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Abstract

Localization is one of the vital parts of any robotic systems, along with motion plan-
ner. Currently established motion planners work in the metric search space, which in turn
necessitate the localization to be metric-based. In autonomous vehicle research commu-
nity, this requirement is fulfilled by LiDAR-based systems that are bulky and expensive.
An alternative to LiIDAR systems is visible—spectrum camera, with advantages in cost,
power consumption and size. However, vision-based localization systems are not able
to work with motion planners due to scale ambiguities that are inherent in the solution
of Structure—from—Motion in monocular case, and cannot be avoided. Vision-based sys-
tems also suffer from reliability problems in the long run from variability in environment
lighting.

This research addresses these two problems and presents testing results in two dif-
ferent situations: mobile robots in pedestrian environment and an autonomous car in
an urban setting. The proposed solutions are developed from the concept of separation
between mapping and localization processes. This separation enables utilization of ad-
vanced sensors in mapping phase but maintains use of low-cost sensors for localization. To
measure effectiveness of this system, two performance measurements are defined: accu-
racy of estimated positions as the deviation from ground truth measured by LiDAR-based
localization in metric, and coverage (percentage of the track that could be covered by
visual localization alone)

To solve scale ambiguities and provide metric workspace, visual maps are created
separately by recording actual positions of the camera in real-world by employing external
localization from a LiDAR-based system, which is also used to measure ground truth.
These visual maps can be utilized to provide metric pose with only using a monocular
camera by scaling of true positions of map keyframes. By working in metric space, it
is also possible to combine results from vision-based localization with odometry data to
cover situations where camera tracking is lost by an implementation of a particle filter.
In order to improve the reliability of visual localization in long run, this research also
proposed automatic gamma control and custom vocabulary for each scene.

Testing in pedestrian environment addressed two issues: performance of the visual
localization system in real-world setting and reliability for long-term localization. In
general, average errors of visual localization in pedestrian settings tend to be low (under
1 meter) but some error spikes larger than 3 meters had been measured. Coverage in
the pedestrian environment was also good (approaching 99 %), especially after applying
automatic gamma control. Meanwhile, testing in urban road settings with higher velocity

revealed lower coverage than pedestrian settings which corresponds to the inability of the
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place recognition system to keep pace with vehicle movement. This testing also shows
higher errors compared to the pedestrian setting. However, these errors were measured
to be lower than GPS system.

These results provide proof that autonomous vehicle navigation using vision sensors
and other inexpensive sensors is possible. The key ingredients are precise visual metric

maps created by third parties equipped with a camera and accurate localization sensors.
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Chapter 1
Introduction

Since the DARPA Grand and Urban Challenges were held [1, 2], public has begun to
realize the possibilities of autonomous vehicles. Automation techniques, which were pre-
viously only known in robotic research communities, are now closely within grasp for
public consumption in the street. The most often cited benefits of vehicle automation
are reduced accident rates, increased traffic flows and fuel efficiency, and possibilities for
performing other tasks inside the car [3].

One of the vital tasks for robots and autonomous cars is localization as part of greater
scopes of navigation [4]. The localization problem is defined as finding current robot
position in order to determine the way it should be going. Therefore, the localization
problem has a close relationship with cognition (deciding how to reach the goal) and
motion control (modulating motive powers to achieve the desired trajectory). In order
for navigation to work, it is important for these three parts to use same metric space’
with centimeter-level accuracy.

The current state-of-the-art for localization solution is by using LiDAR as shown
by Google [5]. However, this solution incurs high cost in part of manufacturers; not to
mention its bulk and power requirement. Therefore it is desirable to have low-cost sensors
for localization with similar capability for integration with existing motion planning and
control systems.

This research proposes a vision-based localization system with a capability for inte-
gration with existing motion planners inside metric space (Figure 1.1). The main concept
of this system is the principle of separate mapping and localization process, similar to
most LiDAR-based systems explained in [6]. Separate mapping and localization process
will allow system builders to employ high-end sensors to build the maps but kept using
camera-only in the localization, as required for consumer-level devices.

In addition to cost and size, another benefit of visual localization in technical level

!Topological space, at which distances are not defined, is used in some combined vision-based local-
ization and motion control systems.
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Figure 1.1: Determining vehicle localization using only a monocular camera (right) in
metric space allows integration with motion planners and existing infrastructure maps

(left).

is its capability to perform global localization by using built-in place recognition. This
term refers to robot capability to initialize position without any other aids, something
that previously can only be performed by GPS. Meanwhile, a camera does not suffer
from signal disturbances as much as satellite-based systems may have. Therefore, vision
systems have potential as location initializer for LIDAR-based localization instead of GPS
as currently practiced.

Obviously, the visual localization system still has drawbacks, which are also identified
in this research. Most important one is its sensitivity to environmental changes such
as lighting and occlusions. Therefore, we also proposed some changes in localization
workflow that attempts to address this shortcoming. These changes become important,

especially for longer time intervals between mapping and localization.

1.1 Problem Statements

The main objective of this research is to develop monocular vision-based localization
system in metric space for autonomous vehicles that can be integrated to currently de-
veloped motion planners. In order to accomplish this task, we start from existing visual
SLAM methods and add a capability to estimate metric positioning. Obviously, this
metric positioning is not achieved solely by using vision but using multiple sensor modes.

In addition to solving the visual-metric problem, reliability problems could also ham-
per system deployments in consumer vehicles. Therefore, these problems must be iden-
tified in a safe environment (i.e. not vehicle in urban settings). Therefore, system tests
must be performed using mobile robots in a pedestrian environment. The annual Tsukuba
Challenge gives excellent opportunities for this pedestrian environment. Having multiple
years data from similar location also provide an opportunity to develop capabilities for

lifelong localization, which will be useful in urban settings.
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Figure 1.2: System Concept

Lastly, real tests in urban settings are conducted to identify problems in visual local-
ization system under development. In this regard, we would like to evaluate performance
in terms of coverage/availability and accuracy in metric. In addition, we need a compar-

ison with GPS as a major sensor type currently installed in consumer vehicles.

1.2 Contributions

The main contribution of this research is a monocular vision-based localization system
for consumer-grade autonomous vehicles. To realize this system, the concept of separate
mapping and localization process are introduced, as shown in Figure 1.2. This concept

is further broken down into three parts.

1. Solution to monocular vision-based localization in metric space using
augmented maps. As shown in Figure 1.2, the localization system separates
mapping and localization phase. Maps for localization are built using visual infor-
mation from a monocular camera and augmented with accurate external localization
system. This augmentation is used to convert camera coordinate from visual space
into metric one that is suitable for motion planners in localization phase. It must
be emphasized that this external localization is only used for mapping but not for
localization. By working in metric space, it is possible to combine results from our
method with other metric sensors such as odometry and GNSS. In this research,
the visual localization system is expanded to utilize multiple maps with a single

camera and fuse them with odometry using simple particle filter in 2D space.

2. Identification and solutions for reliability problems in lifelong visual lo-
calization system. After solving scale problem, the next problem to be tackled
is reliability problem, which generally consists of low availability and inaccurate

results. Solutions for reliability problems are separated into three parts:
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(a) Utilization of custom vocabulary of the particular scene in order to increase

place recognition performance and improve localization availability.

(b) Automatic gamma control for adjusting image appearance during high contrast

situations.

(c¢) Expanded policies of keyframe search in order to accelerate relocalization after

lost events.

3. Experimental results of the method in two different settings in the real
environment: mobile robots in pedestrian environment and a passenger
car in urban roads. Pedestrian environment testings were performed in both
Tsukuba Challenge 2015 and 2016. The 2015 test was intended as a proof-of-
concept for our scale correction and sensor fusion methods. The 2016 test was
aimed at improving availability and accuracy of our method while investigating the
possibility for long-life localization operations. Meanwhile, the urban road test was
performed with a similar method with 2015 test using a faster passenger vehicle

and aimed to find problems in high-speed operation.

1.3 Thesis Structure

This thesis is divided into six chapters. In Chapter 1, research background and contribu-
tions are stated. Next, Chapter 2 describes general issues of localization for autonomous
vehicles and followed by specific issues of vision-based localization.

In Chapter 3, solution for visual localization using a monocular camera in metric
space are described. Also, sensor fusion and utilization of multiple maps are described in
detail here, along with testing in 2015 Tsukuba Challenge.

Following the first Tsukuba Challenge results, improvements of our method are de-
scribed in Chapter 4. The listed improvements are the utilization of custom vocabulary
of the particular scene, automatic gamma control and expanded relocalization policies.
This chapter also features results of testing of lifelong localization, whereby one-year-old
map data are leveraged for the same location.

Testing of our visual localization method in public road environment is described
in Chapter 5, using mostly the same method from Chapter 3. Various situations for
mapping and localization are described in here, along with accuracy comparison with a
GNSS-based localization system.

Finally, conclusions of this research are listed in Chapter 6 along with directions of

future works.



Chapter 2
Literature Studies

In the robotics and autonomous vehicle literatures [7, 8, 9|, navigation usually has three

principal components:
1. To accurately determine position and velocity
2. To plan and execute necessary motions towards its destination
3. To detect and avoid dynamic obstacles along the path

The first and last components are necessary to achieve the second one accurately and
safely. However, the second component is usually restricted to motion planning domain
while the last one is for collision avoidance domain. For the rest of this work, navigation
and localization will be used interchangeably.

In this thesis, the term SLAM (Simultaneous Localization and Mapping) will be
broadly mentioned. As the name suggests, the SLAM problem consists of estimating
position of the robot while incrementally constructing a map of the environment around
it in motion [10]. Therefore the results of SLAM solutions will be used as ingredients for
map-based localization systems; this is reflected in Figure 1.2. However, this thesis also

discusses map-less localization systems, eg. dead reckoning and GNSS.

2.1 Representing Position and Orientation

The objective of robot localization system is to provide position and orientation (pose)
of the robot. Before stepping further, this section formalizes general representation of
position and orientation for next sections. As a convention, this thesis uses right-handed
Cartesian coordinate system [7, 11].

In 3D space, the position of a robot is stated as a translation from a fixed point
and represented numerically as t = (¢,,t,,t,). Orientation of the robot is described as

rotations along its three fixed axes (roll, pitch, and yaw). Therefore, pose of a robot has

>
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B(z+v,t,y+vut)

B(:c+ﬁ/t,y+v~(/t)

Figure 2.1: Dead Reckoning Principle

six degrees of freedom. However, calculations using rotation angles are prone to gimbal
lock (loss of one degree of freedom). A popular solution to store orientation is by using
quaternion q = (¢s, ¢y, =, ¢w) Where g, ,, are real numbers, and convert it to rotation

matrix Rsys [11].

2.2 Non-Visual Localization Methods

This section briefly explains some methods to determine robot positions using methods
other than visible electromagnetic waves. Dead reckoning and GNSS are two methods
that do not require stored maps, while LiDAR localization is based on previously created

maps.

2.2.1 Dead Reckoning

Dead reckoning is the oldest method of navigation known by human, having been prac-
tised for millennia in maritime areas and remains widely used as a backup for radio
navigation [9]. It refers to a process of calculating location based on estimated speed,
direction and time of travel with respect to a previously determined location (Figure 2.1).

The modern form of dead reckoning is INS (Inertial Navigation System), that employs
inertial sensors that measure linear and angular acceleration (accelerometer, gyroscope).
This system is completely self-contained and does not depend on external electromagnetic
waves. Therefore, INS is highly reliable but may accumulate significant drift over a long
time, primarily from instrumentation and environmental errors [9]. As shown in Figure
2.1, errors in velocity and attitude may cause localization errors.

In this research, the principle of dead reckoning is implemented by using data from
IMU (Inertial Measurement Unit) instruments that are embedded in the robotic platform
under use. These instruments supply 2D linear velocity and rate of rotation of the robot
or vehicle. The data are employed in the calculation of odometry inside particle filter

(Algorithm 3) to estimate robot position when visual localization is not available.
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Figure 2.2: Multipath Interference

2.2.2 Global Navigation Satellite System (GNSS)

A GNSS! receiver determines its position by measuring ranges between its antenna and a
set of satellites that transmit time signals at precisely known locations and then perform-
ing a trilateration algorithm to compute receiver’s position [12]. This constellation of
satellites circle the Earth approximately twice a day, and consists of 20 to 30 satellites in
geosynchronous orbits. Adequate position measurements require minimum four different
satellites; three for antenna positions in 3D space and one for solving internal clock bias.

Because of its dependency to transmitters, GNSS positioning suffers from signal dis-
turbances that may occur during its trip. The most prominent disturbance in urban
environments is multipath interference (Figure 2.2), caused by multiple reception of the
same satellite signal. This effect corrupts the propagation time for calculating ranges to
satellites by creating time-varying bias [13].

Currently, there are two solutions for solving general interference problems in GNSS:
Differential and Real-Time Kinematics (RTK). Differential GNSS systems leverage com-
plementary fixed networks of terrestrial transmitters in addition to satellite ones. RTK
GNSS basically use tracking of wave phase; however, this system is only appropriate for

static receivers.

2.2.3 LiDAR-Based Mapping and Localization

The LiDAR-based SLAM is a popular method for autonomous vehicle applications, and
is capable to provide highly accurate maps and localization. Basic LiDAR devices are
instruments that measure distances from transmitter to reflecting objects using laser [14].
To provide 3D measurements, multiple transmitters/detectors are stacked and rotated
around an axis to scan the space around the device at a rapid rate (usually 10 Hz).

LiDAR-based SLAM is explained first in [15], and works principally by searching for

!There are a number of GNSS implementations; the most famous one is Global Positioning System
(GPS) owned by US Government. Other equivalent systems are GLONASS of Russia and Quasi-Zenith
Satellite System (QZSS) of Japan.
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Figure 2.3: An Example of LiDAR Scan

transformation between two consecutive scans. However, this method is unable to directly
provide absolute positions within a given map as it is unable to do global map search. In
other words, LiDAR is unable to perform global localization? without assistance.

Figure 2.3 shows an example of 3D point cloud from single LIDAR scan out of Velodyne
HDL-64. In the figure, object features (walls, humans, poles) around device can be easily
identified, and all distances between them can be inferred in metric sense. Searching the
transformation (that means rotation and translation) between two scans is performed
using scan registration algorithms; the most commonly used methods are Iterative Closest
Points (ICP) [16] and Normal Distribution Transform (NDT) [17] with extension in [18].

2.3 Visual SLAM

Vision as the only sensor mode for mapping and localization has been studied extensively
in the last 10 years, starting from visual odometry by Nister et. al [19], PTAM [20], and
others [21, 22]. The main reasons for this direction are possibility to obtain range infor-
mation (after solving Structure-from-Motion problem) concurrently with environmental
information such as color and texture, thus giving the robot capability for integration
with other tasks such as object detection and recognition. Unlike previous sensors such
as laser scanners and GNSS, vision cameras are passive as they do not emit energies or
depend on transmitter networks, less expensive, lighter and consume less power. How-

ever, as we shall see, inferring range information from visual data will incur errors caused

2Global localization refers to a problem of determining the position of a robot within a map without
being given any prior estimate.
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by an intrinsic factor (scale ambiguity) and extrinsic factors: lighting variability, lack of

texture, motion blurs and others.

Previous solutions for visual navigation usually employ stereo camera rigs, as demon-
strated in [19]. This setup refers to multiple camera sensors and lenses that have partially
overlapped field of vision. The benefit of this system is that depth information of the
scene can be deduced using triangulation. However, this configuration has several draw-
backs: difficulty in multiple camera calibration and time synchronization between both
cameras. In addition, for larger distances the depth and scale information from stereo

cameras degenerate into similar case of monocular cameras ([22, 23]).

Most monocular vision-based SLAM methods rely on a 3D reconstruction based on
multiple views of a scene [24], which in turn is based on structure from motion (StM).
The SfM technique refers to the process of estimating 3D structures from 2D image
sequences while inferring motion of the camera. As stated in [25] and [26], all monocular
SfM methods inherit common scale ambiguities, i.e. the recovered 3D structures and
camera motion are defined up to an unknown scale factor which cannot be determined
from image streams alone. This is because, if the scene and cameras are scaled together,
this change will be indistinguishable in the captured images (Figure 2.11). This fact
results in difficulties to provide metric position of the camera, which is very important
for autonomous vehicle navigation and control. Overall flow of the visual SLAM process

is illustrated in Figure 2.4.

Depending on portions of pixels utilized for reconstruction, solutions for visual SLAM
are classified as either dense—type reconstruction or sparse—type reconstruction. Dense
reconstructions use all pixels of the image streams, with advantages of robustness against
image artifacts such as noise, blur and high-frequency textures (for example, trees and
asphalt). An example of this class of method is LSD-SLAM [22], whose an example result
is shown in Figure 2.5. However, drawbacks of using all pixels are high CPU time per
frame. In addition, relocalization accuracies have been observed to be lower than sparse

reconstructions when dynamic objects are present in the scene [27, 20].

On the other hand, sparse reconstructions only track and use a limited subset of
pixels, concentrating only on “features” of the image streams. These features come from
image pixels that are selected by salient feature detectors (Subsection 2.3.2). Examples of
this approach are PTAM [20] and ORB-SLAM |27], whose result is shown in Figure 2.10.
Compared to dense approach, sparse reconstructions generate relatively small pointclouds
that leads to lower computational cost. Other advantage from resulting sparse pointcloud
is that image query to keyframe list becomes feasible due to fewer feature points for
matching; this enables visual SLAM performs global localization using place recognition
(Subsection 2.3.5).



10 CHAPTER 2. LITERATURE STUDIES

. KeyFrames

Figure 2.4: General Visual SLAM Workflow

(a) Accumulated Pointcloud (b) Selected Keyframe with
Color-Coded Depth Map

Figure 2.5: An Example Result of LSD-SLAM
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Figure 2.6: A Model of Camera Obscura [28]

2.3.1 Digital Image Formation

3D reconstruction in visual SLAM is an inverse process of how 2D images in a camera
produced from 3D objects. In its simplest form, a digital camera can be represented by a
rectangular matrix of photodetectors (image sensors) and a lens for focusing lights. This
simple model, called camera obscura, is pictured in Figure 2.6. Image the from lens in the
back sensor is inverted, and straight image that user usually observes in screen actually
corresponds to the projection of the scene onto a hypothetical plane situated in front of
the camera at the same distance from the lens as the sensor. This distance is called focal
length of the camera.

Currently, the most widely used technologies for imaging sensors are CCD and CMOS.
There are some fundamental differences between these type of sensors, but their advan-
tages and disadvantages that are relevant in this work are highlighted in Table 2.1 [29, 30].
In this research, all the cameras are equipped with CCD sensors with consideration of
eliminating distortion, especially in high-velocity vehicles.

Image formation in camera follows projective transformation of 3D world onto 2D im-
age surface. Using this transformation, depth information is lost; thus it is impossible to
distinguish in the image between large objects in distant place or small ones in near place.
This transformation can be formulated as follows (Figure 2.7). For a point X(z,y, 2) in
3D world space, we would like to know its projection using camera C in the 2D image

plane as x(xs,ys). The camera is specified as 3 x 4 parameter matrix

Je s ¢ O
K=10 f, ¢ 0
0 0 1 0

where the values of (f,, f,) are focal lengths, (c,,c,) is coordinate of principal point in

image plane, and s is image plane skew. These values are usually known beforehand,

3As of January 2018, there were no CMOS-type digital cameras equipped with global shutter
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CCD \ CMOS ‘
Advantages
Advantages
1. Low cost and power due to
1. Resistance to image noise integration of various signal and
2. Global shutter: all rows in sensor can image processing blocks (ADC,
be captured simultaneously, therefore compression, etc.)
there is no object distortion in frame 2. Resistance to blooming and
smears
Disadvantages
Disadvantages

1. Low sensitivity

1. Vulnerability to blooming and smears 2. Must use rolling shutter, that
2. High cost and power causes distortion when moving
objects exist in frame?

Table 2.1: Comparison of CCD and CMOS Image Sensors

or calculated using camera calibration process. The camera pose in world coordinate is
C(R,t) where R is 3 x 3 camera rotation matrix and t = [z, y., z.] is camera coordinate

in world coordinate. Then, the projection x is calculated as

a
s

! R —Rt y
v =k 0 1 z
/ 1

Ty

Ty = —

/

Yyr

Ys = —

f

2.3.2 Image Features Extraction and Representation

The first step in SfM is the detection of distinct feature points in image frames. A “feature”
is defined as an interesting part of the image which will be used for subsequent analysis as
required ([31]). For example, one may wish to align two images to be seamlessly stitched
into a composite mosaic. Another relevant application for this research is for establishing
a dense set of correspondences so that 3D model may be constructed (such as shown in
Figure 2.8).

The desirable properties of feature detectors are low computational requirements,
robustness against changes in scale, viewpoints, illumination, and noise. Because feature

detectors are modeled after human visual stimuli, these detectors are usually classified
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Figure 2.7: Projective Transformation

Figure 2.8: Two similar images to be matched from same scene. In the right, the camera
experienced translational movement (taken from Oxford RobotCar Dataset [32]).
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into three groups [33]:

e (Corner, refers to the point at which two different edge directions occur in the local

neighborhood.

e Fdge, refers to pixels at which the image intensities change abruptly. Image pixels

are discontinuous at different sides of edges.

e Blob/Region, refers to distinct parts of images that are bounded by lines or curves

from different segmented regions

For the purpose of 3D structure recovery, the most widely used detectors are corner
detectors. Corner detectors are usually selected because of its robustness against camera
movements (translation and rotation). The gold-standard [34] for corner detectors is SIFT
(Scale-Invariant Feature Transform) described in [35], which is known to be invariant to
scale, rotation, and illumination changes (in smaller degrees). However, SIFT’s high
computational times and patent status make it difficult for applications in commercial
products.

In this thesis, the ORB feature detector and descriptor [36] is extensively used. This
detector is known to be invariant against scale and rotation, small storage requirements,
in addition to being fast. However, as described in [37|, this detector is not invariant
against illumination changes. Therefore, as reported in Chapter 4, the ORB feature
matching is subject to failure when facing high appearance changes.

The ORB consists of two parts: the FAST corner detector augmented with orientation
and scale, and BRIEF descriptor with rotation identifier. First, corners are detected by
using particular FAST patterns ([38]) to check for abrupt intensity changes between a
center pixel and those around it; usually the radius is fixed as 9 pixels. These corners
must be filtered using Harris corner measure to discard bogus responses along edges. To
make the corners scale-invariant, these FAST features are computed for all scale levels
of the image pyramid?*. Next, each FAST points are converted to BRIEF bit vector with
length 256 bits [39], and added with an angle indicator of increment 12°.

2.3.3 3D Structure Recovery from Motion

Being able to track image features from frame-to-frame, relative pose between two frames
and 3D point structures can be reconstructed (Figure 2.9). General workflow of SfM is
described as follows [40]. These processes only involve information from 2D points in

frames, so no external information (eg. odometry) is involved.

4Image pyramid is defined as representation of image that are down-resized multiple times
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Figure 2.9: General Structure-from-Motion (courtesy of OpenMVG)

1. Find matches of feature points between two frames. This process is specific to
image features being employed; for ORB features, matching is performed using
nearest neighbor search and bit set counting [41].

2. Compute the Fundamental Matrix F', that relates any pair of matching 2D feature

points x <— X in two images. The fundamental matrix is defined by equation
*"Fx=0

3. Camera pose (position and orientation) of current image frame relative to previous
one is derived from F' via essential matrix E. This pose is not unique, so one must
check the solutions by using reprojection errors. The relation of fundamental matrix
F and essential matrix F is®

E=K'"FK

4. Calculate 3D points using triangulation.

The result of an SfM session is usually stored as a map. This map minimally consists of
keyframes and reconstructed map points. However, for full utilization, this map usually

contains other data, such as:

e Each keyframe usually contains its position relative from mapping’s start point

(which usually fixed at the origin) and list of visible map points.
e Each map point usually stores feature descriptor and position in 3D space.

e Parent-child relationships between each keyframe (usually form a tree, with the first

keyframe (starting map point) as root.

An example of SfM session is shown in Figure 2.10. Here, estimated camera poses are

shown in blue rectangles, while computed 3D structure points (that resemble buildings)

°In this research, camera intrinsic parameters (K) is assumed to be constant.
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Figure 2.10: A Sample Result of Structure-from-Motion from ORB-SLAM

are drawn as red dots. It must be noted that the above workflow must be done using
calibrated camera; i.e. internal parameters (focal length, principal point and distortions)

have been known.

A major drawback of monocular SfM is that the scale of the reconstructed 3D point
is not known. This brings consequence that any information derived from them (most
prominently, camera pose) cannot be determined. Therefore, this method is not usable
directly in robot localization and motion control. The scale problem can be stated for-
mally as follows [40]. Let X; as set of points and two camera poses Q1 (R, t1), Q2( Rz, tz2).

Their camera matrices are defined, with K is camera calibration parameters, as

Pi =

0 1
Now let
'Rt
H —
I 0 A
and its inverse )
1

Hlo_ R" —1R"t

0 /5

as any similarity transform where R is camera rotation, t a translation and A~! represents
scaling. Replacing points X; by transformed HX; and cameras P, and P, by P,H ! and
P,H™! does not change the observed points, since PX; = (PH ')(HX;). This means
that camera translations can only be known as pt € R3, where direction of t is known but
p and its sign are not. In other words, camera coordinates and map points in 3D space

have scale ambiguities and their distances are not defined, thus not in metric space. As
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Figure 2.11: Reconstruction Ambiguity [40]

an example of this result, Figure 2.11 illustrates that resizing the cube and moving the
cameras do not change projections in the frame.

One possible solution for scale ambiguity is by using stereo camera rig. Here, depth
information of the objects is calculated by using triangulation. However, for large-distance
scales in open space, stereo camera rig degenerates into monocular case [22], further

reducing its usability.

2.3.4 Bundle Adjustment

In real-world cases, image measurements and reconstructed 3D coordinates will contain
noise. Bundle adjustment is defined as a process of refinement concerning estimated
camera, poses ]51(}?“ fi) and 3D map points Xj after 3D structure recovery described in
previous subsection. This problem is reduced to minimizing reprojection errors, measured
as distance from projection of projection Xj in all related camera poses P; to their 2D
position x/, or

mand (P, X;),x))

P X

This minimization problem is usually solved using Levenberg-Marquardt algorithm
(LMA). An example of open-source LMA implementation for solving bundle adjustment
and employed by ORB-SLAM is g2o [42].

2.3.5 Place Recognition

Visual place recognition is a vital component of visual SLAM. Its main task is to decide
whether or not a particular frame is already seen; usually, the system is equipped with a
visual map that may be subject to modification. In visual localization, the purposes of
place recognition are two-fold. First, it searches for initial position before visual tracking
part is performed. In this regard, place recognition serves as global localization, similar
to GNSS. Second, place recognition is executed when visual tracking is lost due to visual
disturbances (restart). Performing visual place recognition is challenging due to many
factors: severe change of appearances (see Figure 4.8 for example), perceptual aliasing
(multiple places may look very similar), and viewpoints discrepancies of visited places.

This research employs bag-of-words method [43] for place recognition, which is based
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on a database of image feature descriptors. The database is composed of two parts:
vocabulary tree built from a collection of image feature descriptors (“words”) and direct
and inverted indices. Basically, the vocabulary is a list of image features arranged into
a tree data structure similar to Huffman tree. In ORB-SLAM, the implementation of
image database leverages pre-made generic vocabulary tree from an unspecified dataset.
This research proposes a custom—made vocabulary tree for any particular place instead

of generic one, and described in Chapter 4.

2.3.6 Visual-Inertial Navigation

One method to recover correct camera poses in metric space is by associating keyframes
with external references [26]. This approach combines 3D structure-from-motion of the
camera and relative pose from metric positioning such as IMU [44, 45]. Because of
accumulated errors in IMUs, usually filtering or graph-based optimizations have to be
employed.

In general, there are two approaches for visual-inertial navigation. The tightly-
coupled approach integrates metric positioning into the whole process of visual SLAM
(mainly, SfM and bundle adjustment) to resolve scale ambiguities; examples of this ap-
proach are [46] and [47]. The drawback of this approach is that its implementations must
be tailored specifically for the problem at hand.

Another approach is loosely-coupled visual-inertial; here, the vision part is considered
as “black box” and only position results are used. An example of this approach is [4§],
which integrates ORB-SLAM results and odometry information to obtain scaling coeffi-
cient information using Kalman filter. In contrast to our approach, this method silently
assumes that this scaling is constant throughout run.

This research takes the loosely-coupled approach for resolving scale in visual SLAM,
which means that scale is determined after camera pose is calculated. To assist scale
calculation, absolute keyframe positions are supplied from accurate LiDAR positioning

when building the map; this virtually eliminates error accumulation in visual maps created

by ORB-SLAM.



Chapter 3

Vision-Based Localization in Metric

Space

3.1 Objectives

This chapter proposes a positioning method based on ORB-SLAM [27] using a monocular
camera with LIDAR-aided mapping. The ORB-SLAM is one of the most recent monoc-
ular vision—based SLAM methods with an open-source implementation. This method
estimates camera positions and generates map from an image sequence in real-time.
Originally, ORB-SLAM was designed to solve visual SLAM problem. As mentioned in
the beginning of Chapter 2, there is a distinction between SLAM and localization. This
distinction also relates to system concept defined in Figure 1.2.

However, as previously explained in Subsection 2.3.3, any visual SLAM method that
only relies on visual data is not capable to work in metric space. Therefore, vision-
based methods incur several problems when adopted for localization problems such as

robustness and metric consistency. Our proposed method has two key points:

1. The estimation of metric position in localization by using ORB-SLAM with LIDAR-
aided mapping

2. The solution of robustness problem using sensor fusion between multiple maps and

odometry data
In general, this chapter discusses:

1. Benchmark tests related to ORB-SLAM conducted in the Tsukuba Challenge en-

vironment;

2. Description of ORB-SLAM with LIDAR-aided mapping to solve problems of metric

consistency between multiple maps;

19
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3. Experimental results and evaluation in Tsukuba Challenge environment. Finally,
this chapter illustrates the capability of sensor fusion method of vision-based local-

ization method with odometer to provide continuous localization over the course.

3.2 Overview of Tsukuba Challenge

The Real-World Robot Challenge (RWRC) is a real-world autonomous navigation chal-
lenge held in City of Tsukuba, Japan'. The robots are required to autonomously run over
a 1 km route. Therefore, an accurate localization system plays a critical role here. The
robots are required to maintain their position accuracy over the course despite changes in
the environment such as dynamic obstacles (people and other robots), differences in the
illumination, weather and other factors. Therefore, the RWRC is an ideal event to iden-
tify and solve problems with monocular visual localization in a low-velocity, real-world
setting.

For most of the course of Tsukuba Challenge, almost all teams use LiDAR-based
localization methods [49]. These methods use sensor fusion approach with LiDAR and
odometry, which can compensate for weaknesses in the characteristics of individual sen-
sors. Essential to this approach is the use of a good dead reckoning method such as a
calibrated gyroscope.

On the other hand, vision-based localizations have received little attention in RWRC.
One of the efforts for developing visual localization is [50]. This method is basically a
type of topological localization by following an image sequence and estimating pose by
using feature points. Compared to this method, our method sets out to obtain metric

positioning, similar to LIDAR-based navigation.

3.3 Overview of ORB-SLAM

3.3.1 Description

To repeatedly perform localization, our implementation of ORB-SLAM consists of two
parts: mapping and localization-only. The mapping process runs similar to the original
implementation, with an addition of map storage at the end of the mapping run. Mean-
while, the localization process starts with map restoration using data saved previously
in the mapping process. The localization step proceeds in much the same way as in the
mapping stage. However, map modification is disabled in the relocalization part.

The ORB-SLAM main routine creates an environmental map which consists of keyframes

and map points. Each keyframe stores its position in ORB-SLAM coordinates and a list

'Within this thesis, the terms “RWRC” and “Tsukuba Challenge” will be used interchangeably
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Figure 3.1: ORB-SLAM System Overview

of 2D feature points. The entire ORB-SLAM process consists of three parallel threads:
tracking, local mapping and loop closing. The relationship of these threads is shown in

Figure 3.1.

Feature Detection

The first step in all 3D reconstruction is to identify feature points in each frame. ORB-
SLAM uses ORB features, described in [36]. The ORB feature offers advantages such as
faster computation and lower storage requirement (32 bytes), in addition to a degree of

resistance to rotation and noise.

Map Initialization

Before inserting more keyframes and map points, the map must be initialized by comput-
ing relative pose between two initial frames to triangulate an initial set of map points,
which are then used for tracking. ORB-SLAM uses a combination of homography and
fundamental matrices inside a RANSAC scheme to build motion and structure recovery
as described in [51]. When this stage is successful, the system will have an initial set of
keyframes and map points with which tracking may proceed. However, tracking may fail
shortly after the initial map is built; if this occurs, the initial map is reset and started

over.

Tracking and Local Mapping

The tracking thread is responsible for providing localization and map building. After
ORB corners are detected, the tracking thread develops a map incrementally over the
recovered 3D map points, while computing camera poses. To accelerate this process, the

tracking operates in a smaller subset of the overall map, called the local map, that covers
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currently visible keyframes and some connected ones. The tracking thread also performs
map “clean-up”, which involves culling bad map points and keyframes.

There are three tracking modes that may be used. First is relocalization by searching
all keyframes by bag-of-words; this is the slowest but indispensable when recovering from
lost tracking. The second choice involves tracking the local map, as described above.
Alternatively, the third choice involves tracking using constant velocity model which is
equivalent to visual odometry [19]. This choice is fastest and may be the most frequently

used mode. However, it may be inaccurate.

Loop Closing

Loop-closure detection is crucial for enhancing the accuracy of SLAM algorithms, both
topological and metrical. This problem consists of detecting when the robot has returned
to a former location after having discovered new terrain. Such detection makes it possible
to increase the precision of the actual pose estimation.

Essentially, loop closing in ORB-SLAM uses image-to-map approach [52]. First, it
takes the most recently processed keyframe and searches for a loop candidate keyframe in
the local map using the bag-of-words method [43]. Next, the similarity transformation is
computed. Loop correction is performed by inserting new edges into the covisibility graph
and fixing connectivity between loop candidate and surrounding keyframes. Next, ORB-
SLAM performs pose graph optimization, whereby loop closing errors are distributed by

moving the candidate and its connected keyframes.

3.3.2 Problems of ORB-SLAM
Scale Ambiguity

ORB-SLAM outputs localization results based on maps in its own coordinate system
(which is not metrically correct), that are not free from distortion due to scale ambiguities.
In some cases, result maps may exhibit heavy deformation, as illustrated in Figure 3.2.
This deformation is a result of scale ambiguities over multiple image frames in large scale

such as Tsukuba Challenge, as predicted in Subsection 2.3.3.

Lack of Support for Lifelong Mapping

The original design of ORB-SLAM involved a single run for both localization and map-
ping, so there are no features for storing in-memory map to disk. This means that the
system must be initialized with empty map prior to navigation tasks. However, it is
desirable for distinct mapping and localization processes to be done multiple times with
the same path, so map saving and restoration is essential. This feature is also useful

for improving the map robustness when faced with changing condition [53]. In practical
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Figure 3.2: Scale distortion in the generated ORB-SLAM map trajectory from Tsukuba
Challenge 2015.

applications, this will enable autonomous vehicles to localize positions despite changes in
weather, time of day, and other conditions. The operation of multiple maps, discussed in

subsection 3.4.3, also requires stored maps.

Visual Disturbances

Any disturbances in the camera vision that make it unable to view previously tracked
feature points may lead to the failure of ORB-SLAM tracking. These disturbances include
vision occlusion on the part of the camera and fast rotation of the robot. Other forms of
visual disturbances are lens flares and smears, which happen when the camera is faced
to the sun. The effects range from lost tracking to straying off the path, which may
negatively affect the usability of the ORB-SLAM.

3.4 Methods

This section explains how to realize metrically correct monocular visual localization
for solving main problems of ORB-SLAM explained in the previous subsection. First,
LIDAR-~aided mapping is employed to solve scale problem of keyframe distances and pro-
vide metrically correct positioning. Next, map storage and restoration process to allow
for separate mapping and localization processes are described. Lastly, multiple observa-
tions from distinct ORB-SLAM maps may be employed simultaneously with odometry

data to derive accurate position and orientation of the robot.
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3.4.1 Map Building and Restoration

The main output of ORB-SLAM mapping is a set of keyframes. As explained above, our
main goal is to take this map and compute the localization during robot runs as guidance
for the navigation system, be it a robot or an autonomous car. Therefore, it is necessary
to get localization results that are metrically acurate. However as illustrated in Figure
3.2, it would be very difficult to accurately obtain the position using deformed maps from
ORB-SLAM.

To formalize the map and localization process, the following notations are introduced.
An ORB-SLAM map is a set of poses (included in keyframes): M = {P;|0 <i < N — 1},
where N is the number of keyframes until the mapping process is stopped.

As stated in [26] and [54], the scale ambiguity in visual SLAM can be solved in
mapping phase by associating each keyframe to an external reference with true position
(in metric sense). In a longer run, this association must be done correctly so that error
accumulation in the scale correction is eliminated. Therefore, the external reference must
have a high level of accuracy. In 2015 Tsukuba Challenge, LiDAR-based localization was
chosen as the reference due to its immediate availability. Other positioning methods may
also be used, such as GPS or odometry, as long as their error corrections are provided [55].
However, GPS usage in Tsukuba Challenge is generally limited due to heavy vegetations.

This research used the 3D Normal Distribution Transform (NDT) scan-matching
method with 3D LIDAR to obtain accurate positions [56] as keyframes’ external ref-
erences. Figure 3.3 shows a visualization of 3D map of the Tsukuba Challenge track.
This map was built by applying the 3D NDT scan-matching method using the Velodyne
HDL-32 LIDAR.

Map storage consists of three main parts: keyframes, map points, and keyframe re-
lationships. Each keyframe stores the camera pose P, in ORB-SLAM coordinates, the
camera intrinsic parameters, all of the ORB feature points recorded at keyframe creation,
and external reference pose P, in metric coordinates, recorded at keyframe creation. For

localization phase, the system will reconstruct the following data structures:
1. List of keyframes and their relationships
2. Map point list

3. Octree of keyframe position in ORB-SLAM coordinates. This tree will be used for

fast searching of the keyframes during localization using augmented positioning.

By default, ORB-SLAM will try to find the position against the last keyframe whenever
it loses tracking. However, for situations after map restoration, the last keyframe will be
unknown. Instead, ORB-SLAM is modified to execute place recognition by searching for

appropriate keyframe using the bag-of-words method. Place recognition is also applied
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Figure 3.3: 3D View of Tsukuba Challenge map generated by NDT scan matching from
Velodyne scans

when the system loses track; this is done to ensure that the system always gets the
keyframe as the basis for tracking. The drawback is that keyframe search using bag-of-

words method is slower than tracking using the last keyframe.

3.4.2 Metric Localization

In the localization process, the system depends solely on visual data. Therefore, external
methods such as LIDAR-based localization are not required. In order to assist metric pose
computation, keyframes’ real poses in metric space are recorded during mapping phase
along with their computed positions in ORB-SLAM frame as P, and Py, respectively.
In localization phase, robot pose in metric space as P, is estimated as scaling-up from
ORB-SLAM pose P,. This process is described in Algorithm 1 and illustrated in Figure
3.4.

3.4.3 Using Multiple Maps

During our experiments, maps of the same location but created at different times were
observed to deliver varying results in terms of coverage (Figure 3.12). Therefore, it is
reasonable to combine the results from two maps in order to: 1) alternately provide
localization whenever one of the maps fails; 2) reduce errors from all the maps. In this
regard, any method for sensor fusion may be used. It must be stressed that, after scale
correction, all of the maps will provide consistent results that are metrically correct and

in the same coordinate system.
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Figure 3.4: Metric transformation

In its original version, the ORB-SLAM does not allow using multiple maps. However,
it is possible to run multiple processes of ORB-SLAM with the same input data; each one
utilized different maps built from different times. Hence, multiple results can be produced
simultaneously from single input camera. Observations from these distinct maps may be

combined together with odometry as discussed in the next subsection.

3.4.4 Particle Filter with Odometry Data

As an approach for sensor fusion, this subsection provides a formulation derived from
particle filter as described by [57]. This formula basically estimates position and orien-
tation from velocity and rotation speed measured by odometry, while correcting these
values as ORB-SLAM localization supplies position and orientation updates.

To simplify formulation, the robot is assumed to move in 2D plane; robot state at
time t is represented by its position and orientation in 2D plane as x;, = (z, ys, 6;).
Control data from odometry come as linear velocity and rotation speed and represented
respectively, as u; = (vg,w;). The particle filter takes a sample of M number of “particles”;
each particle represents a possible state of the robot. As the motion proceeds, all particles
are updated by control variables u; and ORB-SLAM measurements z from all maps if
available. The particle filter then selects particles proportional to their fitness against z
as weight w. The complete particle filter is described in Algorithm 2, complemented with
its motion model and measurement model in Algorithm 3 and 4.

The motion and measurement models have simple working assumptions. Inside the
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Algorithm 1: Position correction from ORB-SLAM to metric coordinate

1 Search the nearest keyframe in the map from P, in the octree as P,. From here, we
take the corresponding external reference position P,.

2 Find the previous offset keyframe P,; and its corresponding external reference
position P, .

3 Compute the scale correction factor. This factor is a ratio of magnitude of

translation between external reference P, to P, and translation between keyframe
P, to P,

_ [t =t
[ — b
4 Apply the distance scale
P, = P'P,
Pqi = (Straqr)
P. = PP,

5 Return P,

motion model, noises are introduced to v; and w; in order to account for errors in them.
The noises are assumed to be Gaussian with standard deviation «; and «s, which are
device-specific and must be determined by experiment. Meanwhile in the measurement
model, each particle’s weight is determined from its distances to all ORB-SLAM mea-
surements. Here, each ORB-SLAM measurement is assumed to be independent and may
contain noises (for example, see Figure 3.15). Therefore, the nearest measurement to
the particular particle is selected as predictor, resulting in largest weight from all mea-
surement as described in algorithm 4. This measurement model is easily expandable to
include more than two ORB-SLAM results.

3.5 Experimental Settings

To evaluate our localization system, we conducted four runs whereby the robot traversed
the trajectory mandated by the 2015 Tsukuba Challenge. In each run, we recorded
camera images and performed localization using Velodyne LiDAR. From these runs, we
created two maps for localization process. The LiDAR-based localization results would
be used as ground truth for comparison. To reduce computation, camera resolution was
reduced to 800 x 600 before processing. Time and conditions of each run are described
in Table 3.1.

The robot for 2015 Tsukuba Challenge was derived from a Segway RMP-200 platform,
using a PointGrey Grasshopper3 camera and Velodyne HDL-32 LIDAR. The robot ran

through the mandated course at a speed less than 1m/s. In the course of the run, the robot
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Algorithm 2: Particle filter localization

1 Input: x;_1, wy, z;
2 it = Tt = (Z)
3 forn=1to M do

4+ x/" = motion_model (ut, Xﬁl)

5 w." = measurement model (Zu XW)

6 X =% 1+ <x£n},w£n])

7 end for

8 forn=1to M do

9 draw z; from X; with probability p o< w,
10 add 2" to x,

11 end for
12 Return: x;

Algorithm 3: Computing poses X; = (x},v,,0,) from pose X,_1 = (24,:,06;) and
control u; = (v, wy)

1 motion model(u;,x;_1):

2 0 =v+rand (ag)

3 W= w + rand (ay)

4 2 = x+ Dcos()At

5y =y -+ osin()At

6 0 =0+ 0At

7 Return: X, = (2,5 ,6)

Algorithm 4: Particle weighting w of state X, = (z},v;,0,) against metric ORB-
SLAM measurements Z; = (x1,y1,61) and Zy = (22,99, 02). Here, ¥ is covariance
matrix which represents error measurements of ORB-SLAM in lateral, longitudinal
and yaw.

1 measurement model(X, Z;, Z,):

O’l’
2 X = oy
0,
3wy =exp{—3(X; — Z2))TSNX, - Z1)}
4wy =exp{—2(X; — )" NX, — Z)}

5 Return: w = max (wy, ws)
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Run Date & Time Weather Lighting Human
(Nov. 2015) Condition Contrast Presence
Map 1 6th, 13:44 Clear High Low
Map 2 7th, 11:30 Overcast Medium Low
Test 1 3rd, 14:55 Clear High High
Test 2 7th, 14:20 Overcast Low Low

Table 3.1: Time and Condition for mapping and testing runs

LIDAR:
Velodyne HDL-32

Emergency Stop

Camera:
Grasshopper3

Figure 3.5: Robot vehicle for system evaluation in Tsukuba Challenge 2015

would often encounter dynamic obstacles such as human or bicycle, which necessitated

decision by the operator to either stop or maneuver the robot. Our robot setup is shown

in Figure 3.5.

The track to be covered in the Tsukuba Challenge was very different from that used

for the original ORB-SLAM paper evaluation, which primarily used New College dataset

[58]. To simplify the discussion, the track is roughly divided into five major areas; each

had distinct visual features and its own challenges. These areas are shown in Figure 3.6,

with descriptions as follows.

1. Area 1 was a public park area, with many trees as main features and occasional

building background (Figure 3.7).

2. Area 2 was a checking pit in front of a large hall building. When passed in after-
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Figure 3.6: Breakdown of Tsukuba Challenge 2015 track by visual features

noon, this area may feature high contrast due to setting sun; most lens flares were

encountered here.

. Area 3 was a pedestrian footpath covered by paved blocks and surrounded by trees

and autumnal leaf drops on the ground. There might be some encounters with
curious pedestrians that approached the robot; these people were registered on the

map (Figure 3.8).

. Area 4 was an outdoor scene with many buildings as background. This area featured

quite strong contrast, as shown in Figure 3.9. A situation like this can confuse
automatic exposure system of the camera, and makes it difficult to detect feature

points.

. Area 5 had mostly the same situation as area 3, but encounters with dynamic

objects were rare.

3.6 Results and Discussions

3.6.1 Map Saving and Restoration

By using the developed map storage routine, map data structures of ORB-SLAM can

now be saved and restored at any time. From our experience, map saving and restoration

do not affect ORB-SLAM performance. In fact, the system gains useful capability, i.e.

map building can now be done incrementally using the same location but different times.

This is useful when building a lifelong map from different situations such as in varying
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TRACHKING

Figure 3.7: Starting point

Figure 3.8: Typical situation in Tsukuba Challenge: pedestrian tracks covered with leaf
drops
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Figure 3.9: Many areas have strong contrasts

Figure 3.10: Robot traversing previously created map

weather and during the day/night. An example of the relocalization after map restoration
is illustrated in Figure 3.10. Example of incremental map building is shown in Figure
3.11.

In this experiment, a result map of the whole trajectory of 1.5km requires approxi-
mately 2 GB of disk space and RAM. This map consists of 3100 keymaps and 400000 map
points, and require 5 to 7minutes to load from disk. Long loading times are certainly
caused by serialization process of storing maps; improvements could use memory-mapped

[/O that is faster but may require larger disk space.

3.6.2 First Position Fix

To get an initial position fix for relocalization, ORB-SLAM performs a keyframe search

based on the appearance of feature points. This search may return more than one can-
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Figure 3.11: ORB-SLAM created a new map based on old map

didate, which will be evaluated according to the reprojection error. Only one candidate
is accepted, and it must have at least 15 map points that match the feature points in
the current frame. In the evaluation run, obtaining the fix was slow due to insufficient
matches. One possible enhancement that would enable quicker initial fix is to increase
the number of feature points from the ORB computation. However, this approach greatly
slows the search process and does not always correlate to a quicker fix.

Another problem related to position fix is when initializing ORB-SLAM map. During
the experiment, we found that initialization will succeed (without getting false initializa-
tion) whenever the robot is moved, both in rotation and translation. In our experiences,
false map initialization and slow position fix can be solved by increasing number of ex-
tracted ORB points (by default the number is 1000) to 2500. The drawback is higher
computation times per frame. However, another benefit from increasing this number is

better resistance to visual disturbances due to increasing number of map points.

3.6.3 Relocalization and Tracking

During this experiment, ORB-SLAM is found to be resistant to occasional and partial
vision occlusion. Partial occlusion includes lens flares and people moving in front of the
background images. Total occlusion however, may cause the tracking failure, which may
be difficult to recover. This lost tracking explains the existence of blank areas in Figure
3.12 (part of the trajectory that has no bold parts).

Common situation and tracking of ORB-SLAM are depicted in Figure 3.13. The figure
illustrates a frame, taken in the Oshimizu park area, with a background of buildings in
the distance and some trees in the foreground. There were also some people in the scene.
Most of the ORB points (and map points, shown in green dots) fell in the trees and

ground, but very few of those were in background.
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Figure 3.12: Coverage Plots of 2015 Tsukuba Challenge
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TRACKING — KFs:

Figure 3.13: ORB-SLAM performed tracking

Figure 3.14 depicts a situation in which the robot performed a violent rotation such
that lost tracking was imminent. Note the absence of ORB feature points in the right
portion of the image frame. On the right, the axis shows that the robot was on the right
track, but robot was oriented towards a place with very few map points. The blue axis

represents the front.

In both test runs, each map delivered a different level of performance regarding the
track coverage. In Figure 3.12a for test run 1, both maps are essentially complementary
to cover tracking for the whole track. However, area 1 is particularly must be concerned
where ORB-SLAM loses the tracking even when using both maps. This area is deemed
critical because the robot had to perform many turns successively. Also notable are
some stray trajectory points from map 1; these points were traced to instances of lens
flares due to the camera facing south-west while the sun was low. In the test run 2 as
depicted in Figure 3.12b, both maps also provided complementary coverage. There was
also significant time delay from the start of the motion to the initial position fix when

using both maps.

In both test runs localization system was unable to cover the whole ground truth; the
reasons were technically unrelated to ORB-SLAM capability. At all mapping runs and
test runs except test run 1, camera recording stops early before reaching the finish line.
Thus, map 1 and 2 were unable to cover the whole Tsukuba Challenge track (ORB-SLAM
is unable to localize too long from the last keyframe in the map). Also, the camera stopped
working too early in the test run 2, rendering ORB-SLAM stopped working. Percentage
of tracks covered by all maps are listed in Table 3.2.
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Figure 3.14: Lost tracking is imminent after quick rotation
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Figure 3.15: At right, a part of robot trajectory is shown. Circle A shows location where
disturbance took place; B shows localization results at that time. At left, camera image
at corresponding time.



3.6. RESULTS AND DISCUSSIONS 37

222

22k RN

2181

217

= Ground Truth
- Map1l
e Map 2
257 258 259 X [m] 24‘10 241 242

Figure 3.16: Visual comparison of Modified ORB-SLAM trajectory and ground truth in
a turning situation

In general, there are two main reasons for the robot losing tracking: visual distur-
bances (including, but not limited to, lens smears and complete vision occlusion), and
rapid rotation in part of the robot due to the appearance of dynamic obstacles. An
example of visual disturbances (in form of lens smear) causing a loss of tracking and a
high number of errors in track run 1 using map 1 is shown at Figure 3.15, where spurious
points from localization are present.

In Tsukuba Challenge, average computation times of each frame were around 58ms.
This number equals to about 19 Hz, which is lower than original ORB-SLAM that delivers
around 25-30 Hz.

3.6.4 Localization Accuracy

Figure 3.16 depicts a situation in which the robot enters and exits from a turning. In
tthis turning, the modified ORB-SLAM exhibits large deviations compared to ground
truth, while straight path exhibits less deviation. It is also clear that each map produces
different results, despite localizing in the same path and time.

Table 3.2 summarizes the performance of ORB-SLAM when covering the Tsukuba
Challenge track. On average, the accuracy of ORB-SLAM is quite good when considering
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Errors (in m)

Map Average \ Std. Dev \ Maximum % Coverage
Test Run 1

Map 1 0.38 1.60 26.41 68.3
Map 2 0.19 0.53 5.62 70.1
Joint 95.1
Test Run 2

Map 1 0.08 0.11 1.21 68.4
Map 2 0.06 0.09 1.67 80.9
Joint 82.4

Table 3.2: Summary of ORB-SLAM performance compared to ground truth
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Figure 3.17: Error Graphs From 2015 Tsukuba Challenge

that errors in the order of 25 cm are within the range of robot’s camera tracking. However,
there may be some concern when this errors greatly increases, especially during test run
1. These errors may, however, be regarded as a deviation from the norms, as suggested

in Figure 3.15. In particular, this problem may be solved by using a more robust camera.

3.6.5 Multiple Maps and Odometry

Despite attaining a good level of accuracy across the test runs in 2015 Tsukuba Challenge,
ORB-SLAM was unable to maintain localization for the entire track. By recapitulating
the performance summary in Table 3.2 and Figure 3.17, it is reasonable to say that
larger part of the track can be covered using joint map. This subsection discusses results
of sensor fusion between ORB-SLAM and odometry as formulated in subsection 3.4.4.
Algorithm 2 basically outputs a distribution of possible robot pose; definitive pose for
the purpose of robot control is taken by averaging this distribution.

Figure 3.18 depicts trajectories of robot in both test runs as computed by sensor fusion



3.7. SUMMARY 39

of odometry and ORB-SLAM using both maps. In the left figure, we can see that the
sensor fusion method is capable to combine the measurement from both maps and remove
noise (that came from Map 1 due to lens flare in area 3). The sensor fusion method also
succeeds in covering areas where ORB-SLAM missed the tracking. A similar situation
is also present in the test Run 2 whose trajectory is shown in the right. By relating the
coverage graph (Figure 3.12) and error graphs (Figure 3.17), most of the spikes in sensor
fusion errors can be attributed to ORB-SLAM losing tracks in area 1 and 2.

3.7 Summary

This chapter explains solution of monocular visual localization with an application to
pedestrian environment in the 2015 Tsukuba Challenge that will be used for the next
two chapters. Within the limitations of our system, the experiments confirmed that
vision-based localization using augmented maps obtained from vision and LIDAR-based
methods are capable of providing localization that is quite accurate for controlling the
robot. Unlike the original results, ORB-SLAM was unable to produce acceptable results
in dynamic environment such as Tsukuba Challenge in terms of coverage.

By using sensor fusion method between ORB-SLAM and odometer, continuous cover-
age of the track can be achieved. However, due to accuracy problem of the odometer, the
localization may give large errors when correction from ORB-SLAM results are absent.
In these results, navigation using odometer and ORB-SLAM localization has been shown

as possible with good accuracy, as long as ORB-SLAM tracking is maintained.
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Chapter 4

Improving Availability and Lifelong

Run for Visual Localization

4.1 Motivations

Previous chapter has shown a possibility of vision-based localization method using a
monocular camera in metric space. The method allows image-based fusion of monocu-
lar camera-based localization results and external metric-based localizations (e.g., GPS
and odometry) by using particle filtering algorithm. Despite the position estimate was
accurate in most areas of the Tsukuba Challenge 2015, the coverage was not enough (ap-
proximately 68 %). Therefore, the next objective of this research is towards improving
coverage of our system.

Other interesting aspect of our system is possibility of lifelong localization, which refers
to the capability to perform localization over a long span of time. By having multiple
datasets of approximately same locations from multi-years, we would like to study the

performance of the system for localizing the robot using map data from a prior year.

4.1.1 Contributions

The main differences of this work towards previous one (chapter 3) are an improved lo-
calization coverage based on custom vocabulary and improved global localization routine.
Furthermore, visual feature maps with accurate placements of keyframes are built with
prior image preprocessing and specific vocabulary for place recognition. These modi-
fications improve localization accuracy and coverage of our visual localization method.
Experiments using log data taken at 2015 and 2016 Tsukuba Challenge are used to
demonstrate the effectiveness of this proposal.

The contributions in this chapter are twofold:
e Experimental proof of coverage improvements from custom vocabulary for specific

41
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scenes.

e Enhanced relocalization routine which is key for global localization.

4.1.2 Related Works

There are some works which address autonomous navigation in pedestrian paths ([49],
[59]) which show that long-range navigation is feasible. Yet, outdoor navigation is a com-
plicated task to achieve. Robot localization modules usually rely on prior environmental
maps. As environments change with time, map maintenance is necessary. Map update is
a hard task given that consistent map building with the same coordinate frame is neces-
sary. There are also existing works regarding visual map maintenance and update (e.g.,
[53])-

An interesting study of lifelong vision-based localization can be found in [60]. They
referred a summary map that is built from several localization trials. This means that
they tried localization experiments in the same place and updated a visual feature map.
By the summary map, they succeeded in lifelong visual localization over 16 months.
Chapter 1 of this research also proposed similar idea which uses multiple visual maps to
cope with a problem of appearance changes.

Most of the current method in robotic motion planning depends on accurate geometry
of the vehicle and its environment [61]. In this regard, motion planner algorithms usually
search for most optimum paths that are subject to the presence of obstacles and vehicle
motion constraints. Due to this nature, planner algorithms require that both localization
and obstacle detector working in metric space. However, as stated in Subsection 2.3.3,
current vision SLAM methods (and thus localization) are not free from scale drift due
to their inherent limitations [40]. An example of a solution of combined vision-based
navigation that works in topological space is devised in [62] and [63].

A similar method to ours can be found in [64]. In this work, 3D reconstructed feature
points from local bundle adjustment are matched with 3D LiDAR maps. The proposed
method here is a geometric-based matching method because 3D reconstructed features
are directly matched with the LIDAR maps in a metric frame. In contrast, our proposal
is an appearance-based matching method because ORB-SLAM estimates own pose by
comparing ORB features. These methods have different advantages over each other.

Current progress of visual place recognition for SLAM purposes have been surveyed in
[65]. As mentioned in the paper, handling variable illumination conditions is critical for
place recognition performance. One possible solution is by tweaking color-to-grayscale
conversion; as shown in [66], this commonly ignored process has a significant contribution
to the accuracy of image recognition. An interesting possibility instead of simple color
conversion is to change image colors to illumination-invariant color space [67], which can

be used to handle shadows and light changes throughout times of the day.
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4.2 Proposed Methods

This chapter describes additional improvements that aim to increase coverage. Main

features of current addition are:
1. Custom vocabulary for place recognition;
2. Automatic gamma control; and
3. Non-strict keyframe selection in place recognition.

Framework of our localization system is shown in Figure 4.1 and 4.2. These figures

describe the map building and localization processes.
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Figure 4.1: Flowchart of the proposed mapping method. Construction of custom vocabu-
lary from the final visual map is new addition from the previous method. Gamma control
is inserted as image preprocessing prior to feature extraction.
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Figure 4.2: Flowchart of the proposed localization method. Place recognition subprocess
uses custom vocabulary instead of generic vocabulary. Similar to mapping, localization
also uses gamma control for frame preprocessing.

4.2.1 Custom Vocabulary

Original ORB-SLAM employs a generic vocabulary extracted from an unspecified image
training sequences [27|, which was noted to work well for a number of publicly available
datasets. As described in [43], this vocabulary is used for transforming detected features

of the image onto a sparse numerical vector (hence the name “bag-of-words”). In 2015
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and 2016 Tsukuba Challenge, we found that the place recognition using generic vocabu-
lary often failed to work. One solution from image retrieval field to increase probability
of matching query image against the image database is by using vocabulary extracted
specifically for particular image database as explained in [68]. Therefore, the first pro-
posed addition for ORB-SLAM is to utilize custom vocabulary for any specific location
(in this one, the Tsukuba Challenge track). The preliminary ORB-SLAM map in here is
regarded as image “database”, and vocabulary is extracted after the mapping process.
Constructing image vocabulary is basically a form of vector quantization [69, 70],
in which the vocabulary is arranged as a tree. The process of extracting vocabulary
is performed by collecting a rich set of feature descriptors from training images. As
described in [43|, the extracted descriptors are discretized and clustered using k-means
and inversely weighted according to its relevance in the training sequence. The whole

vocabulary construction are processed by DBoW2 library [43].

4.2.2 Automatic Gamma Control

As described in [71], there are no feature detectors and descriptors that are truly illumination-
invariant; hence feature matching may not work under varying brightness. We apply
gamma correction to handle high contrast situation in daytime lighting as often encoun-
tered in the Tsukuba Challenge track. In this regard, gamma control works as a type of
providing illumination invariance prior to ORB feature extraction. The gamma correc-
tion basically works by applying exponential correction for pixel value: I; <— I] where
I; (0 < I < 255) is a pixel value of i-th pixel.

To automatically decide the value of 7, we first compute a histogram of pixel values,

h(I), inside a masked region on the image, A, denoted as:

h(I) = 611,

i€A

where ¢ is Kronecker delta. Normalized cumulative distribution function (CDF), ¢(I), is
then calculated from the histogram as:
) = S
> 1)
Then we compute the value of v to adjust for the midtone that aims to simulate

human visual response against strong backlight [72] as:

Iy = ¢ *(0.5)
In ]50
In2

’y:
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Figure 4.3: Mapping without (left) and with (right) gamma correction. In left figure,
almost all tracked ORB features fell in the sky and clouds, resulting in closely spaced
keyframes but sparse map points; indicating relatively little motion (pyramid markers
depict keyframes). In right figure; using gamma correction, result keyframes are uniformly
spaced, and more map points fell in the ground with distinctive patterns following their
placement in the ground.

The ~ value is calculated from masked region which represents the midtone intensity
of that region; however, we the gamma correction is applied to the whole image. The
masked region may be determined arbitrarily; but the best results are obtained when it
is taken from lower half of image, as this region is subject to be dark when the camera
is facing high contrast scenes. Effect of this gamma correction is to add brightness and
contrasts in shadow areas, while reducing contrast in highlighted ones. In turn, there are
more ORB features to detect and track in the ground (closer to camera). This is shown

in Figure 4.3.

4.2.3 Non-Strict Prediction for Relocalization

Original ORB-SLAM implementation stipulates relocalization by bag-of-words (BoW)
search in the internal database for looking up keyframe candidates. This set of candidates
are then filtered by discarding similar keyframes, with a preference to keyframes that
have a history of previous match with prior queries. The candidate filtering acts to reduce
computation time, because the next step (scoring and geometry check) is quite expensive.
In practice, this method often fails because either the number of candidates is too few,
or the candidates do not match with geometry check. To increase success probability of
relocalization, we propose a modification of candidate selection by removing the candidate
filtering. Instead, we compute scores of all candidates and select 25% best keyframes.
Obviously, this necessitates a trade-off between CPU usage and coverage.

To accelerate position finding, we also add searching nearest keyframes that share
visible map points with last good keyframes. Consequently, this method is not usable
for initializing global localization when the system starts, as no prior information of
keyframes exists. The idea of searching nearest keyframes is not new, but inspired by
PTAM [20]. Here, we combine this method with BoW search as a fallback. Complete
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Figure 4.4: Trajectory of 2016 Tsukuba Challenge with Overlay of Top-Down Point Cloud
Map Projection. (1) is starting point; (2) and (3) are the bridge area.

algorithm for relocalization is listed in Algorithm 5.

Algorithm 5: Relocalization after Lost Occurrence

1 Data: Image frame with feature descriptors
2 Result: Keyframe candidate ¢ or ()
3 if prior keyframe is not found then
Find keyframes from database that share descriptors with image frame as set K
else
Search keyframes that have topological relation with last good keyframe as set K
end if
Compute scores for all elements in K
Select candidate ¢ with maximum score
10 Geometry check:
1 Project all keypoints in ¢
12 if Keypoints in ¢ match with image frame then

© W N o oA

[

13 return c
14 else
15 return ()

4.3 Experiments

4.3.1 Settings

Three experiments were conducted to examine effectivity of our method. The first exper-

iment is used to validate performance characteristics in terms of accuracy and coverage
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against 2016 Tsukuba Challenge track. In addition, it is also important to identify sit-
uations that may cause failure to our method. This information will be important for
further deployment of vision-based localization in public road cases. The trajectory of
2016 Tsukuba Challenge is shown in Figure 4.4. One mapping run and four localization
runs were conducted separately for this experiment; all runs were from the same time-
frame. We also took ground truth measurements in both mapping and localization runs
using results from LiDAR-based localization.

The second experiment involved previous (2015) Tsukuba Challenge dataset, on which
results have been reported in Chapter 2. For this experiment, one mapping run and two
localization runs were performed within the same timeframe. Similar to 2016 experiment,
ground truths were established from LIDAR-based measurements.

Third experiment is by using map from 2015 dataset but applied to 2016 dataset.
The objective of this experiment is to find out if the developed vision-based localization

method is applicable for lifelong usage.

4.3.2 System Setup

To evaluate our method, we collected two types of datasets, which consists of 2015 and
2016 Tsukuba Challenge track. All datasets consist of image streams from PointGrey
Grasshopper3 camera and LIDAR scans from Velodyne HDL-32. The LIDAR scans were
used for establishing ground truths in both mapping and localization. All computations

for mapping and localization were run in a gaming-grade laptop using Intel Core i7-

6700HQ, 64GB RAM with HDD as storage.

4.4 Results and Discussion

R Coverage (%) Current Errors (m) | Previous Errors (m)
S T Current \ Previous | Avg. \ Max. \ St.Dev | Avg. \ Max. \ St.Dev

11-03 96.7 68.3 | 0.74 | 13.36 0.91 | 0.38 | 26.41 1.60

11-07 97.3 68.4 | 0.68 | 3.08 0.49 | 0.08 | 1.21 0.11

Table 4.1: Coverage and Accuracy from 2015 Experiment

Results from the three experiments are summarized in table 4.1 for 2015 experiment,
table 4.2 for 2016 experiment, and table 4.3 for long-term localization experiment. In
general, our method shows improvements in term of coverage; previously, our method

recorded coverage about 68 % in 2015 datasets using single map. With current modifica-

IThis column represents ratio of length of covered track in 2016 against length of identical tracks in
2015 and 2016.
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Runs Coverage (%) Ave. F?ﬁgj <‘mS)t.Dev
10-15 13:56 90.8 | 0.13 | 3.05 0.10
10-15 15:14 98.5 ] 0.14 | 1.86 0.12
10-16 13:32 97.2 | 0.16 | 3.72 0.15
10-16 14:36 98.4 | 0.16 | 2.21 0.17

Table 4.2: Coverage and Accuracy from 2016 Experiment

| Runs [ Coverage (%) | Cross-year Coverage (%) |

10-15 13:56 19.7 75.8
10-15 15:14 16.7 64.0
10-16 13:32 25.7 98.5
10-16 14:36 16.5 64.0

Table 4.3: Coverage of Localization in 2016 experiment using 2015 Map

tion, our single-map vision-based localization shows a high percentage (90 % at minimum)
when using maps created from corresponding date and time (ie. same year).

Table 4.3 shows coverage performance of our vision-based localization in 2016 exper-
iment using a map created from 2015 as a type of lifelong localization. Overall, map
created from previous year does not perform well due to low overlap between each trajec-
tory (26.1%). However, a relative comparison only for overlap areas results in favorable
results of lifelong localization. Due to significantly different ground truths between two

years, we could not report on accuracy of lifelong localization.

4.4.1 Coverage

As shown in Table 4.1, the coverage for first experiment (2015 datasets) shows a high
level of coverage; 96.7 % and 97.3 % for first and second runs respectively. Compared to
previous results in Table 3.2, there have been significant improvements in term of local-
ization coverage; previous results recorded coverage of 68 % at worst. In current results,
coverage improves to more than 97 %. This means that the vision-based localization has
seen improvement in term of speed to recover from lost occurrence. The potential areas
of lost are shown in Figure 4.5. We found that these lost events mostly took place either
in the turnings or strong intensities (and smears).

For the second experiment, our visual localization method showed more variations,
but still exhibited a high rate of coverage. Lowest coverage came from the first run of
2016 (15th October 13:56) that amounts to 91 %. In this dataset, as shown in Figure
4.6, we encountered long part of lost occurrence that happened after hard bump prior to
entering the bridge. Another significant part of unrecoverable vision localization was in

the forest area, in which the camera was facing the sun, thus getting frequent lens smears.
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Figure 4.5: Lost events positions according to ground truth in the 2015 datasets experi-
ment as pointed by bold points. Top: lost occurences for 2015-11-03. Bottom: 2015-11-07.
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Figure 4.6: Positions of lost occurences in the 2016 datasets as pointed by red markers
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Figure 4.7: Coverage plots of 2016 track using 2015 map; green markers point to navigable
areas.

In the third experiment, we performed localization in the 2016 datasets using a map
created from 2015 (Table 4.3). Overall, 2015 map could only cover less than 26 % of the
2016 track. This is understandable, since only 26.1 % of 2016 trajectory that overlaps
with 2015 one.

A particular part of Tsukuba Challenge that is difficult for lifelong localization is the
paved pedestrian area covered by large trees. In 2015 datasets, a large amount of this
area was littered with falling leaves; however, this cover was almost non-existent in 2016.
Therefore, the changes between both years were substantial; making the place recognition
subsystem failed. Figure 4.8 shows an example of this situation. Inversely, prominent
places where static image features are dominant and highly visible make the place recog-
nition easier. Examples of these places are the starting point and the bridge area (pointed
by (1) and (2) in Figure 4.4). Overall, coverages plot for the third experiment is shown
in Figure 4.7.

4.4.2 Accuracy

Tables 4.1 and 4.2 list errors of our vision-based localization method in all experiments.
For the 2015 datasets, the new method recorded lower accuracy than previous one, as
shown by the average errors for both testing runs. However, in the first test runs of 2015
dataset, the large maximum errors was improved to 13.4 m from previous error of 26.4 m.
This improvement did not take place in the second run, as maximum error had increased
to 3.1m.

The current method registered much better accuracy in the 2016 experiment. The

maximum average errors are now below 20 cm, while the maximum errors are significantly
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Figure 4.8: Same place, unrecognized: left is 2015 situation, while right is from 2016 in
the same place

reduced below 4m. Also, overall maximum errors have dropped significantly below in
the order of below 4m. To identify sources of localization errors and how they develop,
the size of errors are plotted as circles in their respective locations for each experiment.
For the sake of brevity, only one dataset is plotted from each experiment as all of the
datasets behave similarly in term of error distributions. This error distribution relative to
locations are plotted in Figure 4.9. From both experiments, most of large errors occurred

in three location types:

e Before and/or after recovery from lost
e Hard turns

e Open space, where image features fall in far places

Relationships between accuracy and coverage for all datasets are shown in Figure 4.10.
Here, for 2016 experiment, most of the time (above 90 %) the localization system was
able to provide positions within errors below 50 cm, which is adequate for most purpose
of navigation. For the rest of time, sensor fusion with odometry will be able to cover the
localization requirement. This sensor fusion is also able to mask the large “jumps” that
occasionally appears. For 2015 experiment, during 80 % of time the localization system
could only provide accuracy within 1.2m, which is not enough for navigation. This was

caused by time discrepancies between image stream and LiDAR.

4.4.3 Computational Time

Figure 4.11 plotted fluctuation of per-frame computational time of typical localization
test. On average, per-frame time amounts to 83.4 milliseconds, that equals to 12 frame
per seconds. This is slightly lower to 15 fps of camera image rate that we use, but usable
for real-time (as comparison, typical LiIDAR-based localization methods make for 10 Hz

due to hardware scan rate). However, when localization is lost, the system will perform
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Figure 4.9: Error Distribution by Position for 2015 (top) and 2016 (bottom) Experiment.
Lost occurrences are marked by red points.
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global relocalization by place recognition that increases computation time significantly
(occasionally exceeding 1second). Compared to the original ORB-SLAM, these surges
of CPU usage are not good signs for real-time usage. The increase of time amount is

proportional to the number of keyframe candidates for place recognition.

4.4.4 Discussions

From these three experiments and by looking at three parameters (coverage, accuracy

and computational time), this chapter is concluded with the following findings:

1. Modified keyframe search for place recognition with custom vocabulary works cor-

rectly.

Compared to our previous results, the localization system has successfully addressed
lack of coverage. In the 2015 datasets experiment and 2016 datasets experiment as
shown in Figure 4.5 and Figure 4.6, lost occurrences have dropped significantly and

the system is now able to recover quickly.

2. Image features from both far and near places are required.

Features from prominent landmarks (ie. buildings) could help for place recognition.
However, presences of this type of features without features from near places may
cause visual odometry subsystem to deduce very small motion. In contrast, near-
place features (eg. from trees and paving blocks) are not quite useful for landmarks
as shown by the third experiment because they are prone to changes. In this regard,
gamma control to regain brightness in dark areas has a contribution for accuracy

of localization as it could help to recover features from near places.

3. Lifelong localization is possible.

In the third experiment, localization performed successfully in the places that had
not change considerably. Also, as shown from second findings above, prominent

landmarks in the frame will help for global localization.

4. There is trade-off between robust place recognition and CPU usage.

Compared to the original ORB-SLAM, the current keyframe search method basi-
cally performs brute-force search against all candidates rather than filters just the
most likely ones. As a consequence, this increases CPU time as the complexity of

scoring function of keyframe matches is linear against the number of features.



Chapter 5

Evaluation of Visual Localization in
Public Road

5.1 Backgrounds

In Chapter 3, the applicability of vision-based localization in metric space in a pedes-
trian environment has been proposed and tested with mobile robots. In this chapter, the
same method is exercised in an urban setting with a real passenger car. This environ-
ment presents different challenges compared to previous one. First, vehicle (and camera)
velocity is higher than mobile robots in Tsukuba Challenge; therefore image frames for
input will present difficulties in visual odometry routines. Next, there is a higher degree
of environmental changes, in addition to appearance variations. Prominent examples
are temporary road obstructions, background clutter, motion blur from moving vehicles,
pedestrians and weather variations.

Early efforts for vision-based mapping and localization in autonomous vehicle area
were centered in topological methods, such as the FAB-MAP [73]. Other notable work is
[74] that proposed a method for topological global localization based on adaptive mapping
with an omnidirectional camera where the system performance is measured in terms of
correct localization percentage. Later, the work in [53| presents a visual mapping system
using stereo camera which updates a metric map. This work shows the importance of

robust visual place recognition to update the map and recover from localization errors.

5.2 Experimental Settings

5.2.1 Vehicle Settings

Figure 5.1 shows the experimental vehicle. This research uses a LiDAR (Velodyne
HDL64E-S2), a monocular camera (Point Grey grasshopper3), Differential GNSS-IMU
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_ 64 Layer 3D LIDAR |l |

Figure 5.1: Experiment car and its on-board sensors

‘ Runs ‘ Start ‘ Stop ‘ Weather ‘
01-21 13:40 15:00 Overcast
01-21 N 15:10 17:00 Overcast
01-26 09:00 11:00 Sunny
01-29 11:10 12:30 Rainy
02-03 09:00 11:00 Sunny
02-05 13:40 15:00 Sunny
02-09 13:40 15:00 Rainy
02-12 08:30 09:50 Cloudy

02-12 N 13:20 14:20 Cloudy
02-24 10:30 11:50 Sunny

Table 5.1: Time and Condition for Mapping and Testing Runs Around Nagoya University
Campus

(JAVAD DELTA-G3T with IMU) and the CAN information coming from the vehicle. The
Velodyne HDL64E-S2 is mounted on the top, with measurement range around 120 m, the
vertical angular range is 26.9° and measurement period is 10 Hz. The GNSS is used to

obtain the initial position for NDT localization.

5.2.2 Datasets

Datasets for evaluation of our system were collected by running the vehicle around Nagoya
University campus for multiple days. The trajectory is shown in Figure 5.2. For each run,
image sequence for localization tests and LiDAR scans for ground truth were collected
simultaneously. Images were captured in full HD resolution at a rate of 20Hz, but
downscaled to 800 x 600 pixels for processing. We also captured raw CAN! data for
processing into odometry information, which will be used for sensor fusion.

In general, the vehicle traversed different loop patterns of trajectories that vary from

LCAN (Controller Area Network) bus is a data communcation standard for communications between
microcontrollers inside a vehicle.
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Figure 5.2: Vehicle path used for evaluation
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9 to 30km. The track is dominated by suburban environment, with occasional high-
rise buildings along the road. Time and weather condition of each mapping and testing
runs are recorded in Table 5.1. From these runs, three were selected to be fetched into
mapping process (marked in yellow). All other runs were designated as localization runs

using these three maps.

5.2.3 Evaluation Criteria

To evaluate our system, two numerical criteria are used to gauge quality of localization:

coverage and accuracy.

1. Coverage: Coverage of a single map in one vehicle run is defined as percentage of
time that the map is capable to localize without being lost. This measurement
could provide a rough description the of capability of the maps and localization

system when coping with changing condition.

2. Accuracy: Quality of localization results are evaluated by metric errors, which rep-
resent distances from predicted vehicle positions against ground truths provided by
the NDT scan matching. These errors are further separated into lateral and lon-
gitudinal ones, in order to understand the coupling between the visual localization
system and motion planner. For each run, means and maximum values were taken

to illustrate the capability of this system.

5.3 Results and Discussions

Our algorithm is implemented under the ROS (Robotic Operating System) framework,
that runs under middle-range PC. On average, a single map requires around 3-4 GB

memory.

5.3.1 Mapping Process

As described in Chapter 3, the mapping process requires the vehicle to record image
sequences and true camera poses in the world. Next, these image sequences are processed
through ORB-SLAM to produce keyframes and map points, and corresponding vehicle
poses are appended to each keyframe. These augmented keyframes and map points are
then saved to map files in a disk for subsequent localization.

Two mapping runs were conducted on the same day with cloudy weather, with another
one in a different day with sunny weather.As shown in Figure 5.5, maps from cloudy day
provided better coverage than a sunny one. We suppose that this low coverage was caused

by prevalent visual disturbances that occur both in mapping and localization. Figure 5.3
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Figure 5.3: Mapping situations around Nagoya University campus

gives common situations that occurred in mapping runs. Most part of the track covers
suburban areas (A) and wide road (B), with a forest as other substantial parts (C). As
expected in a sunny day, the vehicle may encounter visual disturbance such as lens smear
and flares (D).

5.3.2 Localization Results Overview

Figure 5.4 depicted visualization of localization process. The colored axis shows vehicle
position from sensor fusion of visual localization and odometry, overlaid with metric vector
map that covers road marks. In the inset, visual feature tracking is being performed by

ORB-SLAM, projecting map points currently visible in the image.

5.3.3 Coverage

Each map gives different performance regarding the coverage for localization. Figure 5.5
shows how coverage of each map changes in every run, at which map 3 gave the lowest
coverage. During its creation, we noticed that the camera experienced heavy lens smears
and flares during the run. This condition also occurred during localization run 02-03.
Meanwhile, map 1 and 3 that were created on same day delivered similar coverage.

For an extreme example, we plot the coverage of all maps in runs 02-03 (lowest
coverage from all maps) at Figure 5.6. In this particular run, there are significant parts
of the track in which all maps were unable to provide localization. From this observation,

it is interesting that there is a possibility to improve coverage by jointly using results
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Lateral Longitudinal
Runs Map 1 Map 2 Map 3 Map 1 Map 2 Map 3
Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

01-29 0.21 0.33 0.17 0.30 0.28 1.06 0.51 1.39 0.40 0.79 1.45 12.04

02-03 0.22 0.46 0.21 0.63 0.20 0.47 0.51 1.51 0.43 3.82 0.67 2.09

02-05 0.28 0.57 0.16 0.32 0.17 0.27 0.43 1.66 0.36 0.81 0.54 2.08

02-09 0.31 0.68 0.16 0.26 0.24 0.94 0.49 1.50 0.41 0.96 1.13 10.17

02-12 0.30 0.64 0.18 0.27 0.21 0.51 0.46 1.21 0.49 0.99 0.76 5.27
02-12 N 0.28 0.50 0.23 0.46 0.20 0.42 0.51 1.28 0.44 0.79 0.70 4.90

02-24 0.28 0.58 0.24 0.41 0.50 1.28 0.74 2.62 0.24 0.71 2.06 11.36

Table 5.2: Accuracy of Vision-Only Localization (errors in meter)

Runs Lateral Longitudinal
Average | Maximum | Std.Dev. | Average | Maximum [ Std.Dev.
01-29 | 0.20 2.98 0.25 1.08 5.01 0.86
02-03 | 0.54 48.50 2.78 1.46 48.34 2.58
02-05 | 0.21 3.08 0.26 0.86 3.80 0.61
02-09 | 0.27 4.73 0.38 1.09 4.60 0.88
02-12 0.22 3.73 0.26 1.04 4.73 0.88
02-12 N | 0.25 6.48 0.32 1.27 4.36 0.87
02-24 | 0.22 4.55 0.27 0.97 5.73 0.83

Table 5.3: Accuracy of Sensor Fusion of Multi-Map Visual Localization and Odometry
(errors in meter)

from different maps together in a consistent manner.

5.3.4 Accuracy of Vision-Only Localization

From the coverage graph, we expect that good map coverage will deliver accurate metric
localization. Unfortunately, this is not always the case. Figure 5.7 depicted a scene where
some large but very brief “jumps” had taken place. These localization errors came from
map 3, that has been described to have problems during its creation. However, other
maps may also exhibit similar behavior randomly. All statistics of error rate from vision-
only localization are shown in Table 5.2. In general, average errors, both laterally and
longitudinally are small. However, for map 3 we found that it has substantially large

standard deviation compared to other maps in the longitudinal direction.

5.3.5 Accuracy of Sensor Fusion

Having knowledge that single map is unable to cover the whole track, we also performed
sensor fusion experiments to test the viability of results of combining multiple maps with

odometry from CAN data and provide single localization results. Table 5.3 shows average,
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Figure 5.6: Trajectory coverage for 02-03 dataset
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Figure 5.7: Severe case of large lateral and longitudinal errors in run 02-03

maximum and standard deviation of our sensor fusion approach during all localization
test runs. In that table, multiple maps and sensor fusion approach is capable to jointly

suppress large error that may result from single localization results.

5.3.6 Performance Comparison of Sensor Fusion and Vision-Only
Localization
To compare performance between sensor fusion and vision-only localization, we take an

example from run 02-03 that will be representative of large errors from both methods and

plot cumulative distributive function (CDF) of lateral and longitudinal errors in Figure

e e e o T ————— —— — — ————————

1 1 1 1 1 1 1

3 4 5 6 7 8 9 10
Lateral error [m]

Figure 5.8: Lateral Error CDF Plot for Run 02-03
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Figure 5.9: Longitudinal Error CDF Plot for Run 02-03

Runs Lateral Longitudinal
Average | Maximum | Std.Dev. | Average | Maximum | Std.Dev.
01-29 1.64 15.70 1.47 1.12 14.85 1.23
0203 | N/A | N/A N/A | N/A | N/A N/A
02-05 1.09 9.64 0.87 0.88 8.22 0.67
02-09 | 0.97 8.76 0.62 0.79 7.10 0.55
02-12 1.03 3.81 0.52 0.77 4.88 0.52
02-12 N | 1.11 8.49 0.68 0.88 5.03 0.57
02-24 1.23 13.06 0.93 0.95 13.07 0.77

Table 5.4: GNSS Localization Errors

5.8 and 5.9, respectively. In each figure, the horizontal axis represents size of errors
in meters, while vertical one represents the percentage of error data covered into the
corresponding error size.

Figure 5.8 shows that lateral error distribution of sensor fusion converges to unity
faster than vision-only localization. In other words, the sensor fusion localization of
multiple maps results in better accuracy than any single maps used for vision-only local-
ization. A similar situation also occurs in Figure 5.9, which shows cumulative distribution
of longitudinal errors from all localization methods. From these plots, it is clear that sen-
sor fusion of multiple vision maps and odometry localization is capable to suppress large
errors that may occur from vision-only localization. This error suppression has its limit,
that is when vision localization lost for a quite long time.

Table 5.4 shows GNSS localization results using same datasets (N/A=not available).
Average lateral errors estimated by our vision-based localization method are smaller than
that of GNSS localization results. Although longitudinal error average of our method is
close to that of GNSS results, standard deviations of GNSS longitudinal error is smaller
than that of our method. These results suggest that accuracy of longitudinal estimation

would be improved by fusing GNSS data in the particle filter.



Chapter 6

Conclusions and Future Works

6.1 Conclusions

This research aims to develop and investigate a vision-based localization system that only
uses monocular camera for the purpose of autonomous vehicles. One major requirement
of this system is a capability to provide vehicle position in metric space as input for
currently developed motion planner. Another requirement is reliability under environ-
mental challenges, which is important for deployment in the real world. Therefore, issues
covering the usability of this system in real situations must be identified.

For the first part, the basics of monocular localization in metric space are developed
and tested in a real, convenient environment (i.e. Tsukuba Challenge). Notwithstand-
ing the deviation that occurred in extreme situations, the experiments confirmed that
vision-based localization using augmented maps obtained from vision and LIDAR-based
methods are capable of providing localization within an order of centimeters, which is
quite accurate for controlling small robots in outdoor environments. Unlike the original
results, ORB-SLAM was unable to produce acceptable results in dynamic environments
such as Tsukuba Challenge. Meanwhile, coverage of the vision-only localization system
was quite low (below 70 %). The low coverage indicates that the place recognition sub-
system as part of ORB-SLAM still has a problem of recovering from lost events.

By using sensor fusion method between ORB-SLAM and odometer, we can achieve
continuous coverage of the track. However, due to accuracy problem of the odometer,
the localization may give large errors when updates from ORB-SLAM results are not
acquired quickly. In these results, navigation using odometer and ORB-SLAM localiza-
tion has been shown as possible with good accuracy, as long as ORB-SLAM tracking is
maintained. The sensor fusion approach, combined with multiple maps in vision side has
also been shown to improve the coverage.

In the second part that covered 2016 Tsukuba Challenge event, the goal is to improve

the coverage of vision-only localization system from the previous year. In addition, test-
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ing of possibility for lifelong localization from our visual localization system is required.
Solving coverage problems require three parts. First, utilization of custom vocabulary
for the particular track are introduced, including how to build and restore it in mapping
and localization phase. Second, automatic gamma control is added as an attempt to
control highly variable illumination. Lastly, keyframe searching policy is extended during
localization to increase success probability of keyframe search. From the point of view
of coverage, the localization system is capable to provide high availability, higher than
90 % for all the log data tested in the Tsukuba track. It also could cope with data from
different years providing coverage of 75 %, as long as environmental changes were low.

The capability to support fully vision-based navigation is still limited due to a con-
cern of large errors that may occur in some areas. It has been shown previously that it
is possible to combine this method with other metric localization systems such as odom-
etry with particle filter which can cope with these issues. It is left for future work the
exploration for methods that strive to increase accuracy for any general situations.

In the third part, the possibility for operations of visual localization in urban road
environment has been shown. The vision-only localization provided coverage only in
good visual conditions. Vision-odometry sensor fusion and combined with utilization of
multiple maps maintained full coverage and provided smoother pose estimated results.
As a comparison, our vision-based localization has been shown to have better accuracy
than high-end GNSS. However, truly autonomous navigation based on low-cost sensors
(in this case, monocular vision and IMU) is still difficult because of reliability issues
regarding large errors and low coverage that may occur.

As part of the contribution to autonomous vehicle research community, the implemen-
tation of ORB-SLAM developed for this research has been included as part of Autoware.
Autoware is a suite of open-source software for urban autonomous driving that includes

a number of functionalities such as vehicle control, localization and object detection [75].

6.2 Future Works

The area of visual-kinematic navigation is a fast-moving research field, in which this
research is targeted to. Therefore, the future works are aimed to solve general problems

of usability and reliability, especially for handling extreme situations.

1. The scale correction method in Algorithm 1 requires nearest keyframe search after
initial pose computation by ORB-SLAM. Our investigation in Chapter 5 shows that
this process is prone to errors, especially in high contrast situations. Therefore, the
first priority is to remove the scale correction in order to derive metric positioning.
Especially, pose estimation by the camera (in mapping phase) should be eliminated

and replaced by accurate pose from NDT (the tightly—coupled visual-inertial map-



6.2. FUTURE WORKS 67

ping) as mentioned in subsection 2.3.6. By doing this, triangulation process will
potentially result in metric landmarks and map points. This will lead to the elimi-
nation of scale correction because pose estimation has already been in metric space.
Another effect is that particle filter may be evaluated directly in metric coordinate,

as particle position is now able to use map point projection for scoring.

2. Operations in low-light and high velocity conditions often cause image matching
failure because of motion blur. The root cause of this failure is point-type feature
detectors, which are not invariant against image blur. Application of region or
blob-type feature detectors such as MSER [76] could potentially alleviate matching
failure. However, replacing feature detectors will require significant modifications
in SLAM workflow.

3. Another area worth investigating is Long-Term Mapping; which would provide a
capability to build and “grow” a map of the area from different times [60, 53]. It
has to be acknowledged that multiple maps approach is actually not scalable, as
CPU and storage requirements grow linearly with the number of maps. Instead
of multiple maps, the approach of “growing” single map will increase a degree of

autonomy in part of consumer vehicles.

4. Visual place recognition as a major component of this system should be developed
further because it can be decoupled from other components and combined with
LiDAR-based systems as GNSS replacement. In this regard, deep learning-based

place recognition deserves to get further attention as better candidate [65, 77].
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