

(α + vN + wN)s−2

}
− v

w

∫ N

0

x− [x]− 1/2

(α + vx+ wN)s
dx

− 1

2w(s− 1)

{
1

(α + wN)s−1
− 1

(α + vN + wN)s−1

}
− 1

2v(s− 1)

{
1

(α + wN)s−1
− 1

(α + vN + wN)s−1

}
+
vs

2

∫ N

0

x− [x]− 1/2

(α + vx+ wN)s+1
dx+

1

4

{
1

(α + wN)s
− 1

(α + vN + wN)s

}
+

1

w(s− 1)
· 1

(α + wN)s−1
− 1

2
· 1

(α + wN)s
+O(N1−σ)

=
(α+ wN)2−s − (α + vN + wN)2−s

vw(s− 1)(s− 2)
+O(N1−σ).

Applying the same method to A2 and A3, we obtain

A2 =
(α + vN)2−s − (α + vN + wN)2−s

vw(s− 1)(s− 2)
+O(N1−σ) (σ > 1)

A3 =
(α + vN + wN)2−s

vw(s− 1)(s− 2)
+O(N1−σ) (σ > 1).

Therefore we have

ζ2(s, α; v, w) =
N∑

m=0

N∑
n=0

1

(α + vm+ wn)s

+
(α+ vN)2−s + (α + wN)2−s − (α+ vN + wN)2−s

vw(s− 1)(s− 2)
+O(N1−σ) (2.8)

for σ > 1. Next we consider the double sum on the right-hand side of (2.8). First we
divide the sum as follows:

N∑
m=0

N∑
n=0

1

(α + vm+ wn)s

=

(∑
m≤x

∑
n≤x

+
∑
m≤x

∑
x<n≤N

+
∑
n≤x

∑
x<m≤N

+
∑

x<m≤N

∑
x<n≤N

)
1

(α + vm+ wn)s
.

We denote the second, the third and the fourth term on the right-hand side by B1, B2

and B3, respectively. Fix m ∈ N, set

f(ξ) =
t

2π
log(α+ vm+ wξ), g(ξ) = (α + vm+ wξ)−σ
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and take (a, b) = (x,N) in Lemma 2.4. Then we have

(c, d) =

(
tw

2π(α+ vm+ wN)
,

tw

2π(α + vm+ wx)

)
.

We see that

|f ′(x)| =
∣∣∣∣ tw

2π(α + vm+ wx)

∣∣∣∣ ≤ 1

2π

∣∣∣∣2πxC · w

α + vm+ wx

∣∣∣∣ ≤ 1

C
< 1.

When σ > 0, the function g(ξ) is decreasing, and hence Lemma 2.4 can be applied. For
sufficiently large N , we can take ε such that c − ε < 0 < d + ε < 1, by which only the
term with ν = 0 appears in the sum on the right-hand side of (2.7). We obtain from (2.7)
that ∑

x<n≤N

eit log(α+vm+wn)

(α + vm+ wn)σ
=

∫ N

x

(α+ vm+ wξ)−σ+itdξ +O((m+ x)−σ).

Taking complex conjugates on the both sides, we have∑
x<n≤N

1

(α + vm+ wn)s
=

∫ N

x

(α + vm+ wξ)−sdξ +O((m+ x)−σ)

=
(α + vm+ wN)1−s − (α + vm+ wx)1−s

w(1− s)
+O((m+ x)−σ).

Therefore, we obtain

B1 =
∑
m≤x

∑
x<n≤N

1

(α + vm+ wn)s

=
∑
m≤x

{
(α+ vm+ wN)1−s − (α + vm+ wx)1−s

w(1− s)
+O((m+ x)−σ)

}

=
1

w(1− s)

{∑
m≤x

1

(α+ vm+ wN)s−1
−
∑
m≤x

1

(α + vm+ wx)s−1

}
+O(x1−σ).

We denote the first and the second term on the right-hand side by (1/w(1− s))(B11−B12),
and apply Lemma 2.4 for B11 and B12. For B11 set

f(ξ) =
t

2π
log(α + vξ + wN), g(ξ) = (α + vξ + wN)1−σ

and on taking (a, b) = (0, x) in Lemma 2.4. We can treat B12 similarly, where Lemma 2.4
is applied on replacing the variable ξ by η, on setting

f(η) =
t

2π
log(α + vη + wx), g(x) = (α + vη + wx)1−σ

and (a, b) = (0, x). Then we have

B11 =
(α + vx+ wN)2−s − (α + wN)2−s

v(2− s)
+O(N1−σ),

B12 =
(α + vx+ wx)2−s − (α + wx)2−s

v(2− s)
+O(x1−σ).
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Therefore, we obtain

B1 =
(α + vx+ wN)2−s − (α + vx+ wx)2−s − (α + wN)2−s + (α + wx)2−s

vw(s− 1)(s− 2)

+O(N1−σ) +O(x1−σ).

By the argument similar to the treatment of B1, we obtain

B2 =
(α + vN + wx)2−s − (α + vx+ wx)2−s − (α + vN)2−s + (α + vx)2−s

vw(s− 1)(s− 2)

+O(N1−σ) +O(x1−σ)

and

B3 =
(α + vN + wN)2−s − (α + vx+ wN)2−s − (α+ vN + wx)2−s + (α + vx+ wx)2−s

vw(s− 1)(s− 2)

+O(N1−σ) +O(x1−σ).

Summing up the results above, we obtain

N∑
m=0

N∑
n=0

1

(α + vm+ wn)s

=
∑
m≤x

∑
n≤x

1

(α + vm+ wn)s
+

(α + vx)2−s + (α + wx)2−s − (α + vx+ wx)2−s

vw(s− 1)(s− 2)

−(α + vN)2−s + (α + wN)2−s − (α + vN + wN)2−s

vw(s− 1)(s− 2)
+O(x1−σ) +O(N1−σ),

and by (2.8), we conclude that

ζ2(s, α; v, w)

=
∑
m≤x

∑
n≤x

1

(α + vm+ wn)s
+

(α + vx)2−s + (α + wx)2−s − (α + vx+ wx)2−s

vw(s− 1)(s− 2)

+O(x1−σ) +O(N1−σ)

in the region σ > 1. Letting N → ∞, we obtain the proof of Theorem 2.3.

2.4 Proof of Theorem 2.2

In this section, we prove Theorem 2.2 from Theorem 2.3.

Proof of Theorem 2.2. Setting C = 2π and x = t in (2.6), we easily see that the
second term on the right-hand side is O(t−σ), hence we have

ζ2(s, α; v, w) =
∑
m≤t

∑
n≤t

1

(α + vm+ wn)s
+O(t1−σ). (2.9)
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We denote the first term on the right-hand side by Σ(s). Then∫ T

1

|Σ(s)|2dt

=

∫ T

1

∑
m1≤t

∑
n1≤t

1

(α + vm1 + wn1)σ+it

∑
m2≤t

∑
n2≤t

1

(α + vm2 + wn2)σ−it
dt.

Now we change the order of summation and integration. First we note that 1 ≤ m1, n1,m2, n2 ≤
T . Let us fix one such (m1, n1,m2, n2). Then from the condition m1 ≤ t, n1 ≤ t, m2 ≤
t, n2 ≤ t, we find that the range of t is M = max{m1, n1,m2, n2} ≤ t ≤ T . Therefore∫ T

1

|Σ(s)|2dt

=
∑

m1,n1≤T

1

(α + vm1 + wn1)σ

∑
m2,n2≤T

1

(α + vm2 + wn2)σ

×
∫ T

M

(
α + vm1 + wn1

α + vm2 + wn2

)it

dt

=
∑

0≤m1,n1,m2,n2≤T
vm1+wn1=vm2+wn2

1

(α + vm1 + wn1)σ(α + vm2 + wn2)σ
× (T −M)

+
∑

m1,n1,m2,n2≥0

vm1+wn1 ̸=vm2+wn2

1

(α+ vm1 + wn1)σ(α + vm2 + wn2)σ

×e
iT log{(α+vm2+wn2)/(α+vm1+wn1)} − eiM log{(α+vm2+wn2)/(α+vm1+wn1)}

i log{(α+ vm2 + wn2)/(α + vm1 + wn1)}
.

We denote the first and the second term on the right-hand side by S1 and S2 respectively.
As for S1, we have

S1 = T
{
ζ
[2]
2 (σ, σ, α, v, w)− (U1 + U2 + U3 + U4)

}
−

∑
0≤m1,n1,m2,n2≤T

vm1+wn1=vm2+wn2

M(m1, n1,m2, n2)

(α + vm1 + wn1)σ(α + vm2 + wn2)σ
,
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where

U1 =

 ∑
m1>T

0≤n1,m2,n2≤T
vm1+wn1=vm2+wn2

+
∑
n1>T

0≤m1,m2,n2≤T
vm1+wn1=vm2+wn2

+
∑
m2>T

0≤m1,n1,n2≤T
vm1+wn1=vm2+wn2

+
∑
n2>T

0≤m1,n1,m2≤T
vm1+wn1=vm2+wn2

 1

(α + vm1 + wn1)σ(α + vm2 + wn2)σ
,

U2 =


∑

m1,m2>T
0≤n1,n2≤T

vm1+wn1=vm2+wn2

+
∑

n1,n2>T
0≤m1,m2≤T

vm1+wn1=vm2+wn2

 1

(α + vm1 + wn1)σ(α + vm2 + wn2)σ
,

U3 =


∑

m1,n2>T
0≤n1,m2≤T

vm1+wn1=vm2+wn2

+
∑

n1,m2>T
0≤m1,n2≤T

vm1+wn1=vm2+wn2

 1

(α + vm1 + wn1)σ(α + vm2 + wn2)σ
,

U4 =

 ∑
m1,m2,n1>T

0≤n2≤T
vm1+wn1=vm2+wn2

+
∑

m1,m2,n2>T
0≤n1≤T

vm1+wn1=vm2+wn2

+
∑

m1,n1,n2>T
0≤m2≤T

vm1+wn1=vm2+wn2

+
∑

m2,n1,n2>T
0≤m1≤T

vm1+wn1=vm2+wn2

 1

(α + vm1 + wn1)σ(α + vm2 + wn2)σ
.

We can estimate U1 as follows. Since α+ vm+ wn ≍ 1 +m+ n we have

U1 ≪
∑
k>T

0≤l,m,n≤T
k+l≍m+n

1

(1 + k + l)σ(1 +m+ n)σ
.

Setting j = k + l, since T + 1 < j ≍ m+ n ≤ 2T ≪ T and m≪ j, we obtain

U1 ≪
∑

T+1≤j≪T

∑
T<k≤j

∑
0≤m≪j

1

(1 + j)2σ

≪
∑

T+1≤j≪T

∑
T<j≤j

1

(1 + j)2σ−1
=

∑
T+1≤j≪T

j − T

(1 + j)2σ−1

≪
∑

T+1≤j≪T

1

(1 + j)2σ−2
≍ T 3−2σ

(
σ ≥ 3

2

)
.
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Similarly we obtain U2, U3, U4 ≪ T 3−2σ. The sum involving M(m1, n1,m2, n2) in S1 is
estimated, since M(k, l,m, n) ≪ k + l +m+ n in this case, as

≪
∑

0≤k,l,m,n≤T
k+l≍m+n

k + l +m+ n

(1 + k + l)σ(1 +m+ n)σ
≪

∑
0≤j≤2T

∑
0≤k≤j

∑
0≤m≪j

1

(1 + j)2σ−1

≪
∑

0≤j≤2T

1

(1 + j)2σ−3
≪

{
T 4−2σ (3/2 ≤ σ < 2) ,

log T (σ = 2).

Therefore, we have

S1 = ζ
[2]
2 (σ, σ, α, v, w)T +

{
O(T 4−2σ) (3/2 ≤ σ < 2) ,

O(log T ) (σ = 2).
(2.10)

Next, as for S2, we have

S2 ≪
∑

0≤m1,n1,m2,n2≤T
vm1+wn1<vm2+wn2

1

(α + vm1 + wn1)σ(α + vm2 + wn2)σ

× 1

log{(α+ vm2 + wn2)/(α + vm1 + wn1)}

=

 ∑
0≤m1,n1,m2,n2≤T

α+vm1+wn1<α+vm2+wn2<2(α+vm1+wn1)

+
∑

0≤m1,n1,m2,n2≤T

α+vm2+wn2≥2(α+vm1+wn1)


1

(α + vm1 + wn1)σ(α + vm2 + wn2)σ log{(α + vm2 + wn2)/(α + vm1 + wn1)}
.

We denote the first and the second term on the right-hand side byW1 andW2, respectively.
As for W2, we have

W2 ≪
∑

0≤m1,n1,m2,n2≤T

α+vm2+wn2≥2(α+vm1+wn1)

1

(α + vm1 + wn1)σ(α + vm2 + wn2)σ

≪

{ ∑
0≤m,n≤T

1

(1 +m+ n)σ

}2

=

{ ∑
0≤j≤2T

j∑
m=0

1

(1 + j)σ

}2

=

{ ∑
0≤j≤2T

1

(1 + j)σ−1

}2

≪

{
T 4−2σ (1 < σ < 2) ,

(log T )2 (σ = 2).

Next we consider the order of W1.The range of n2 in the inequalities α + vm1 + wn1 <
α + vm2 + wn2 < 2(α + vm1 + wn1) of the summation condition on W1 is

v

w
(m1 −m2) + n1 < n2 < min

{α
w

+
v

w
(2m1 −m2) + 2n1, [T ] + 1

}
.
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Let ε = ε(m1,m2, n1), δ = δ(m1,m2, n1) be constants satisfying 0 ≤ ε, δ < 1 and
(v/w)(m1 −m2) + n1 + ε ∈ Z and α/w + (v/w)(2m1 −m2) + 2n1 − δ ∈ Z. Then

K = min
{α
w

+
v

w
·m1 + n1 − ε− δ, [T ]− v

w
(m1 −m2)− n1 − ε

}
is an integer, and n2 can be rewritten as

n2 =
v

w
(m1 −m2) + n1 + ε+ k (for some k = 0, 1, 2, . . . , K).

Since

log
α + vm2 + wn2

α + vm1 + wn1

= log

(
1 +

wk + wε

α + vm1 + wn1

)
≍ wk + wε

α + vm1 + wn1

,

we obtain

W1 ≪
∑

0≤m1≤T

∑
0≤n1≤T

∑
0≤m2≪K

∑
0≤k≤K

1

(α + vm1 + wn1)σ

× 1

(α + vm1 + wn1 + wk + wε)σ
× α + vm1 + wn1

wk + wε

≪
∑

0≤m1≤T

∑
0≤n1≤T

∑
0≤m2≪K

logK

(α + vm1 + wn1)2σ−1

≪
∑

0≤m1≤T

∑
0≤n1≤T

log (α + vm1 + wn1)

(α + vm1 + wn1)2σ−2

≪
∑

0≤m≤T

∑
0≤n≤T

log (2 +m+ n)

(1 +m+ n)2σ−2

≪
∫ T

0

∫ T

0

log (2 + x+ y)

(1 + x+ y)2σ−2
dxdy

=


O(T 4−2σ log T ) (1 < σ < 3/2, 3/2 < σ < 2) ,

O(T (log T )2) (σ = 3/2) ,

O((log T )2) (σ = 2).

Then, we have

S2 =

{
O(T 4−2σ) (1 < σ < 2)

O((log T )2) (σ = 2)
+


O(T 4−2σ log T ) (1 < σ < 3/2, 3/2 < σ < 2)

O(T (log T )2) (σ = 3/2)

O((log T )2) (σ = 2)

=


O(T 4−2σ log T ) (1 < σ < 3/2, 3/2 < σ < 2) ,

O(T (log T )2) (σ = 3/2) ,

O((log T )2) (σ = 2).
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By (2.10), we have∫ T

1

|Σ(s)|2dt

= ζ
[2]
2 (σ, σ;α, v, w)T +


O(T 4−2σ log T ) (1 < σ < 3/2, 3/2 < σ < 2) ,

O(T (log T )2) (σ = 3/2) ,

O((log T )2) (σ = 2).

Furthermore, we obtain from (2.9) that∫ T

1

|ζ2(σ + it, α; v, w)|2dt

=

∫ T

1

|Σ(s) +O(t1−σ)|2dt

=

∫ T

1

|Σ(s)|2dt+O

(∫ T

1

|Σ(s)|t1−σdt

)
+O

(∫ T

1

t2−2σdt

)
.

We see that the third term on the right-hand side is estimated as
O(T 3−2σ) (1 < σ < 3/2),

O(log T ) (σ = 3/2),

O(1) (3/2 < σ ≤ 2).

(2.11)

Also, using the Cauchy-Schwarz inequality for the second term on the right-hand side, we
see that ∫ T

1

|Σ(s)|t1−σdt ≤
(∫ T

1

|Σ(s)|2dt
)1/2(∫ T

1

t2−2σdt

)1/2

=


O(T 7/2−2σ(log T )1/2) (1 < σ < 3/2) ,

O(T 1/2(log T )3/2) (σ = 3/2) ,

O(T 1/2) (3/2 < σ ≤ 2).

(2.12)

Therefore, since (2.11) and (2.12) we have∫ T

1

|ζ2(s, α; v, w)|2dt = ζ
[2]
2 (σ, σ, α; v, w)T +

{
O(T 4−2σ log T ) (3/2 < σ ≤ 7/4) ,

O(T 1/2) (7/4 < σ ≤ 2),

and hence the proof of Theorem 2.2 is complete.

2.5 Hurwitz double and triple zeta-functions

Let α > 0. Hurwitz multiple zeta-function is defined by

ζr(s, α) =
∞∑

m1=0

· · ·
∞∑

mr=0

1

(α +m1 + · · ·+mr)s
(Re(s) > r).
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This function ζr(s, α) can be expressed in terms of simple series as follows;

ζr(s, α) =
r−1∑
j=0

pr,j(α)ζ(s− j, α),

pr,j(α) =
1

(r − 1)!

r−1∑
l=j

(−1)r+1−j

(
l

j

)
S(r, l + 1)αl−j,

where S(r, l + 1) is the Stirling number of the 1st kind, and in the case r = 2, r = 3 they
are

ζ2(s, α) = (1− α)ζ(s, α) + ζ(s− 1, α),

ζ3(s, α) =
1

2
(1− α)(2− α)ζ(s, α) +

1

2
(3− 2α)ζ(s− 1, α) +

1

2
ζ(s− 2, α)

respectively. For example, in the case r = 2, it can be shown simply as follows.

ζ2(s, α) =
∞∑

m=0

∞∑
n=0

1

(α +m+ n)s
=

∞∑
k=0

1

(α + k)s

∑
m,n≥0
m+n=k

1

=
∞∑
k=0

k + 1

(α + k)s
=

∞∑
k=0

(α+ k) + (1− α)

(α + k)s

= (1− α)ζ(s, α) + ζ(s− 1, α) (σ > 2),

and then it is possible to extend the result to C by analytic continuation.
In the case r = 2, using the above equation we have∫ T

1

|ζ2(s, α)|2dt =
∫ T

1

|(1− α)ζ(s, α) + ζ(s− 1, α)|2dt

= (1− α)2
∫ T

1

|ζ(s, α)|2dt+
∫ T

1

|ζ(s− 1, α)|2dt

+2(1− α)Re

(∫ T

1

ζ(s, α)ζ(s− 1, α)dt

)
.

Evaluating the integral of the third term, we have∫ T

1

ζ(s, α)ζ(s− 1, α)dt = ζ(2σ − 1, α)T +

{
O(T 1/2) (3/2 < σ ≤ 2),

O((T log T )1/2) (σ = 3/2),

and using the results on mean values of the Hurwitz zeta-function,∫ T

1

|ζ(σ + it, α)|2dt = ζ(2σ, α)T +O(T 2−2σ)

and ∫ T

1

|ζ (σ + it, α)|2 dt = T log T +
(
γ(α) +

γ

α
− 1− log 2π

)
T +O((T log T )1/2)
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where γ is Euler constant and

γ(α) := lim
N→∞

(
N∑

n=0

1

n+ α
− logN

)
,

we obtain the following Theorem 2.5 and Theorem 2.6.

Theorem 2.5. (i) In the case 3/2 < σ ≤ 2, we have∫ T

1

|ζ2(σ + it, α)|2dt

= {(1− α)2ζ(2σ, α) + 2(1− α)ζ(2σ − 1, α) + ζ(2σ − 2, α)}T
+O(T 1/2) +O(T 4−2σ),

as T → ∞.

(ii) In the case σ = 3/2, we have∫ T

1

∣∣∣∣ζ2(3

2
+ it, α

)∣∣∣∣2 dt
= T log T +

{
(1− α)2ζ(3, α) + 2(1− α)ζ(2, α) + γ(α) +

γ

α
− 1− log 2π

}
T

+O((T log T )1/2).

as T → ∞.

Let

ζ
[2]
3 (s1, s2, α;w1, w2, w3) =

∑
m1,m2,m3,n1,n2,n3≥0

w1m1+w2m2+w3m3=w1n1+w2n2+w3n3

1

(α + w1m1 + w2m2 + w3m3)s1(α + w1n1 + w2n2 + w3n3)s2
,

which is absolutely convergent for Re(s1 + s2) > 2. If w1, w2, w3 are linearly independent
over Q, then w1m1+w2m2+w3m3 = w1n1+w2n2+w3n3 is equivalent to (m1,m2,m3) =
(n1, n2, n3), and hence we have

ζ
[2]
2 (s1, s2, α;w1, w2, w3) = ζ2(s1 + s2, α;w1, w2, w3).

Theorem 2.6. (i) In the case 5/2 < σ ≤ 3, we have∫ T

1

|ζ3(σ + it, α)|2dt = ζ
[2]
3 (σ, σ, α; 1, 1)T +O(T 1/2) +O(T 4−2σ).

as T → ∞.
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(ii) In the case σ = 5/2, we have∫ T

1

∣∣∣∣ζ3(5

2
+ it, α

)∣∣∣∣2 dt
=

1

4
T log T +

1

4

{
(1− α)2(2− α)2ζ(5, α) + 2(1− α)(2− α)(3− 2α)ζ(4, α)

+(6α2 − 18α + 13)ζ(3, α) + 2(3− 2α)ζ(2, α) + γ(α) +
γ

α
− 1− log 2π

}
T

+O((T log T )1/2).

as T → ∞.

2.6 Hurwitz mulitple zeta-functions

The function ζr(s, α) satisfies

ζr(s, α) =
r−1∑
j=0

pr,j(α)ζ(s− j, α),

and so ∫ T

1

|ζr(s, α)|2dt =
r−1∑
j=0

pr,j(α)
2

∫ T

1

|ζ(s− j, α)|2dt

+2
∑

0≤k<l≤r−1

pr,k(α)pr,l(α) · Re
(∫ T

1

ζ(s− k, α)ζ(s− l, α)dt

)
.

Consider the evaluation of the each term of above equation. In particular, the main term
in the case σ = r − 1/2 is ∫ T

1

|ζ(s− r + 1, α)|2dt ∼ T log T.

Then we obtain the following result:

Theorem 2.7. (i) In the case σ > r − 1/2, as T → ∞∫ T

1

|ζr(σ + it, α)|2dt ≍ T.

(ii) In the case σ = r − 1/2, as T → ∞∫ T

1

∣∣∣∣ζr (r − 1

2
+ it, α

)∣∣∣∣2 dt = 1

{(r − 1)!}2
T log T +O(T 1/2 log T ).

Remark 2. Recall that the mean square value of ζ(s) on the critical line σ = 1/2 , which
is asymptotically T log T . From the results of Theorem 2.7 (ii), it can be expected that
for r-ple zeta-function the line σ = r − 1/2 would be an analogue of the critical line.
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3 Approximate functional equations for the Hurwitz

and Lerch zeta-functions

As mentioned in Section 1, the approximate functional equation (1.7) is effective in study-
ing order and mean values, so it is an important theme to study approximate functional
equations for other type of zeta-functions. In 2003, R. Garunkštis, A. Laurinčikas, and J.
Steuding (in [7]) proved the Riemann-Siegel type of the approximate functional equation
for the Lerch zeta-function ζL(s, α, λ). In this section, we prove another type of approx-
imate functional equations for the Hurwitz and Lerch zeta-functions. R. Garunkštis, A.
Laurinčikas, and J. Steuding (in [8]) obtained the results on the mean square values of
ζL(σ + it, α, λ) with respect to t. We obtain the main term of the mean square values of
ζL(1/2 + it, α, λ) using a simpler method than their method in [8].

3.1 Introduction and the statement of results

Let s = σ + it be a complex variable, and let 0 < α ≤ 1, 0 < λ ≤ 1 be real parameters.
The Hurwitz zeta-function ζH(s, α) and the Lerch zeta-function ζL(s, α, λ) are defined by

ζH(s, α) =
∞∑
n=0

1

(n+ α)s
, (3.1)

ζL(s, α, λ) =
∞∑
n=0

e2πinλ

(n+ α)s
, (3.2)

respectively. These series are absolutey convergent for σ > 1. Also, if 0 < λ < 1, then
the series (3.2) is convergent even for σ > 0.

As a classical asymptotic formula for the Riemann zeta-function, the following was
proved by Hardy and Littlewood (§4 in [27]); we suppose that σ0 > 0, x ≥ 1, then

ζ(s) =
∑
n≤x

1

ns
− x1−s

1− s
+O(x−σ)

uniformly for σ ≥ σ0, |t| < 2πx/C, where C > 1 is a constant. Also, Hardy and
Littlewood proved the following asymptotic formula (§4 in [27]); we suppose that 0 ≤ σ ≤
1, x ≥ 1, y ≥ 1 and 2πxy = |t|, then

ζ(s) =
∑
n≤x

1

ns
+X(s)

∑
n≤y

1

n1−s
+O(x−σ) +O(|t|1/2−σyσ−1), (3.3)

where X(s) = 2Γ(1− s) sin (πs/2)(2π)s−1 and note that ζ(s) = X(s)ζ(1− s) holds. This
is called the approximate functional equation.

Further, there is a Riemann-Siegel type of the approximate functional equation for
ζ(s); suppose that 0 ≤ σ ≤ 1, x =

√
t/2π, and N < Ct with a sufficiently small constant

C. Then

ζ(s) =
∑
n≤x

1

ns
+X(s)

∑
n≤x

1

n1−s
+ (−1)[x]−1eπi(1−s)/2(2πt)s/2−1/2eit/2−iπ/8

×Γ(1− s)

(
SN +O

((
CN

t

)N/6
)

+O(e−Ct)

)
, (3.4)
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where

SN =
N−1∑
n=0

∑
ν≤n/2

n!iν−n

ν!(n− 2ν)!2n

(
2

π

)n/2−ν

anψ
(n−2ν)

(√
2t

π
− 2[x]

)
,

with an defined by

exp

(
(s− 1) log

(
1 +

z√
t

)
− iz

√
t+

1

2
iz2
)

=
∞∑
n=0

anz
n,

with a0 = 1, an ≪ t−n/2+[n/3]. R. Garunkštis, A. Laurinčikas, and J. Steuding proved an
analogue of (3.4) for the Lerch zeta-function as follows;

Theorem 3.1 (R. Garunkštis, A. Laurinčikas, and J. Steuding [7]). Suppose that 0 <
α ≤ 1, 0 < λ < 1 and 0 ≤ σ ≤ 1. Suppose that t ≥ 1, x =

√
t/2π,N = [x],M = [x − α]

and β = N −M . Then

ζL(s, α, λ) =
M∑

m=0

e2πimλ

(m+ α)s
+

(
2π

t

)σ−1/2+it

eit+πi/4−2πi{λ}α
N∑

n=0

e−2πiαn

(n+ λ)1−s

+

(
2π

t

)σ/2

eπif(λ,α,σ,t)ϕ(2x− 2N + β − {λ} − α) +O(t(σ−2)/2), (3.5)

where

f(λ, α, σ, t) = − t

2π
log

t

2πe
− 7

8
+

1

2
(α2 − {λ}2)

−αβ + 2x(β + {λ} − α)− 1

2
(N +M)− {λ}(β + α).

We prove an analogue of the approximate functional equation (3.3) for (3.1) and (3.2)
(in Theorem 3.2), and gave another proof of the mean square formula for ζL(1/2+ it, α, λ)
with respect to t (in Theorem 3.3).

Theorem 3.2. Let 0 < α ≤ 1 and 0 < λ < 1. Suppose that 0 ≤ σ ≤ 1, x ≥ 1, y ≥ 1 and
2πxy = |t|. Then

ζL(s, α, λ) =
∑

0≤n≤x

e2πinλ

(n+ α)s

+
Γ(1− s)

(2π)1−s

{
e{(1−s)/2−2αλ}πi

∑
0≤n≤y

e2πin(1−α)

(n+ λ)1−s

+e{−(1−s)/2+2α(1−λ)}πi
∑

0≤n≤y

e2πinα

(n+ 1− λ)1−s

}
+O(x−σ) +O(|t|1/2−σyσ−1). (3.6)
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Also, in the case λ = 1 that is ζH(s, α) it follows that

ζH(s, α) =
∑

0≤n≤x

1

(n+ α)s

+
Γ(1− s)

(2π)1−s

{
e

πi
2
(1−s)

∑
1≤n≤y

e2πin(1−α)

n1−s
+ e−

πi
2
(1−s)

∑
1≤n≤y

e2πinα

n1−s

}
+O(x−σ) +O(|t|1−σyσ−1). (3.7)

Remark 3. Theorem 3.2 can be proved by the method similar to the proof of Theorem
3.1, but results of Theorem 3.2 have advantage of choosing parameters x and y freely,
only under the condition 2πxy = |t| as compared with the result of Theorem 3.1. Also for
approximate functional equations (3.6) and (3.7), ζL(s, α, λ) is a generalization of ζH(s, α),
but (3.6) in Theorem 3.2 does not include (3.7).

Theorem 3.3. Let 0 < α ≤ 1, 0 < λ ≤ 1. Then,∫ T

1

∣∣∣∣ζL(1

2
+ it, α, λ

)∣∣∣∣2 dt = T log
T

2π
+

{
O(T (log T )1/2) (0 < α < 1),

O(T (log T )3/4) (α = 1),
(3.8)

as T → ∞.

Remark 4. The result of Theorem 3.3 has larger error term than the result already proved
by R. Garunkštis, A. Laurinčikas and J. Steuding [8], and they proved using Theorem
3.1 (see [8]). However, the main term on the right-hand side of (3.8) can be obtained
more simply than the method of [8] by using Theorem 3.2. We will describe the proof of
Theorem 3.3 in Section 3.3.

3.2 Proof of Theorem 3.2

In this section, we prove Theorem 3.2. The basic tool of the proof is the same as the
approximate functional equation for the Riemann zeta-function (3.3), that is the saddle
point method.

Proof of Theorem 3.2. Let M ∈ N be sufficiently large. We have

ζL(s, α, λ) =
M∑
n=0

e2πinλ

(n+ α)s
+

∞∑
n=M+1

e2πinλ

(n+ α)s

=
M∑
n=0

e2πinλ

(n+ α)s
+
e2πiλM

Γ(s)

∫ ∞

0

ts−1e−(M+α)t

et−2πiλ − 1
dt

=
M∑
n=0

e2πinλ

(n+ α)s
+
e2πiλMΓ(1− s)

2πieπis

∫
C

zs−1e−(M+α)z

ez−2πiλ − 1
dz, (3.9)

where C is the contour integral path that comes from +∞ to ε along the real axis, then
goes along the circle of radius ε counter clockwise, and finally goes from ε to +∞.
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Re
O

Let t > 0 and x ≤ y, so that 1 ≤ x ≤
√
t/2π. Let σ ≤ 1,M = [x], N = [y], η =

2πy. We deform the contour integral path C to the combination of the straight lines
C1, C2, C3, C4 joining ∞, cη + i(1 + c)η + 2πiλ, −cη + i(1 − c)η + 2πiλ, −cη − πi(2l +
1) + 2πiλ, ∞, where c is an absolute constant, 0 < c ≤ 1/2.

−cη + i(1− c)η + 2πiλ

iη + 2πiλ

cη + i(1 + c)η + 2πiλ

Re

−cη − πi(2l + 1) + 2πiλ

Im

O−cη

We calculate the residue of the integrand of (3.9). Since

lim
z→2πi(λ+n)

{z − 2πi(λ+ n)} · z
s−1e−(M+α)z

ez−2πiλ − 1

= lim
z→2πi(λ+n)

(
ez−2πiλ − 1

z − 2πi(λ+ n)

)−1

e−(M+α)z · zs−1 = e−2πi(M+α)(λ+n)(2πi(n+ λ))s−1,
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we have

Res
z=2πi(λ+n)

zs−1e−(M+α)z

ez−2πiλ − 1

= e−2πi(M+α)(λ+n)(2π(n+ λ)i)s−1

=

{
e−2πi(M+α)(λ+n)(2π(n+ λ)eπi/2)s−1 (n ≥ 0)

e2πi(M+α)(|n|−λ)(2π(|n| − λ)e3πi/2)s−1 (n ≤ −1)

=


− eπis

(2π)1−s
· e{(1−s)/2−2(M+α)λ}πi · e

2πin(1−α)

(n+ λ)1−s
(n ≥ 0)

− eπis

(2π)1−s
· e−{(1−s)/2+2(M+α)(1−λ)}πi · e2πi(−n)α

(|n| − λ)1−s
(n ≤ −1)

and we have

N∑
n=−N+1

Res
z=2πin

zs−1e−(M+α)z

ez−2πiλ − 1

= − eπis

(2π)s−1

{
e{(1−s)/2−2(M+α)λ}πi

N∑
n=0

e2πin(1−α)

(n+ λ)1−s

+e−{(1−s)/2+2(M+α)(1−λ)}πi
N∑

n=0

e2πinα

(n+ 1− λ)1−s

}
.

Therefore we obtain

ζL(s, α, λ) =
M∑
n=0

e2πinλ

(n+ α)s

+
Γ(1− s)

(2π)1−s

{
e{(1−s)/2−2αλ}πi

N∑
n=0

e2πin(1−α)

(n+ λ)1−s

+e−{(1−s)/2+2α(1−λ)}πi
N∑

n=0

e2πinα

(n+ 1− λ)1−s

}

+
e2πiλMΓ(1− s)

2πieπis

(∫
C1

+

∫
C2

+

∫
C3

+

∫
C4

)
zs−1e−(M+α)z

ez−2πiλ − 1
dz. (3.10)

From here, we consider the order of integral terms on the right-hand side of (3.10).
First, we consider the integral path C4. Let z = u+ iv = reiθ then |zs−1| = rσ−1, and

since θ ≥ 5π/4, r ≫ η, |ez−2πiλ − 1| ≫ 1, we have∫
C4

zs−1e−(M+α)z

ez−2πiλ − 1
dz =

∫
C4

(reiθ)σ+it−1e−(M+α)(u+iv)

ez−2πiλ − 1
dz

≪ ησ−1e−5πt/4

∫ ∞

cη

e−(M+α)udu

= ησ−1(M + α)−1e(M+α)cη−5πt/4

≪ e(c−5π/4)t. (3.11)
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Secondly, we consider the order of integral on C3 of (3.10). Noting

arctanφ =

∫ φ

0

dµ

1 + µ2
>

∫ φ

0

dµ

(1 + µ)2
=

φ

1 + φ

for φ > 0, we can write

θ = arg z =
π

2
+ arctan

c

1− c
=
π

2
+ c+ A(c)

on C3, where A(c) is a constant depending on c. Then we have

|zs−1e−(M+α)z| = rσe−tθ+(M+α)cη

≪ ησ−1e−(π/2+c+A(c))t+(M+α)η

≪ ησ−1e−(π/2+A(c)t.

Therefore, since |ez−2πiλ − 1| ≫ 1, we have∫
C3

zs−1e−(M+α)z

ez−2πiλ − 1
dz ≪ ησe−(π/2+A(c))t. (3.12)

Thirdly, since |ez−2πiλ − 1| ≫ eu on C1, we have

zs−1e−(M+α)z

ez−2πiλ − 1
≪ ησ−1 exp

(
−t arctan (1 + c)η + 2πλ

u
− (M + α + 1)u

)
.

Since M + α + 1 ≥ x = t/η, the term (M + α + 1)u on the right-hand side of the above
may be replaced by tu/η. Also, since

d

du

(
arctan

(1 + c)η + 2πλ

u
+
u

η

)
= − (1 + c)η + 2πλ

u2 + ((1 + c)η + 2πλ)2
+

1

η
> 0

and

arctanφ =

∫ φ

0

dµ

1 + µ2
<

∫ φ

0

dµ = φ.

for 0 < φ < π/2, we have

arctan
(1 + c)η + 2πi

u
+
u

η
≥ arctan

(
1 + c

c
+

2πλ

η

)
+ c

=
π

2
− arctan

c

1 + c+ 2πcλ/η
+ c >

π

2
+B(c)

in u ≥ cη, where B(c) = (η + cη + 2πλc)C/{η + (2πλ+ η)c}. Then we have

zs−1e−(M+α)z

ez−2πiλ − 1
≪ ησ−1 exp

(
−
(π
2
+B(c)

)
t
)
.

Since

zs−1e−(M+α)z

ez−2πiλ − 1
≪

{
ησ−1 exp

(
−
(π
2
+B(c)

)
t
)

(cη ≤ u ≤ πη),

ησ−1 exp (−xu) (u ≥ πη),
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we obtain ∫
C1

zs−1e−(M+α)z

ez−2πiλ − 1
≪ ησ−1

{∫ πη

cη

e−(π/2+B(c))tdu+

∫ ∞

πη

e−xudu

}
≪ ησe−(π/2+B(c))t + ησ−1e−πηx

≪ ησe−(π/2+B(c))t. (3.13)

Finally, we describe the evaluation of the integral on C2. Rewriting z = i(η + 2πλ) +
ξeπi/4 (where ξ ∈ R and |ξ| ≤

√
2cη ), we have

zs−1 = exp
{
(s− 1)

(
log (i(η + 2πλ) + ξeπi/4)

)}
= exp

{
(s− 1)

(
πi

2
+ log (η + 2πλ+ ξe−πi/4)

)}
= exp

{
(s− 1)

(
πi

2
+ log(η + 2πλ) +

ξ

η + 2πλ
e−πi/4

− ξ2

2(η + 2πλ)2
e−πi/2 +O

(
ξ3

η3

))}
≪ (η + 2πλ)σ−1 exp

{(
−π
2
+

ξ√
2(η + 2πλ)

− ξ2

2(η + 2πλ)2
+O

(
ξ3

η3

))
t

}
as η → ∞. Also, since

e−(M+α)z

ez−2πiλ − 1
=
e−(M+α−x)z

ez−2πiλ − 1
· e−xz

and

e−(M+α−x)z

ez−2πiλ − 1
≪

e
(x−M−α−1)u

(
u >

π

2

)
e(x−M−α)u

(
u < −π

2

)
,

we have
e−(M+α)z

ez−2πiλ − 1
≪ |e−xz| = e−ξt/

√
2η

(
|u| > π

2

)
.

Hence ∫
C2∩{z | |u|>π/2}

zs−1e−(M+α)z

ez−2πiλ − 1
dz

≪
∫
C2∩{z | |u|>π/2}

(η + 2πλ)σ−1

× exp

{(
−π
2
+

ξ√
2(η + 2πλ)

− ξ2

2(η + 2πλ)2
+O

(
ξ3

η3

))
t

}
exp

(
− ξt√

2η

)
dξ

≪
∫ √

2cη

−
√
2cη

(η + 2πλ)σ−1e−πt/2 exp

{(
− ξ2

2(η + 2πλ)2
+O

(
ξ3

η3

))
t

}
dξ

≪
∫ ∞

−∞
(η + 2πλ)σ−1e−πt/2 exp

{(
− ξ2

2(η + 2πλ)2
+O

(
ξ3

η3

))
t

}
dξ

≪ ησ−1e−πt/2

∫ ∞

−∞
exp

{
−D(c)ξ2t

η2

}
dξ

≪ ησt−1/2eπt/2, (3.14)
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where D(c) is a constant depending on c. The argument can also be applied to the part
|u| ≤ π/2 if |ez−2πiλ| > A. If not, that is the case when the contour goes too near to the
pole at z = 2πiN + 2πiλ, we take an arc of the circle |z − 2πiN − 2πiλ| = π/2. On this
arc we can write to z = 2πiN + 2πiλ+ (π/2)eiβ, and

log (zs−1) = (s− 1) log
(
2πiN + 2πiλ+

π

2
eiβ
)

= (s− 1) log eπi/2
(
2πN + 2πλ+

π

2
· e

iβ

i

)
= (s− 1)

{
πi

2
+ log(2π(N + λ)) + log

(
1 +

eiβ

4(N + λ)i

)}
= −πt

2
+ (s− 1) log(2π(N + λ)) +

teiβ

4(N + λ)
+O(1).

On the last line of the above calculations, we used N2 ≫ t which follows from the
assumption x ≤ y. Then

zs−1e−(M+α)z

= exp

(
−πt

2
+ (s− 1) log(2π(N + λ)) +

teiβ

4(N + λ)
− π

2
(M + α)eiβ +O(1)

)
,

and since

teiβ

4(N + λ)
− π

2
(M + α)eiβ =

2πxy − 2π([x] + α)([y] + λ)

4(N + λ)
eiβ = O(1)

we have

zs−1e−(M+α)z ≪ exp

(
−πt

2
+ (s− 1) log(2π(N + λ)) +O(1)

)
≪ Nσ−1e−πt/2.

Hence, the integral on the small semicircle can be evaluated as O(ησ−1e−πt/2). Therefore
together with (4.8), we have∫

C2

zs−1e−(M+α)z

ez−2πiλ − 1
dz ≪ ησt−1/2e−πt/2 + ησ−1e−πt/2. (3.15)

Now, evaluation of all the integrals was done. Using the results (3.11), (3.12), (3.13),
(3.15) and e2πi(λN−s/2)Γ(1− s) ≪ t1/2−σeπt/2, we see that the integral term of (3.10) is

≪ t1/2−σeπt/2{ησe−(π/2+B(c))t + ησt−1/2e−πt/2 + ησ−1eπt/2

+ησe−(π/2+A(c))t + e(c−5π/4)t}

≪ t1/2
(η
t

)σ
e−(A(c)+B(c))t +

(η
t

)σ
+ t−1/2

(η
t

)σ−1

+ t1/2−σe(c−3π/4)t

≪ e−δt + x−σ + t−1/2x1−σ ≪ x−σ,
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where δ is a small positive real number. Therefore we have

ζL(s, α, λ) =
∑

0≤n≤x

e2πinλ

(n+ α)s

+
Γ(1− s)

(2π)1−s

{
e{(1−s)/2−2αλ}πi

∑
0≤n≤y

e2πin(1−α)

(n+ λ)1−s

+e{−(1−s)/2+2α(1−λ)}πi
∑

0≤n≤y

e2πinα

(n+ 1− λ)1−s

}
+O(x−σ), (3.16)

that is, Theorem 3.2 in the case of x ≤ y has been proved.
To prove Theorem 3.2 in the case x ≥ y, we use the following functional equation of

the Lerch zeta-function;

ζL(s, α, λ) =
Γ(1− s)

(2π)1−s
{e{(1−s)/2−2αλ}πiζL(1− s, λ, 1− α)

+e{−(1−s)/2+2α(1−λ)}πiζL(1− s, 1− λ, α)}. (3.17)

Applying (3.16) to ζL(1 − s, λ, 1 − α) and ζL(1 − s, 1 − λ, α), and substitute these into
(3.17), we have

ζL(s, α, λ)

=
Γ(1− s)

(2π)1−s

[
e{(1−s)/2−2αλ}πi

{ ∑
0≤n≤x

e2πinλ

(n+ λ)1−s

+
Γ(s)

(2π)s

(
e{s/2−2λ(1−λ)}πi

∑
0≤n≤y

e2πin(1−λ)

(n+ 1− α)s
+ e{−s/2+2αλ}πi

∑
0≤n≤y

e2πinλ

(n+ α)s

)}

+e{−(1−s)/2+2α(1−λ)}πi

{ ∑
0≤n≤x

e2πinα

(n+ 1− λ)1−s

+
Γ(s)

(2π)s

(
e{(s/2−2(1−λ)α}πi

∑
0≤n≤y

e2πinλ

(n+ α)s

+e{−s/2+2(1−λ)(1−α)}πi
∑

0≤n≤y

e2πin(1−λ)

(n+ α)s

)}]
+O(Γ(σ − 1)(2π)−σ(eπt/2 + e−πt/2)xσ−1)

=
∑

0≤n≤y

e2πinλ

(n+ α)s
+

Γ(1− s)

(2π)1−s

{
e{(1−s)/2−2αλ}πi

∑
0≤n≤x

e2πin(1−α)

(n+ λ)1−s

+e{−(1−s)/2+2α(1−λ)}πi
∑

0≤n≤x

e2πinα

(n+ 1− λ)1−s

}
+O(t1/2−σxσ−1).
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Interchanging x and y, we obtain the theorem with x ≥ y. Combining this equation with
(3.16), we obtain the proof of (3.6).

The proof of (3.7) is similar. However, the four integral path C1, C2, C3 and C4 are
different from the proof of (3.6), that is, as follows; The straight lines C1, C2, C3, C4 joining
∞, cη+ iη(1+ c), −cη+ iη(1− c), −cη− (2L+1)πi, ∞, where c is an absolute constant,
0 < c ≤ 1/2. Also, in the proof for the case x ≥ y, we use the functional equation

ζH(s, α) =
Γ(1− s)

(2π)1−s
{e(1−s)πi/2ζL(1− s, 1, 1− α) + e−(1−s)πi/2ζL(1− s, 1, α)},

but this equation is not included in the functional equation (3.17). Noticing these points,
we can prove (3.7) by a similar method. This completes the proof of Theorem 3.2.

3.3 Proof of Theorem 3.3

In this section, using Theorem 3.2, we give the proof of Theorem 3.3.

Proof of Theorem 3.3. Let

x =
t

2π
√
log t

, y =
√
log t

and we assume t > 0 satisfies x ≥ 1 and y ≥ 1. Use the Stirling formula

Γ(1− s)e{(1−s)/2−2αλ}πi ≪ 1, Γ(1− s)e{−(1−s)/2−2α(1−λ)}πi ≪ 1.

Then if 0 < λ < 1, using (3.6) we have

ζL

(
1

2
+ it, α, λ

)
=
∑

0≤n≤x

e2πinλ

(n+ α)1/2+it

+O

( ∑
0≤n≤y

e2πin(1−α)

(n+ λ)1/2−it
+
∑

0≤n≤y

e2πinα

(n+ 1− λ)1/2−it

)
+O(t−1/2(log t)1/4) +O((log t)−1/4), (3.18)

and if λ = 1, using (3.7) we have

ζH

(
1

2
+ it, α

)
=
∑

0≤n≤x

1

(n+ α)1/2+it
+O

( ∑
1≤n≤y

e2πin(1−α)

n1/2−it
+
∑

1≤n≤y

e2πinα

n1/2−it

)
+O(t−1/2(log t)1/4) +O((log t)−1/4). (3.19)

(i) In the case 0 < λ < 1 and 0 < α < 1, since

∞∑
n=0

e2πin(1−α)

(n+ λ)1/2
,

∞∑
n=0

e2πinα

(n+ 1− λ)1/2

are convergent, and t−1/2(log t)1/4 = o(1), (log t)−1/4 = o(1), we have

ζL

(
1

2
+ it, α, λ

)
=
∑

0≤n≤x

e2πinλ

(n+ α)1/2+it
+O(1).
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(ii) In the case 0 < λ < 1 and α = 1, the second term on right-hand side of (3.6) is

≪
∫ y

0

1

(u+ λ)1/2
du = O(

√
y) = O((log t)1/4),

so we have

ζL

(
1

2
+ it, 1, λ

)
=
∑

1≤n≤x

e2πinλ

n1/2+it
+O((log t)1/4).

(iii) In the case λ = 1 and 0 < α < 1, consider similarly as in the case of (i) to obtain

ζL

(
1

2
+ it, α, 1

)
=
∑

0≤n≤x

1

(n+ α)1/2+it
+O(1).

(iv) In the case λ = 1 and α = 1, since ζL(s, 1, 1) = ζ(s) we obtain

ζL

(
1

2
+ it, 1, 1

)
=
∑

1≤n≤x

1

n1/2+it
+O((log t)1/4)

(see Chap. VII in [27]).

Let

Σ(α, λ) =
∑

0≤n≤x

e2πinλ

(n+ α)1/2+it
,

and calculate as

|Σ(α, λ)|2 =
∑∑
0≤m,n≤x

e2πi(m−n)λ

(m+ α)1/2(n+ α)1/2

(
n+ α

m+ α

)it

=
∑

0≤n≤x

1

n+ α
+
∑∑
0≤m,n≤x

m̸=n

e2πi(m−n)λ

(m+ α)1/2(n+ α)1/2

(
n+ α

m+ α

)it

.

Also T1 = T1(m,n) is a function in m,n satisfying

max{m,n} =
T1

2π
√
log T1

.

Let X = T/2π
√
log T , then∫ T

1

|Σ(α, λ)|2dt =
∑

0≤n≤X

1

n+ α
{T − T1(n, n)}

+O

(∑∑
0≤m<n≤X

e2πi(m−n)λ

(m+ α)1/2(n+ α)1/2

(
log

n+ α

m+ α

)−1
)
. (3.20)

Here, since

n
√

log n =
T1

2π
√
log T1

(
log

T1

2π
√
log T1

)1/2

∼ 1

2π
T1(n, n)
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and ∑∑
0≤m<n≤X

e2πi(m−n)λ

(m+ α)1/2(n+ α)1/2

(
log

n+ α

m+ α

)−1

≪ X logX ≪ T (log T )1/2

(see Lemma 3 in [8] or Lemma 2.6 in [13]), (3.20) can be rewritten as∫ T

1

|Σ(α, λ)|2dt = T log
T

2π
+O(T (log T )1/2). (3.21)

Therefore from (i), (ii), (iii), (iv) and (3.21) , and the Cauchy-Schwarz inequality, we
obtain ∫ T

1

∣∣∣∣ζL(1

2
+ it, α, λ

)∣∣∣∣2 dt
=

∫ T

1

|Σ(α, λ)|2dt+

{
O(T 1/2(log T )1/4)) +O(T ) (0 < α < 1),

O(T (log T )3/4) +O(T (log T )1/2) (α = 1)

= T log
T

2π
+

{
O(T (log T )1/2) (0 < α < 1),

O(T (log T )3/4) (α = 1).

Thus we obtain the proof of Theorem 3.3.
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4 Approximate functional equations for the Barnes

double zeta-function

In this section, we give result on the approximate functional equations for the Barnes
double zeta-function (2.1).

4.1 Statement of results

Let s = σ + it be a complex variable, and let α > 0 and v, w > 0 are real parameters.
We prove an analogue of the approximate functional equation (3.3) for (2.1) (in Theo-

rem 4.1). In the following theorem, the results are different when the complex parameters
v, w are linearly independent, are different from the results when v, w are linearly depen-
dent over Q.

Theorem 4.1. Suppose that 0 ≤ σ ≤ 2, x = x(t) ≥ 1, y = y(t) ≥ x(t) and 2πxy = |t|. Let
L,M,N are non-negative integer as satisfying N = [x/(v + w)] and max {L/v, M/w} <
y < min {(L+ 1)/v, (M + 1)/w}.

(i) If v, w are linearly independent over Q;

ζ2(s, α; v, w)

=
∑∑
0≤m,n≤N

1

(α + vm+ wn)s
+

1

ws

N∑
m=0

ζ∗H(s, αv,m) +
1

vs

N∑
n=0

ζ∗H(s, αw,n)

− Γ(1− s)

(2πi)1−seπis

 1

vs

∑
0<|n|<L

e−2πin(α+wN)/v

(e2πinw/v − 1)n1−s
+

1

ws

∑
0<|n|<M

e−2πin(α+vN)/w

(e2πinv/w − 1)n1−s


+O(x−σ) (4.1)

(ii) If v, w are linearly dependent over Q, exist p, q ∈ N such as pv = qw and (p, q) = 1.
Then we have

ζ2(s, α; v, w)

=
∑∑
0≤m,n≤N

1

(α + vm+ wn)s
+

1

ws

N∑
m=0

ζ∗H(s, αv,m) +
1

vs

N∑
n=0

ζ∗H(s, αw,n)

− Γ(1− s)

(2πi)1−seπis


1

vs

∑
0<|n|<L

q |/ n

e−2πin(α+wN)/v

(e2πinw/v − 1)n1−s
+

1

ws

∑
0<|n|<M

p |/n

e−2πin(α+vN)/w

(e2πinv/w − 1)n1−s


−2πi

∑
0<|n|<M

{
q

pv2
(s− 1)e−2qπinα/v

(
2qπin

v

)s−2

−
(
αq

pv2
+
qN

pv
+
N

v
+

2pq − p− q

2v
− p+ 2q

2v2

)
e−2qπinα/v

(
2qπin

v

)s−1
}

+O(x−σ), (4.2)
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where

ζ∗H(s, αv,m) := ζH(s, αv,m)−
N+nv,m∑

n=0

1

(n+ αv,m)s
,

αv,m :=

{{
vm+α

w

} (
vm+α

w
/∈ N
)
,

1
(
vm+α

w
∈ N

)
,

nv,m :=

{[
vm+α

w

]
− 1

(
vm+α

w
≥ 1
)
,

0
(
0 < vm+α

w
< 1
)
.

The definitions of ζ∗H(s, αw,n) and αw,n are similar.

4.2 Proof of theorem 4.1

In this section, we give the proof of Theorem 4.1.

Proof of Theorem 4.1.
Let N ∈ N be sufficiently large. Then we consider

ζ2(s, α; v, w)

=
∞∑

m=0

∞∑
n=0

1

(α + vm+ wn)s

=

(
N∑

m=0

N∑
n=0

+
N∑

m=0

∞∑
n=N+1

+
∞∑

m=N+1

N∑
n=0

+
∞∑

m=N+1

∞∑
n=N+1

)
1

(α + vm+ wn)s
.

Transform the fourth term on the right hand-side of the above equation to the contour
integral to obtain

∞∑
m=N+1

∞∑
n=N+1

1

(α + vm+ wn)s
=

Γ(1− s)

2πieπis

∫
C

zs−1e−(α+vN+wN)z

(evz − 1)(ewz − 1)
dz (4.3)

where C is the contour integral path that comes from +∞ to ε along the real axis, then
continues along the circle of radius ε counter clockwise, and finally goes from ε to +∞.

Re
O

Let σ ≤ 2, t > 0 and 1 ≤ x < y, so that 1 ≤ x ≤
√
t/2π. Let L,M,N be non-negative

integers satisfying

N =

[
x

v + w

]
, max

{
L

v
,
M

w

}
< y < min

{
L+ 1

v
,
M + 1

w

}
,

and let η = 2πy. We deform the contour integral C to the straight lines C1, C2, C3, C4

joining ∞, cη + iη(1 + c),−cη + i(1 − c)η,−cη − (2L + 1)πi,∞ where c is an absolute
constant 0 < c ≤ 1/2.
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−cη + i(1− c)η

iη

cη + i(1 + c)η

Re

−cη − i(2L+ 1)

Im

O−cη

Next we consider the residue of the integrand of (4.3)

f(z) =
zs−1e−(α+vN+wN)z

(evz − 1)(ewz − 1)
.

(i) In the case when v, w are linear by independent on Q, f(z) has simple poles at

z =
2πin

v
,
2πin

w
(n = ±1, ±2, · · · ).

Also, we assume v ∈ Q, then

lim
z→2πin/v

(
z − 2πin

v

)
f(z) = lim

z→2πin/v

(
z − 2πin

v

)
zs−1e−(α+vN+wN)z

(evz − 1)(ewz − 1)

= lim
z→2πin/v

(
evz − e2πin

z − 2πin/v

)−1
zs−1e−(α+vN+wN)z

ewz − 1

=
1

v

(
2πin

v

)s−1
e−(α+wN)2πin/v

e2πinw/v − 1
,

therefore, we have

Res
z=2πin/v

f(z) =
1

v

(
2πin

v

)s−1
e−(α+wN)2πin/v

e2πinw/v − 1

=

{
e−2πinα(2πn)s−1eπ(s−1)/2 (n > 0)

e2πinα(−2πn)s−1e3π(s−1)/2 (n < 0)
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and we obtain

ζ2(s, α; v, w)

=
∑∑
0≤m,n≤N

1

(α + vm+ wn)s
+

1

ws

N∑
m=0

ζ∗H(s, αv,m) +
1

vs

N∑
n=0

ζ∗H(s, αw,n)

− Γ(1− s)

(2πi)1−seπis

 1

vs

∑
0<|n|≤L

e2πin(α+wN)/v

(e2πinw/v−1)n1−s
+

1

ws

∑
0<|n|≤M

e−2piin(α+vN)/w

(e2πinv/w−1)n1−s


+

1

Γ(s)(e2πis − 1)

(∫
C1

+

∫
C2

+

∫
C3

+

∫
C4

)
zs−1e−(α+vN+wN)z

(evz − 1)(ewz − 1)
dz. (4.4)

From here, we consider the order of the integral term on the right-hand side of
(4.10). First, we consider it on the integral path C4. Let z = u + iu′ = reiθ then
|zs−1| = rσ−1e−tθ. Since θ ≤ (5/4)π, r ≍ u, |evz − 1| ≫ 1 and |ewz − 1| ≫ 1 we have∫

C4

f(z)dz =

∫
C4

zs−1e−(α+vN+wN)z

(evz − 1)(ewz − 1)
dz

≪ e−(5/4)πt

∫ ∞

−cη

uσ−1e−(α+vN+wN)udu

≪ e−(5/4)πt(η−σ + η−σecη)

≪ e−(5/4)πt(α + vN + wN)−σ(1 + ecη)

≪ e−(5/4)πt(α + vN + wN)−σecη

≪ x−σecη−(5/4)πt ≪ x−σe(c−(5/4)π)t (4.5)

Secondly, we consider the order of the integral on C3 of (4.10). Noticing

arctanφ =

∫ φ

0

dµ

1 + µ2
>

∫ φ

0

dµ

(1 + µ)2
=

φ

1 + φ
,

at φ > 0, we have

θ = arg z =
π

2
+ arctan

c

1− c
=
π

2
+ c+ A(c)

on C3, where A(c) is a constant depending on c. Then we have

|zs−1e−(α+vN+wN)z| ≪ ησ−1e−(π/2+c+A(c))te(α+vN+wN)cη

≪ ησ−1e−(π/2+A(c))t.

Also, since |evz − 1| ≫ 1, |ewz − 1| ≫ 1 we have∫
C3

f(z)dz =

∫
C3

zs−1e−(α+vN+wN)z

(evz − 1)(ewz − 1)
dz

≪
∫ η

−η

ησ−1e−(π/2+A(c))tdz ≪ ησe−(π/2+A(c))t (4.6)
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Thirdly, since |evz − 1| ≫ evu and |ewz − 1| ≫ ewu on C1, we have

zs−1e−(α+vN+wN)z

(evz − 1)(ewz − 1)

≪ ησ−1 exp

(
−t arctan (1 + c)η

u
− (α + (N + 1)(v + w))u

)
.

Since N + 1 ≥ x/(v + w) = t/(v + w)η are included in the fractional part of the
right hand-side of the above −(α + (N + 1)(v + w))u may be replaced with tu/η.
Also, since

d

du

(
arctan

(1 + c)η

u
+
u

η

)
= − (1 + c)η

u2 + (1 + c)2η2
+

1

η
> 0

and

arctanφ =

∫ φ

0

dµ

1 + µ2
<

∫ φ

0

dµ = φ,

we have

arctan
(1 + c)η

u
+
u

η
≥ arctan

1 + c

c
+ c =

π

2
− arctan

c

1 + c
+ c

>
π

2
+B(c)

in u ≤ πη, and let B(c) = c2/(1 + c)2. Then we have

zs−1e−(α+vN+wN)z

(evz − 1)(ewz − 1)
≪ ησ−1 exp

(
−
(π
2
+B(c)

)
t
)
.

Also,
zs−1e−(α+vN+wN)z

(evz − 1)(ewz − 1)
≪ ησ−1 exp (−(α + vx+ wx)u)

in u ≥ πη. Therefore, we obtain∫
C1

zs−1e−(α+vN+wN)z

(evz − 1)(ewz − 1)
dz

≪ ησ−1

{∫ πη

cη

e−(π/2+B(c))tdu+

∫ ∞

πη

e−(α+vx+wx)udu

}
≪ ησe−(π/2+B(c))t + ησ−1e−(α+vx+wx)πη

≪ ησe−(π/2+B(c))t. (4.7)

Finally, we describe the integral evaluation on C2. Since, it can be rewritten that
z = iη + ξeπi/4 (where ξ ∈ R and |ξ| ≤

√
2cη ),we have

zs−1 = exp
{
(s− 1)

(π
2
+ log (η + ξe−πi/4)

)}
= exp

{
(s− 1)

(
π

2
+ log η +

ξ

η
e−πi/4 − ξ2

2η2
e−πi/2 +O

(
ξ3

η3

))}
≪ ησ−1 exp

{(
−π
2
+

ξ√
2η

− ξ2

2η2
+O

(
ξ3

η3

))
t

}
(ξ → ∞).
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as η → ∞. Also, since

e−(α+vN+wN)z

(evz − 1)(ewz − 1)
=

e−(α+vN+wN)z+(α+vx+wx)z

(evz − 1)(ewz − 1)
· e−(α+vx+wx)z

=
e(v+w)(x−N)z

(evz − 1)(ewz − 1)
· e−(α+vx+wx)z

and

e(v+w)(x−N)z

(evz − 1)(ewz − 1)
≪

e
(v+w)(x−N−1)u

(
u >

π

2

)
e(v+w)(x−N−1)u

(
u < −π

2

)
,

we have
e(v+w)(x−N)z

(evz − 1)(ewz − 1)
≪ |e−(α+vx+wx)ξ/

√
2|

(
|u| > π

2

)
.

Hence ∫
C2∩{z | |u|>π/2}

zs−1e−(α+vN+wN)z

(evz − 1)(ewz − 1)
dz

≪ ησ−1e−πt/2

∫ √
2cη

−
√
2cη

exp

{(
ξ√
2η

(1− v − w)− ξ2

2η2
+O

(
ξ3

η3

))
t

}
dξ

≪ ησ−1e−πt/2

∫ ∞

−∞
exp

{
−D(c)ξ2t

η2

}
dξ

≪ ησt−1/2eπt/2, (4.8)

where D(c) is a constant depending on c. The argument can also be applied to
the part |u| ≤ π/2 if |ez−2πiλ| > A. If not, that is the case when the contour goes
too near to the pole at z = 2Lπi/v (or 2Mπi/w), we take an arc of the circle
|z − 2Lπi/v| = ε (or |z − 2Mπi/w| = ε) . On this arc we can write

z =
2Lπi

v
+ εeiβ or z =

2Mπi

w
+ εeiβ,

where ε is a positive real number less than the distance between any two poles, that
is,

0 < ε < min
k,l

{∣∣∣∣2kπiv − 2lπi

w

∣∣∣∣ ∣∣∣∣ 0 < 2kπ

v
,
2lπ

w
< η

}
.

Then,

log (zs−1) = (s− 1) log

(
2Lπi

v
+ εeiβ

)
= (s− 1) log eπi/2

(
2Lπ

v
+
εeiβ

i

)
= (σ + it− 1)

{
πi

2
+ log

2Lπ

v
+ log

(
1 +

vεeiβ

2Lπi

)}
= −πt

2
+ (s− 1) log

2Lπ

v
+
vεeiβ

2Lπi
+O(1).
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On the last line of the above calculations, we used N2 ≫ t which follows from the
assumption x ≤ y. Then

zs−1e−(α+vN+wN)z

= exp

(
−πt

2
+ (s− 1) log

2Lπ

v
+
vεeiβ

2Lπi
+O(1)

)
× exp

(
−(α + vN + wN)

(
2Lπ

v
+ εeiβ

))
= exp

(
−πt

2
+ (s− 1) log

2Lπ

v
+

(
vt

2πL
− (α + vN + wN)

)
εeiβ +O(1)

)
,

and since (
vt

2πL
− (α+ vN + wN)

)
εeiβ

=
vt− (α+ vN + wN)2πL

2πL
εeiβ

=
2πxyv − 2απL− (v + w)[x/(v + w)]2πL

2πL
εeiβ

= −αεeiβ + 2πxyv − (v + w)[x/(v + w)]2πL

2πL
εeiβ

≍ −αεeiβ + 2πxyv − 2π(v + w)[x/(v + w)]y

2πL
εeiβ = O(1)

we have

zs−1e−(α+vN+wN)z = exp

(
−πt

2
+ (s− 1) log

2Lπ

v
+O(1)

)
≪

(
L

v

)σ−1

e−πt/2 = O(ησ−1e−πt/2).

In the case when the path is running around the pole z = 2kπi/w + εeiβ, use a
similar method to obtain

zs−1e−(α+vN+wN)z = O(ησ−1e−πt/2).

Therefore together with (4.8), we have∫
C2

zs−1e−(α+vN+wN)z

(evz − 1)(ewz − 1)
dz ≪ ησt−1/2e−πt/2 + ησ−1e−πt/2. (4.9)

Since, the evaluation of all integrals was obtained, using the evaluation formulas
(4.5), (4.6), (4.7), (4.9) and Γ(1 − s) ≪ t1/2−σeπt/2, we find that the evaluation of
the integral term of (4.10) is

≪ t1/2−σeπt/2{ησe−(π/2+B(c))t + ησt−1/2e−πt/2 + ησ−1eπt/2

+ησet(π/2+A(c)) + x−σe(c−5π/4)t}

≪ t1/2
(η
t

)σ
e−(A(c)+B(c))t +

(η
t

)σ
+ t−1/2

(η
t

)σ−1

+ t1/2−σx−σe(c−5π/4)t

≪ e−δt + x−σ + t−1/2x1−σ ≪ x−σ,

where δ is a small positive real number. Therefore we obtain (4.1).
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(ii) In the case when v, w are linear dependent on Q, that is, there exist p, q ∈ N such
that pv = qw and (p, q) = 1, f(z) has simple poles at

z =
2πin

v
(n ∈ Z \ {0}, q |/n), 2πin

w
(n ∈ Z \ {0}, p |/n).

On the other hand here for w = pv/q,

lim
z→2qπin/v

d

dz

{(
z − 2qπin

v

)2
zs−1e−(α+vN+pvN/q)z

(evz − 1)(epvz/q − 1)

}

= lim
z0→0

d

dz0

{
z20

(
z0 +

2qπin

v

)s−1
e−(α+vN+pvN/q)z0e2qπinα/v

(evz0 − 1)(epvz0/q − 1)

}

= lim
z0→0

d

dz0

z20
(
z0 +

2qπin

v

)s−1
e−(α+vN+pvN/q)z0e2qπinα/v(

vz0 +
v2

2!
z20 +O(z20)

)(
pv
q
z0 +

1
2!

(
pv
q

)2
z20 +O(z20)

)


=
q

pv2
(s− 1)e−2qπinα/v

(
2qπin

v

)s−2

−
(
αq

pv2
+
qN

pv
+
N

v
+

2pq − p− q

2v
− p+ 2q

2v2

)
e−2qπinα/v

(
2qπin

v

)s−1

.

Therefore f(z) has double poles at

z =
2πiqk

v
=

2πipk

w
(k ∈ Z \ {0}).

Then, we calculate the following residue sum;∑
0<|n|≤M

Resf(z) =
∑

0<|n|≤L

q |/n

Res
z=2πin/v

f(z) +
∑

0<|n|≤K

p |/ n

Res
z=2πin/w

f(z)

+
∑

0<|n|≤K

Res
z=2πiqn/v

f(z).

We have

Res
z=2πin/v

f(z) =
1

v

(
2πin

v

)s−1
e−(α+wN)2πin/v

e2πinw/v − 1

=

{
e−2πinα(2πn)s−1eπ(s−1)/2 (n > 0)

e2πinα(−2πn)s−1e3π(s−1)/2 (n < 0)

Res
z=2πiqn/v

f(z) =
q

pv2
(s− 1)e−2qπinα/v

(
2qπin

v

)s−2

−
(
αq

pv2
+
qN

pv
+
N

v
+

2pq − p− q

2v
− p+ 2q

2v2

)
e−2qπinα/v

(
2qπin

v

)s−1
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and we obtain

ζ2(s, α; v, w)

=
∑∑
0≤m,n≤N

1

(α + vm+ wn)s
+

1

ws

N∑
m=0

ζ∗H(s, αv,m) +
1

vs

N∑
n=0

ζ∗H(s, αw,n)

− Γ(1− s)

(2πi)1−seπis


1

vs

∑
0<|n|<L

q |/ n

e−2πin(α+wN)/v

(e2πinw/v − 1)n1−s
+

1

ws

∑
0<|n|<M

p |/ n

e−2πin(α+vN)/w

(e2πinv/w − 1)n1−s


−2πi

∑
0<|n|<M

{
q

pv2
(s− 1)e−2qπinα/v

(
2qπin

v

)s−2

−
(
αq

pv2
+
qN

pv
+
N

v
+

2pq − p− q

2v
− p+ 2q

2v2

)
e−2qπinα/v

(
2qπin

v

)s−1
}

+
1

Γ(s)(e2πis − 1)

(∫
C1

+

∫
C2

+

∫
C3

+

∫
C4

)
zs−1e−(α+vN+wN)z

(evz − 1)(ewz − 1)
dz.

Furthermore, four integrals in the last term of the above are evaluated to lead the
same result by the similar method as in (i).

Hence the proof of Theorem 4.1 is complete.
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[13] A. Laurinčikas, R. Garunkštis, The Lerch zeta-function, Kluwer Academic Pub-
lishers, Dordrecht, 2002.

[14] K. Matsumoto, The mean square of the Riemann zeta-function in the critical strip,
Japan J. Math. Vol 15, No. 1(1989), pp. 1-13.

[15] K. Matsumoto, On analytic continuation of various multiple zeta-functions, Num-
ber Theory for the Millenium (Urbana, 2000), Vol. 11, M. A. Bennett et. al. (eds.),
A. K. Peters, Natick, MA, 2002, pp. 417-440.

[16] K. Matsumoto, Asymptotic expansions of double zeta-functions of Barnes, of Shin-
tani, and Eisenstein series, Nagoya Math. J., 172, 2003, 59-102.

[17] K. Matsumoto, On Mordell-Tornheim and other multiple zeta-functions, in ”Pro-
ceedings of the Session in Analytic Number Theory and Diophantine Equations”,
D. R. Heath-Brown and B. Z. Moroz (eds.), Bonner Math. Schriften Nr. 360, Univ.
Bonn, 2003, n. 25, 17pp.

[18] K. Matsumoto, T. Meurman, The mean square of the Riemann zeta-functions
in the critical strip II, Acta Arithmetica LXVIII (1994), 369-382.

[19] K. Matsumoto, T. Meurman, The mean square of the Riemann zeta-functions
in the critical strip III, Acta Arithmetica LXIV. 4(1993), 357-382.

[20] K.Matsumoto and Y.Tanigawa, The analytic continuation and the order esti-
mate of multiple Dirichlet series, J. Théorie des Nombres de Bordeaux 15 (2003),
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